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Abstract—The green sea urchin (Stron
gylocentrotus droebachiensis) is impor
tant to the economy of Maine. It is the 
state’s fourth largest fishery by value. 
The fishery has experienced a con
tinuous decline in landings since 1992 
because of decreasing stock abundance. 
Because determining the age of sea 
urchins is often difficult, a formal stock 
assessment demands the development 
of a size-structured population dynamic 
model. One of the most important com
ponents in a size-structured model is a 
growth-transition matrix.We developed 
an approach for estimating the growth-
transition matrix using von Bertalanffy 
growth parameters estimated in previ
ous studies of the green sea urchin off 
Maine. This approach explicitly consid
ers size-specific variations associated 
with yearly growth increments for 
these urchins. The proposed growth-
transition matrix can be updated read
ily with new information on growth, 
which is important because changes in 
stock abundance and the ecosystem will 
likely result in changes in sea urchin 
key life history parameters including 
growth. This growth-transition matrix 
can be readily incorporated into the 
size-structured stock assessment model 
that has been developed for assessing 
the green sea urchin stock off Maine. 
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The green sea urchin (Strongylocentro
tus droebachiensis) fishery is the state’s 
fourth largest fishery by value, worth 
$20.3 million to harvesters in 1999. 
The fishery is managed by limited 
entry, a limited number of opportunity 
dates that are established each year 
by recommendation of the sea urchin 
zone council (SUZC), and minimum 
and maximum size limits. The fishery 
is further regulated seasonally by two 
zones that correspond to variation in 
spawning time along the coast (Vadas 
et al., 1997). 

The Maine sea urchin fishery began 
in the late 1980s and reached its peak 
in landings in 1992. It has since experi
enced a continuous decline in landings, 
mainly resulting from large decreases 
in sea urchin stock abundance (Fig. 1). 
Although the large decrease in abun
dance is evident in many studies (Ste
neck and Vadas1; Harris2) and apparent 
to the sea urchin fishing industry, the 
catch-per-unit-of-effort (CPUE) data 
derived from the fishery have shown 
no significant decreases over the last 

10 years (Fig. 1). We need to perform 
a formal stock assessment to better 
understand the population dynamics of 
the sea urchin stock and to develop an 
optimal management strategy. 

A population dynamics model for the 
sea urchin stock should provide reliable 
estimates of model parameters with 
suitable statistical methods (Hilborn 
and Walters, 1992; Chen and Paloheimo, 
1998; Walters, 1998). A size-structured 
population dynamics model is needed 
for the sea urchin fishery because sea 
urchins are difficult to age and growth 
varies widely among individuals (Quinn 
and Deriso, 1999). 

One of the key components of a size-
structured population dynamics model 
is a growth-transition matrix, which 
describes the probability of an organ-

1 Steneck, R., and R. L. Vadas. 2002. Per
sonal commun. School of Marine Sciences, 
University of Maine, Orono, ME 04469. 

2 Harris, L. 2002. Personal commun. 
Department of Zoology, University of New 
Hampshire, Durham, NH 03824. 
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ism growing from one size class to another size class in a 
given unit of time (Sullivan et al., 1990; Sullivan, 1992). 
In practice, two approaches can be used to incorporate a 
growth-transition matrix into a stock assessment: one is 
to incorporate the growth-transition matrix and simul
taneously estimate matrix parameters with parameters 
that describe other biological processes in the fishery 
(Sullivan et al., 1990), and the other approach is to esti
mate the growth-transition matrix independent of other 
stock assessment models (Chen et al., 2000). The former 
considers covariance among different processes by esti
mating all parameters simultaneously, but makes the 
analysis more complicated. The latter approach reduces 
the complexity of modeling but does not consider the 
covariance of growth and other biological processes. Be-
cause size-structured models are often complicated and 
have many parameters to be estimated, the estimation 
of a growth-transition matrix outside the main modeling 
process may be preferable (Chen et al., 2000). In either 
case, the quality of the growth-transition matrix can 
greatly influence the quality of the stock assessment. It 
is thus essential to develop a growth-transition matrix 
for the Maine sea urchin stock that can capture the 
variations in growth increments among individuals. 

The information required in estimating a growth-
transition matrix includes the mean growth increment 
in a given unit of time and its associated variation for 
sea urchins of different sizes. Because growth rates of 
sea urchins vary with size, growth increments also vary 
with size, and this variation in growth with size is rarely 
constant. This has been implicit in the statements of 
model assumptions in many papers (e.g. Sullivan et al., 
1990; Sullivan, 1992, Quinn and Deriso, 1999). However, 
because the variance for growth increments is difficult 
to estimate, it is often assumed to be constant for organ-
isms of different sizes (Quinn and Deriso, 1999). Such 
an assumption of constant variation in growth incre
ment is rather unrealistic and may introduce biases in 
estimating a growth-transition matrix. Thus, for the 
Maine sea urchin we need to develop an approach that 
can explicitly consider nonconstant variances for growth 
increments of sea urchins of different sizes. 

Growth of the sea urchin along the Maine coast has 
not been studied extensively and the data are limited. 
The data we used for this study were from Vadas et al. 
(2002) who collected size-at-age data on sea urchins in 
two habitats (barren and kelp) from three areas along 
the coast of Maine. 

Methods and materials 

Previous studies have indicated that many environmental 
variables might influence the growth of the sea urchin 
(Meidel and Scheibling, 1998; Russell, 1998). Sea urchins 
in favorable habitats, feeding on preferred seaweeds, grow 
faster than those feeding on less favorable algae and 
mussels, and sea urchins on barren grounds grow slower. 
Even in the same habitat, different rates of growth were 
identified (Vadas, 1977). Previous studies divided the 

Figure 1 
Observed catch measured in metric tons, effort measured in 
diver-hours, and catch per unit of effort measured in pounds 
per diver-hour for the sea urchin fishery in management zone 2 
in Maine. Zone 1 has a similar temporal pattern. 
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coast of Maine into three regions, northeast, center, and 
southwest (Vadas et al., 1997). For each region, sea urchin 
samples were randomly taken from two habitats, barren 
and kelp. Size-at-age data were collected in 1997–98 for 
sea urchins in each habitat and area (Vadas and Beal3). 
Detailed descriptions about the derivation of size and age 

3 Vadas, R. L., and B. F. Beal. 1999. Temporal and special vari
ability in the relationships between adult size, maturity and 
fecundity in green sea urchins: the potential use of a roe-yield 
standard as a conservation tool. Report to the Maine Depart
ment of Marine Resources, Augusta, Maine 04333. 
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information, justification for dividing the Maine coast, and 
selection of the habitats can be found in Vadas et al. (1997) 
and Vadas et al. (2002). 

Vadas et al. (1997) modeled the size-at-age data using 
the von Bertalanffy growth function (VBGF) described as 

(Lt = L∞ (1 − e − K t  −t0 ) ), (1) 

where Lt = size at age t; 
L∞ = defined as the mean asymptotic length that 

the sea urchin may attain; 
K = the Brody growth parameter; and 
t0 = the hypothetical age of size 0 (Ricker, 1975). 

For each area and habitat, a VBGF was used to fit the size-
at-age data. Three parameters in the VBGF (i.e. L∞, K, and 
t0) and their standard errors were estimated by using the 
nonlinear least squares method.These estimates were pre
sented in Vadas and Beal3 and Vadas et al. (2002), and were 
made available to the authors of the present study (Table 
1). Clearly there were large differences in the estimates of 
L∞ and K and their associated variations among different 
areas and habitats (Table 1). 

The L∞’s estimated for different areas and habitats 
ranged from 63.1 (northeast region with barren habitat) 
to 95.2 mm (southeast region with kelp habitat) (Table 1) 
and tended to be smaller than some large individuals ob
served in the fishery (about 100 mm, Vadas, 1977; Hunter, 
unpubl. data). This likely resulted from relatively small 
sample sizes that covered relatively small areas, in a 
relatively short period, compared with the fishery catch, 
which targeted larger-size individuals. The exclusion of 
individuals in the fishery catch that were larger than the 
L∞’s estimated in Vadas and Beal3 and Vadas et al. (2002) 
from the calculation of the growth-transition matrix may 
underestimate the variability in sea urchin growth, thus 
introducing errors in stock assessment. Based on the data 
collected in the Maine sea urchin fishery (Hunter, unpubl. 
data) and previous studies (Vadas, 1977), 100 mm was 
considered a reasonable value for the average asymptotic 
size (L∞) for sea urchins on the coast of Maine. However, 
more extensive sampling needs to be done in the future to 
verify this estimate. 

We might be able to derive an estimate of L∞ for the 
Maine sea urchin stock based on the examination of the 
data collected from the fishery and other studies (Ricker, 
1975; Moreau, 1987; Chen et al., 1992). An estimate of K 
for the whole Maine urchin stock is, however, more difficult 
because K is an abstract rate describing how fast organ-
isms approach the L∞ and there are no observations or 
background information with which to compare estimates 
(Ricker, 1975; Moreau, 1987). We thus need to develop an 
approach to estimate K for the Maine sea urchin stock 
which corresponds to the value we assumed for the L∞. 
Many studies have indicated that estimates of K and L∞ 
tend to be highly and negatively correlated (e.g. Moreau, 
1987; Chen and Harvey, 1994). Thus, a fish population or 
species with a large L∞ tends to have a low K value, and vice 
versa (Gallucci and Quinn, 1979; Chen et al., 1992). This 
suggests a strong relationship between L∞ and K estimates 

Table 1 
The average asymptotic size (L∞) and Broady growth coef
ficient (K) estimated for different areas and habitats along 
the coast of Maine in the study done by Vadas et al. (1997, 
2002). Coefficient of variation (CV) was calculated by using 
Equation 2. 

Coefficient of 
Parameter variation (CV) 

Area L∞ K CV(L∞) K) 

Northeast 63.1 0.1404 0.242 1.209 
Northeast elp 88.5 0.1263 0.224 0.543 
Center 67.0 0.2315 0.084 0.354 
Center elp 63.4 0.3268 0.065 0.248 
Southeast 80.1 0.1776 0.099 0.397 
Southeast elp 95.2 0.1181 0.128 0.338 

Habitat CV(

Barren 
K
Barren 
K
Barren 
K

(Pauly, 1980; Stergiou, 1993). Such a relationship may be 
used to estimate K for a given L∞ or to estimate L∞ for a 
given K. In this study we developed and used the follow
ing empirical approach to derive K for a given value of L∞ 
and its associated uncertainties in the development of a 
growth-transition matrix: 1) conduct a regression analysis 
for K and L∞ estimated for different areas and habitats 
along the coast of Maine (Table 1); 2) calculate coefficients 
of variation (CV) for each K and L∞ (Table 1) as 

standard error for K
CV( )  = , andK 

K (2) 
CV( )  = standard error for L∞ ,L∞ L∞ 

and conduct a regression analysis of CV(K) and CV(L∞) 
estimates of different areas and habitats (data in Table 1); 
3) use 100 mm to approximate L∞ and use this L∞ to esti
mate K from the regression analysis between K and L∞; 
and 4) calculate the average CV for L∞’s of different areas 
and habitats and then use the average CV(L∞) to estimate 
CV(K) from the CV(K)–CV(L∞) regression equation. 

Because K and L∞ were estimated for different areas 
and habitats and had different precisions, outliers might 
arise in the regression analyses. To avoid possible bias in
troduced by outliers, we used a reweighted least squares 
(RLS) method for the regression analyses (Chen et al., 
1994). This method involves conducting a robust least 
median of squares (LMS) analysis to identify outliers 
(Rousseeuw and Leroy, 1987) and justifying the identified 
outliers by using background information, followed by a 
weighted LS analysis where justified outliers are weighted 
by 0 and other data have a weight of 1 (Chen et al., 1994). 
In the two regression analyses (i.e. steps 1 and 2), L∞ and 
CV(L∞) were used as the independent variables and K and 
CV(K) were used as the dependent variables. The reason 
for this choice (instead of the other way around) is that L∞ 
is often estimated more reliably and with much smaller 



( ,  

740 Fishery Bulletin 101(4) 

variations (Chen et al., 1992; also see Table 1), whereas 
K is often less reliably estimated (Moreau, 1987). One of 
the basic assumptions for a regression analysis is that the 
independent variable is error free. In practice, this assump
tion is often relaxed when the independent variable has a 
much smaller error than the dependent variable (McArdle, 
1988). The violation of the normal distribution assump
tion for the errors in the regression analyses may bias the 
test for the significance of the regression model and its 
parameters using common parametric tests (F- or t-tests), 
but does not necessarily result in biases in the regression 
analysis (Sen and Srivastava, 1990).” 

Given K and L∞, the growth increment during a unit of 
time (i.e. year) can be calculated as 

∆Ln = ( L∞ − Ln )(1 − e− K ), (3) 

where K and L∞ are the true values without errors; n 
indexes size class; and Ln is the middle point of the nth size 
class. With Equation 3, we can develop two approaches to 
estimate the growth-transition matrix. One approach is a 
Monte Carlo simulation. We can randomly sample H sets 
of K and L∞ values from their joint distributions (thus con
sider their covariance) and then use them in Equation 3 
to calculate H sets of ∆L for each size group. We can then 
derive the probability distribution for ∆L from these H sets 
of ∆L values for each size group. The Monte Carlo simula
tion approach is straightforward but requires extensive 
calculations, in particular when there are a large number 
of size groups. It is also inconvenient to update the growth-
transition matrix when there are new growth data or large 
changes in growth due to changes in the environment. The 
second approach is analytic and not so straightforward, 
but it is easy to update with new information and is less 
computationally intensive. It is likely that the growth-
transition matrix for the Maine sea urchin fishery will 
need to be updated because of possible changes in growth 
caused by changes in the sea urchin population size and 
its ecosystem. Thus we used the second approach, which is 
described as follows. 

Assuming the uncertainties associated with the VBGF 
parameters L∞ and K are ∆L∞ and ∆K respectively, where, 

0 2 ∈ 0 2∆L∞ ∈ N( ,σ L∞ 
)  and ∆K N( ,σ K ), we have 

L∞ = L∞ + ∆L∞ and K = K + ∆K, (4) 

where L∞ and K∞ are the estimated parameters. Replacing 
the true values of L∞ and K in Equation 3 with Equation 
4 and using the approximation e∆X ≈ 1 + ∆X for small ∆X, 
we have 

∆Ln ≈ (L∞ − Ln )(1 − e− K ) + 

[∆L∞ (1 − e− K ) − (L∞ − Ln )∆Ke− K − ∆L∞∆Ke− K ] = ∆Ln + εn , 
(5) 

where 

∆Ln = (L∞ − Ln )(1 − e− K ) (6) 

εn = ∆L∞ (1 − e− K ) − (L∞ − Ln ) ∆Ke− K − ∆L Ke− K . (7)∞∆ 

Thus, the expected (mean) value of ∆Ln is ∆Ln and vari
ance of ∆Ln can be estimated from Equation 7 as 

2 2Var(∆Ln ) ≈ σ L∞ 
(1 − e− K )2 + (L∞ − Ln )

2σ Ke−2 K − 
(8) 

2Cov L K  )(1 − e− K )( L∞ − Ln )e
− K .∞ 

Items with the order of three and above for ∆Ln and ∆K 
are omitted in deriving Equation 8 from Equation 7. From 
Equation 8, it is clear that the variance of the growth incre
ment varies among different size classes. 

From ∆Ln estimated in Equation 6, an expected average 
yearly growth increment was calculated for each size class. 
The variability for the average yearly growth increment 
was assumed to follow a normal distribution with a mean 
of ∆Lnand variance of Var (∆Ln) estimated from Equation 8. 
This distribution was used to determine the vector of prob
abilities of growing from size class k to other size classes. 
If dlow and dup are the lower and upper ends of size class d, 
the probability of a sea urchin growing from size class n to 
size class d can be computed as 

dup 

P → = ∫ f (x | ∆Ln ,Var(∆Ln )dx, (9)n d  

dlow 

where x is a random variable having a density probability 
distribution defined by f x( | ∆Ln ,Var(∆Ln )) with its expected 
value of ∆Lk and variance of Var (∆Lk) (Quinn and Deriso, 
1999). In the present study we assumed that the x variable 
was a normal density distribution function with a mean of 
∆Lk defined by Equation 6 and with a variance of Var (∆Lk) 
defined by Equation 8.The probability of a sea urchin grow
ing from one size to another was estimated for all size classes 
to form the matrix. Negative growth increments were not 
permitted.The largest size class acts as a plus group; there-
fore sea urchins in this group have a probability of 1 of 
remaining in the group.The model contains 61 size classes, 
each with 1-mm interval width, ranging from 40 mm in 
size (midpoint value for size class from 39.5–40.5 mm) 
to 100 mm. 

Because no negative growth was allowed, the summation 
of the probabilities of a sea urchin of size class k growing 
into all other size classes was smaller than 1 (because the 
normal distribution is symmetric).This problem was avoided 
by standardization which involved dividing the probability 
of an urchin in a given size class n growing into each size 
class by the summation of the probabilities of growing from a 
given size n to all the size classes.All calculations were done 
in MS-Excel© (Microsoft Office 2000, Microsoft Corporation, 
Redmond,WA).A worksheet for estimating a growth-transi
tion matrix as described above is available upon request. 

Results 

The LMS analysis suggested that the logarithmic K and 
L∞ data for the barren habitat in the Southwest area was 
an outlier in the K and L∞ regression analysis (Fig. 2). The 
estimated K and L∞ values for the barren habitat in the 
Southwest had CVs over 120% and 24%, respectively, much 
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Figure 3 
The regression analysis of CVs for K and L∞ for different 
locations and habitats of Maine sea urchins. 
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Figure 2 
The regression analysis of logarithmic K and L∞ for different 
locations and habitats of Maine sea urchins. 
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larger than the estimates for other locations and habitats 
(Table 1). This was the only site where the K estimate was 
not significantly different from 0 (thus the VBGF was not 
significant). We thus concluded that this data point was 
an outlier because of the poor fit of the VBGF, and subse
quently it was given a zero weight in the RLS analysis. The 
RLS regression equation for K and L∞ was estimated by 

Ln(K) = 8.653 – 2.3777 Ln(L∞), 
P=0.0038, adj. r2=0.94. (10) 

The standard deviations for the intercept and slope were 
1.2605 and 0.28923, respectively. The P value for Equation 
10 indicates that the regression model is significant. The 
adj. r2 is the coefficient of determination adjusted for the 
sample size, suggesting 94% of the variance in ln(K) could 
be explain by the model. 

The LMS analysis of the CVs of parameters K and L∞ 
also suggested that the barren habitat in the southwest 
area was an outlier because it had an exceptionally large 
CV for K (Fig. 3). We thus concluded that this data point 
was an outlier and should be given a weight of zero in the 
RLS analysis. The RLS regression equation for the CVs of 
parameters K and L∞ was estimated by 

Figure 4 
The expected annual growth increment for Maine sea 
urchins of different size classes. 
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CV(K) = 0.189 + 1.5602 CV (L∞), 
P=0.034, adj. r2 = 0.76. (11) 

The standard deviations for the intercept and slope were 
0.0561 and 0.42319, respectively.The P value suggested the 
regression model was significant (P<0.05). The value of r2 

suggests 76% of the variance in CV(K) could be explained 
by the model. 

The average CV for L∞’s of different areas and habitats 
was 15%. The L∞ was assumed to have a value of 100 mm 
in this study as discussed previously. This gave the L∞ a 
standard error estimate of 15.0 mm, making its 95% con
fidence intervals 70 mm to 130 mm. The K value was esti
mated to be 0.1006 using Equation 10 and L∞ of 100 mm. 
Using Equation 11 and the CV for L∞, the CV for K was 
estimated to be 42.3%, which yielded the value of 0.0426 
for the standard error for K. 

The annual expected growth increment decreased quick
ly with sea urchin size (Fig. 4).The largest expected annual 
increment was 6 mm for the smallest size class (39.5–40.5 
mm) included in the study. The variance for annual growth 
increments calculated by using Equation 8 was large for 
small sea urchins. It decreased initially with size, reaching 
the smallest value at the 59 mm size class (58.5–59.5 mm), 
followed by a progressive increase with size (Fig. 5). The 
expected annual growth increment for the largest size class 
included in this study had the highest variance, which was 
over eight times as high as the smallest variance (Fig. 5). 

The probability distribution of annual growth increment 
varied among size classes (Fig. 6), reflecting the differences 
in variances associated with different size classes. The last 
size class was a plus class, with the probability of staying 
in the same size class being 1. Figure 6 clearly indicated 
that no negative growth was allowed. 

Discussion 

Great variation in growth was observed in the Maine sea 
urchin stock (Vadas et al., 2002). Such a pattern of variation 
was reflected in estimating the VBGF parameters for dif-
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Figure 5 
The variances of growth increment estimated for dif
ferent sea urchin size classes by using Equation 8. 

ferent areas and habitats (Table 1). Large standard errors 
were estimated for the VBGF parameters for sea urchins of 
the same area and habitat, and large differences occurred 
in the estimated VBGF parameters between different areas 
and habitats (Table 1).The approach developed in the pres
ent study considered observations made in both the fishery 
and scientific studies and provided a systematic way to 
incorporate the large variation in growth into the estima
tion of a growth-transition matrix, and subsequently into 
the sea urchin stock assessment. 

It should be noted that the algorithm developed for esti
mating the variance of growth increments is approximate, 
and violations of the assumptions used in deriving the 
algorithm may introduce errors in estimating a growth-
transition matrix. For example, large errors in estimat
ing K and L∞ will introduce errors in Equation 5, which 
was derived by assuming small errors for the two growth 
parameters. Nonnormal distribution of ∆L with its mean 
defined by Equation 6 and variance defined by Equation 8 
will also result in errors in developing a growth-transition 
matrix. Other factors that may influence the quality of the 
estimated growth transition matrix include errors in esti
mating CVs for K, L∞ estimated from Equations 10 and 11, 
and omitting high order items in deriving Equation 8. 

Unlike most studies in which the variance for the annual 
growth increment was assumed to be the same for all size 
classes (Quinn and Deriso, 1999), our study explicitly sug
gested that the variance for the annual growth increment 
changed with size (Fig. 4). The differences in the variance 
were large between size classes, and changed nonlinearly 
with size. If a constant variance were used for all size 
classes, the variance in growth increment would be se
verely underestimated for large and small fish. This could 
introduce large biases in a stock assessment. 

Size-dependent variation might better describe the 
variation in annual growth increment. Fish in small size 
classes tend to grow fast, but their growth tends to be more 
susceptible to environmental variation than adult growth, 
often resulting in large variation among individuals (Sum
merfelt and Hall, 1987). Fish in large size classes (older 
fish) have to divert some energy to reproduction but tend 

to have considerable variation in energy allocation strate
gies among individuals. Differences among adults in the 
ability to grow can also be considerable because of genetics, 
specific growth patterns during juvenile stages, and differ
ences in energy allocation between growth and matura
tion during younger ages (Nikolskii, 1969). This difference 
may cause large variations in growth for large and old fish 
(Summerfelt and Hall, 1987; Chen et al., 1988). Compared 
with old and young ages, growth rates for medium-size and 
medium-age fish may be less varied (Nikolskii, 1969). This 
pattern can be reflected realistically in the estimated varia
tion by using the approach derived in our study. 

Although the choice of L∞ was a bit arbitrary in our study, 
it reflects observations from both the fishery and scientific 
studies. The largest sea urchins observed in the different 
scientific studies tend to be smaller than 100 mm, as in
dicated by the estimated L∞ values for different areas and 
habitats (Fig. 1).The inability to observe larger sea urchins 
in scientific studies may result from relatively small sam
ple sizes, the focus of research (small areas), and the large 
growth variations even in small spatial scales. The data 
collected from the fishery were more extensive and covered 
more areas. This, together with the tendency for taking 
large individuals in the fishery, may suggest that large 
individuals are more likely to appear in the fishery, rather 
than in scientific studies. Thus, it may be reasonable to set 
the expected value of L∞ at 100 mm. Also, this higher value 
corresponds more closely to the upper growth estimates for 
green sea urchins from the northeast Pacific (Vadas, 1977). 
The CV was assumed to be 15% for L∞, resulting in the 95% 
confidence interval of L∞ ranging from 70 mm to 130 mm. 
This range was believed to be a reasonable estimate for the 
maximum attainable length for green sea urchins on the 
coast of Maine (Vadas, 1977). 

The approach developed in our study can be readily used 
to incorporate the VBGF parameters estimated from dif
ferent studies. This can be accomplished by rerunning the 
regression analyses between K and L∞ and between CVs 
for K and L∞. As more information about the growth of 
sea urchins on the coast of Maine becomes available, the 
growth transition matrix can be easily updated to reflect 
the variation identified in newer studies.The flexibility and 
ability to easily update and incorporate new information 
makes this approach desirable to the Maine sea urchin 
fishery, which is currently undergoing large changes in its 
population size and has only limited growth data. 

The value of 100 mm chosen for L∞ was rather arbitrary. 
However, because we considered the negative correlation 
between K and L∞ in deriving the growth transition ma
trix, a small error in the L∞ estimate would not change the 
growth-transition matrix greatly. In the future, however, 
we can conduct a systematic sampling of the stock across 
its geographical range and derive some forms of weighted 
average size with a composite variance that captures the 
range of sizes exhibited by the species. Such an approach 
would provide us with a better estimate of L∞. 

The growth-transition matrix developed in our study 
summarizes the growth patterns of sea urchins along the 
coast of Maine. It can be updated whenever new growth 
data become available. It can be readily incorporated into 
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Probabilities of sea urchins growing from one size class to others. Each probability distribution was labeled with 
the midpoint value of the current size class of the sea urchin.
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a size-structured stock assessment model to evaluate the 
status of sea urchin stock and to evaluate alternative man
agement strategies for the Maine sea urchin fishery (Chen 
and Hunter, 2003). 
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