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Abstract

This paper is concerned with the filtering problem for a class of discrete-time uncertain stochastic nonlinear time-delay
systems with both the probabilistic missing measurements and external stochastic disturbances. The measurement missing
phenomenon is assumed to occur in a random way, and the missing probability for each sensor is governed by an individual
random variable satisfying a certain probabilistic distribution over the interval [0 1]. Such a probabilistic distribution could be
any commonly used discrete distribution over the interval [0 1]. The multiplicative stochastic disturbances are in the form of a
scalar Gaussian white noise with unit variance. The purpose of the addressed filtering problem is to design a filter such that,
for the admissible random measurement missing, stochastic disturbances, norm-bounded uncertainties as well as stochastic
nonlinearities, the error dynamics of the filtering process is exponentially mean-square stable. By using the linear matrix
inequality (LMI) method, sufficient conditions are established that ensure the exponential mean-square stability of the filtering
error, and then the filter parameters are characterized by the solution to a set of LMIs. Illustrative examples are exploited to
show the effectiveness of the proposed design procedures.
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1 Introduction

In the past few years, stochastic modeling has come to
play an important role in many branches of science such
as biology, economics and engineering applications. Lin-
ear systems with stochastic perturbations have been in-
tensively investigated from researchers working in differ-
ent areas, see [2,3] and references therein. Since nonlin-
earities are inevitable in most real-world systems, anal-
ysis and synthesis of nonlinear stochastic systems have
been attracting more and more research attention, see
e.g. [9, 16]. Note that, the kind of stochastic nonlinear-
ities described by statistical means has drawn partic-
ular research focus since it covers several well-studied
nonlinearities in stochastic systems, see [18]. On the
other hand, the robust filtering and control problems for
stochastic systems with both time delays and parame-
ter uncertainties have also received considerable research
attention, see e.g. [5, 9, 10, 12] for some sample publica-
tions.
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The missing measurement phenomenon usually occurs
in networked control systems and has attracted consider-
able attention during the past few years, see e.g. [4,13,14]
and the references therein. The binary random variable
sequence (also called Bernoulli distributed model) has
been a popular approach to modeling the missing obser-
vation phenomenon. Such a model was employed as early
as in [11] to synthesize the recursive filters for systems
with missing measurement. Recently, with the rapid de-
velopment of networked control systems, renewed efforts
have been devoted to this effective and flexible model,
see e.g. [14, 15].

It should be pointed out that, in all the aforementioned
literature, the probability 0 is used to stand for an en-
tire signal missing and the probability 1 denotes the in-
tactness (i.e., there is no signal missing at all), and all
the sensors have the same missing probability. Such a
description, however, does have its limitations since it
cannot cover some practical cases, for example, the case
when only partial information is missing and the case
when the individual sensor has different missing prob-
ability. Note that the latter case has been dealt with
in [6, 7] where the minimum variance state estimators
have been designed for linear systems with multiple sen-
sors with different failure/delay rates. However, to the
best of the authors’ knowledge, the filtering problem has
not yet been addressed for uncertain stochastic nonlin-
ear time-delay systems with probabilistic missing mea-
surements, which still remains as a challenging problem.

Preprint submitted to Automatica 20 October 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/337179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper, the filtering problems are addressed for
a class of discrete-time stochastic nonlinear time-delay
systems with sensors information dropout and stochas-
tic disturbances. The sensor measurement missing is as-
sumed to be random and different for individual sensor,
which is modeled by individual random variable satis-
fying a certain probabilistic distribution on the inter-
val [0 1]. Such a probabilistic distribution could be any
commonly used discrete distributions. The multiplica-
tive stochastic disturbances are in the form of a scalar
Gaussian white noise with unit variance. We are inter-
ested in designing a filter such that the overall filtering
error is exponentially mean-square stable. By using the
linear matrix inequality (LMI) method, sufficient condi-
tions are derived to ensure the existence of the desired
filters which are then characterized by the solution to a
set of LMIs. Illustrative examples are exploited to show
the effectiveness of the proposed design procedures.
Notations: In this paper, R

n, R
n×m and Z

+ denote, re-
spectively, the n-dimensional Euclidean space, the set of
all n × m real matrices and the set of nonnegative inte-
gers. I denote the identity matrix of compatible dimen-
sion. The notation X ≥ Y (respectively, X > Y ), where
X and Y are symmetric matrices, means that X − Y
is positive semi-definite (respectively, positive definite).
MT represents the transpose of M . When x is a stochas-
tic variable, E{x} stands for the expectation of x. The
shorthand diag{M1, M2, . . . , Mn} denotes a block di-
agonal matrix with diagonal blocks being the matrices
M1, M2, . . . , Mn and is denoted as diagn{M} when
M1 = M2 = · · · = Mn. In symmetric block matrices,
the symbol ∗ is used as an ellipsis for terms induced by
symmetry. Matrices, if they are not explicitly stated, are
assumed to have compatible dimensions.

2 Problem Formulation

Consider the following discrete-time uncertain stochas-
tic system with state-delay and stochastic nonlinearities:⎧⎪⎨
⎪⎩

x(k + 1) = A(k)x(k) + Ad(k)xd(k) + f(k, d)
+E1x(k)ω(k)

x(k) = ρ(k), k = −d, −d + 1, . . . , 0

(1)

where x(k) ∈ R
n is the state; d ∈ Z

+ is a known con-
stant time-delay with d ≥ 1. ω(k) is an one-dimensional
Gaussian white noise sequence satisfying E{ω(k)} = 0
and E{ω2(k)} = 1. ρ(k) is the initial state of the sys-
tem. A(k) = A + ∆A(k), Ad(k) = Ad + ∆Ad(k) with
∆A(k) and ∆Ad(k) are unknown matrices representing
parameter uncertainties in the following form

[∆A(k) ∆Ad(k)] = MF (k)[N Nd] (2)

with F (k) satisfying FT (k)F (k) ≤ I.

The measurement with sensor data missing is described
by

y(k) = ΞCx(k) + g(k, d) + E2x(k)ω(k)

=
m∑

i=1

ξiCix(k) + g(k, d) + E2x(k)ω(k), (3)

where y(k) ∈ R
m is the measured output vector, Ξ =

diag{ξ1, · · · , ξm} with ξi (i = 1, . . . , m) being m unre-
lated random variables which are also unrelated with
ω(k). It is assumed that ξi has the probabilistic density
function pi(s) (i = 1, . . . , m) on the interval [0 1] with
mathematical expectation µi and variance σ2

i . Ci :=
diag{0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−i

}C (i = 1, . . . , m), and A, Ad,

C, E1, E2, M , N and Nd are known constant matrices.

Remark 1 Equation (3) describes the measurement
with multiple sensors, in which the diagonal matrix Ξ
represents the whole missing statues and the random
variable ξi corresponds to the ith sensor (i = 1, . . . , m).
Note that the measurement missing phenomenon has
been extensively considered and several models have been
introduced. One popular model is arguably the Bernoulli
distributed model in which 0 is used to stand for an
entire missing of signals and 1 denotes the intactness,
see e.g. [14, 15]. However, in practice, for a variety of
reasons such as sensor aging or sensor partial failure,
the information transmitted at one moment from/to a
sensor could be neither completely missing nor com-
pletely successful, but only part of the information can
go through. Such a case has been extensively studied in
the literature, see [8,17] and the reference therein. In the
networked control terminology, this could also be referred
to as the information quantization. In other words, the
proportion of the data missed at one moment could be a
fraction other than 0 or 1. In (3), ξi can take value on the
interval [0 1] and the probability for ξi to take different
values may be different. ξi can satisfy any discrete prob-
abilistic distributions on the interval [0 1], and therefore
includes the Bernoulli distribution as a special case.

The functions f(k, d) and g(k, d) describe the so-called
stochastic nonlinear functions of the states and delayed
states, which are bounded in a statistical sense as follows:

E

{[
f(k, d)
g(k, d)

] ∣∣∣ x(k)

}
= 0, (4)

E

{[
f(k, d)
g(k, d)

]
[fT (l, d) gT (l, d)]

∣∣∣ x(l)

}
= 0, k �= l, (5)

E

{[
f(k, d)
g(k, d)

]
[fT (k, d) gT (k, d)]

∣∣∣ x(k)

}
≤

q∑
i=1

[
π1i

π2i

]

×
[

π1i

π2i

]T [
xT (k)Φix(k) + xT

d (k)Ψixd(k)
]
, (6)

where q is a known nonnegative integer. π1i ∈ R
n×1 and

π2i ∈ R
m×1 (i = 1, . . . , q) have compatible dimensions

with f(k, d) and g(k, d), and Φi and Ψi (i = 1, . . . , q) are
positive-definite matrices with appropriate dimensions.
For convenience, we assume that f(k, d) and g(k, d) are
unrelated with ξi (i = 1, . . . , m) and ω(k).

Remark 2 The so-called stochastic nonlinearities de-
scribed in (4)-(6) have been extensively considered (see
[18] and the references therein) since such a description
covers several well-studied nonlinear functions as special
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cases. It should be noted that, in this paper, such non-
linear functions involve delayed states and are therefore
more general that those in [18].

In this paper, we are interested in designing a linear filter
of the following structure:

xf (k + 1) = Afxf (k) + Ky(k), (7)

where xf (k) ∈ R
n is the state estimate, and Af and K

are filter parameters to be determined.

By augmenting the state variables

x̃(k) =

[
x(k)
xf (k)

]
, x̃d(k) =

[
xd(k)
xfd(k)

]
, h(k) =

[
f(k, d)
g(k, d)

]

and combining (1) and (7), we obtain the filtering error
dynamics as follows:
x̃(k + 1) =Ax̃(k) + AdZx̃d(k) + Cx̃(k) + Bh(k)

+EZx̃(k)ω(k), (8)

where

A=

[
A + ∆A(k) 0

KΞ̄C Af

]
, C =

[
0 0

K(Ξ − Ξ̄)C 0

]
,

Ad =

[
Ad + ∆Ad(k)

0

]
, B =

[
I 0
0 K

]
, E =

[
E1

KE2

]
,

Z =
[
I 0

]
, Ξ̄ = E{Ξ}.

Observe the system (8) and let x̃(k; ν) denote the state
trajectory from the initial data x̃(s) = ν(s) on −d ≤ s ≤
0. Obviously, x̃(k, 0) ≡ 0 is the trivial solution of system
(8) corresponding to the initial data ν = 0.

In this paper, we aim to design an linear filter of the
form (7) for the system (1) such that, for all admis-
sible time delay, uncertainties, sensors data missing,
stochastic nonlinearities and exogenous stochastic dis-
turbances, the filtering error system (8) is exponentially
mean-square stable.

3 Main Results

3.1 Filter analysis

Lemma 1 (S-procedure) [1] Let Υ = ΥT , M and N be
real matrices of appropriate dimensions with F satisfying
FT F ≤ I, then

Υ + MFN + N T FTMT < 0,

if and only if there exists a positive scalar δ > 0 such that

Υ +
1
δ
MMT + δN TN < 0,

or, equivalently ⎡
⎢⎣ Υ M δN T

MT −δI 0
δN 0 −δI

⎤
⎥⎦ < 0.

For convenience of presentation, we firstly deal with the
nominal system of (1) (i.e. without parameter uncer-
tainties) and will eventually extend our main results to
include the robustness. In the following theorem, Lya-
punov stability theorem and an LMI-based method are
combined together to deal with the stability analysis
problem for the filter design of the discrete-time stochas-
tic nonlinear system with time delay and stochastic dis-
turbance. A sufficient condition is derived that guaran-
tees the solvability of the exponential filtering problem.
Theorem 1 Consider the augmented filtering system
(8) with given filter parameters. If there exist positive
definite matrices P > 0, Q > 0 and positive scalars
εi > 0 (i = 1, . . . , q) such that the following matrix
inequalities⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + ZT QZ ∗ ∗ ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗ ∗ ∗

PA PAd −P ∗ ∗ ∗ ∗
C̄ 0 0 −P ∗ ∗ ∗

PEZ 0 0 0 −P ∗ ∗
Φ̂ 0 0 0 0 −Λ ∗
0 Ψ̂ 0 0 0 0 −Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (9)

[
−εi ∗

PBΠ̄i −P

]
< 0, i = 1, . . . , q, (10)

hold, where

C̄ := [σ1C̄T
1 P, · · · , σmC̄T

mP ]T , P := diag{P, · · · , P},
Φ̂ := [ε1Φ̄

1
2
1 , · · · , εqΦ̄

1
2
q ]T , Ψ̂ := [ε1Ψ

1
2
1 , · · · , εqΨ

1
2
q ]T ,(11)

Φ̄i :=

[
Φi 0
0 0

]
, Π̄i :=

[
π1i

π2i

]
, C̄i =

[
0 0

KCi 0

]
,

Λ := diag{ε1I, · · · , εqI},
then the filtering error system (8) is exponentially mean-
square stable.

Proof : Define the following Lyapunov functional candi-
date for the system (8):

V (x̃(k), k) = x̃T (k)P x̃(k) +
k−1∑

s=k−d

x̃T (s)ZT QZx̃(s).(12)

From the definition of C, we can easily know EC = 0.
Furthermore, from the fact Eω(k) = 0 and (4)-(5), cal-
culating the difference of the Lyapunov functional (12)
according to (8) gives

E{∆V (x̃(k), k)}
= [Ax̃(k) + AdZx̃d(k)]T P [Ax̃(k) + AdZx̃d(k)]

+E
{
ωT (k)x̃T (k)ZET PEZx̃(k)ω(k)

} − x̃T (k)P x̃(k)

+E
{
x̃T (k)CT PCx̃(k)

}
+ E

{
hT (k)BT PBh(k)

}
+x̃T (k)ZT QZx̃(k) − x̃T

d (k)ZT QZx̃d(k), (13)
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We can obtain from the definition of (3) that

E
{CT PC}

=
m∑

i=1

σ2
i C̄T

i P C̄i. (14)

Again, we can have from (4)–(6) that

E
{
hT (k)BT PBh(k)

} ≤
q∑

i=1

[
x̃T (k)Φ̄ix̃(k)

+x̃T
d (k)ZT ΨiZx̃d(k)

]
tr(BΠiBT P ), (15)

where Πi := Π̄iΠ̄T
i with Π̄i and Φ̄i (i = 1, . . . , q) being

defined in (11).

From (13)–(15), we have
E{∆V (x̃(k), k)} ≤E{ηT (k)Ωη(k)}, (16)

where η(k) =
[
x̃T (k) Zx̃T

d (k)
]

and

Ω :=

[
Ω1 AT PAd

AT
d PA −Ω2

]
, (17)

with Ω1 := −P+
∑m

i=1 σ2
i C̄T

i P C̄i+ZTET PEZ+ZT QZ+
AT PA +

∑q
i=1 Φ̄itr(BΠiBT P ), Ω2 := Q − AT

d PAd −∑q
i=1 Ψitr(BΠiBT P ).

By Schur complement, (10) holds if and only if
tr(BΠiBT P )
< εi (i = 1, . . . , q). By Schur complement, we can obtain
from (9) and (10) that Ω < 0 and, subsequently,

E{∆V (x̃(k))} < −λmin(Ω)|x̃(k)|2. (18)

where λmin(Ω) is the minimum eigenvalue of Ω. Finally,
we can confirm from Lemma 1 of [14] that the augmented
filtering systems (8) is exponentially mean-square stable.

In the next subsection, our attention is focused on the
design of filter parameters Af and K by using the results
in Theorem 1.

3.2 Filter synthesis

Theorem 2 Consider the system (8). If there exist
positive-definite matrices S > 0, R > 0, Q > 0, matri-
ces K̃, Ãf and positive scalars εi > 0, (i = 1, 2, . . . , q)
such that the following linear matrix inequalities

Υ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Υ11 ∗ ∗ ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗ ∗ ∗

Υ31 SAd −$ ∗ ∗ ∗ ∗
Υ41 0 0 −P̄ ∗ ∗ ∗
Υ51 0 0 0 −$ ∗ ∗
Υ61 0 0 0 0 −Λ ∗
0 Ψ̂ 0 0 0 0 −Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (19)

⎡
⎢⎣ −εi ∗ ∗

Sπ1i −S ∗
Rπ1i + K̃π2i −S −R

⎤
⎥⎦ < 0, i = 1, . . . , q, (20)

S − R > 0, (21)

hold, where

C̃ :=

⎡
⎣[

0
σ1K̃C1

]T

, · · · ,

[
0

σmK̃Cm

]T
⎤
⎦T

,

Φ̃ :=

⎡
⎣[

ε1Φ
1
2
1

0

]T

, · · · ,

[
εqΦ

1
2
q

0

]T
⎤
⎦T

,

$ :=

[
S S

S R

]
, Υ11 := $ −

[
Q Q

Q Q

]
,

Υ31 :=

[
SA SA

RA + K̃Ξ̄C + Ãf RA + K̃Ξ̄C

]
,

Υ41 := [C̃ C̃], P̄ := diagm {$} , Υ61 := [Φ̃ Φ̃]

Υ51 :=

[
SE1 SE1

RE1 + K̃E2 RE1 + K̃E2

]
,

then the system (8) is exponentially mean-square stable.
In this case, the parameters of the desired filter (7) are
given as follows:

K := X−1
12 K̃, Af := X−1

12 ÃfS−1Y −1
12 , (22)

where X12, Y12 are any nonsingular matrices satisfying
X12Y

T
12 = I − RS−1. (23)

Proof : The proof is omitted owe to the limited space.

3.3 The solution

In the following theorem, we extend the main results in
Theorem 2 to the parameter uncertain cases. The proof
of this theorem can be obtained along the similar line
of that of Theorem 2, and is therefore omitted here to
avoid unnecessary duplication.

Theorem 3 Consider the system (8). If there exist
positive-definite matrices S > 0, R > 0, Q > 0, ma-
trices K̃, Ãf and positive scalars δ > 0 and εi > 0,
(i = 1, 2, . . . , q) such that the linear matrix inequalities
(20), (21) and⎡
⎢⎣ Υ ∗ ∗

Ῡ21 −δI ∗
Ῡ31 0 −δI

⎤
⎥⎦ < 0, (24)

where Ῡ21 := [0 0 0 MT S MT R 0 0 0 0 0], Ῡ31 :=
[δN δN δNd 0 0 0 0 0 0] hold, then the system (8) is
exponentially mean-square stable.

Proof : The proof is also omitted because of the limited
space.

Remark 3 In this paper, the discrete-time systems
include the state-dependent external stochastic distur-
bances, stochastic nonlinearities (nonlinearities de-
scribed by statistical means) as well as probabilistic sen-
sor information missing. In practice, these three stochas-
tic ‘sources’ make the real-time delay measurement a
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rather challenging task, which means the delay informa-
tion is not easily accessible. Therefore, it makes sense to
have delay-independent results. We point out that, in the
case when the actually occurred delay is of small size and
can be measured, it is technically not difficult to consider
delay-dependent analysis by using recently developed
techniques and reduce the possible conservatism.
4 Numerical Example

In this section, two simulation examples are presented to
illustrate the usefulness and flexibility of the filter design
method developed in this paper.

Example 1 In this example, we are interested in design-
ing the filter for the discrete-time stochastic nonlinear
uncertain system with stochastic disturbances and sensor
data missing.

The system data of (1)-(3) are given as follows:

A =

[
0.1 0
0 0.2

]
, Ad =

[
0.1 0
0 0.1

]
, C =

[
1 0
0 1

]
,

E1 =

[
0.4 0
0 0.4

]
, E2 =

[
0.4 0
0 0.1

]
, M =

[
0.02
0.02

]
,

N = Nd = [0.01 0.02] , m = n = q = d = 2.

The stochastic nonlinear functions are taken to satisfy

E

{[
f(k, d)
g(k, d)

] ∣∣∣ x(k)

}
= 0, (25)

E
{
f(k, d)fT (k, d)|x(k)

}
=

[
0.2
0.2

][
0.2
0.2

]T

xT (k)

[
0.11 0
0 0.11

]
x(k)

+xT
d (k)

[
0.11 0
0 0.11

]
xd(k), (26)

E
{
g(k, d)gT (k, d)|x(k)

}
=

[
0.22
0.22

][
0.22
0.22

]T

xT (k)

[
0.11 0
0 0.11

]
x(k)

+xT
d (k)

[
0.11 0
0 0.11

]
xd(k). (27)

In addition, we assume the probabilistic density functions
of ξ1 and ξ2 in [0, 1] described by

p1(s1) =

⎧⎪⎨
⎪⎩

0.8 s1 = 0
0.1 s1 = 0.5
0.1 s1 = 1

p2(s2) =

⎧⎪⎨
⎪⎩

0.7 s2 = 0
0.2 s2 = 0.5
0.1 s2 = 1

,

from which the expectations and variances can be easily
calculated as µ1 = 0.15, µ2 = 0.2, σ2

1 = 0.1025 and
σ2

2 = 0.11.

Using Matlab LMI control Toolbox to solve the LMIs in
(24), (20) and (21), we can calculate that the filter pa-
rameters as follows:
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Fig. 1. The simulation results of Example 1

K =

[
0.4965 0.0249
0.0189 0.3547

]
, Af =

[
0.0076 −0.0070
−0.0033 0.1198

]
.

Fig. 1 displays the simulation results for the performance
of the designed filter, in which e(k) expresses the estima-
tion error e(k) = x(k) − xf (k),

Example 2 In order to illustrate the effectiveness of our
results for different measurement missing cases, for the
same system as in Example 1, we assume that the proba-
bilistic density functions of ξ1 and ξ2 in [0, 1] is given by

p1(s1) =

⎧⎪⎨
⎪⎩

0 s1 = 0
0.1 s1 = 0.5
0.9 s1 = 1

p2(s2) =

⎧⎪⎨
⎪⎩

0.1 s2 = 0
0.1 s2 = 0.5
0.8 s2 = 1

,

with the expectations and variances obtained as µ1 =
0.95, µ2 = 0.85, σ2

1 = 0.0225 and σ2
2 = 0.1025. Again,

solving the LMIs in (24), (20) and (21) gives the filter
parameters:

K =

[
0.5182 0.0316
0.0289 0.3734

]
, Af =

[
−0.3115 −0.0256
−0.0229 −0.0603

]
.
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Fig. 2. The simulation results of Example 2

Fig. 2 shows the simulation results for the performance
of the designed filter. We can see from the examples that
different missing probability distributions give rise to dif-
ferent filters, all of which can accomplish the filtering
task.

5 Conclusions
In this paper, the filtering problem has been studied
for a class of discrete-time uncertain stochastic nonlin-
ear time-delay systems with both the probabilistic miss-
ing measurements and external stochastic disturbances.
The measurement missing phenomenon is assumed to
occur in a random way, and the missing probability for
each sensor is governed by an individual random vari-
able satisfying a certain probabilistic distribution in the
interval [0 1]. We have designed a filter such that, for
the admissible random measurement missing, stochas-
tic disturbances, norm-bounded uncertainties as well as
stochastic nonlinearities, the error dynamics of the fil-
tering process is exponentially mean-square stable. Il-
lustrative examples have been exploited to show the ef-
fectiveness of the proposed design procedures.
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