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Abstract

Genetic Oscillator networks (GONs) are inherently coupled complex systems where the nodes indicate the biochemi-

cals and the couplings represent the biochemical interactions. This paper is concerned with the synchronization problem

of a general class of stochastic GONs with time delays and Markovian jumping parameters, where the GONs are subject

to both the stochastic disturbances and the Markovian parameter switching. The regulatory functions of the addressed

GONs are described by the sector-like nonlinear functions. By applying up-to-date ‘delay-fractioning’ approach for

achieving delay-dependent conditions, we construct novel matrix functional to derive the synchronization criteria for

the GONs that are formulated in terms of linear matrix inequalities (LMIs). Note that LMIs are easily solvable by

the Matlab toolbox. A simulation example is used to demonstrate the synchronization phenomena within biological

organisms of a given GON and therefore shows the applicability of the obtained results.
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I. Introduction

The oscillatory behavior of genetic networks, as a fundamental challenge in the research field of systems

biology, has recently attracted an increasing attention, see e.g. [1, 5, 6, 10–12, 14, 29]. Generally speaking, the

genetic networks are a class of complex dynamical networks since the genetic oscillators can be expressed in

terms of complicated biological functions [9, 16, 17, 23]. In such kind of genetic oscillator networks (GONs),

the nodes represent the genetic oscillators, while the inner or outer couplings denote the interactions. In

order to research into the intrinsic biological organisms of GONs, it is of great importance to investigate the

collective dynamics of coupled genetic oscillators with hope to understand the rhythmic behavior of living

organisms. Synchronization, as a universal phenomenon, occurs typically in genetic networks. For example,
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in [19], a synthetic gene network in Escherichia coli has been shown to have two features: the system acts as a

relaxation oscillator and uses an intercell signaling mechanism to couple the oscillators and induce synchronous

oscillations. A coupling scheme has been proposed that leads to synchronous behavior across a population

of cells, and an analytical treatment of the synchronization process has been conducted. Up to now, the

synchronization motion analysis problem for genetic oscillator networks has attracted considerate research

attention. In [11,14,16,17], the synchronization problem in genetic networks has been thoroughly investigated

via experiments (e.g. synchronization of cellular clock in the suprachiasmatic nucleus in genetic networks),

numerical simulation (e.g. biological networks of identical genetic oscillators) as well as theoretical analysis

(i.e., synchronizability of coupled nonidentical genetic oscillators).

It has been demonstrated experimentally that the networks states or oscillatory expression are significantly

affected by the inherent state delay due primarily to the slow processes of transcription, translation, and

translocation or the finite switching speed of amplifiers. From the synthetic biology viewpoint, it is necessary

to address the time-delay effects in the mathematical models, and then a more accurate state values of the

biological oscillators could be obtained from oscillatory expression measurements [22, 26, 30]. Note that the

stability analysis issue of genetic regulatory networks with either constant or time-varying delays has recently

been a research focus, see [30] and references therein. It is worth mentioning that a novel approach named

‘delay-fractioning’ has been exploited in many reported results in order to achieve less conservative delay-

dependence conditions, see e.g. [20, 27,28,35].

Biological data promises to enhance the fundamental understanding of life at the molecular level, from

regulation of gene expression and gene function to cellular mechanisms, and may prove useful in medical

diagnosis, treatment, and drug design. Substantial effort is being made to build models to analyze microarray

data. It is evident that genetic networks are always affected by the random fluctuations [1,3,13,21,25,26,29,31].

Therefore, to have an accurate prediction of the dynamical behaviors of genetic oscillators, it is important

to consider the random effects including intrinsic and intrinsic noise perturbations [1, 3, 25, 26, 29]. Also, as

shown in [7,8,13], in gene regulatory networks, the transition from one state to the next usually takes place in

accordance with certain transition probabilities, which forms a homogeneous Markov chain with finite state

space. Subsequently, the dynamics of the so-called Markovian genetic regulatory networks, which are subject

to mode switching (or jumping), has been thoroughly investigated in [7,8]. It should be pointed out that, up

to now, the control and filtering problems for Markovian jumping systems have already been widely studied

[4, 18, 33, 34]. Recently, the stochastic synchrony study has been carried out for genetic networks in [32],

where an adaptive filtering approach is elegantly developed to estimate uncertain delayed genetic regulatory

networks. However, the stochastic synchrony problem for Markovian delayed genetic networks of specific

structures has not gained adequate research attention yet, and this constitutes the main focus of this paper.

In this paper, we aim to make one of the first attempts to investigate the synchronization problem for

stochastic GONs with Markovian jumping parameters and time delays so as to exhibit more realistic char-

acteristics of the GONs, where the regulation functions are assumed to be sector-like, and the intrinsically

stochastic fluctuation is a scalar Brownian motion. The main results obtained are illustrated through a nu-

merical simulation example. The rest of this paper is organized as follows. Section II introduces the model

formulation and some preliminary works. In Section III, by utilizing the approach of ‘delay-fractioning’ and a
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novel matrix functional method, stochastic analysis is conducted to obtain delay-dependent sufficient criteria

described by linear matrix inequalities (LMIs) [2] that can be easily checked by using standard numerical

software. Section IV illustrates the obtained results and Section V concludes the paper.

Notations: Throughout this paper, Rn and R
n×m denote, respectively, the n dimensional Euclidean space

and the set of all n×m real matrices. P > 0 means that matrix P is real, symmetric and positive definite. I

and 0 denote the identity matrix and the zero matrix with compatible dimensions, respectively; and diag{· · · }

stands for a block-diagonal matrix, col{· · · } denotes a matrix column with blocks given by the matrices in

{· · · }. If A is a matrix, the notation λmax(A) means the largest eigenvalue of A. The superscript “T” stands

for matrix transposition and the asterisk “∗” in a matrix is used to represent the term which is induced by

symmetry. The Kronecker product of matrices Q ∈ R
m×n and R ∈ R

p×q is a matrix in R
mp×nq and denoted

as Q⊗ R. We let C([−h, 0];Rn) denote the family of all continuous functions ϕ from [−h, 0] to R
n with the

norm |ϕ| = sup−h≤θ≤0 ‖ϕ(θ)‖, where ‖ · ‖ is the Euclidean norm on R
n. Moreover, let (Ω,F , {Ft}t≥0,P)

be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration

contains all P-null sets and is right continuous). Denote by L
p
F0
([−h, 0];Rn) the family of all F0-measurable

C([−h, 0];Rn)-valued random variables ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E{|ξ(θ)|
p} < ∞,

where E{·} stands for the mathematical expectation operator with respect to the given probability measure

P. Sometimes, the arguments of a function will be omitted in the analysis when no confusion arises.

II. Problem formulation and preliminaries

Let r(t) (t ≥ 0) be a right-continuous Markovian chain on a probability space (Ω,F , {Ft}t≥0, P ) taking

values in a finite state space S = {1, 2, ...,m} with generator Π = {πij} given by

P{r(t+∆) = j | r(t) = i} =

{

πij∆+ o(∆), if i 6= j,

1 + πij∆+ o(∆), if i = j.

Here ∆ > 0, and πij ≥ 0 is the transition rate from i to j if j 6= i while

πii = −
∑

j 6=i

πij.

Among many models of genetic networks, the differential equation model is one of the mostly adopted ones.

A general delayed genetic oscillator network could be described by the following vector form [16,17]:

dy(t)

dt
= Ay(t) +

l
∑

i=1

Bifi(y(t)) +
l

∑

i=1

Cigi(y(t− τ)), (1)

where l is a positive integer and y(t) = col{y1(t), y2(t), . . . , yn(t)} ∈ R
n represents the concentrations of

proteins, mRNAs and chemical complexes; A, Bi, Ci (i = 1, 2, . . . , l) are matrices in R
n×n; fi(y(t)) =

col{fi1(y1(t)), fi2(y2(t)), . . . , fin(yn(t))} ∈ Rn and gi(y(t−τ)) = col{gi1(y1(t−τ)), gi2(y2(t−τ)), . . . , gin(yn(t−

τ))} ∈ R
n are monotonic genetic regulatory functions which are usually taken as the Hill form. The scalar

τ > 0 denotes the translation time delay in the translation process.

As discussed in the introduction, the genetic oscillators in biological networks are tightly coupled between

each other, and both the stochastic perturbations [1, 3, 13, 21, 25, 26, 29] and Markovian jumping parameters
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[13] are playing important roles in generating the network dynamics. Therefore, we consider the following

coupled GONs consisting of N genetic oscillators with Markovian jumping parameters and time delays:

dxk(t) =

[

A(r(t))xk(t) +B(r(t))f(xk(t)) + C(r(t))g(xk(t− τ)) +
N
∑

l=1

wklΓr(t)xl(t)

]

dt

+σk(xk(t), xk(t− τ), t, r(t))dω(t),

xk(t) = φk(t), r(t)|t=0 = r0 ∈ S; t ∈ [−τ, 0], k = 1, 2, . . . , N (2)

where xk(t) = col{xk1(t), xk2(t), · · · , xkn(t)} ∈ R
n is the state vector of the kth genetic oscillator representing

the concentrations of proteins, mRNAs and chemical complexes, which are of limited values; For r(t) = i ∈ S,

A(i) includes the degradation terms and all the other linear terms of the kth genetic oscillator; B(i), C(i)

are known matrices in R
n×n; f(xk(t)) = col{f1(xk1(t)), f2(xk2(t)), · · · , fn(xkn(t))} ∈ R

n and g(xk(t − τ)) =

col{g1(xk1(t − τ)), g2(xk2(t − τ)), · · · , gn(xkn(t − τ))} ∈ R
n are usually monotonic functions satisfying the

sector-bounded conditions that will be given later; φk(t) ∈ L
p
F0
([−h, 0];Rn) is the initial condition of xk(t).

The matrix Γr(t) = [γkl,r(t)]n×n is a matrix linking the state variable of the lth genetic oscillator in the

genetic network mode r(t) if γkl,r(t) 6= 0; and W = [wkl]N×N is the coupling matrix that represents the

coupling topology, direction, as well as the coupling strength of the genetic network. The definition is given

as follows: if there is a link from the kth oscillator to the lth oscillator (k 6= l), then wkl equals to a positive

constant denoting the coupling strength of this link; otherwise wkl = 0; wkk = −
∑N

k=1,k 6=lwkl. Note that many

real-world genetic oscillator networks are sparse, and therefore reducible near a tree topological structure. In

this paper, however, we are looking into the synchronization problem for a genetic oscillator network from a

theoretical viewpoint. In such as case, we suggest that the presence of irreducible dependencies among the

genes is likely to identify direct regulatory interactions mediated by a transcription factor binding to a target

genes promoter region, although other types of interactions may also be identified.

In the system (2), ω(t) is a scalar Wiener process (Brownian Motion) on (Ω,F , {Ft}t≥0,P), which is

independent of the Markov chain r(·) and satisfies

E{dω(t)} = 0, E{[dω(t)]2} = dt. (3)

The noise intensity function vector σk(·, ·, ·, ·) : R
n ×Rn ×R+ × S → Rn is Borel measurable and is assumed

to satisfy the following Lipschitz condition.

Assumption 1: There exist constant matrices Σ1 and Σ2 of appropriate dimensions such that the following

inequality:

[σk(u1, v1, t, i)− σl(u2, v2, t, i)]
T [σk(u1, v1, t, i) − σl(u2, v2, t, i)] ≤ ‖Σ1(u1 − u2)‖

2 + ‖Σ2(v1 − v2)‖
2 (4)

holds for all t > 0;uq, vq (q = 1, 2) ∈ R
n; k, l = 1, 2, · · · , N ; i ∈ S.

Assumption 2: The nonlinear functions f(·) and g(·) satisfy the following sector-like conditions:

0 ≤
fi(s)− fi(t)

s− t
< κ1i, 0 ≤

gi(s)− gi(t)

s− t
< κ2i, i = 1, 2, · · · , n.

Remark 1: From Assumption 2, it is not difficult to see that

fT (x)(f(x) −K1x) ≤ 0, gT (x)(g(x) −K2x) ≤ 0
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with Kj = diag{κj1, κj2, · · · , κjn} (j = 1, 2). On the other hand, the nonlinear functions f(·) and g(·)

satisfying Assumption 2 are said to belong to the sector [0,K1] and [0,K2], respectively.

Remark 2: Notice that the sector-like description of the nonlinearities has been used to model the structure

and regulation mechanism of the genetic regulatory networks in many papers, see e.g. [17, 29]. Traditionally,

as monotonic regulation functions, f(·) or g(·) usually takes the Hill form or the Michaslis-Menten form, which

is a special case of the sector-like functions.

For the sake of notation simplicity, we use the matrix Kronecker product “⊗” to rewrite (2) in the following

compact form:

dx(t) =
[

(IN ⊗A(r(t)) +W ⊗ Γr(t))x(t) + (IN ⊗B(r(t)))F (x(t))

+(IN ⊗ C(r(t)))G(x(t − τ))
]

dt+ σ(x(t), x(t − τ), t, r(t))dω(t), (5)

where

x(t) = col{x1(t), x2(t), . . . , xN (t)}, F (x(t)) = col{f(x1(t)), f(x2(t)), . . . , f(xN (t))},

G(x(t)) = col{g(x1(t− τ)), g(x2(t− τ)), . . . , g(xN (t− τ)},

σ(x(t), x(t − τ), t, r(t)) = col{σ1(x1(t), x1(t− τ), t, r(t)), · · · , σN (xN (t), xN (t− τ), t, r(t))}.

Before stating the main results, a definition and some lemmas are introduced here.

Definition 1: The genetic oscillator network (2) is said to be globally asymptotically synchronized in the

mean square sense if

E
{

‖xk(t, φk, r0)− xl(t, φl, r0)‖
2
}

−→ 0, as t → +∞

holds for any φk(·), φl(·) ∈ L
p
F0
([−h, 0],ℜn); k, l ∈ {1, 2, ..., N} and r0 ∈ S.

Lemma 1: [15] The Kronecker product has the following properties:

(1) (αA)⊗B = A⊗ (αB);

(2) (A+B)⊗C = A⊗C +B ⊗ C;

(3) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

(4) (A⊗B)T = AT ⊗BT .

Lemma 2: Let U = (αij)N×N , P ∈ Rn×n, x = col{x1, x2, ..., xN} where xi = col{xi1, xi2, . . . , xin} ∈ Rn

and y = col{y1, y2, ..., yN} where yi = col{yi1, yi2, . . . , yin} ∈ Rn (k = 1, 2, ..., N). If U = UT and each row sum

of U is zero, then

xT (U ⊗ P )y = −
∑

1≤i<j≤N

αij(xi − xj)
TP (yi − yj).

Lemma 3: [24] Let f be a nonnegative function defined on [0,+∞). If f is Lebesgue integrable and is

uniformly continuous on [0,+∞), then limt→+∞ f(t) = 0.

The main aim of this paper to deal with the exponential mean-square synchronization problem of the

genetic oscillator networks (2) or (5), and derive LMI-based sufficient conditions that guarantee the network

to be exponentially synchronous in the mean-square sense for all admissible time delays, nonlinearities and

stochastic disturbances.
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III. Main Results

Letting

y(t, r(t)) := [IN ⊗A(r(t)) +W ⊗ Γr(t)]x(t) + (IN ⊗B(r(t)))F (x(t)) + (IN ⊗ C(r(t)))G(x(t− τ)), (6)

then the network (5) can be recast into the following form

dx(t) = y(t, r(t))dt+ σ(x(t), x(t − τ), t, r(t))dω(t). (7)

For each i ∈ S, Eq. (7) becomes

dx(t) = y(i)(t)dt+ σ(x(t), x(t − τ), t, i)dω(t), (8)

where y(i)(t) = y(t, r(t)) as r(t) = i.

Theorem 1: For a fixed integer d ≥ 1, the genetic oscillator networks (2) or (5) with time-delay τ ∈ (0, h] is

globally exponentially synchronous in the mean square if there exist n× n matrices Pi > 0, Qk > 0, R > 0, a

positive-define matrix X(i) ∈ R
(dn+4n)×(dn+4n) , positive scalars λ∗, el and matrices H(i), M

(i)
1 , M

(i)
2 , . . . ,M

(i)
d+4

with appropriate dimensions such that

Pi ≤ λ∗I, (9)

Ξ
(i)
kl = Πkl(i) + hX(i) < 0, (10)

Ω
(i)
kl =

[

X(i) M (i)

∗ R

]

≥ 0, (11)

where k = 1, 2, . . . , d, l = 1, 2, i ∈ S and

Πkl(i) = W T
Q Q̃WQ +

2
∑

q=1

(

W T
MM (i)W

(q)
M + (W T

MM (i)W
(q)
M )T

)

+W T
HH̃

(i)
kl WH ,

WQ =

[

Idn×dn 0dn×n 0dn×3n

0dn×n Idn×dn 0dn×3n

]

, Q̃ =

[

Q 0

0 Q

]

, M (i) = col{M i
1,M

i
2, · · · ,M

i
d+4},

WM = Id+4 ⊗ In, W
(1)
M = [In 0n×(d+3)n], W

(2)
M = [0n×dn − In 0n×3n],

WH =



















In 0n×(dn+3n)

0n×dn In 0n×3n

0n×(dn+n) In 0n×2n

0n×(dn+2n) In 0n×n

0n×(dn+3n) In



















,

H̃
(i)
kl =



















(1, 1) 0 e1K
T
1 + PiB(i) PiC(i) (1, 5)

∗ λ∗ΣT
2 Σ2 0 e2K

T
2 0

∗ ∗ −2e1I 0 BT (i)H(i)T

∗ ∗ ∗ −2e2I CT (i)H(i)T

∗ ∗ ∗ ∗ hR−H(i) −H(i)T



















,

(1, 1) =
∑

1≤j≤m

πijPj + λ∗ΣT
1Σ1 + PiA(i) +AT (i)Pi −Nwkl(PiΓi + ΓT

i Pi),

(1, 5) = −NwklΓ
T
i H

(i)T +AT (i)H(i)T .
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Proof: Since {(x(t), r(t)), t ≥ 0} is not a Markov process, in order to cast our model into the framework

for a Markov system, let us define a new Markov process {xt, r(t), t ≥ 0} with

xt(s) = x(t+ s), − τ ≤ t ≤ 0.

Based on the idea of ‘delay-fractioning’, we consider the following novel matrix functional candidate for the

genetic oscillator networks (2) or (5):

V (xt, t, r(t)) = xT (t)(U ⊗ P (r(t)))x(t) +

∫ t

t−τ

∫ t

β

yT (α, r(α))(U ⊗R)y(α, r(α))dαdβ

+
d

∑

k=1

∫ t− k−1

d
τ

t− k

d
τ

xT (θ)(U ⊗Qk)x(θ)dθ (12)

with d ≥ 1 (number of fractions) being an integer and U = [ukl]N×N with ukl =

{

−1, k 6= l

N − 1, k = l
. For

r(t) = i ∈ S, P (r(t)) = Pi > 0, R > 0, Qk > 0.

For the function V : Lp
F0
([−h, 0];RNn) × R

+ × S → R
Nn given above, its infinitesimal operator L [4] is

defined as

LV (xt, t, i) = lim
△→0+

1

△

[

E

{

V (xt+△, t+△, r(t+△))|xt, r(t) = i

}

− V (xt, t, i)

]

. (13)

Then, for the stochastic process {xt, r(t), t ≥ 0} along the network (2) or (5), it is easy to obtain that

LV (xt, t, i) = 2xT (t)(U ⊗ Pi)y
(i)(t) +

m
∑

j=1

πijx
T (t)(U ⊗ Pj)x(t)

+trace[σT (x(t), x(t − τ), t, i)(U ⊗ Pi)σ(x(t), x(t − τ), t, i)]

+τy(i)(t)
T
(U ⊗R)y(i)(t)−

∫ t

t−τ

yT (β, r(β))(U ⊗R)y(β, r(β))dβ

+xT (t)(U ⊗Q1)x(t)− xT (t− τ)(U ⊗Qd)x(t− τ)

−

d−1
∑

l=1

{

xT
(

t−
l

d
τ

)

[U ⊗ (Ql −Ql+1)]x

(

t−
l

d
τ

)}

. (14)

With the following formula

x(t)− x(t− τ) =

∫ t

t−τ

dx(β),

we have for r(t) = i ∈ S that

2(ξ(i)(t))TM
(i)
U

[

x(t)− x(t− τ)−

∫ t

t−τ

y(β, r(β))dβ −

∫ t

t−τ

σ(x(β), x(β − τ), β, r(β))dω(β)

]

= 0, (15)

where M
(i)
U = col{U ⊗M

(i)
1 , U ⊗M

(i)
2 , · · · , U ⊗M

(i)
d+4} is of appropriate dimensions and

ξ(i)(t) = col

{

x(t), x

(

t−
1

d
τ

)

, · · · , x

(

t−
d− 1

d
τ

)

, x(t− τ), F (x(t)), G(x(t− τ)), y(i)(t)

}

.

Considering condition (3), one has

E

{

2(ξ(i)(t))TM
(i)
U

∫ t

t−τ

σ(x(β), x(β − τ), β, r(β))dω(β)

}

= 0, i = 1, 2, . . . ,m. (16)
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Also, by (6), for any matrix H(i) with appropriate dimensions, we have

2(y(i)(t))T (U ⊗H(i))

[

(IN ⊗A(i) +W ⊗ Γi)x(t)

+(IN ⊗B(i))F (x(t)) + (IN ⊗C(i))G(x(t − τ))− y(i)(t)

]

= 0. (17)

Noticing the fact of UW = NW , it follows from Lemma 1 that

(U ⊗ Pi)(W ⊗ Γi) = (UW )⊗ (PiΓi) = (NW )⊗ (PiΓi), ∀i ∈ S. (18)

Substituting (6), (15)-(16) into (14) and utilizing Lemma 2, one obtains

LV (xt, t, i)

≤
∑

1≤k<l≤N

{

(xk(t)− xl(t))
T

[(

∑

1≤j≤m

πijPj + PiA(i) +AT (i)Pi −Nwkl(PiΓi + ΓT
i Pi)

)

×(xk(t)− xl(t)) + 2PiB(i)(f(xk(t))− f(xl(t))) + 2PiC(i)(g(xk(t− τ))− g(xl(t− τ)))

]

+(σk(xk(t), xk(t− τ), t, i) − σl(xl(t), xl(t− τ), t, i))TPi

×(σk(xk(t), xk(t− τ), t, i) − σl(xl(t), xl(t− τ), t, i))

+h(y
(i)
k (t)− y

(i)
l (t))TR(y

(i)
k (t)− y

(i)
l (t))

−

∫ t

t−τ

(yk(β, r(β)) − yl(β, r(β)))
TR(yk(β, r(β)) − yl(β, r(β)))dβ

+(Υk(t)−Υl(t))
TQ(Υk(t)−Υl(t))−

(

Υk(t−
τ

d
)−Υl(t−

τ

d
)

)T

Q

(

Υk(t−
τ

d
)−Υl(t−

τ

d
)

)

+2(ξ
(i)
k (t)− ξ

(i)
l (t))TM (i)

[

(xk(t)− xl(t))− (xk(t− τ)− xl(k − τ))−

∫ t

t−τ

(yk(β, r(β)) − yl(β, r(β)))dβ

−

∫ t

t−τ

(σk(xk(β), xk(β − τ), β, i) − σl(xl(β), xl(β − τ), β, i))dω(β)

]

+2(y
(i)
k (t)− y

(i)
l (t))T

[

(H(i)A(i)−NwklH
(i)Γi)(xk(t)− xl(t)) +H(i)B(i)(f(xk(t))− f(xl(t)))

+H(i)C(i)(g(xk(t− τ))− g(xl(t− τ)))−H(i)(y
(i)
k (t)− y

(i)
l (t))

+h(ξ
(i)
k (t)− ξ

(i)
l (t))TX(i)(ξ

(i)
k (t)− ξ

(i)
l (t))−

∫ t

t−τ

(ξ
(i)
k (t)− ξ

(i)
l (t))TX(i)(ξ

(i)
k (t)− ξ

(i)
l (t))ds

]}

, (19)

where M (i) = col{M
(i)
1 ,M

(i)
2 , . . . ,M

(i)
d+4}, Q = diag{Q1, Q2, · · · , Qd}, Υk(t) = col{xk(t), xk(t−

τ
d
), · · · , xk(t−

d−1
d

τ)}.

From conditions (4) and (9), we have

[σk(xk(t), xk(t− τ), t, i) − σl(xl(t), xl(t− τ), t, i)]TPi[σk(xk(t), xk(t− τ), t, i) − σl(xl(t), xl(t− τ), t, i)]

≤ λmax(Pi)

[

σk(xk(t), xk(t− τ), t, i) − σl(xl(t), xl(t− τ), t, i)

]T

×

[

σk(xk(t), xk(t− τ), t, i) − σl(xl(t), xl(t− τ), t, i)

]

≤ λ∗

[

(xk(t)− xl(t))
TΣT

1 Σ1(xk(t)− xl(t))) + (xk(t− τ)− xl(t− τ))TΣT
2Σ2(xk(t− τ)− xl(t− τ))

]

. (20)
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Moreover, it implies from Assumption 2 and Remark 1 that

e1

[

xk(t)− xl(t)

f(xk(t))− f(xl(t))

]T [

0 −KT
1

−K1 2I

][

xk(t)− xl(t)

f(xk(t))− f(xl(t))

]

≤ 0, (21)

e2

[

xk(t− τ)− xl(t− τ)

g(xk(t− τ))− g(xl(t− τ))

]T [

0 −KT
2

−K2 2I

][

xk(t− τ)− xl(t− τ)

g(xk(t− τ))− g(xl(t− τ))

]

≤ 0 (22)

where ej > 0 (j = 1, 2) and k, l = 1, 2, · · · , N .

Combining (20) with (22), it can be concluded that

E{LV (xt, t, i)} ≤ E

{

∑

1≤k<l≤N

(ξ
(i)
k (t)− ξ

(i)
l (t))TΞ

(i)
kl (ξ

(i)
k (t)− ξ

(i)
l (t))

}

−

∫ t

t−τ

E

{

(ξ
(i)
k (t, β)− ξ

(i)
l (t, β))TΩ

(i)
kl (ξ

(i)
k (t, β) − ξ

(i)
l (t, β))

}

dβ, (23)

where Ξ
(i)
kl and Ω

(i)
kl are defined in (10)–(11) and ξ

(i)
k (t, β) − ξ

(i)
l (t, β) = col{(ξ

(i)
k (t) − ξ

(i)
l (t)), (yk(β, r(β)) −

yl(β, r(β)))}.

From condition (11), we can see that

E{LV (xt, t, i)} ≤ λ(Ξ)E

{

∑

1≤k<l≤N

(ξ
(i)
k (t)− ξ

(i)
l (t))T (ξ

(i)
k (t)− ξ

(i)
l (t))

}

, (24)

where λ(Ξ) = maxi∈S{λmax(Ξ
(i)
kl )}.

Under condition (10), it follows readily that λ(Ξ) is a negative constant. Therefore, we have

E{V (xt, t, i)} − E{V (x0, 0, r0)} =

∫ t

0
E{LV (xs, s, i)}ds

≤ λ(Ξ)

∫ t

0
E

{

∑

1≤k<l≤N

(ξ
(i)
k (s)− ξ

(i)
l (s))T (ξ

(i)
k (s)− ξ

(i)
l (s))

}

ds, (25)

which implies that

∫ t

0
E

{

∑

1≤k<l≤N

‖ξ
(i)
k (s)− ξ

(i)
l (s)‖2

}

ds ≤ −{λ(Ξ)}−1E{V (x0, 0, r0)}. (26)

Moreover, under Assumption 2, we can obtain V (x0, 0, r0) < +∞ and, subsequently,
∑

1≤k≤l≤N ‖ξik(s)−ξil (s)‖
2

is uniformly continuous on [0,+∞). Then, by using Lemma 3, we obtain

E

{

∑

1≤k≤l≤N

‖ξik(s)− ξil (s)‖
2

}

→ 0, as t → +∞. (27)

In other words, all the subsystem in genetic oscillator networks (2) are asymptotically synchronous in the

mean square sense. This completes the proof of Theorem 1.

Remark 3: By taking advantage of a novel matrix functional and linear matrix inequality (LMI) techniques,

the stochastic synchrony criteria have been derived in the form of LMIs for the genetic oscillator networks with

time delays, Markovian switching parameters as well as stochastic disturbances. The LMI-based conditions can

be readily checked by using the LMI toolbox in Matlab or other standard numerical software. An important
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feature of the reported results lies in that all the conditions are dependent on the upper bound of the time-

delays, which is made possible by utilizing the most updated techniques for achieving delay dependence. Note

that the main criteria involve 1) the matrix Γi that links the state variable of the lth genetic oscillator in the

genetic network mode i; 2) the coupling matrix W that represents the coupling topology, direction, as well

as the coupling strength of the genetic network. Therefore, the network topology does affect the dynamics of

the synchronization.

IV. Numerical Example

In this section, we present a numerical example to illustrate the usefulness and applicability of the developed

approach in this paper.

Consider the genetic oscillator network (2) or (5) with N gene oscillators and Markovian switching between

two modes. The parameters are given as follows:

A(1) =

[

−1.0 0.6

0.5 −1.5

]

, A(2) =

[

−1.5 0.5

0.4 −2.0

]

, B(1) =

[

1.8 1.0

1.2 1.4

]

,

B(2) =

[

1.4 1.2

1.0 1.0

]

, C(1) =

[

2.8 0.5

0.3 1.6

]

, C(2) =

[

2.5 0.35

0.25 0.9

]

,

Σ1 =

[

0.1 0

0.1 0.1

]

, Σ2 =

[

0.1 −0.1

0 0.1

]

, Γ1 = 1.5I, Γ2 = I,

τ = 2.5, Π =

[

−3 3

4 −4

]

, W = [wkl]6×6 =

{

1, k 6= l;

−5, k = l.

The nonlinear regulatory functions are of the following form

fl(xkl(s)) =
x2kl(s)

1 + x2kl(s)
, gl(xkl(s− τ)) =

x2kl(s− τ)

2 + x2kl(s− τ)
, (28)

and it can then be verified that K1 = 0.65I and K2 = 0.48I.

By using the Matlab LMI toolbox, we solve the LMIs (9)–(11) to obtain a feasible solution as follows:

P1 =

[

8.7634 −0.7823

−0.7823 10.0816

]

, P2 =

[

10.1496 −0.9153

−0.9153 11.5092

]

, Q1 =

[

45.2497 −10.3339

−10.3339 57.1284

]

,

R =

[

0.1812 0.0154

0.0154 0.1775

]

, λ∗ = 34.0188, e1 = 26.4168, e2 = 30.9079.

Therefore, it follows from the Theorem 1 that genetic oscillator networks (2) or (5) with given parameters is

globally synchronized in the mean square sense.

In order to confirm the theoretical results, the simulation study is carried out. Figs. 1–2 are plotted to show

the evolution dynamics of mRNA concentrations of all the coupled gene oscillators with different random

initial values. It can be seen clearly from both Figs. 1–2 and Fig. 3 that the time evolution of the stochastic

synchronization error between all the coupled gene oscillators indeed approaches zero, and the expected

stochastic synchrony is well achieved.
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Fig. 1. Oscillation dynamics of the mRNA concentrations of xk1(t) (k = 1, 2, · · · , 6) of all coupled oscillators with

different random initial values.

V. Conclusions

In this paper, the stochastic synchronous analysis problem has been studied for a general array of genetic

oscillator networks with Markovian switching, random perturbations as well as constant time-delays. We have

established easily verifiable conditions under which the addressed delayed genetic oscillator network is asymp-

totically synchronization in the mean square sense in the presence of both Markovian jumping parameters and

time-delays. By constructing a novel matrix functional based on the idea of ‘delay-fractioning’ and combining

the stochastic analysis with the linear matrix inequality (LMI) technique, the delay-dependent synchrony

criterion has been derived in the form of LMIs. A numerical example has been provided to demonstrate the

effectiveness and applicability of the proposed testing conditions.
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