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Introduction

Higher resolution time-stratigraphic records suggest correlation of lower
frequency paleoclimatic events with Milankovitch obliquity/precessional
cycles and of higher frequency events with the evidently resonance-
related Pettersson maximum tidal force (MTF) model (Karlstrom 1961).
Subsequently published records, mainly pollen (Hevly and Karlstrom
1974), seemingly confirm that atmospheric resonances may have modu-
lated past climatic changes in phase with average MTF cycles of 1668,
1112, and 556 years, as calculated in anomalistic years from planetary
movements by Stacey (1963, 1967). Stacey accepts Pettersson’s (1914)
dating of AD 1433 (517 YBP) for the last major perihelian spring tide
based solely on calculations of moon- and earth-orbital relations to the
sun. Use of AD 1433 as an origin for the tidal resonance model seemingly
continues to provide a best fit for the timing of cyclical patterns in the
presented paleoclimate time series.

Dating basal contacts (point boundaries) in Southwest alluvium pro-
duces temporal clustering seemingly in phase with the doubling of the
556-year Phase Cycle or its 2/1 (278-year) resonance (Hevly and Karlstrom
1974; Karlstrom 1988). This result, however, is unconfirmed by spectral
analyses of Colorado Plateau dendroclimatic records that clearly define
only 1- to 2-year cycles (Dean 1988). This could result either from
tree-ring standardization procedures that eliminate longer-term trends
or from difficulties in applying spectral analyses to detrended composite
records characterized by:

e Relatively short cross-dated segments that further limit lower-
frequency analysis.

o Interrupted high-frequency cyclical patterns that episodically
change sign through a transition point, suggesting nonlinear
response to an external forcing function (chaos theory).

e Varying amounts of distorting noise (nonclimatic effects on tree
growth).

Moreover, spectral analytical results statistically define dominant cycle
lengths (not their timing) and are sensitive to differing levels of smoothing
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and positioning that can mask real cycles and generate spurious ones
(aliasing). Use of half-cycle smoothing positioned on cycle turning points
thus should provide a more direct and critical test of the resonance model,
since the model imposes severe constraints on both timing and cycle length
and permits concurrent testing of longer- and shorter-term harmonics.

Half-Cycle Analysis of Southwest Dendroclimatic Records

As shown in Figures 1-10, preliminary half-cycle analyses of Southwest
dendroclimatic records from California to New Mexico and Coloradopro-
duce common intervals of generally warmer/drier climate alternating
with intervals of cooler/wetter climate that are most strongly in phase
with the doubling of the 278-year subphase cycle, or the 4/1 (139-year)
resonance of the 556-year phase cycle. Higher frequency resonance
patterns vary from record to record, evidently reflecting differing re-
sponse functions, variable timing of nonlinear phase reversals, and
differing amounts and distribution of distorting noise.

Trend correlation coefficients of the 139-year cycle range from 0.75 to
1.0, or within the upper part of the correlation range (<0.6->0.9) of
tree-ring/climate calibrations. This suggests that the cycle is real, region-
ally robust, and evidently related to changing atmospheric patterns and
dynamics. Continued half-cycle analysis of other dendroclimatic records
may define diagnostic regional patterns as well as differing local re-
sponses, thus advancing understanding of climatic/biologic processes.

Standard Tree-ring Indices in 2 Units
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Figure 1. HYDROGRAPH OF WHITE MOUNTAINS, CALIFORNIA, ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
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ITS 2/1 (69.5-YEAR) AND 4/1 (34.75-YEAR) RESONANCES

Half-cycle and near-half-cycle smoothing positioned on cycle turmnﬁ points; conversion to Z units after smoothing. Decadal indices from Station 12 (Fritls 1967).
Trend correlations suggest a fairly strong precipitation response to the 139-year event cycle and a stronger response to its 4/1 (34.75-year) resonance (Bruckner cycle).
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and Longer-Term Cycles

Refined analysis requires use of annual indices that permit the most
precise half-cycle smoothing (Figures 6-9). Near half-cycle smoothing
using 10-year and 20-year smoothed indices (Figures 1-5) does not
appear to significantly affect analytical results of the longer-term trends,
but it does limit analyses to those cycles with wave lengths of more than
20 and 40 years, respectively.
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Figure 2. THERMOGRAPH

OF THE SIERRA NEVADA, CALIFORNIA, ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND

ITS 2/1 (69.5-YEAR) AND 3/1 (46.33-YEAR) RESONANCES

Half-cycle and near-half-cy
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Figure 3. HYDROTHERMO

GRAPH OF CENTRAL CALIFORNIA ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND

ITS 2/1 (69.5-YEAR) AND 3/1 (46.33-YEAR) RESONANCES

Constructed by combining hydrograph of White Mountains (
precipitation/temperature record improves correlation with the 139-year event cy

Figure 1) with inverted thermograph of the Sierra Nevada (Figure 2). The combined )
cle and emphasizes higher frequency response to the 3/1 resonance. The sign

inversion in Z-2a evidently results from an unusually deep temperature trough at the half-cycle position centered AD 1780. The chronostratigraphic subdivision is after
Karlstrom (1988). PB = Point Boundary (clustering of alluvial basal-contact dates).
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Figure 4. HYDROTHERMOGRAPH OF WHITE MOUNTAINS, CALIFORNIA, ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
ITS 2/1 (69.5-YEAR) RESONANCE
Curve constructed by combining the lower timberline (precipitation) record with the ugﬁer timberline (temperature) record, which is inverted to satisfy parallelism with
the paleoclimatic equation. The 20-year tree-ring indices are from LaMarche 1974). The chronostratlgraphw subdivisions are from Karlstrom (1988). IEB Point
Boundary (clustering of basal-contact dates). As in Figure 3, combination of prec:pltaﬂon and inverted temperature curves improves correlat;on wnh the 139-year event
cycle but, in contrast, also suggests a strong in-phase relatlonshlp with the 2/1 (69.5-year) resonance rather than with the 3/1 (46.33-year) resonance.
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Figure 5. TREE-RING-DERIVED TEMPERATURE GRAPH OF THE SIERRA NEVADA ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
ITS 2/1 (69.5-YEAR) RESONANCE

Half-cycle smoothing and chronostratigraphic subdivision as before. Curve replotted at 20-year intervals from Graumlich (1992). Strongest correlations are with the
139-year event cycle and its 2/1 (69.5-year) resonance. Compare with Figures 1, 2, and 4.
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Figure 6.

HYDROGRAPH OF SOUTHERN COLORADO PLATEAUS ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
ITS 2/1 (69.5-YEAR) AND 4/1 (34.75-YEAR) RESONANCES

Half-cycle smoothing as before. Seventeen station 10-year indices from Berry (1982). Very strong precipitation response to the event cycle; lesser but significant
response to the 4/1 (34.75-year) resonance (Bruckner cycle).
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Figure 7. HYDROGRAPH OF HOPI MESAS, ARIZONA, ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
- ITS 2/1 (69.5-YEAR) RESONANCE

Half-cycle smoothing and chronostratigraphic subdivision as before. Annual tree-ring indices from Dean and Robinson (1978). Very
strong response to the event cycle; weak or insignificant response to the 2/1 resonance.
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Figure 8. HYDROGRAPH OF TSEGI CANYON, ARIZONA, ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
ITS 2/1 (69.5-YEAR) AND 4/1 (34.75-YEAR) RESONANCES

Half-cycle smoothing same as before. Annual tree-ring indices from Dean and Robinson (1978). Very strong response to the event cycle; weak or insignificant response
to the higher frequency half-resonances. The sign inversion betwesn AD 1711 and 1850 appears to result from an unusually deep dry interval at the half-cycle position
(AD 1780) or contemporaneous with the deep temperature high in one of the Sierra Nevada records (Figure 2), but not evident in the other (Figure 5)..
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Figure 9. 25-STATION HYDROGRAPH OF THE-COLORADO PLATEAUS REGION ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND
ITS 2/1 (69.5-YEAR) AND 4/1 (34.75-YEAR) RESONANCES v

Half-cycle smoothing and chronostratigraphic subdivision same as before. Annual indices from Dean and Robinson (1978). Though including many incomplete records,
the regional composite retains a fairly strong response to the event cycle but weak or insignificant response to the higher frequency resonances.
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Figure 10. SUMMARY EVIDENCE FOR A DENDROCLIMATIC CYCLE IN PHASE WITH A 139-YEAR TIDAL FORCE RESONANCE
Trend correlations for local temperature and precipitation range from 0.75 to >0.90, or within the correlation range of tree-ring/climate calibrations. This suggests that the
cycle is real and evidently related to changing atmospheric dynamics and patterns Similar half-cycle analyses of other records may define differing regional patterns

and responses, advancing understanding of climatic/biologic process.

Addltlona.l High-Resolution Records Suggesting Various Components
of the Solar Insolation/Tidal Resonance Model

The 139-year resonance, herein called the event cycle, is but a higher-
frequency component of the resonance model, as characterized by a
series of longer- and shorter-term cycles ranging from years to thousands
of years. Figures 11 to 29 provide additional examples of high-resolution
records, many previously not analyzed for the presence of secondary
cycles, which appear to record various harmonic components of the solar
insolation/tidal resonance model.

Egyptian Cultural/Environmental Events

Egypt provides one of the longest historically chronicled records of
political and environmental change (Hoffman 1979; James 1979). Eco-
nomic and, by implication, political fortunes were intimately tied to the
annual flooding of the Nile River. Series of extremely low and extremely
high floods could have seriously affected the economic base and, thus,
political stability. Resonance analysis of the Egyptian record suggests the
strongest correlation between dynastic subdivision and the 139-year
event cycle (Figure 11). Most dynastic changes took place during the dry
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epicycles (presumably during intervals of falling and generally low flood
levels), suggesting that environmental stress may have played a contrib-
uting role in dynastic succession. The three intermediate periods mark
short intervals of extreme political unrest, with complete loss of central
administrative control and (including in the last two periods) split local
control shared with foreign invaders. Reasons for these intervals of
rapidly changing political fortunes remain enigmatic and speculative, but
they probably reflect a mix of internal and external social factors com-
bined with the possibility of occasional higher destabilizing floods, since
all of the intermediate periods are centered on wet epicycles and essen-
tially begin and end in dry epicycles of the 139-year event cycle.
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Figure 11. CORRELATION OF EGYPTIAN DYNASTIC HISTORY WITH SCHEMATA OF THE 139-YEAR EVENT CYCLE

Reconstruction of dynastic record primarily after James (1978), who notes that dating is approximate and increasingly so toward the beginning of the record.

Most dated boundaries (solid lines) fall within the dry epicycles and the remaining few (deshed lines) fall within the wet epicycles, indicating that environmental stress
(lower Nile levels?) may have contributed to dynastic succession. See Figure 27 for extended correlation of the Egyptian/Nubian record with longer-term climatic trends.
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Sunspot/Climate Correlations

Intense climatic research has focused on correlation of climate with solar
change as indirectly indexed by the sunspot cycle of about 11.1 years and
by its double Hale magnetic cycle of about 22.2 years. Correlation has
been attempted both with sunspot number and sunspot cycle-length.

One of the strongest correlations suggesting cause-and-effect relation-
ships between solar activity and climate is provided by Friss-Christian-
sen and Lassen (1992), who correlate sunspot cycle-length with Northern
Hemisphere average temperature and with the Iceland temperature curve
of Bergthorsen (1969). In Figure 12, I extend the Iceland temperature
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Figure 12. SUNSPOT AND CLIMATE RECORDS ON TIMESCALE OF THE 139-YEAR EVENT CYCLE AND

ITS 3/1 (46.3-YEAR) AND 12/1 (11 .5-YEAR) RESONANCES

Sunslﬁot, hemispheric temperature, and lceland indices to 1745 from Friis-Christiansen and Lassan (1991); extension of Iceland temperature record by indices from
Bergthorssen (1969). Santa Barbara marine indices from Pandolfi et af (1980); tree-ring-dated isotope indices from Epstein and Yapp (1976). Sunspofs and collated
climatic records appear to be related to the tidal resonance model through in-phase relationships with the about 46-year resonance and its double Gleissberg sunspot
cycle (see Figures 14 and 15). Some tendency for sunspot length and higher-resolution climate records 1o oscillate in phase with the 11.5-year resonance.

curve to AD 1700 and add two proxy climate records (Figures 14 and 15)
that also parallel the sunspot cycle-length curve as well as or better than
the proxy Iceland temperature record. The sunspot-length and collated
climatic records appear to be related to the tidal resonance model
primarily through in-phase relationships with the about 46-year reso-
nance and its double Gleissberg sunspot cycle. This, in turn, suggests
some sort of relationship between solar activity and tidal resonances as
dominated by lunar and solar perturbations of Earth’s atmosphere.
Researchers have estimated the Gleissberg cycle variously between 80
and 100 years in duration. Correlation with the tidal resonance model

suggests its average length lies nearer 90 years.

Other researchers have sought correlation between climate and the
sunspot cycle itself. Figure 13 is a graph of the solar-tide and sunspot
curves used by Gribbin (1976) in support of his failed prediction of a 1982
major earthquake in the Los Angeles area. The prediction (Gribbin and
Plagemann 1975) is based on the following linkages:

e Solar tides (due to perturbations of tidal planets Venus, Earth,
and Jupiter) modulate the sunspot cycle,

¢ In turn affecting Earth’s climate,
e In turn perturbing Earth’s spin,

* In turn triggering earthquakes through resulting structural
adjustment in Earth’s crust.
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Most scientists (Anderson and Okai 1975; Meeus 1975; and others)
anticipated the failure of Gribbin and Plagemann’s dire prediction.
Among other criticisms, Anderson and Okai (1975) believe the sun/tide
calculation is in error and that the planetary alignment of 1982 is not as
tight as predictable for 1990 and, in either case, is insufficient to produce
earthquakes.

The apparent failure of the solar tide/sunspot correlation does not
necessarily impact traditional sunspot /climate correlation. I have added
two tree-ring records to Figure 13, one from the Midwest (Michell et al
1979) and one from the Colorado Plateaus (this paper). Both records
correlate well with the Hale double (magnetic) sunspot cycle. In his
seminal analysis of weather cycles, Burroughs (1992) considers that the
cyclical analysis by Michell et al (1979) of Midwest tree-ring records
provides one of the best cases for a possible cause-and-effect relationship
between solar activity and climate. Half-cycle analyses of annual indices
of these tree-ring records (as well as of the sun /tide and sunspot curves)
use turning points of a fundamental fifth harmonic of the tidal model that
closely matches the timing and average length of the Hale double sunspot
cycle. The strong cyclical pattern obtained by half-cycle smoothing of the
Midwest record essentially replicates the results of Michell et al (1979),
who used different analytical procedures.
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Figure 13. SOLAR TIDES, SUNSPOTS, AND DENDROCLIMATIC RECORDS ON TIMESCALE OF THE 2/1 (278-YEAR), 4/1 (139-YEAR), AND

25/1 (22.24-YEAR) RESONANCES OF THE 556-YEAR PHASE CYCLE

Annual indices of sunspots and solar tides from Wood in Gribbin (1976); Midwest tree-ring indices from Michell et al (1979) in Burroughs (1992); Colorado Plateaus
tree-ring indices from Dean and Robinson (1978). Half-cycle smoothing on turning points of the 25/1 (22.24-year) resonance that is in phase with the average Hale
double sunspot (magnetic) cycle. This, in tum, seemingly integrates solar/earth tidal phases with terrestrial cimate through solar magnetic change (+ solar magnetism =
generally increased Earth rainfall).
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Though more complacent, the smoothed Colorado Plateaus tree-ring
curve shows similarities, including the short interval of phase reversals
near the beginning of the century. The comparably smoothed sunspot
curve does not show the same pattern of secondary trends, but it does
suggest correlation with the 139-year event cycle in that lower sunspot
numbers occur in the middle and higher sunspot numbers occur near
the beginning and end of the cycle. These higher- and lower-frequency
correlations seemingly integrate solar/tidal phases with terrestrial cli-
mate through solar magnetic change (with positive solar magnetism
equating with generally increased Earth precipitation).

Uncertainties remain concerning the physical linkages between solar
magnetism, tidal resonances, and climate. Equally critical, the Hale cycle
has been observed only since the beginning of this century, and projec-
tion of the same magnetic alternation between successive sunspot cycles
into the past or the future remains speculative.

Lower Frequency Components of the
Solar Insolation/Tidal Resonance Model

In Figures 14-29, I provide additional high-resolution climate records
that are seemingly in phase with longer-term components of the solar
insolation/tidal resonance model. Procedures for analyzing time strati-
graphy and pollen time series remain the same as discussed in Karlstrom
(1961), Ray and Karlstrom (1968), Karlstrom (1969), Hevly and Karlstrom
(1974), and Euler et al (1979).

| Figures 14-16 include a California tree-ring isotope, a California marine,
and a Swedish pollen time series that seem to be primarily in phase with
the 278-year subphase cycle.
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Figure 14. TREE-RING-DATED ISOTOPE RECORD OF THE WHITE MOUNTAINS, CALIFORNIA, ON TIMESCALE OF THE
139-YEAR EVENT CYCLE AND ITS 2/1 (69.5-YEAR) AND 3/1 (46.33-YEAR) RESONANCES

Centered 10-year isotoge (D/H) temperature indices from Epstein and Yapp (1976).Taken as a whole, the record shows a strong tendency to
oscillate in phase with the 278-year subphase cycle but weak or insignificant tendencies with the event cydle and its 2/1 (69.5-year) and /1
(46.33-year) resonances. Note, however, some apparent systematics in the complex resonance pattern, Between AD 1150 and 1433
{subphase Y-2), the secondary trends are apparently dominated by the event cycle, between AD 1433 and 1711 (subphase Z-1) by its /1
resonance, and between AD 1711 and the present (subphase 7-2) bar/ its /1 resonance (see Figure 12). It remains undlear how much of the
complexity results from distorting noise, from nonlinear response, or from selective local free response fo in- and out-phasing of superposed
afmospheric resonances. Note similarities with the California marine record (Figure 15).
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Figure 15. VARVE-DATED MARINE RECORD OF SANTA BARBARA BASIN, CALIFORNIA, ON TIMESCALE OF THE

139-YEAR EVENT CYCLE AND ITS 3/1 (46.33-YEAR) RESONANCE

Indices from Pandolfi ef al (1980), replotted at 20-year intervals. Original indices collated with a Japanese tree-ring record that includes a

cycle of 273 20 years (18/0) and 271 11 years (D/H). As shown, a similar-length marine cycle is in phase with the 278-year subphase cycle,

suggesting that ?reater amounts of organic carbon were supplied during major Southwest wet (de ositional) intervals. Record shows a

E?:ndency t;; oscillate in phase with the about 46-year resonance and a stronger tendency with its double (about 93-year) Gleissberg cycle
igure 12).
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Figure 16. STANDARD POLLEN AND HYDROLOGIC RECORD OF AGERODS MOSSE, SWEDEN, ON TIMESCALE OF THE 1112-YEAR STADIAL
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CYCLE AND ITS 2/1 (556-YEAR) PHASE AND 4/1 (278-YEAR) SUBPHASE RESONANCES

Pallen and relative hydrologic indices after Nilsson (1964a,b). The Alaska glacial (point boundary) classification and its cyclical subdivisions (Karlstrom 1961; upper 5
rows) are correlated with the transition-boundary classification of Europe (lower 2 rows). Strong tendency to oscillate in phase with the 278-year subphase resonance.
The record suggests that the late-Atlantic marks a drier and the warmest interval in Postglacial time (Karlstrom 1956; Figures 18, 21, 23, 24). Nilsson's chronology is
based on a minor conversion (x1.03) of conventional 14/C dates (halflife of 5568 years). For comparability with other 14/C-dated records, the above Agaréds Mosse
chronology is also derived by using conventional 14/C resuilts.
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Figures 17 and 18 include a California and an Alaska pollen time series
that seem to be primarily in phase with the 556-year phase cycle.

Figures 19-22 include two marine time series (from Equatorial Pacific and
the Antarctic), a dated hydrologic/pollen record from Utah, and an
Arizona pollen time series that seem to be primarily in phase with the
1112-year stadial cycle.
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Figure 17. BIOCLIMATIC HISTORY OF PEARSON'S POND, CALIFORNIA, ON TIMESCALE OF THE 556-YEAR PHASE CYGCLE AND
ITS 2/1 (278-YEAR) SUBPHASE AND 4/1 (139-YEAR) EVENT RESONANCES

Dated pollen indices from Adam (1975). Chronostratigraphic subdivision after Hevly and Karlstrom (1974), Karlstrom (1988). PB = point boundary (clustering of
basal-contact dates). Strongest tendency to oscilate in phase with the phase cycle and its 2/1 subphase resonance; weaker tendency with the event cycle.

A SK(1D) " Tanya(l 2) | Tustumena(1) | Tunnel(2)5
. i [ ooy i i1l
VO AIBEIA'BIAIB|ABYABIA B|ALB
@ | = R B
’1.2 ‘: Cbe ._}r_.,; - *, |x
= ! ‘ 1 | LR B
£ X 5:;‘ ¥ ! galane)
(= S S T (% 4 IR b
;{E':ﬁ-z’l : ﬂ';s Gl - L |
pea L .
£5 0 freln oA :
0¥ X W | .
2 E . P | : L 4
i I R R R R A - S R A
‘® : ‘ ! :! : ! R ) : : : D
= i - P I bt A 4
i - 4 (Girdweod Tidal Bog Record) i AVA'AYA &) A7 ’f‘
=4 ’ ! b e R I | : ; H : B D
i Bg’xi{a')! : . Allithermal ’ N : Sy &= = Dating Control
5 S e e . il i H i H FO S —
. e o e - VAN i A S S S —
-16.0 -89 -7.7 -66 -5.5 -44 -33 -2.2 1.1 0.0 1.2

Figure 18. BIOCLIMATIC RECORD OF HOMER BOG, COOK INLET, ALASKA, ON TIMESCALE OF THE 1112-YEAR STADIAL
CYCLE AND ITS 2/1 (556-YEAR) PHASE CYCLE AND 4/1 (278-YEAR) SUBPHASE RESONANCE

Pollen indices of Huesser (1965) time-calibrated by basal date listed in Karlstrom (1964). The higher-frequency Girdwood Bog record is
schematically plotted as interpreted climatically in Karlstrom (1961). Because of lesser sensitivity, Homer Bog shows the strongest
tendency to oscillate in phase with the 556-year phase cycle and positions the driest Postglacial interval contemporaneous with that in
the late-Atlantic of northern Europe (Figure 16).
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Figure 19. EQUATORIAL PACIFIC OCEAN-CORE RECORDS (AND DERIVATIVES) ON TIMESCALE SHOWING GLACIAL SUBDIVISIONS ON TURNING
POINTS OF THE 3336-YEAR SUBSTAGE CYCLE AND ITS /1 (1112-YEAR) STADIAL RESONANCE

Centered 500-year-interval isotope indices from Berger ot al (1987). Alaska glacial chronology and correlations after Karlstrom (1961, 1976b). Lower row = classic
Scandinavian bioclimatic (pollen) subdivision of Late Glacial and Posiglacial time (Figure 16). The derivatives suggest that secondary trends of glacial melting (18/0)
and surface water temperature (13/C) were strongly in phase with the stadial cycle during the last 18000 years. D-110 3 = Dryas glacial advances.
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Figure 20. TIME-FREQUENGY DIAGRAM OF DATED MARINE TERRACES IN THE ANTARCTIC ON TIMESCALE OF THE

1112-YEAR STADIAL CYCLE

Centered 500-year indices from Berkman (1992). N=88, Clustering of dates suggests  high sea level stand during the culmination of
the Northern Hemisphere Altithermal. Derivative amplification suggests a strong tendency for secondary sea levels to oscillate in phase
with the 1112-year stadial cycle. Correlations with terrestrial records suggest glacioeustatic contrals.
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Figure 21. LAKE-LEVEL AND POLLEN RECORDS OF THE BONNEVILLE BASIN, UTAH, ON TIMESCALE OF THE 3336-YEAR SUBSTAGE CYCLE AND
ITS 3/1 (1112-YEAR) STADIAL RESONANCE

Clustering of dated littoral- and shallow-water samples strongly suggests secondary lake-level changes between 22000 and 11000 YBP in phase with the 1112-year
stadial ?cle. The pollen record evidently extends the same resonance pattern to the present (Hevly and Karlstrom 1974). Recorded voleanic eruptions apparently
oceurred during interstadial (lower water/drought) epochs.
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Figure 22. BIOCLIMATIC RECORD OF WALKER LAKE, ARIZONA, ON TIMESCALE OF THE 3336-YEAR SUBSTAGE CYCLE AND
ITS 3/1 (1112-YEAR) STADIAL RESONANCE

Pollen indices from Berry as time-calibrated in Karlstrom (1976b). Strong tendency for the record to oscillate in phase with the stadial cycle. Several of the
inter-substage epochs are marked by soils (oxidized zones with no pollen) suggesting lower water levels and subaerial exposure. The covering volcanic cinders date
contemporaneous with the Sevier Desert Ash of the Lake Bonneville Basin fo the north (Figure 21).
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Figures 23-26 include three pollen time series (from Canada and Spain)
and a Tunisian ground water time series that seem to be primarily in
phase with the 3336-year substage cycle.
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Figure 23. BIOCLIMATIC RECORD OF TUKTOYAKTUK LAKE #5, NORTHWEST TERRITORY, CANADA, ON TIMESCALE OF
THE 3336-YEAR SUBSTAGE CYCLE AND ITS 3/1 (1112-YEAR) STADIAL RESONANCE

Pollen indices from Richie and Hare (1971). This high-latitude record (N70°) suggests warmest/driest climate and most northerly
expansion of timberline between 5000 and 6000 years ago, or contemporaneous with Altithermal culmination, as dated in the
Southwest and elsewhere (Figures 16, 18, 19, 20, 21). Strong tendency to oscillate in phase with the substage cycle; weaker tendency

with the stadial

cycle.
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Figure 24. BIOCLIMATIC RECORD OF ANTIFREEZE POND, YUKON TERRITORY, CANADA, ON TIMESCALE OF THE 3336-YEAR SUBSTAGE CYCLE
AND ITS 3/1 (1112-YEAR) STADIAL RESONANCE

Pollen indices from Rampton (1970). Alaska glacial classification and cyclical subdivision from Karlstrom (1961). Trend analysis suggests a strong response to the
substage cycle and, where the sampling interval is sufficiently close, to the stadial cycle.
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Figure 25. POLLEN RECORD OF LAKE BANYOLES, IBERIAN PENINSULA, ON TIMESCALE OF THE 3336-YEAR SUBSTAGE CYCLE AND
ITS 3/1 (1112-YEAR) STADIAL RESONANCE

Pollen indices replotted at 500-year intervals from Figure 4B in Perez-Obriol and Juli (1994). Dating control by U/Th and radiocarbon. Alaska glacial classification and
point-boundary cyclical subdivision (Karlstrom 1961; upper two rows) correlated with transition-boundary European classification (lower row). Fairly strong tendency for
In-phase relationships with the substage cycle.
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Figure 26. TIME-FREQUENCY DIAGRAM OF DATED GROUND WATER IN TUNISIA ON TIMESCALE OF THE 3336-YEAR SUBSTAGE CYCLE AND
ITS 3/1 (1112-YEAR) STADIAL RESONANCE

Indices from Scharpenseel et al (1980). Wetter climate apparently reocourred substantially in phase with the 3336-year substage cycle (Figure 27). Note the typical
progressive decrease in number of dates with age.
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Figure 27 includes dated Egyptian and Nubian cultural and environ-
mental events, partly in phase with lower north latitude processional
cycles and partly with the 3336-year substage cycle.

Figure 28 includes two marine isotope chronologies (from the Equatorial
Pacific and Equatorial Atlantic oceans) that are fine-tuned to the 65°N
latitude insolation curve and considered to provide standard global
records of the Ice Ages.
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Figure 27. SOLAR INSOLATION CURVES OF NORTHERN SUMMER HALF-YEARS FROM THE EQUATOR TO N30° LATITUDE

The 3336-year substage cycle is schematically superr )
summarized in Hoffman (1979). More recent dating of Nubian pluvials c29-22 and ¢9-6/3 (Neolithic subpluvial

(1991), and appears to confirm the correlation

osed on the insolation trends. Dated Nubian and Egyptian cultural/environmental events are positioned as
and Dynastic in age) is after Pachur and Hoelzman
between generally wetter climate and precessional solar-insolation minima north of the Equator. Secondary hydrologic

and cultural events apparently are in phase with the 3336-year substage cycle. F? = possible earliest farming during the Sahaba Darau Aggradation interval (substage

10). H/G = temporary return to hunting and gathering strategies during

Dynastic time.

the ensuing drier Epi Paleolithic interval (substage 11). See Figure 11 for historical subdivision of
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Figure 28. TWO
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"STANDARD” MARINE ICE AGE CHRONOLOGIES ON TIMESCALE OF THE INSOLATION CYCLE (ABOUT 40000 YEARS) AND

ITS 2/1 (ABOUT 20000 YEARS) RESONANGE ASSUMING A RESPONSE LAG OF ABOUT 4500 YEARS (Karlstrom 1961)

Equatorial Pacific record from Chuey et al (1987);
assuming corresponding response  GUIV
125000 years, suggesting either heterogeneities in the global recor

the Equatorial Atlantic record from Martinson et al (1987). Both are fine-tuned to the Milankovitch climatic model
1) out-of-phase relationships about 225000 YBP, and (2) relative glacial amplitudes of the last

lags. The curves differ mainly in
é or difficulties with dating procedures and sample mixing. Note the tendency for near in-phase

oscillations with the obliquity 2/1 (about 20000-year) resonance.
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Figure 29 shows the latitudinal insolation curves that progressively
change from the dominant obliquity cycle at the poles to the dominant
precessional cycle at the Equator. Since the isolation curves are based on
summer half-years, precessional trends north of the Equator are 180
degrees out of phase with those south of the Equator. Six selected
high-resolution terrestrial-climate time series are referenced as to type
and source and in the figure are positioned according to latitude. These
dated records seem to parallel the local latitudinal insolation trends more
closely than the records at other latitudes, suggesting direct latitudinal
insolation control of climate. Particularly significant is the apparent
180-degree phase reversal across the Equator, as represented by the Afar
and Egyptian/Nubian records to the north and the East Africa records
immediately south of the Equator, just those relations expected from local
Precessional-insolation control. The Antarctic (Vostock) ice-core record of
temperature and COg strikingly parallels Obliquity/Precessional cycle
trends in the South 60°-90° Latitude belt, the precessional elements of
which are also 180 degrees out of phase with those in the Northern
Hemisphere and with the associated K/Ar-dated North American glacial
record of Richmond (1976). TheNorth 37°Latitude Devils Hole isotope/
temperature record of Winograd et al (1992) also parallels Richmond’s
glacial chronology (glaciations 6-8) and the corresponding insolation
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Figure 29. LATITUDINAL INSOLATION CONTROL OF TERRESTRIAL CLIMATIC RECORDS
These dated records seemingly parallel more closely the local latitudinal insolation trends than the records at other latitudes. If these climate records are representative
of their respective latitudinal belts, the conventional concept of inter-hemispheric climatic synchrony must be reassessed as a basis for lce Age correlations and
resulting global paleoclimatic reconstructions (Karlstrom 1961). See also Crowley and Kim (1994),
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trends in the North 30°-60° Latitude belt. Cause-and-effect relationships
are apparently satisfied by a consistent response lag (0-5000 years)
between the modulating latitudinal insolation trends and the inde-
pendently dated climate changes. Precessional elements of the Milank-
ovitch model are also invoked by Crowley and Kim (1994) to
accommodate the recent coral dating of about 130,000 years ago for a
major high-sea-level stand and for the contemporaneous high-tempera-
ture interval in the Devils Hole isotope record. Additional long, high-reso-
lution terrestrial records (particularly in the upper north latitudes and
the middle south latitudes) are required for more critical testing of the
Obliquity/Precessional insolation model and for direct assessment of the
latitudinal representativeness of the selected time series.

Natural Fluctuations of Atmospheric Greenhouse Gases
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The striking correlation in the Antarctic ice-core record between isotope
temperature and CO2 contributes to the current greenhouse gas contro-
versy by providing direct evidence of large, natural, temperature-related
fluctuations in atmospheric CO2. Coupled with recent evidence of declin-
ing greenhouse gas components in the atmosphere following culmination
of a drought (warmer/drier) interval about 1990, as predicted by the
resonance model (Figures 1-10; Karlstrom 1976a), this strongly suggests
that current climate modeling requires modification to accommodate
higher as well as lower frequency, natural (nonanthropogenic) climate
fluctuations in future projections of atmospheric greenhouse gases.
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