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The study of recruitment processes  
has traditionally addressed mortal-
ity (predation and starvation) and 
the effects of patchiness on mortality 
(Vlymen, 1977; Beyer and Laurence, 
1980; Hunter, 1984; Rothschild, 1986); 
hence the importance of aggregation 
and mortality in recruitment processes 
of marine fish populations has long 
been noted. Ecological processes of 
starvation, growth, and predation of 
larval fish, coupled with oceanographic 
factors show the inherent variability in 
these processes (Koslow, 1992; Mertz 
and Myers, 1994, 1995; Pepin, 1991; 
Rickman et al., 2000; Comyns et al., 
2003). In particular Rickman et al. 
(2000) have indicated the importance 
of the magnitude of fecundity in the 
variability of egg and larval mortal-
ity. Indeed, Koslow (1992) argued that 
fecundity and the associated variability 
in egg and larval mortality will limit 
our ability to determine stock-recruit-
ment relationships. 

Stock-recruitment models have gen-
erally emphasized the static results 
of recruitment processes rather than 
the dynamics themselves. Indeed, al-
though the classic stock-recruitment 
models such as the Beverton-Holt and 
Ricker have been related to microscale 
processes (Beverton and Holt, 1957; 
Ricker, 1958; Paulik, 1973; Harris, 
1975), the dynamics at those scales 
were not explored, primarily because 
there was not a theoretical basis for do-
ing so (Rothschild, 1986). Nevertheless, 
there is a need to develop a theoretical 
understanding of small-scale inter-
action processes during recruitment, 
particularly as they relate to group 
formation. 
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Group-formation (aggregation of fish 
into schools), schooling (shoaling) be-
havior, and the evolutionary motivations 
for formation of schools continue to be 
important research topics (Pitcher and 
Parrish, 1993; Landa, 1998). Schooling 
behavior has variously been attributed 
to predator-avoidance, predator-attack 
dilution, and hydrodynamic and forag-
ing advantages (see Pitcher and Par-
rish, 1993, for a review). One of the first 
models for school formation was that of 
Anderson (1981) in which he empirically 
observed skewed distributions in which 
small schools were more prevalent than 
larger ones. Subsequently, Bonabeau 
and Dagorn (1995), Gueron and Levin 
(1995), Niwa (1998), and Bonabeau et 
al. (1999), developed group-size distri-
bution models. In particular, Bonabeau 
et al. (1999) in comparing group-size 
distributions of tunas, sardinella, and 
buffalo suggested that power-law dis-
tributions may be quite generic. Niwa 
(1998) noted that Anderson’s original 
model allowed for power-law distribu-
tions. Power-laws are termed scale-free 
because they exhibit no intrinsic scale. 
Similarly, existence of a power-law is 
often referred to as “scaling.”

Recently, power-law distributions 
have arisen in studies of the physics 
of small-world and evolving networks 
(for example the world wide web, ac-
tor collaborations, scientific citations  
[Barabási and Albert,1999], biological 
cellular networks [Fell and Wagner, 
2000], and ecosystem structure [Solé 
and Montoya, 2001]). In particular, 
Barabási and Albert (1999) demon-
strated that a randomly evolving net-
work would result in a scale-free degree 
distribution if the network is growing 

Abstract—The dynamics of the sur-
vival of recruiting fish are analyzed as 
evolving random processes of aggrega-
tion and mortality. The analyses draw 
on recent advances in the physics of 
complex networks and, in particular, 
the scale-free degree distribution aris-
ing from growing random networks 
with preferential attachment of links 
to nodes. In this study simulations 
were conducted in which recruiting 
fish 1) were subjected to mortality by 
using alternative mortality encounter 
models and 2) aggregated according 
to random encounters (two schools 
randomly encountering one another 
join into a single school) or preferential 
attachment (the probability of a suc-
cessful aggregation of two schools is 
proportional to the school sizes). The 
simulations started from either a “dis-
aggregated” (all schools comprised a 
single fish) or an aggregated initial con-
dition. Results showed the transition of 
the school-size distribution with pref-
erential attachment evolving toward 
a scale-free school size distribution, 
whereas random attachment evolved 
toward an exponential distribution. 
Preferential attachment strategies  
performed better than random attach- 
ment strategies in terms of recruit-
ment survival at time when mortal-
ity encounters were weighted toward 
schools rather than to individual fish. 
Mathematical models were developed 
whose solutions (either analytic or 
numerical) mimicked the simulation 
results. The resulting models included 
both Beverton-Holt and Ricker-like 
recruitment, which predict recruitment 
as a function of initial mean school size 
as well as initial stock size. Results 
suggest that school-size distributions 
during recruitment may provide infor-
mation on recruitment processes. The 
models also provide a template for 
expanding both theoretical and empiri-
cal recruitment research.
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(the number of nodes is increasing) and if the new nodes 
were linked to existing nodes by preferential attachment. 
Preferential attachment (or the “rich-get-richer” phenom-
enon) occurs when a new node is linked to an existing node 
with a probability proportional to the number of links al-
ready attached to that node. More formally, the Barabasi 
and Albert model is created by adding a new node at each 
time step and by randomly linking it to m existing nodes 
proportional to the number of links at the existing nodes. 
After a large number of time steps, the probability of a node 
having k links (the degree distribution) scales as a power-
law P(k)~k –γ, where γ = 3, independent of m. The Barabási 
and Albert result differs from the classic random network 
model of Erdös and Rényi (1960) in which nodes are linked 
randomly to existing nodes, leading to P(k)~exp(–λk). Sub-
sequent research has expanded on the Barabási and Albert 
model to examine aging, removal and rewiring of nodes, 
removal of links, fitness and attractiveness of nodes, and 
local modifications to preferential attachment (see Albert 
and Barabási, 2002, for a review of these developments)

The generic occurrence of scale-free school-size distribu-
tions suggest that modeling of aggregation and mortality 
processes using the analogy of random networks may be 
fruitful. The approach may provide insight into recruit-
ment dynamics and a theoretical basis for further inves-
tigation. This study attempts to do that and is organized 
in the following manner. First, a simulation model of the 
recruitment process is developed in which aggregation and 
mortality occur based upon some simple rules of prefer-
ential attachment and random attachment. Attachment 
rules are presented as metaphors for more complex behav-
iors. Next, analytical models are created that mimic the 
simulations, and results of the simulations and analytical 
models are compared. Finally, the implications for existing 
stock-recruitment models and investigation of recruitment 
processes are discussed.

Methods

Simulation of individuals in ecology and population 
dynamics (individual-based models) have become increas-
ingly popular (McCauley et al., 1993). However, it is often 
difficult to understand the dynamics of large individu-
ally  based models (Pascual and Levin, 1999). Thus, it is 
important to obtain models that describe dynamics of 
groups that incorporate individual behavior (Flierl et 
al., 1999). The models that are developed here include an 
individually based model (simulation model) and an ana-
lytical model that describes “mean-field” dynamics of the 
individuals behavior. 

Simulation model

The recruiting fish of a year class may be modeled as a 
network of fish in which a fish “links” to other fish to form 
schools. (Note that in this context it is assumed that a 
“school” includes aggregations consisting of a single fish). 
Thus, the process of aggregation is a process of adding 
links to nodes (aggregation of schools). Similarly, mortal-

ity is the removal of nodes (fish) and, if there are no more 
fish in the school, then the removal of schools. A simulation 
model with simple rules of mortality and aggregation was 
created to examine the dynamics of these processes. 

The simulation model followed individual fish and 
schools through a recruitment period, i.e., the passage 
of time until an arbitrary time of recruitment. During a 
recruitment period fish and schools undergo encounters 
of mortality and aggregation. Starting at time t=0 with S 
fish, Nt=0 schools and ki,t=0 fish in school i (i=1,2, . . . , N0), 
simulations were conducted by randomly generating an 
encounter event (mortality or aggregation). If the event 
was a mortality, then a school was randomly selected by 
using the appropriate mortality rate model (m, discussed 
below). If the size of that school was greater than one,  
then that size was reduced by one. If the school size was 
equal to one, then the number of schools was reduced by 
one and this school was eliminated from the list. 

If the event was an aggregation, then two distinct 
schools were randomly selected by using the appropriate 
aggregation rate model (w, also discussed below). The two 
schools were combined, leaving one school whose size was 
the sum of the two original ones and one fewer total num-
ber of schools. The probability of an event being a mortality 
was m/(m+w) and the converse probability of an aggrega-
tion was 1–m/(m+w). Time increments of each event were 
computed using Δ t=m–1 for mortality events and (mw)–1 
for aggregation events. Results at time t were collated into 
the number of fish surviving to time t (denoted by Rt), the 
number of schools, Nt, the school size distribution, Pt(k), 
and the average school size, k t. Note that Rt =Ntkt. Simula-
tions were run until there were no fish left.

Encounter rates The encounter rates, m and w, were 
based upon random movements in statistical mechanics 
(Tolman, 1979) in which the encounter rate (U) of objects 
of type i with objects of type j is described by

 U=(Gi + Gj) DiDj (vi
3 + vj

3)1/3, (1)

where Gi = the size of the detection space at which object 
detects object type j;

 Di = the density of objects of type i; and 
 vi = the velocity (in three-dimensional space) at 

which object i moves in the environment. 

For these simulations the G parameters were scaled to 
one and the velocity parameters (v’s) were collapsed into 
two encounter rates: μ for mortality encounters (scaled to 
unity) and α for aggregation encounters.

Mortality rate In the simulations, mortality of fish is 
perpetrated by mortality agents. If the mortality agents 
randomly encounter schools of fish, then the probability 
of a successful mortality (the removal of a fish from the 
system) is proportional to the school size k. Under these 
conditions Equation 1 reduces to Equation 2 with 
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where E = the density of mortality agents; and 
 μ = the encounter rate of fish with mortality 

agents. 

Note that on average Equation 2 reduces to m = 2μEtNtkt= 
2μEt Rt = –dR/dt. Hence, if the density of mortality agents 
is constant throughout the recruitment period, then mor-
tality is density independent and mortality is proportional 
to abundance. An alternative interpretation of Equation 2 
is that the mortality agents randomly encounter fish and 
that all encounters result in a successful mortality. The 
mortality model (Eq. 2) will be referred to as mdi (for den-
sity-independent). It is not expected that mdi is the most 
realistic, but rather it provides a basis for comparison. 

A second mortality alternative is where mortality agents 
randomly encounter schools, whereupon they always per-
petrate a successful mortality: mN = 2μEtNt. This model, 
like mdi, assumes that the density of mortality agents are 
constant throughout the recruitment period. 

For purposes of simulation, the density of mortality 
agents at the onset of the recruitment process was speci-
fied to be unity (E0=1). For the two mortality models, mdi 
and mN, this meant that E=1 throughout a simulation.

More realistic density-dependent mortality models are 
immediately suggested. The first is a density-dependent 
model in which the ratio of mortality-agent density to the 
number of schools remains constant throughout the re-
cruitment period, i.e., Et/Nt remains constant throughout 
the recruitment period. This leads to mdN = 2μN2k, where 
Et/Nt was set equal to one. In this model the ratio of mor-
tality agents to schools is constant, agents and schools 
randomly encounter one another, and the probability of a 
successful mortality (given there is an encounter) is pro-
portional to the number of fish that are in the school that 
is encountered (mortality success is related preferentially 
toward larger schools).

A second density-dependent model is where the mortal-
ity agent density is proportional to the number of fish (Et/ 
Rt is a constant set equal to one, mdR=2μR2=2μN2k2). In 
this model the ratio of mortality agents to the number 
of fish in the population is constant; agents and schools 
randomly encounter one another; and the probability of a 
successful mortality (given there is an encounter) is pro-
portional to the number of fish that are in the school that 
is encountered (mortality success related preferentially 
toward larger schools). Another interpretation of this 
model is that agents randomly encounter fish, at which 
time the fish suffers mortality at a probability independent 
of school-size characteristics.

A third density-dependent model depicts mortality-
agent density proportional to school size (Et/kt is a con-
stant set equal to one, mdk=2μ Nk2). In this model the 
ratio of mortality agents to mean school size is constant, 
agents and schools randomly encounter one another, and 
the probability of a successful mortality (given that there 
is an encounter) is proportional to the number of fish that 
are in the school that is encountered. Another interpreta-
tion of this model is that agent density is proportional to 
the number of schools, agents encounter schools prefer-
entially according to school size, and the probability of a 

successful mortality (given that there is an encounter) is 
proportional to the number of fish that are in the school 
that is encountered.

Subsequently it will be shown that the first density-
dependent model is related to a Ricker-like stock-recruit-
ment model and the second model is exactly equivalent 
to a Beverton-Holt model. Definitions of the mortality 
models are summarized in Table 1. Note that in the ini-
tial applications of these mortality models, it is assumed 
that a mortality encounter results in mortality of one 
fish. More detailed mortality models in which a number 
of fish greater than one are removed by mortality may be 
implemented in the future. Clearly, these would be more 
biologically realistic in many instances. However, the 
emphasis of this study is on the possible scaling behavior 
of school-size distributions. Barabasi and Albert (1999) 
showed that the scaling behavior of a growing random 
network is independent of the number of randomly se-
lected links at each time step. With this analogy, simple 
increases in mortality per encounter are not expected to 
alter the scaling behavior of the school-size distributions. 
Therefore, the one-fish-per-mortality-encounter approach 
was used in these initial simulations.

Aggregation rate

Similar to mortality-rate encounters, aggregations were 
investigated as 1) random attachment of two unique 
schools (wN=2αN(N–1)) and 2) preferential attachment of 
two unique schools i and j (wpa=2αN(N–1)kikj; [Table 1]). 
Note, the trivial alternative where there was no attach-
ment, (α=0), results in equivalence between the mortal-
ity models mdN, and mdR; whereas mdi becomes a simple 
proportional mortality rate. Thus, results of models with 
α=0 are uninteresting in the context of this study and are 
not presented.

Initial conditions Each simulation was conducted with 
one of two alternative initial conditions. The first alterna-
tive was one of complete disaggregation in which simula-
tions were initiated with S fish, S schools, and one fish in 
each school (N0=S, k0=1). The second alternative initial 
condition was constructed from the population dynamics 
of a typical fish population. The main assertion of this 
alternative is that the eggs or larval fish produced by 
one female during spawning constitutes one school at the 
onset of the recruitment process. Thus, the fecundity per 
female at age is a measure of initial school size and the 
abundance of females at age is a measure of the frequency 
of schools of that size. More precisely, the initial condition 
was constructed for a population of females greater than 
five years of age (age of maturity), where their fecundity 
at age, Fage, is proportional to weight at age determined 
from a von Bertalanffy growth equation with parameters 
K=0.2 and L∞=10, and an allometric parameter of 3: 
(Fage=1000[(1–exp(–age(0.2)))]3). Abundance at age, Aage, 
was computed with an instantaneous mortality rate of 0.2: 
[Aage=Xexp(–0.2(age–5))]. The scalar X was obtained from 
the approximate solution to S =Σ Fage  Aage, where F and A 
were integer values and S was the initial number of fish 
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Table 1
Summary of definitons of the mortality models used in this study.

 Model Definition

Mortality rates1: mdi = 2μNk  density-independent
 mdN = 2μN2k  density-dependent, mortality agents proportional to N
 mdR = 2μN2kk   density-dependent, mortality agents proportional to R
 mdk = 2μNkk   density-dependent, mortality agents proportional to k
 mN = 2μN  random encounters with schools

Aggregation rates: wN = 2αN(N–1) random encounters with schools
 wpa = 2αN(N–1)kikj preferential attachment of schools i and j

Initial conditions: Disaggregated N0 = S, k0 = 1
 Aggregated (see text and Table 2)  

Mean field equivalents used in analytical model (see text):
 mdi = 2μNk  mdN = 2μNk2 mdR = 2μN2k2

 mdk = 2μNk2 wpa = 2N(N–1)k2 

Key to figures of simulation results:
 Figure 1: disaggregated mdi  wpa  α = 10–6 S = 106

 Figure 2: disaggregated mdi  wN  α = 10–6 S = 106

 Figure 3: aggregated mdi  wpa  α = 10–6 S = 106

 Figure 4: aggregated mdN  wpa  α = 1.5 × 10–6 S = 2 × 106

 Figure 5: aggregated mdN wN α = 1.5 × 10–6 S = 2 × 106

1 In all simulations, μ was set equal to 1.

Table 2
The aggregated initial school-size distribution, when S = 1,000,000. Per capita female fecundity at age is a measure of school size, 
number of females at age is a measure of frequency of schools. See text for details of computation. 

School size Freq. of schools  Freq. × size School size Freq. of schools  Freq. × size

252 348 87,696 857 47 40,279
341 284 96,844 882 38 33,516
427 233 99,491 903 31 27,993
508 190 96,520 920 25 23,000
581 156 90,636 934 21 19,614
596 1 596 946 17 16,082
646 128 82,688 955 14 13,370
703 104 73,112 963 11 10,593
751 85 63,835 970 9 8730
793 70 55,510 975 7 6825
828 57 47,196 979 6 5874

Sum of freq. × size = S = 1,000,000.

of a simulation. Then one school of an appropriate magni-
tude, M, was added such that the M +ΣFage Aage was exactly 
equal to S. Note that under this construction the school 
sizes in the distribution do not vary with S (except for the 
one school of size M), whereas the frequency of schools by 
size do. An example of the initial distribution with the use 
of this construction is given in Table 2.

Analytical models

Analytical models of aggregation and recruitment are 
presented, where the models are developed from first prin-
ciples and the parameters have an interpretation in the 
physics and biology of the recruitment process. Hopefully, 
the nature of the parameters can guide model selection, 
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and the estimates may provide a theoretical framework for 
empirical research on recruitment processes.

Noting that Rt=Ntkt, the recruitment dynamics depicted 
in the simulations may be modeled by using Equations 
3–6 in which recruitment is dependent on the particular 
mortality and aggregation models that are chosen (m and 
w; Table 1):

 
 dR m d N k dt dk dt N dN dt kt t t t t t t/ ( ) / ( / ) ( / )= - = = +  (3)
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where Pk,t =  the proportion of schools with k fish in them 
at time t. 

Also, mk and wk denote encounter rates appropriate to 
schools of size k, whereas unsubscripted m and w denote 
mean field dynamics and, thus, the ki,t’s are replaced by  
kt’s (see Table 1).

The first term in Equation 4 denotes the reduction in 
number of schools due to aggregation events; the second 
term denotes a reduction due to mortality events on 
schools with one fish in them. Similarly, the first term in 
the mean school-size equation (Eq. 5) describes the change 
in mean school size due to mortality events on schools 
of size equal to one; the second term is due to mortality 
events on schools of size greater than one; and the third 
term is due to aggregation events. Finally, the first term 
in Equation 6 describes the change in probability of school 
size k due to mortality; the second term describes loss due 
to aggregation; and the third describes gain due to aggre-
gation. Of particular importance is P1,t: when P1,t is zero, 
the loss of schools occurs only due to aggregation. When 
P1,t is positive, then loss of schools is accelerated due to 
mortality (Eq. 4).

The goal is to obtain solutions to Equations 3–6 as 
functions of α, μ, and the initial conditions. If one can be 
assured that there will not be a school composed of one 
fish during a particular recruitment period (P1,t=0), then 
Equation 6 is eliminated, the P1,t terms drop out of Equa-
tions 4 and 5, and a numerical or analytical solution to 
the differential equations can be obtained, which is com-
putationally feasible for use in fitting to stock-recruitment 
data. For example, when there is preferential aggregation 
(wpa) and mortality agents are proportional to schools 
(mdN), the equations reduce to

dN dt w N N k

dk dt m N w k N N k N k

t pa t t

t dN t pa t t t t t

/ ( )
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1
2
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Analytical solutions were obtained for some of the mor-
tality and aggregation models when P1,t=0 throughout 
the recruitment process (Appendix 1). In particular for 
mdR and wpa:

 Rt = S/(1 +2μtS) (7)

 N N S S tSt = + - +[ ]0 1 2( / ) / ( )a m m  (8)

  (9)

which is the Beverton-Holt stock-recruitment model 
expanded to include equations for the number of schools 
and the mean school size. Interestingly, Equation 9 indi-
cates that monitoring the school-size distribution two or 
more times during a recruitment procession would yield 
estimates of the stock-recruitment parameters without 
having direct measures of the number of surviving fish. 
Equation 7 predicts recruitment by using one parameter, 
μ t , the rate of mortality encounters during the recruitment 
period. However, spawning stock biomass is often used as a 
surrogate for the number of initial stock, S. Thus, another 
parameter is needed to convert spawning stock biomass 
to S in Equation 7. In that case the recruitment model 
becomes Rt = aS/(1+2μtaS), where a is another parameter 
related to fecundity. The additional parameter will be 
needed for all the models discussed here, if spawning stock 
biomass is the measure of initial stock.

The assumption that P1,t=0 for all t of a recruitment 
period may not be justified in all situations. An approxi-
mation was developed (Appendix 2) to be applied when 
the initial conditions are disaggregated and when there 
is preferential attachment. In this circumstance, the dif-
ferential equation (Eq. 6) when k=1 is replaced by

 dP1,t/dt = –wP1,t/Nt + m(1 – P1,t)/Nt . (10)

Results

Simulations

Several hundred simulations were conducted under vari-
ous initial stock sizes (S), aggregation parameters (α), ini-
tial aggregation conditions, and mortality and aggregation 
models (m and w). An example set of results are presented 
in Figures 1–5 (a key to figures is in Table 1).

A typical example of the evolution of the school-size 
distribution is given in Figure 1 for the disaggregated 
initial condition, α=10–6, S=106, mortality model mdi and 
aggregation model wpa. In this example both the mortality 
and aggregation models exhibit preferential attachment, 
and the school-size distribution approaches scale-free be-
havior P(k)~k–γ, although γ evolves over time. Eventually, 
a so-called “giant cluster” is formed by the aggregation 
process, in which all the fish attach to one school. This has 

,

,
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Figure 1
Simulated dynamics of school-size distributions with mdi as the mortality model 
and wpa as the aggregation model. This simulation started with disaggregated 
initial conditions (N0=S), where S=106. The aggregation parameter was α=10–6. 
The top panel shows school-size distributions (in log-log scale) at selected times 
(t). The lower panel gives the mean school size (kbar) and school abundance (N) 
versus time.
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been shown to be an analog of Bose-Einstein condensation 
(Bianconi and Barabási, 2001; Dorogovtsev and Mendes, 
2002) and gelation (Krapivsky et al., 2000). Greater mix-
ing rates (α’s) and larger densities (N ’s) accelerate the 
aggregation process and the formation of the giant cluster. 
The average size, k, increases over time from the disag-
gregated initial condition until a giant cluster is formed. 
The number of schools declines over time because of both 
aggregation and the mortality of fish in schools that only 
have one fish in them.

When there is random aggregation beginning from a 
disaggregated initial condition (α=10–6, S=106, mdi, wN ; 

Fig. 2), the school-size distribution exhibits exponential 
behavior P(k)~exp(–λk), with λ evolving over time. This 
is equivalent to the Erdös and Rényi (1960) results for 
random graphs. A comparison of Figure 2 with Figure 1 
shows the difference between preferential attachment and 
random attachment, i.e., the difference between scale-free 
and exponential models.

Aggregated initial conditions (Figs. 3–5) result in a 
transition from the initial distribution to either scale-
free or exponential distribution. During the transition, 
the size of the smallest school gradually becomes smaller 
until there is a finite probability of schools with one fish in 



355Powers: Recruitment as an evolving random process of aggregation and mortality

them. At this point the reduction in the number of schools 
is accelerated because of the mortality of fish that are in 
“schools” in which they are the only member, and because 
of the loss of schools attributed to aggregation. 

Model comparisons

Numerical integration of Equations 3–5 matched the sim-
ulation results (Fig. 6, when P1,t=0), indicating that the 
mathematical model describes the simulation dynamics. 
The numerical techniques are sufficiently efficient to be 
used in a curve-fitting context. Evaluations of the approxi-
mation (Appendix 2) indicate that the approximation may 
be useful for predictions of recruitment, when compared 

with the simulations. However, the components of recruit-
ment, kt and Nt, were biased (Fig. 7). Further research is 
needed to develop estimates of P1,t and, more generally, 
P(k) under other models and initial conditions.

Recruitment was compared between mortality models 
and aggregation models (Fig. 8). If the mortality model 
was either mdi or mdR, then the mortality rate was not af-
fected by the school-size distribution: random attachment 
and preferential attachment perform equally as well in 
terms of survival at a given time. But if mortality encoun-
ters proportional to school density (mdN) were imposed, 
then there were better survival rates with preferential at-
tachment than with random attachment (Fig. 8, A and B). 
Conversely, mortality encounters proportional to school 

Figure 2
Simulated dynamics of school-size distributions with mdi as the mortality 
model and wN as the aggregation model. This simulation started with disag-
gregated initial conditions (N0=S), where S=106. The aggregation parameter 
was α=10–6. The top panel shows school-size distributions (frequency in log) at 
selected times (t). The lower panel gives the mean school size (kbar) and school 
abundance (N) versus time.
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Figure 3
Simulated dynamics of school-size distributions using mdi as the mortal-
ity model and wpa as the aggregation model. This simulation started with 
aggregated initial conditions (S=106). The aggregation parameter was 
α=10–6. The top panel shows school-size distributions (in log-log scale) at 
selected times (t). The lower panel gives the mean school size (kbar) and 
school abundance (N) versus time.
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size (mdk) led to poorer survival with preferential attach-
ment (Fig. 8, C and D). 

Discussion

Koslow (1992), Rickman et al. (2000), and others have 
commented on the inherent variability in stock-recruit-
ment data and the limited predictive power of determin-
istic stock-recruitment models. Therefore, there is no 
expectation that one could select the models described  
here over other stock-recruitment models on the basis of 
fits to data. Although the aggregation-mortality models 

may be fitted to stock-recruitment data, the real useful-
ness is as a guide to selection of stock-recruitment models 
used in management, as a mechanism for integrating 
research on recruitment processes, and as a tool for explor-
ing the structure of recruitment variability. 

The aggregation-mortality models were introduced 
by using an analogy with evolving random networks  
(Barabási and Albert, 1999) and were shown to be analyti-
cally equivalent (Appendix 2). Modeled fish are subjected 
to competing forces of organization (aggregation) and decay 
(mortality), as in a network in which links to nodes in the 
network are created, destroyed, and rewired (Albert and 
Barabási, 2002). An important finding of Barabási and  
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Albert (1999) was that scaling of the aggregate-size dis-
tribution was dependent on the type of aggregation, spe-
cifically preferential attachment. Bonabeau and Dagorn 
noted the generic occurrence of scaling of aggregation 
distributions in nature (Bonabeau and Dagorn, 1995) and 
this scaling of aggregation distributions motivated the 
development of the models presented here.

The emphasis of the aggregation models was on prefer-
ential attachment and on comparison of model results with 
results for models with random attachment strategies. The 
preferential attachment rule used in the simulations was 
that aggregation rates were proportional to the size of the 
school encountered. But, what is meant by preferential 

attachment and does preferential attachment occur in 
nature? Clearly, a fish, school or mortality agent has no 
global knowledge of the proportional size of a school that 
is encountered. However, preferential attachment in these 
models is a metaphor for aggregation strategies that are 
weighted toward larger school sizes. Indeed, studies of  
networks have shown that attachment may be proportional 
to a power of school size and still produce scale-free prop-
erties (Albert and Barabási, 2002). Also, network studies 
have shown that scale-free distributions occur when a 
wide number of attachment criteria are included, such 
as the “fitness” of the object being encountered and the 
attractiveness of local conditions (Bianconi and Barabási, 

Figure 4
Simulated dynamics of school-size distributions using mdN as the mortal-
ity model and wpa as the aggregation model. This simulation started with 
aggregated initial conditions (S=2 × 106). The aggregation parameter was 
α=1.5 × 10–6. The top panel shows school-size distributions (in log-log scale) 
at selected times (t). The lower panel gives the mean school size (kbar) and 
school abundance (N) versus time.
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2001; Calderelli et al., 2002; Vazquez, 2003). Biological 
concepts of fitness, feeding behavior, predator-avoidance 
behavior, and habitat suitability appear to fall within 
the attachment criteria examined in physics literature. 
Oceanographic stability (Myers and Pepin, 1994), assorta-
tive schooling by color patterns (Crook, 1999), chemosen-
sory stimuli (Quinn and Busack, 1985), and larval fitness 
indices from RNA/DNA ratios (Pepin, 1991; Suneetha et 
al., 1999) may be mechanisms that directly or indirectly 
influence aggregation size and, thus, distribution.

The geometry of the school size itself may be sufficient to 
produce preferential attachment behavior, as well. In the 

models of this study, the detection spaces (Gi +Gj in Equa-
tion 1) were set to unity and assumed to be independent of 
school size. However, the detection space may be related 
to school size. For example, if a school of one fish has a 
spheroid detection space around itself with radius equal 
to 1, then using the geometry of an aggregation of k fish, 
the detection space of the aggregate would be proportional 
to k1/3. Alternatively, if the detection space were a two-di-
mensional circle with a radius of 1, then the aggregate’s 
detection space would be proportional to k1/2. Substituting 
size-dependent detection spaces into the random mortality 
and aggregation models would be sufficient to induce pref-

Figure 5
Simulated dynamics of school-size distributions using mdN as the mortal-
ity model and wN as the aggregation model. This simulation started with 
aggregated initial conditions (S=2 × 106). The aggregation parameter was 
α=1.5 × 10–6. The top panel shows school-size distributions (in log-log scale) 
at selected times (t). The lower panel gives the mean school size (kbar) and 
school abundance (N) versus time.
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Figure 6
Stock-recruitment relationships from the mathematical models (Eqs. 3–5, aggre-
gated initial conditions) compared with simulation results: (A) density-independent 
mortality (mdi) and preferential attachment (wpa) evaluated at t=1, α=10-9, μ=1; (B) 
density-dependent mortality proportional to fish (mdR) and preferential attachment 
(wpa) evaluated at t=10–5, α=3 × 10–5, μ=1; (C) density-dependent mortality propor-
tional to schools (mdN) and preferential attachment (wpa) evaluated at t=5 × 10–4, 
α=1.5 × 10–6, μ=1; and (D) density-dependent mortality proportional to school size 
(mdk) and preferential attachment (wpa) evaluated at t=10–3, α=2 × 10–6, μ=1. 
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erential interaction even when encounters are random: 
schools are randomly encountered, but the encounter event 
itself is weighted toward larger schools. Thus, the shape of 
the detection space may be another mechanism by which 
preferential attachment may be exhibited.

In the models presented, it is blithely assumed that 
mortality is caused by undefined mortality agents. How-
ever, most larval recruitment research has been directed 
at starvation and predation as determinants of recruit-
ment variability (Lasker, 1975; Hunter, 1984; Bailey and 
Houde, 1989; Chambers and Trippel, 1997, for example). 
The mortality models used here clearly fit within the pre-
dation paradigm: mortality from predation results from 

encounters with mortality agents of specific density and 
size. Whereas, mortality from starvation ensues from a 
lack of encounters with prey agents of sufficient density 
and size. In certain situations starvation processes might 
be aptly described by the predation-encounter approach 
used in this study. However, further research is needed 
to evaluate their appropriateness and to develop alterna-
tive modifications to Equations 3–6. A mechanism to do 
this may be the inclusion of fragmentation of schools into 
the models. In the models as they are now characterized, 
new schools are not created, the number of schools only 
becomes smaller through either aggregation or through 
mortality on schools of a single fish. Fragmentation might 
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Figure 7
Stock-recruitment relationships determined from the mathematical models (Eqs. 
4, 5, and 10, disaggregated initial conditions) compared with simulation models. 
(A and B) Recruitment at t=1 with mortality encounters proportional to school size 
(mdk) at α=5×10–7 and μ=1; A is recruitment and B is the mean school size. (C and 
D) Recruitment at t=10–5 with mortality encounters proportional to school density 
(mdN) at α=0.2 and μ=1; C is recruitment and D is mean school size. 
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occur due to secondary effects of mortality encounters, 
as well as other factors such as starvation. For example, 
Sogard and Olla (1997) have shown predation-risk and 
hunger to be related to group cohesion. 

The formation of a giant cluster (a single school en-
compassing all the fish) is an important feature of the 
attachment process. The simulations showed that with 
preferential attachment the recruitment process passes 
through a phase where the size distribution is scale free, 
then a critical point is reached where a giant cluster is 
being formed, i.e. a single school begins to attract all the 
fish. Research on complex networks has shown the condi-
tions for formation of the giant cluster (Aiello et al., 2000; 
Albert and Barabasi, 2002). This should be investigated 
for the school aggregation models because it is likely that 
the mortality models used in the present study would no 
longer be appropriate once the giant cluster is formed. In-
deed in some fish stocks, schools may aggregate into giant 
clusters on a local scale and then aggregation may stop for 

reasons such as juveniles entering a benthic phase. The 
resulting distribution of school sizes may be the cluster 
distribution across benthic habitats. Spatial limitations 
of aggregation are an important feature of individually 
based models (Pascual and Levin, 1999). Again, this may 
be an important area for research.

What is the benefit of preferential attachment? If mor-
tality encounters are proportional to school density, then 
recruitment survival rates are improved when there are 
fewer schools for a given number of fish, i.e. when prefer-
ential attachment is employed rather than random attach-
ment (Fig. 8). Perhaps, preferential attachment strategies 
are a useful evolutionary hedge against uncertainty in 
the nature of the mortality dynamics. Conversely, when 
mortality encounters are proportional to school size, then 
better survival is achieved when schools are smaller, i.e. 
with random attachment (Fig. 8). If mortality by preda-
tors is related to larger schools, or if attainment of prey is 
inversely related to larger schools, then more solitary life 
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Figure 8
Stock-recruitment results with preferential attachment compared with random attach-
ment (wpa versus wN). (A) Recruitment at t=1 with mortality encounters proportional to 
school density (mdN) at α=10–9 and μ=5 × 10–4 with an aggregated initial condition; (B) 
recruitment at t=10–5 with mortality encounters proportional to school density (mdN) at 
α=0.2 and μ=1 with a disaggregated initial condition; (C) recruitment at t=1 with mortal-
ity encounters proportional to school size (mdk) at α=10–9 and μ=5×10–4) with an aggre-
gated initial condition; (D) recruitment at t=1 with mortality encounters proportional to 
school size (mdk) at α=5 × 10–7 and μ=1 with a disaggregated initial condition.
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history strategies may evolve. Perhaps, the random ag-
gregation model would be most effective for solitary preda-
tory fish when their mortality is imposed by a mdk-type 
model. For fish, this may be more likely to occur at later 
life stages than at recruitment. If mortality encounters 
are proportional to fish (mdR), then results are intermedi-
ate and preferential attachment and random attachment 
perform equally as well.

The density-dependent mortality models implicitly in-
corporate a predator-prey interaction. Alternative preda-
tor-prey interactions examined were those in which preda-
tor density was proportional to fish, to schools, or to the 
number of fish within a school (school size) throughout a 
recruitment period. In reality mortality is perpetrated by 
a variety of agents at many different scales. Some agents 
act at the scale of the population (Nk), some at the scale of 

schools (N ), some at the scale of mean school size (k), and 
some at the scale of a local school (ki). The mixture of preda-
tory agents and their densities can cause various kinds of 
dynamics including oscillatory, chaotic, and stable behav-
ior (Wilson 1996, Pascual and Levin 1999). Therefore, it is 
unlikely that the models in this study, in which predator-
prey ratios are constant, would be predictive of anything 
other than average behavior during recruitment. However, 
the analytical approach allows changes in the scale of 
predator-prey interaction over time. We can model this as 
mt=2μ Nt

ak t
b, where a and b are dynamic (time-dependent) 

and, perhaps, correlated. Although we may wish to use 
the Beverton-Holt model (a=b=2) or the Ricker-like model 
(a=2, b=1) as a representation of average dynamics, it 
remains that recruitment variability will be influenced by 
the dynamics of the exponents, a and b. Numerical evalua-
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tion of the differential equations by using random variates 
at each time step may be a mechanism to evaluate how 
the variability of a and b within a recruitment period are 
translated into the variability structure around a stock-
recruitment relationship.

The model formulations used in the present study have 
been characterized from the underlying physical pro-
cesses. By doing so, research may be directed at empirical 
and experimental measurement of specific stock-recruit-
ment parameters, which opens the models to testing 
and verification. Additionally, results indicate that the 
school-size distribution contains a rich source of informa-
tion on the mortality and aggregation processes and that 
monitoring of the distribution during recruitment could 
be useful for understanding recruitment variability and 
model structure.
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Appendix 1 

Analytical solutions to Equations 3–5 for selected mortal-
ity and aggregation models. Solutions assume that P1,t = 0 
for all t evaluated and that the number of schools is large. 
No analytical solutions were found for (mdN,wpa), (mdN, 
wpa), or (mdk,wpa). 
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Appendix 2

Characteristics of school-size distribution under 
preferential attachment

Much of the recent literature on evolving complex net- 
works has been directed at determining the degree distri-
bution, i.e., the probability P(k) of a node having k links 
(Albert and Barabási, 2002). When the network grows 
or declines proportional to k or when links are rewired 
to be proportional to k, then P(k) can be determined by 
using continuum theory (Dorogovtsev and Mendes, 2000; 
Albert and Barabási, 2002) leading to scale-free degree 
distributions. Therefore, when preferential attachment 
and nonrandom mortality are used, then the model may be 
couched as a scale-free network in the manner of Barabási 

and Albert (1999), Dorogovtsev and Mendes (2000) and 
Albert and Barabási (2002).

When the aggregation model is preferential attachment 
(wpa) (ignoring for the moment the nonstationarity of N 
and R), then the partial differential of a school of size kit 
with respect to Rt has been shown by Dorogovtsev and 
Mendes (2000) to asymptotically be

 ∂ ∂ =k R k Rit t t it t/ ( / ),b  (A1)

where βt is the net rate of decay per each mortality event, 
i.e., 

 bt paw m= -1 / . (A2)

With specific-mortality models, ßt is

m N k R

m N k N k
m N N

m N

di t t t t

dN t t t t t

dR t t t

dk t t

: ( / ) ( ) ( / )

: ( / ) ( ) / ( / )
: ( / ) ( ) / ( / )

: ( / ) ( )

b a m a m
b a m a m
b a m a m
b a m

= - - ª -
= - - ª -
= - - ª -
= - - ª -

1 1 1

1 1 1
1 1 1

1 1 1 (( / ) / ,a m R kt t

where the approximations on the right assume that the 
number of schools is large. The first term of (A2) denotes 
the removal of a fish proportional to school size for a mor-
tality event; the second term denotes aggregation events 
proportional to school size. If βt is independent of time 
(βt=β), then Dorogovtsev and Mendes (2000) showed that 
under continuum conditions 

 P k k( ) /µ = +-g g b1 1  (A3)

Equation A3 is equivalent to the results of Dorogovtsev 
and Mendes (2000), Krapivsky et al. (2000), and Albert 
and Barabási (2002) and suggest that βt may be a useful 
approximation for determining the power-law tail of the 
school-size distribution (Appendix Fig. 1).

The simulation results showed the dynamics of Pkt. 
When the aggregated initial condition was imposed, at 
the start of the simulations there were no schools with 
only one fish in them (P1t=0). Eventually, as the number 
of schools and fish declined, P1t became positive. Finally, 
as the distribution became scale-free, –∂P1t/∂k became 
negative and remained so throughout the remainder of the 
simulation or until a single giant cluster was formed (Ap-
pendix Fig. 1). Conversely, if the initial conditions began 
with schools being disaggregated, then ∂P1t/∂k began as 
a negative number and remained so until either a giant 
cluster formed or there were no more fish remaining. 

An approximation is suggested by the above results 
for circumstances when the initial conditions are disag-
gregated and when there is preferential attachment: the 
differential equation dPk,t /dt when k=1 (Eq. 6) is replaced 
by

 dP1,t /dt = –wP1,t /Nt + m(1–P1,t) /Nt. (A4)

.
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Appendix Figure 1
School-size distribution at selected times. (A) School-size 
distribution of a simulation starting with a disaggregated 
initial condition, S=106, α=10–6, where mortality is density-
independent (mdi) and there is preferential attachment (wpa). 
(B) Distribution starting with an aggregated initial condition, 
S=2 × 106, α=1.5 × 10–6, where mortality is density-dependent 
proportional to schools (mdN) and with preferential attachment 
(wpa). The dotted lines are the predictions of γ =1 + 1/β from 
Equation A2, horizontally offset for viewing.


