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Abstract: Climate conditions in land areas of the Pacific Northwest are strongly
influenced by atmosphere/ocean variability, including fluctuations in the Aleutian Low,
Pacific-North American (PNA) atmospheric circulation modes, and the El Nino-South-
ern Oscillation (ENSO). It thus seems likely that climatically sensitive tree-ring data
from these coastal land areas would likewise reflect such climatic parameters. In this
paper, tree-ring width and maximum latewood density chronologies from northwestern
Washington State and near Vancouver Island, British Columbia, are compared to
surface air temperature and precipitation from nearby coastal and near-coastal land
stations and to monthly sea surface temperature (SST) and sea level pressure (SLP) data
from the northeast Pacific sector. Results show much promise for eventual reconstruc-
tion of these parameters, potentially extending available instrumental records for the
northeastern Pacific by several hundred years or more.

Introduction

Atmosphere-ocean interactions play an extremely important role in the
climatic variability over western North America. Linkages have been
demonstrated between northeast Pacific SLP and SST and other indica-
tors of atmosphere/ocean interaction (such as the Aleutian Low Index
and PNA) and climate over land (Walsh and Richman 1981; Namias et al
1988: Trenberth 1990; Leathers et al 1991). The role of the northeastern
Pacific sector in large-scale climatic dynamics, including teleconnections
with ENSO events, has also been well documented (Andrade and Sellers
1988; Cayan 1980; Emery and Hamilton 1985; Namias et al 1988;
Niebauer 1988; Ropelewski and Halpert 1986).

In this paper we explore relationships between tree-ring width and
maximum latewood density chronologies from the Pacific Northwest and
climatic data from coastal/near-coastal land stations, as well as SST and
SLP records from the northeastern Pacific sector. Previous researchers
have used tree rings to model and reconstruct air/ocean parameters,
including sea surface temperatures (Douglas 1980; Lough 1986), sea
level pressure (Blasing and Fritts 1975) and ENSO events ( Lough and
Fritts 1985, 1989; Michaelson et al 1987). In their reconstructions, Lough
and Fritts (1985, 1989) employed a grid of 65 chronologies representing
a variety of species over a wide geographic area of western North America.
We use an approach more similar to those of Douglas (1980} and
Michaelson et al (1987), in which a small subset of tree-ring chronologies,
found to be the most sensitive to specific variables of interest, were
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retained for final analysis. Our study represents one of the first attempts
to relate North American maximum latewood density data (in addition to
ring widths) to features of atmosphere/ocean circulation such as SLP and
SST.

Climate and Tree-Ring Data

Four sets of climatically sensitive, maritime tree-ring chronologies of both
ring width and maximum latewood density from sites in northwestern
Washington State and southwestern British Columbia were selected for
this study (Figure 1). Three tree species are represented: Pseudotsuga
menziesii (Douglas fir), Abies amabilis (Pacific silver fir), and Tsuga
mertensiana (mountain hemlock). The raw data were processed in Swit-
zerland and supplied to us by Dr. Fritz Schweingruber of the Swiss
Federal Institute of Forestry Research. Final chronologies (Figure 2) were
developed from the raw data at the Tree-Ring Laboratory at Lamont-Do-
herty Geological Observatory, using standard dendrochronological tech-
niques (Fritts 1976; Cook and Kairiukstis 1990). The common period of
the eight chronologies is 1750 to 1983.

The tree-ring data were first compared to monthly temperature and
precipitation instrumental records from nearby individual land climate
stations, obtained from the Historical Climate Network. After screening
all available nearby stations, four were averaged into a regional series:
Blaine, Bellingham, Clearbrook, and Port Angeles — all in northwestern
Washington (Figure 1). A monthly SST dataset for the northeastern
Pacific, at 5x5 degree grid resolution and extending from 1947 to 1990,
was supplied to us by Dr. D. Cayan of Scripps Institute of Oceanography.
Monthly sea level pressure data, also at 5x5 degree grid resolution
(available from 1899 to 1980), was obtained from Dr. K. Trenberth of the
National Center for Atmospheric Research.

Response of Tree Growth to Land Climate
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The climatic response of the density and ring-width series was evaluated
using simple correlation and linear regression analyses. Correlations
were determined between the ring width and maximum latewood density
chronologies and the regionally averaged monthly temperature and total
precipitation data for a 17-month dendroclimatic year (beginning in June
of the year prior to growth and extending to October of the growth year)
for the common period from 1903 to 1983 (Figure 3).

The maximum latewood density chronologies show a much more consis-
tent response to land climate, across both site and species, than does ring
width. For all four density series, there is a strikingly clear, positive
correlation between tree growth and growing season (April through
August) temperatures and a corresponding negative correlation with late
growing season (June through August) precipitation. Although the ring
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Figure 1. Map showing tree-ring sites in Washington state and British Columbia. Locations of climate stations are marked by numbers:

1=Blaine, 2=Clearbrook, 3=Bellingham, and 4=Port Angeles.
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width/climate relationships agree qualitatively with those of latewood
density, the ring width data also show a tendency for a response to
growing season climate of the prior year (a negative response to tempera-
ture and a positive response to precipitation). In addition, variability in
response is greater between species and between sites for ring width (see
Figure 3). Thus the ring width and density data provide different types of
climatic information, and both contribute to our understanding of the
tree growth response to climate at these sites.
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Figure 2. Plots of ring width and density indices from each of the four sites. Shown is the common period of all sites from 1750 to 1983.
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Figure 3. Bar graphs of correlations between tree growth and climate for ring width and maximum latewood density. Note the more uniform cross-species

response of the density series for both temperature and precipitation and the greater prior season response for ring width. The most significant values
are the positive correlation of density with spring temperature and the negative correlation of density with summer precipitation.
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Land/Ocean Climate Linkages in the Northeast Pacific Sector

Previous research has determined that relationships exist between cli-
mate over the Pacific Ocean and western North America (Walsh and
Richman 1981:; Douglas et al 1982; Andrade and Sellers 1988; Emery
and Hamilton 1985; Namias et al 1988). We analyzed the relationship
between land instrumental records and northeast Pacific SST and SLP
for a series of grid points ranging from 35 to 55 degrees North and 125
to 150 degrees West. The regionally-averaged land temperatures were
compared with SSTs for four seasons: fall (OND), winter (JFM), spring
(AMJ), and summer (JAS). The strongest correlations (positive) were
found in spring and summer (Figure 4). A striking geographic pattern
was found, with those SST gridpoints nearest to shore having the
strongest correlations with land climate. The somewhat weaker correla-
tions in summer might be explained by the increasing role of radiative
heating and cooling of the continent during the region’s dry season and
also of the late-seasonal changes in circulation over the Pacific with the
migration of the sun’s declination, the westward displacement of the
Aleutian Low, and the northward displacement of the Subtropical High.

Tree Growth and Sea Surface Temperatures
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The four sets of chronologies (ring width and density data for each site)
were compared to SST data for the same gridpoints as those previously
compared to land temperatures (Figure 5). Overall the strongest correla-
tions were found with summer SST. Maximum latewood density demon-
strated a significant, positive correlation with summer SST, with the
highest correlation at the gridpoint 45N/135W. The strength of the
correlations decrease rapidly from this gridpoint in all directions, as
shown in Figure 5. The ring-width chronologies show a moderately strong
correlation with a zone away from shore centered on 45N, 140W, while
the near-shore gridpoints show a weak, negative correlation. While the
most significant gridpoint was five degrees farther west than that for
density, the ring-width correlations were still strongly positive for 45N/
135W. It was, therefore, determined that the strongest relationship
overall is between summer SSTs for 45N/ 135W, and combined maximum
latewood density and ring width data.

Summer SST at gridpoint 45N/135W was estimated using two density
chronologies and one ring-width chronology (which showed the strongest
correlations) as predictors in linear regression analysis for the common
period from 1947 to 1983 (Figure 6). Agreement is good between the
recorded and estimated SSTs, with 42% variance explained (adjusted for
degrees of freedom). However, the relationship appears to break down in
the late 1960s and into the 1970s.
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Figure 4. Map showing areal correlation between regional spring temperature (AMJ) for the selected climate stations (indicated by the arrow) with sea

surface temperatures for the same period. Note the very strong correlations with SST along the coast and northwestward into the Gulf of Alaska.
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Figure 6. Plot of actual and estimated values of sea surface temperatures
for the grid point 45N, 135W, using two density chronologies and one
ring width chronology. The amount of variance explained (adjusted for
degrees of freedom) is 42 percent.
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Tree Growth and Sea Level Pressure

A dominant feature of northeast Pacific circulation is the Aleutian Low
(Namias et al 1988; Emery and Hamilton 1985). The Aleutian Low Index
(ALI) is a representation of the strength of the low, measuring the
pressure gradient between two points: 40N/120W and 50N/170W, where
the latter is subtracted from the former. A higher value of ALI indicates a
stronger gradient and, therefore, a deeper Aleutian Low. Lower values
indicate weak development of the low.

Our study region is affected by this system in the following simplified way.
In years of a strong Aleutian Low, the near-shore ocean climate is
influenced by the northward flow of warm, subtropical water; in years of
a weak development in the Aleutian Low, the near-shore ocean climate
is influenced by cooler waters, as the northward flow of warm, subtropical
water is inhibited. We compared our averaged land temperatures against
SLP at 50N/170W and confirmed that the winter strength of the Aleutian
Low has a significant, negative correlation with land temperatures all
through the year and is consistent with the findings of Namias et al
(1988). As the winter Low gets stronger (lower), average temperatures at
the sites will be higher all year long. It was also shown that the strength
of the Low in spring was significantly and negatively correlated with land
temperatures for that same period.

We compared our four density chronologies to SLP data representing the
three elements of the ALI for 1900-1980. Figure 7 shows the correlations
of the density chronologies with 40N/120W (top graph), 50N/170W
(middle graph), and the ALI (bottom graph). While there is some indica-
tion of a relationship between maximum latewood density and winter
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intensity of the Aleutian Low, the real influence is from the spring period,
which was demonstrated to be an important link between the Aleutian
Low and temperature on land. This spring period is strongly affected by
the persistence of the winter Aleutian Low (Namias et al 1988) and may,
therefore, be considered to reflect the strength of the winter development
of the Low. This would seem to indicate that maximum latewood density
is increased in those years where the spring ALI is greater as the result
of the persistence of a strengthened winter Aleutian Low.

Summary

In this paper we have explored some of the linkages between tree-ring
data from coastal and near-coastal sites in the Pacific Northwest and
several variables related to air/ocean interaction and atmospheric circu-
lation in this region. The land temperature data showed significant
positive correlations with SSTs (at 5x5 grid resolution) during the growing
season and, in particular, for the spring months (April, May, and June).
Monthly SLP data for gridpoints known to be representative of the
strength of the Aleutian Low were also demonstrated to influence land
temperatures at the stations selected for study: with an increase in the
strength of the Aleutian Low during winter, there is an increase in
temperature for the rest of the year. Both ring-width and maximum
latewood density indices were linked to SST and SLP, with the strongest
correlations for the spring months.

Our results indicate that density data is equally or even more sensitive
to climate in this region than are ring widths. To date there have been
relatively few studies that have modeled or reconstructed Pacific sea
surface temperatures using tree-ring data, and these have been almost
exclusively through the use of ring-width data (Douglas 1980). From this
preliminary study we conclude that reconstructions of northeast Pacific
SST and SLP are possible for several centuries or more using maximum
latewood density and ring-width chronologies from the Pacific Northwest.
There is also the potential for eventual integration of these tree-ring data
with other types of proxy records, including varves (Leclerc and Schrader
1987; Baumgartner et al 1989). Future research will involve developing
a tree-ring database with added geographical coverage to improve pros-
pects for long-term, high-resolution reconstruction of climate in this
area.
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