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ABSTRACT: We describe an empirical-statistical
model of climates of the southwestern United States.
Boundary conditions include sea surface temperatures,
atmospheric transmissivity, and topography. Indepen-
dent variables are derived from the boundary conditions
along 1000-km paths of atmospheric circulation. Upper
(400 mb) and lower level (800 mb) atmospheric indepen-
dent variables describe available moisture and heat.
Lower level atmospheric variables also describe
orographic controls. Other independent variables
represent climatic controls at the surface, such as eleva-
tion and slope. Mean monthly temperature and total
monthly precipitation are the predicted variables.
Canonical regression is applied to avoid problems of
co-lincarity. Predictor equations are derived over a
larger region than the application area to allow for the
incrcased range of palcoclimate. This larger region is
dclimited by the autocorrelation properties of climatic
data.

INTRODUCTION

The climate equations are solved at all points in the
level II prediction area (Figure 1). These predictions
draw upon information (to compute independent vari-
ables) from an area up to 1000 km upwind (the level I
prediction area).

The level of climatic information required to under-
stand the hydrologic system of the southwestern United
States is difficult to reconstruct from general circulation
model (GCM) output because of the coarse scale com-
pared to the phenomena of interest (Kutzbach, 1983).
Such models are of interest because they offer the
advantage of providing information for any period for
which the requisite boundary conditions can be speci-
ficd (COHMAP, 1988). A possible supplement to
GMC solutions is a statistical analysis that explicitly
computes climate in terms of controlling factors in that
arca (Roberts, Craig and Stamm, 1989). We describe
here an extension of that approach that more fully
expresses the influence of the boundary conditions and
allows greater fIexibility in its application. In this study,
we use canonical regression (Glahn, 1968). Such a
modcling procedure has been successfully applied to
palcoclimatic studies (Fritts, et al., 1971; Webb and
Bryson, 1974).

THE STUDY AREA
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Figure 1. Level II calibration (large dashed rectangle)
and solution (small dashed rectangle) areas. Arrows
represent 800 mb July wind vectors interpolated from
Schutz and Gates (1972). Curved lines represent wind
trajectories along which independent variables are
determined (axis units: km from central origin).

We differentiate two tasks for this modeling: (1) solu-
tion of the climate equations, and (2) calibration of the
cquations. The area used to calibrate the equations is
much larger than the area in which the equations are
solved to ensure a robust set of equations as explained
below.

Winter 500 mb geopotential height departures from tran-
sient means (Figure 2) clearly show a decrease in the
correlation between stations as the distance increases
(Thiebaux and Pedder, 1987, p. 143). At about 1500 km
distance, the averaged correlation values become nega-
tive. Because of the spread of the data, it is not clear
that points more distant than about 1000 km are posi-
tively correlated. Therefore, trajectories of 1000 km are
used to compile the independent variables.

To calibrate the climate equations, we select stations
whose range of independent variables is considerably
larger than that currently observed in the solution area.
We assume that the most extreme climates to be
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Figure 2. Correlation between geopotential height
transient means as a function of distance of separa-
tion of stations (from Thiebaux and Pedder, 1987).

predicted are represented at stations within 1000 km up-
wind of the solution area. The area containing selected
climate stations is called the level I calibration area.

The level I calibration area extends 1000 km upwind
from the level II calibration area and is of sufficient size
to provide boundary conditions needed to calculate
independent variables in the level II calibration area.
Figure 1 shows wind paths up to 1000 km upwind from
the level II calibration area corners during July.

BOUNDARY CONDITIONS FOR
CLIMATIC MODELING

Independent variables used in the climate equations are
based on one or more of the following boundary condi-
tions:

- Elevation

- Upper level (400 mb) winds, winter
- Upper level winds, summer

- Surface (800 mb) winds, winter

- Surface winds, summer

-~ Sea surface temperatures, winter

- Sea surface temperatures, summer
- Solar isolation

Elevation is represented by a digital elevation model
(DEM) with a 10-km-square grid. This grid was interpo-
lated from elevation and bathymetric data at a spacing
of 5 minutes of latitude and longitude (National Geo-
physical Data Center, 1988).

Windfields for modern winter and summer are interpo-
lated from first order U.S. Weather Bureau instrumen-
tal stations. We employ winds at two levels: near the
surface (800 mb) and in the upper atmosphere (400 mb).

The windfield of the local climate model is interpolated
with a 3-dimensional, objective-analysis mesoscale
windfield model. This model was originally part of a
meteorological data processor for an air quality monitor-
ing program, MELSAR (MEsoscale Location Specific
Air Resources) (Allwine and Whiteman, 1985). Given
the horizontal velocity components at discrete points in
the domain, the model generates an orthogonal polyno-
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mial that represents horizontal velocity components con-
tinuously through the domain. Horizontal velocity com-
ponents are then computed under constraint of
conservation of mass. Figure 1 is an example of the out-
put of the model.

Instrumental records allow direct calibration of the cli-
matic equations with SST data representing the same
years as the climatic data. We use those data to cali-
brate four polynomial equations. Two seasons, winter
and summer, are used. Two functional surfaces are
computed for each season, one for the Pacific Ocean
and one for the Gulf of Mexico.

The polynomial equations provide a compact represen-
tation of SST, which minimizes storage requirements
while accurately reproducing the original data. An R2
of 99 percent is achieved, and the patterns of variability
are well described. They allow estimation of SST at any
point. This is important for applications along wind
vector paths that do not lie at grid point locations. Sea
surface temperatures are represented with CLIMAP
(MclIntyre, et al., 1981) and other data sources.

We limit our estimates of insolation to the top of the
atmosphere and solve for daily insolation from orbital
solutions based on the work of Berger (1978a). Inclu-
sion of this term provides greater flexibility in considecr-
ing climatic solutions for boundary conditions
representing other climatic states.

We also use the orbital parameter calculations of
Berger (1978b) to compute sun angle (declination and
azimuth) and combine this information with slope
derived from the DEM to determine the about of solar
energy received at each point of the level II arca.

Heat energy added to an air mass upwind of a chosen
point is approximated with an energy budget approach
(Pease, 1987). The algorithm takes into account the
incoming short-wave solar energy and long-wave energy
emitted from the earth. This information is used to esti-
mate the average airmass temperature along a 1000 km
trajectory upwind of the point in question.

For this energy budget computation, certain assump-
tions must be made about the emissivity of the earth, the
transmissivity of the atmosphere, certain partitioning
fractions, and the density of cloud cover. A complete
discussion is provided by Pease (1987). This model has
the advantage of allowing adjustment for changes in the
emissivity of the atmosphere such as could happen with
a change in the concentration of carbon dioxide. This
concentration has been shown to have varied in the Late
Quaternary Period (Neftel et al., 1988). This concentra-
tion and the other partitioning fractions become parame-
ters of the model.

Thermal energy input to the air mass from the upper
level of the ocean is modeled by setting the surface
energy in the energy balance modcl to the sca surface
temperature. Planctary temperaturc and the non-
radiative (lux paramcter, gamma, are adjusted to that
SST.



INDEPENDENT VARIABLES

The canonical regression equation is based on indepen-
dent variables representing the physical factors that can
influence climate in the area while satisfying the con-
straint that they must be available for times in the
geologic past. This constraint is exploited in other appli
cations not discussed in this paper. We further con-
strain the independent variables to be calculated from
boundary conditions within 1000 km of the calibration
or solution point.

Thc indcpendent variables are divided into three groups:

e Surfacc variables - calculated at the calibration or solu-
tion point.

e Lower-air variables - representing the influence of the
boundary conditions from points up to 1000 km upwind
from the calibration or solution point along the lowest
conformal surface (™ 800 mb).

e Upper-air variables - representing the influence of the
boundary conditions from points up to 1000 km upwind
from the calibration or solution point along the upper
conformal surface (™ 400 mb).

Considering that some variables are computed for each
month, there are presently 72 independent variables
uscd in the canonical regression procedure. The vari-
ables are described below.

Surface Variables:

a. Climatc station clevation interpolated from DEM.

b. Maximum slopc of the terrain surface.

¢. Normalized horizontal components of the maximum
slope of the terrain surface.

d. The angle between the horizontal wind direction and
the azimuth of the maximum slope of the terrain sur-
face.

e. Vertical component of wind velocity.

f. Surface temperature, from energy balance model.

g. Planetary temperature, from energy balance model.

h. Day length (sunrise to noon) at mid-month.

i.  Mid-month insolation.

Variables d and e are computed for both summer and
wintcr, and variables f through i are computed for each
month, yielding 54 independent variables.

Variable a represents the important effects of elevation.
Variables b and ¢ represent the microclimatic influence
of slope. Variable d represents the angle of approach of
a storm on terrain and the associated efficiency of pre-
cipitation. Variable e represents the potential for con-
veetive storms.  Variables f through i represent the local
cffects of insolation.

Lower-Air Variables:

a. Maximum [elevation/In (distance to the elevation)]
along upwind trajectory from the calibration/solution
point.

b. Maximum elevation along upwind trajectory from the
calibration/solution point.

¢. Minimum elevation along upwind trajectory from the
calibration/solution point and downwind from the
location of variable b.

d. Distance from calibration/solution point to variable b.

e. Distance from calibration/solution point to variable c.

f. Average surface temperature along trajectory using
energy budget model.

g. Percent distance over oceans/lakes along trajectory.

These variables are computed for both winter and sum-
mer, yielding 14 independent variables.

Variables a, b, and d represent the controls on oro-
graphic precipitation. Variables ¢ and e represent
adiabatic cooling that an air mass undergoes after it has
passed an orographic depression. Variable a represents
effects of local barriers, while variables b through e rep-
resent effects of distant barriers. Variable f represents
possible horizontal advection of heat. Variable g repre-
sents the amount of moisture input from points upwind.

Upper-Air Variables:

a. Average surface temperature along trajectory using
energy budget model.

b. Percent distance over oceans/lakes along the
trajectory.

These variables are computed for both winter and sum-
mer, yielding four independent variables. These vari-
ables have the same physical representation as lower-air
variables fandg.

STATUS

We have used a data set consisting of monthly mean
maximum temperature and total monthly precipitation
for 180 stations in the Great Basin (Wernstedt, 1972) to
compute a canonical regression. For these stations,
elevations ranged from -16 m to 2746 m, with a mean of
786 m and standard deviation of 734 m. Climatic vari-
ables, except for summertime precipitation, are highly
correlated with one another (Table 1). We infer that at
least two canonical variates must be employed.

Table 1. Squared multiple correlation of variables in
the first set with all other variables in the first set.
Temperature  Precipitation

January 0.99 0.99
February 0.99 0.98
March 0.99 0.98
April 0.99 0.97
May 0.99 0.97
June 0.99 0.92
July 0.99 0.89
August 0.99 0.88
September 0.99 0.82
October 0.99 0.98
November 0.99 0.98
December 0.99 0.98
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Seventy-two independent variables were available for
analysis. Because of co-linearity, only 26 independent
variables were used in the canonical correlation proce-
dure. Slope-related variables were not used, except for
slope itself. Some mid-month day lengths were not
used; summertime values were important. All insolation
values except December were excluded. All planetary
temperature variables were removed. Percent over
ocean for surface variables were not needed.

Tests of the eigenvalues are reported in Table 2. Using
Bartlett’s test of sphericity, we found that seven canoni-
cal variates are significant (at the 0.01 level). Three
were retained to develop regression coefficients, scores
and loadings.

Table 2. Bartlett’s test of number of eigenvalues
needed.

Chi- Tail

Square d.f. Probability
1999.34 624 0.0000

1 1518.60 575 0.0000

2 1102.34 528 0.0000

3 817.17 483 0.0000

4 643.39 440 0.0000

5 52433 399 0.0000

6 426.37 360 0.0091

7 346.66 323 0.1748

Adjusted squared multiple correlations of temperature
and precipitation with the chosen canonical variates
(Table 3) ranged from 17 percent (September precipita-
tion) to 82 percent (January and December tempera-
tures). All adjusted R2 values are significant at the
0.0005 probability level.

Table 3. Adjusted squared multiple correlations of
each variable in the first set with chosen canonical
variables of the second set. For all variables, the
degrees of freedom are 26 and 153, and the F-statistic
is significant at the 0.0005 level.

Adg. Adg.
Variable R F-stat. Variable R F-stat.

TJAN 0.82 33.22 PJAN 049 783
TFEB 0.79 27.59 PFEB 049  7.80
TMAR  0.75 21.86 PMAR 050 805
TAPR 070 17.85 PAPR 047 723
TMAY  0.66 14.89 PMAY 055 952
TIUN 0.62 1233 PJUN 0.63 13.07

TJUL 053 882
TAUG 054 933

PJUL 054 912
PAUG 054 911

TSEP 0.58 10.67 PSEP 0.17 246
TOCT 0.68 15.84 POCT 038 538
TNOV 0.78  25.54 PNOV 044 659
TDEC 0.82 33.01 PDEC 050 811
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Loadings of the independent variables on the canonical
variates indicate that the first canonical variate has high
loadings from nearly all variables. The second canoni-
cal variate has highest loadings from the day-length
variables.

Wintertime temperatures tend to load highest on the
first canonical variate. Of the precipitation variables,
summer months tend to load highest on this variate
(with negative loadings). Summer temperatures and all
precipitations except June, July, and September load
highest on the second canonical variate. Loadings on
the third canonical variate are also high for summer
temperatures and spring precipitation. Temperature
loadings on that variate are negative and positive for all
precipitation variables.

CONCLUSIONS

Empirical-statistical models capable of describing a
significant portion of the variability of average monthly
temperature and precipitation in the southwestern
United States are feasible. These models can define the
importance of various orographic and synoptic variablcs
that can be solved from a fundamental set of boundary
conditions, which can be specified by a GCM. The avail-
ability of a local climate model allows a meaningful com-
parison of climate forecasts to field observations.
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