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Abstract

The asymptotic behaviour of an elastically supported infinite string and an elastic
isotropic half plane (in frames of specific asymptotic model) under a moving point
load are studied. The main results of this work are uniform asymptotic formulae
and the asymptotic profile for the string and the exact solution and uniform
asymptotic formulae for a half plane. The crucial assumption for both structures
is that the acceleration is sufficiently small.

In order to describe asymptotically the oscillations of an infinite string auxiliary
canonical functions are introduced, asymptotically analyzed and tabulated. Us-
ing these functions uniform asymptotic formulae for the string under constant
accelerating and decelerating point loads are obtained. Approximate formulae
for the displacement in the vicinity of the point load and the singularity area be-
hind the shock wave using the steady speed asymptotic expansion with additional
contributions from stationary points where appropriate are derived. It is shown
how to generalise uniform asymptotic results to the arbitrary acceleration case.
As an example these results are applied for the case of sinusoidal load speed. It
is shown that the canonical functions can successfully be used in the arbitrary
acceleration case as well. The graphical comparative analysis of numerical solu-
tion and approximations is provided for different moving load speed intervals and
values of the parameters.

Vibrations of an elastic half plane are studied within the framework of the asymp-
totic model suggested by J. Kaplunov et al. in 2006. Boundary conditions for the
main problem are obtained as a solution for the problem of a string on the surface
of a half plane subject to uniformly accelerated moving load. The exact solution
over the interior of the half plane is derived with respect to boundary conditions.
Steady speed and Rayleigh wave speed asymptotic expansions are obtained. In
the neighborhood of the Rayleigh speed the uniform asymptotic formulae are
derived. Some of their interesting properties are discovered and briefly studied.
The graphical comparative analysis of the exact solution and approximations is
provided for different moving load speed intervals and values of the parameters.
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3.10 Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of horizontal displacement u1 under moving point load 89

3.11 Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of horizontal displacement u1 under shock wave . . . . 90

3.12 Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of vertical displacement u2 under moving point load . 91

3.13 Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of vertical displacement u2 under shock wave . . . . . 92

3.14 Uniform asymptotic behaviour with (solid line) and without (dashed
line) terms with logarithms of horizontal displacement u1 under
moving point load . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.15 Uniform asymptotic behaviour with (solid line) and without (dashed
line) terms with arctangents of vertical displacement u2 under mov-
ing point load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



List of Tables

2.1 Tabulated values of canonical integrals . . . . . . . . . . . . . . . 28

3.1 Classification of the roots . . . . . . . . . . . . . . . . . . . . . . 55

ix



Dedicated to my dear teachers from Saratov State
University: N.M. Maslov , P.F. Nedorezov, Yu.P.
Gulyaev, Yu.N. Chelnokov, Ya.G. Sapunkov, A.G.
Markushin, D.V. Prokhorov, V.I. Shevtsov, I.V.

Elistratov and N.I. Igolkina.

x



Chapter 1

Introductory notes

1.1 Introduction

1.1.1 Waves: history and development

Waves can be defined as a phenomenon of physical quantity disturbances prop-

agation in space and time. The mathematical description of waves is based on

viewing them as distributed in space oscillations and can be written as:

u = u(r, t),

where u is a deviation from mean state at point r at a moment of time t. The

exact equation depends on the wave nature.

Waves can be classified in accordance with different characteristics, for example

by propagation media, types of wave front, directions of oscillations, etc. By prop-

agation media waves can be divided into elastic, electromagnetic, gravitational

and others. In this work we deal with the elastic waves only.

The history of the wave theory is more than 300 years old. The main reason of the

interest in studying waves was connected to music in general (sound waves) and

to string musical instruments in particular (string vibration). So, it began with

experiments with string oscillations and sound wave propagation, carried out by

such great scientists as, for example, Galilei, Descartes and Huygens. Especially,

here it is worth mentioning the ”father of acoustics”, the French mathematician,

1



Chapter 1. Introductory notes 2

philosopher and music theorist Marin Mersenne, who was the first to discover that

the vibrating string frequency is proportional to the square root of the tension,

and inversely proportional to the length, to the diameter and to the square root

of the unit weight of the string [2]. He found this relation in 1625, almost a

century before it was obtained using the mathematical point of view by Taylor

in 1713.

The real opportunity for the development of the mechanical explanation of the

wave phenomenon appeared after Newton’s laws of motion (1687), analysis of in-

finitesimal, differential and integral calculi were discovered [3]. Taylor considered

a string profile at any fixed moment of time as a function f = f(x) and assumed

that it should have sinusoidal ”main” form f = A sin(kπx/l) and a string tends

to this form for any initial condition. It turned out that only the first assumption

was right. Taylor’s approach is now known as the stationary wave method, it

was developed later by Bernoulli but mathematically proven by Fourier. Joseph

Fourier was the first, who applied trigonometrical and transcendent functions

series expansion to integrate PDEs.

The next big step in string oscillation research belongs to d’Alembert. He con-

sidered string point displacements as a function of two variables: coordinate x

and time t. It allowed to apply Newton’s second law and, finally, obtain a partial

differential equation for the string behaviour (1747) in the form it is known today:

∂2u

∂t2
= a2∂2u

∂x2
.

D’Alembert was the first mathematician who found a general solution for this

equation.

Cauchy’s problem for a string with a given initial profile and zero initial speed

conditions was formulated by Euler. In 1766 he discovered a new method of

solving this problem which is now called the method of characteristics. For more

information about the string equation see, for example, [4].

Further development of the wave equations was made mostly in PDE theory by

Euler, Lagrange, Monge, Fourier, Laplace and others.

At the turn of XVIII and XIX centuries the appearance of the industrial rev-

olution caused new problems for specialists in mechanics, connected with the

behaviour of structures and media under a moving load. Among the pioneers
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were the British engineers Robert Willis and Sir George Stokes. A. Krylov and

S. Timoshenko should also be added to the list of first scientists who were inter-

ested in this area. It is worth mentioning that Stokes was involved in investiga-

tions into several railway bridge accidents, which happened because the bridge

constructions were not properly proved to withstand the loads of moving trains,

Willis was famous for his studies in biomechanics and for several widely popular

inventions, Krylov obtained several results which better explained the behaviour

of a moving ship, Timoshenko is now called the ”father of solid mechanics” for

his incredible achievements in numerous areas of mechanics, mathematics and

engineering. He was an author of several fundamental books (see, for instance,

[5] and [6]). Many different methods, theorems and objects in mechanics and

applied mathematics are named after these great scholars.

In late XIX century another famous British mathematician Lord Rayleigh the-

oretically predicted the existence of surface acoustic waves, which appear on a

free boundary of solid bodies and in 1885 he presented his famous paper [7]. In

this work Rayleigh wrote: ”It is proposed to investigate the behaviour of waves

upon the plane free surface of an infinite homogeneous isotropic elastic solid,

their character being such that the disturbance is confined to a superficial region,

of thickness comparable with the wavelength. ... It is not improbable that the

surface waves here investigated play an important part in earthquakes, and in the

collision of elastic solids. Diverging in two dimensions only, they must acquire

at a great distance from the source a continually increasing preponderance.” This

great paper was the start for the whole new surface waves school in elastic the-

ory. After that the significance of surface waves in some areas was identified and

therefore scientific interest began growing.

One of the biggest scientific search engines Google.Scholar returns more than a

million links for request ”Rayleigh wave” and almost 3 millions for ”surface wave”.

At the same time the patent search engine Google.Patent gives approximately

500 results for each of those requests. This data is really amazing! It shows a

tremendous scale of scientific and industrial interests (see, for example, [8]) in

this area. Later in this section we mention some works in selected areas.

The famous British mathematician Sir Horace Lamb described special waves in

thin solid layers and stated a new problem, involving both recently discovered

Rayleigh waves and bulk waves. This problem is now known as the Lamb prob-

lem and those special waves are called Lamb, or Rayleigh-Lamb waves. The
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paper, which contains the formulation and solution of this problem in terms of

integral transforms, was published in 1904 [9]. The theory of Lamb waves was

developed by Cagniard [10] and de Hoop [11], the inventors of Cagniard-de Hoop

method. Numerical methods applied to the integral transforms solution of the

Lamb problem can be found in plenty of papers, see, for example, [12],[13], [14],

etc.

Lord Rayleigh is also an author of the secular equation for the surface wave speed

in elastic isotropic media. One of the first (but incorrect) attempts to prove the

existence of the real solution for the complex secular equation without further

reduction for general anisotropic elastic media was made by Synge in 1956 [15].

Later, in 1958 Stroh in [16] introduced his famous formalism and in [17] and

[18] it was shown that the complex secular equation can be reduced to a purely

real expression. In 1974 and 1976 Barnett in collaboration with Lothe gave two

different proofs of the existence of the real solution (see [19] and [20]). One more

proof was given by Chadwick and Smith in [21]. Proof of the uniqueness was

performed under the Stroh formalism in [22] or using another method in [23].

Although existence and uniqueness theorems for this equation were proved, it

remained unsolved for more than 100 years because of its complicated and tran-

scendent nature. Before the exact solution was derived some approximations were

obtained, see, for instance, Achenbach’s book [24]. The first attempt to find the

exact solution was made by Rahman and Barber in [25]. Their result is valid

only for a limited range of parameters. Later, in 1997, Nkemzi obtained a gen-

eral formula [26], which was disproved in 2000 by Malischewsky in [27]. Another

way to find the exact expression for the solution was used by Vihn and Ogden in

[28], published in 2004. All these solutions turned out to be too complicated for

engineering applications, but there is a really good high precision approximate

formula that was suggested by Rahman and Michelitsch in 2006 [29].

Now we revert to the question about the waves caused by the moving loads on

lengthy linear elastic systems. This subject can be divided into three groups:

stationary problems for uniformly moving load, non-stationary problems for uni-

formly moving load and problems for load moving with varying speed.

Among the papers dedicated to the stationary problem for uniformly moving

load first of all fundamental work made by Cole and Huth [30] in 1958 can be

mentioned. They found the quasi-steady solutions for the elastic waves generated
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by concentrated loads moving over the surface of the half space with a uniform

speed. Their solution was corrected by Georgiadis and Barber in their paper [31]

published in 1993. A very interesting problem was considered by Singh and Kuo

in 1970. They dealt with a half plane with an unusual load, namely, the circular

surface load and considered the three dimensional case. According to their result

(see [32]) the effect of the circular shaped load appears only in its sufficiently

small (approximately 5 radii of the load) vicinity. Outside this neighborhood

the circular load can be successfully approximated by an equivalent point load.

Müller in 1990 considered a stripe moving load on a half space (see [33]). He

is also an author of paper [34], published in 1991, where an expanding circular

load on a layered and non-layered half space was considered. Another interesting

case of the moving load problem was considered by Belotserkovskiy, who worked

with a concentrated harmonic force moving on an infinite string, supported by

equidistantly spaced identical visco-elastic suspensions (see [35]). Kennedy and

Herrmann derived the result for a load moving on the fluid-surface interface and

compared it to the ”usual” vacuum-surface interface [36], which can be applied to,

for example, modeling geophysical activity on the floor of the ocean. An infinite

moving system of equivalent forces and the possibility of loss of the contact zone

between beam and its support were considered in [37] by Muravski.

The transient solutions of the moving load problem for a constant speed are of

a big interest as well. In the paper [38] by Frýba the non-stationary behaviour

of a beam subject to moving random force is described. The moment of moving

load application was investigated in details in [39] by Craggs, who considered

transient effects caused by different types of loads. Gakenheimer and Miklowitz,

the authors of [40], were the first to derive a dynamical solution for the interior of

a half space subject to a surface moving load. Moreover, they introduced a new

solution technique that allows to find transient solutions not only on the surface,

but also over the interior of elastic solids. In paper [41] Kanninen and Florence

dealt with a string under two loads initially applied at the same point, but moving

in the opposite directions. They mention that their model can possibly be used

for the description of the behaviour of lengthy structures under loads caused by

the explosion shock waves. An important example of the numerical approach to

a dynamical problem is the finite element/finite difference method, which was

described, for example, in [42], where Cifuentes considered both the uniform

speed and the constant acceleration cases for a moving load on beam. Duplyakin

in paper [43] considered a deformable carriage of rigid bodies with viscoelastic
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connections between each other and with the viscoelastic interface with a beam on

which a carriage is moving with constant speed. This model actually describes

moving railway vehicles well. Because of the rapid growth of modern railway

transport speed and the possibility of overcoming the critical speeds in the near

future, this and similar works are of great interest for engineering mechanics.

Considering results for the third type of the wave propagation problems, which

involve moving loads with non-uniform velocity, Flaherty, who was the pioneer

in this sphere, should be mentioned. He was the first, who derived the result

for string behaviour under accelerating and decelerating moving forces in his

work [44], published in 1968. Another paper dedicated to string vibrations is

[45] in which Stronge considered the passage through the critical speed with fast

acceleration in order to stay inside the scope of small deformation theory. A year

earlier in his paper [46] the case of a load represented as a step function with the

front moving along an acoustic half space was discussed. The uniform deceleration

case for a load moving along a half space was also given by Beitin in [47]. Myers in

[48] considered a two dimensional surface expanding load on a liquid half space,

when the fronts of the load are decelerating from the initial supersonic speed.

Singularities of the displacements of a half space caused by a load passing through

and moving exactly with the critical speed were investigated in [49] by Freund.

A reciprocating anti-plane shear load for the homogeneous and layered half space

were described in Watanabe’s papers [50] and [51] respectively. In these papers

the author adapted Cagniard’s technique for non-uniformly moving loads. Later

he generalized this technique for an arbitrary moving load (see [52] and [53]).

The passage through the critical speed by a point load moving on a beam with a

damping support was considered by Muravski and Krasikova in their work [54].

Among the recent papers there are Gavrilov’s results [55] and [56], where he dealt

with a problem of a string under a moving load passing through the critical speed

in both directions. His paper [57] is of particular interest because it contains an

approvement and necessary conditions of the possibility of the passage through

the critical speed under the non-linear theory of elasticity.

A good insight into the dynamical problem for a moving load can be found in book

[58] written by Ladislav Frýba in 1972 (another edition of this book was published

in 1999). This monograph covers the vibrations of virtually all elements involved

in the study of engineering mechanics and the theory of elasticity and plasticity

(e.g. beams, strings, elastic space, etc.). In this book the author deals with all
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basic cases of the moving load. All chapters of this fundamental work provide

not only theoretical formulation and mathematical solution for each problem, but

also possible applications in the various engineering fields.

At the end of this section it is worth telling briefly about the papers which inspired

this research. Among the authors of these results are my supervisors Professor

Julius Kaplunov and Dr Evgeniya Nolde.

J. Kaplunov and G.B. Muravski in [59], published in 1986, investigated the non-

uniform asymptotic behaviour of the integrals of the Bessel functions with a large

parameter which arises from a problem of a uniformly accelerated moving load

on an elastically supported string. The paper [1], written in collaboration with

Prof. J. Kaplunov and Prof. A.D. Rawlins, based on an approach similar to [59].

We introduced special functions and using them derived the uniform asymptotic

formulae for the vicinity of the sonic speed. This result is expanded and discussed

in this thesis.

In [60] J. Kaplunov gave the ”classical” approach to Rayleigh wave motion for

the problem of a moving load on a half space. Later, in collaboration with A.

Zakharov and D.A. Prikazchikov, he created an asymptotic model which allows

to derive explicitly the Rayleigh waves on a surface of an elastic half space (see

[61]). This model was applied to the case of constant velocity, described in [62]

by J. Kaplunov, E. Nolde and D.A. Prikazchikov. In the thesis we adopt this

model to the case of a uniformly accelerated load.

1.1.2 Main objectives of the thesis

There are two different problems considered in this thesis: the asymptotic be-

haviour of a string and a half plane subject to a moving load.

The main aim of the work is to create and analyze the uniform asymptotic solu-

tions for a small magnitude of the load acceleration, which cover all the values

of the load speed, in particular, the vicinity of the wave speed. To construct

approximations which describe the behaviour of elastic solids not only for points

under the load but also for other points of a string and the interior of the half

plane, especially for the vicinities of the load and shock wave, and to compare

them numerically (and graphically) with the exact solutions and with each other

are also among the common objectives for both structures.
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For the problem of string behaviour the aims also are to consider a load moving

with an arbitrary acceleration and to improve the asymptotic analysis technique

for integrals with Bessel functions (which usually arise in similar string vibration

problems).

Apart from all mentioned above the important objective of the problem about

the half plane vibrations is to obtain the exact solution over the interior of a

half plane in frames of the existing asymptotic model analytically in a case of

uniformly accelerated load.

1.1.3 Structure of the thesis

The thesis consists of three chapters, concluding remarks and bibliography. Chap-

ter 1 is an auxiliary part of the work that provides introductory and necessary

technical data, in Chapters 2 and 3 we describe two different problems which

arose in the research and their solutions.

Chapter 1 contains a brief insight into the history of wave related problems re-

search and publications (Section 1.1) and some theoretical information that is

required for clear understanding throughout the thesis (Section 1.2).

In Chapter 2 we study the asymptotic behaviour of an elastically supported

infinite string under a moving point load. In Section 2.1 we state the classic

non-homogeneous string equation and give the general integral solution for ho-

mogeneous initial data. This equation and its solution were described in detail

in [59]. In Section 2.2 three auxiliary canonical integral functions are introduced.

The asymptotic expansions for the limit values of these functions’ argument are

derived and numerically analyzed. The next two sections are dedicated to the cal-

culations and numerical analysis of the uniform asymptotic behaviour of a string

for constant acceleration and deceleration cases respectively. These asymptotic

formulae are based on the introduced in Section 2.2 canonical functions, which

also appear in Section 2.5, where we obtain the uniform asymptotic expansion

for the case when the path (and, consequently, speed and acceleration) function

is arbitrary. As an example we show there how to deal with the sinusoidal speed

changing. In Section 2.6 we find the steady speed asymptotic expansions for the

vicinity of the load. By adding contributions from the stationary points (one

before the shock wave and two behind) of a phase function to the steady speed
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asymptotic formulae, we managed to a find good approximation for the singu-

larity area near the shock wave. Brief conclusions are given in Section 2.7. The

results given in Chapter 2 were published in The Quarterly Journal of Mechanics

and Applied Mathematics (see [1]) and presented at British Applied Mathematics

Colloquium 2008 in Manchester, UK and International Conference On Vibration

Problems 2009 in Kolkata, India.

In Chapter 3 we investigate Rayleigh waves which appear in an elastic isotropic

half plane subject to uniformly accelerated moving point load using the asymp-

totic model described in [61]. This model which contains hyperbolic equations on

the surface along with elliptic equations over the interior was extracted using the

perturbation method from the general linear elasticity theory. In frames of this

model we state the problem for a point load moving with a constant acceleration

in Section 3.1. Calculations of boundary conditions are given in Section 3.2. The

problem stated in Section 3.1 can be solved analytically over the interior of a half

plane, the process of the solution is provided in Section 3.3. In the next section

there are two parts. In the first one, Section 3.4.1, we obtain the asymptotic

expansions in the cases of zero acceleration and Rayleigh speed and compare

them with the exact solution from Section 3.3 using graphical representation.

In Section 3.4.2 we find the uniform asymptotic solution for the vicinity of the

Rayleigh wave speed and again provide a graphical comparison with the accurate

solution. At the end of this section we briefly study some remarkable properties

of the obtained uniform approximate formulae. The conclusions given in Section

3.5 finish this chapter.

1.1.4 Ideas for the future

Both problems and the ways of their solution, presented in this thesis, give a

wide range of the ideas for the development of these scientific areas. Varying the

problem statements in different directions one can extend the results of this work.

In Chapter 2 the behaviour of an elastically supported infinite string under uni-

formly accelerated moving point load is considered. Our conjecture is that so-

lutions for the different types of load, its speed and acceleration, support of the

string, its geometrical properties, etc. can be found using the special functions

Fi, i = 1, 2, 3 introduced in Section 2.2 (probably, with some modifications) and

similar approaches. For example, instead of a point load one can consider a finite
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distributed or step function load, a system of connected point (or not) forces

or loads moving in different directions simultaneously. An elastically supported

string can be changed by a string on a damping or elasto-plastic support, or,

for instance, with (non)equidistant fixation points, etc. The problem can be

considered for semi-infinite or finite string.

In Chapter 3 we deal with the vibration of an elastic homogeneous half plane

under uniformly accelerated moving point load. Using a similar approach one

can derive a solution for the problems with different types of load, its speed and

acceleration, physical properties of a half plane, etc. Finite surface or expanding

surface load or a system of point or surface loads can be considered instead of a

point load. It is worth trying to find solutions for an anisotropic (or, in partic-

ular, orthotropic), pre-stressed (or not), layered (or not) half space or one with

the cracks or local inhomogeneities on (or near) the surface. Another idea is to

consider the liquid above a solid half plane instead of vacuum. Uniform acceler-

ation can be changed to the arbitrary accelerated case. However, in comparison

with the arbitrary accelerating case described in Chapter 2 this is not easy at all,

since it is impossible to calculate the boundary conditions for an arbitrary path

(and, consequently, speed and acceleration) function.

I believe that some of the ideas mentioned above can find response not only from

applied mathematicians but also from mechanical engineers.
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1.2 Theoretical notes

1.2.1 Gamma function

The Gamma function is an extension of the factorial function to the complex

numbers. It was originally introduced by Leonhard Euler. The Gamma function

is usually denoted as Γ(z), this notation belongs to Legendre.

If the real part of a complex number z is positive then one can define the Gamma

function via the integral:

Γ(z) =

∞∫

0

tz−1e−tdt.

To extend the function to the whole complex plane one can use the identity:

Γ(z + 1) = zΓ(z).

An alternative definition is:

Γ(z) = lim
n→∞

n!nz

z(z + 1)...(z + n)
=

1

z

∞∏
n=1

(
1 + 1

n

)z

1 + z
n

,

it is valid for all complex z except 0 and the negative integers.

Main properties:

1. Γ(z) = Γ(z̄);

2. Γ(1− z)Γ(z) = π
sin πz

;

3. Γ(1
2
) =

√
π;

4. Gamma function has a pole at z = −n for n ∈ N⋃{0} and the residue is:

Resz=−n Γ(z) = (−1)n

n!
.

1.2.2 Bessel function

The Bessel functions are the canonical solutions of the Bessel’s differential equa-

tion:

x2 d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0, (1.1)
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where α is an arbitrary real or complex number, α is called the order of the Bessel

function. The most common special case is where α is an integer.

The Bessel functions are named after the famous German mathematician Friedrich

Wilhelm Bessel.

Since (1.1) is a second-order differential equation, it has two linear independent

solutions. However, different formulations of the solutions are convenient under

the different circumstances. Some of them, namely, Bessel functions of the first

and second kind and Hankel functions, are described below.

Bessel functions of the first kind, usually denoted as Jα(x), are solutions of the

Bessel’s differential equation (1.1) that are finite at x = 0 for non-negative integer

α and infinite for x → 0 for negative or non-integer α.

Bessel functions of the second kind, usually denoted as Yα(x), are solutions of

(1.1) that have a singularity at x = 0. Jα(x) and Yα(x) are related for non-integer

α via the following formula:

Yα(x) =
Jα(x) cos (απ)− J−α(x)

sin (απ)
,

in case of integer α, i.e. α = n ∈ Z, one should take the limit as α → n.

The Bessel functions of the third kind, also known as the Hankel functions (named

after German mathematician Hermann Hankel), usually denoted as H
(1)
α (x) and

H
(2)
α (x), are linearly independent solutions of (1.1) defined by:

H(1)
α (x) = Jα(x) + iYα(x),

H(2)
α (x) = Jα(x)− iYα(x),

where i is the imaginary unit.

There are also Bessel functions of a complex argument. Important special case is

that of a purely imaginary argument. In this case, the solutions to the (1.1) are

called the modified Bessel functions. MacDonald function Kα(x) is an example

of the modified Bessel functions, it can be defined as:

Kα(x) =
π

2
iα+1H(1)

α (ix).
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The Bessel functions have the following asymptotic forms for non-negative α:

Jα(x) ≈ 1

Γ(α + 1)

(x

2

)α

, for 0 < x ¿ √
α + 1, (1.2)

Jα(x) ≈
√

2

πx
cos

(
x− απ

2
− π

4

)
, for x À

∣∣∣∣α2 − 1

4

∣∣∣∣ , (1.3)

H(1)
α (x) ≈

√
2

πx
ei(x−απ

2
−π

4 ), for x À
∣∣∣∣α2 − 1

4

∣∣∣∣ . (1.4)

More information on special functions mentioned in Sections 1.2.1 – 1.2.2 and

their asymptotic expansions can be found in [63, 64, 65, 66].

1.2.3 Saddle-point method

The saddle-point approximation or steepest descent method (sometimes it is also

called generalized Laplace method), is a method used to approximate integrals

of the form: ∫

γ

Φ(z)eλφ(z)dz, (1.5)

where Φ(z) and φ(z) are some meromorphic functions, λ is an arbitrary suffi-

ciently large number, contour γ ∈ C can be infinite.

Algorithm:

1. Transform the given integral to the form:

I(λ) =

∫

γ

Φ(z)eλφ(z)dz.

2. Since λ →∞ then the behavior of I(λ) is defined by the exponential part.

So, the following analysis of φ(z) required:

• Find the saddle points, i.e. such points that φ′(z) = 0;

• Plot the steepest descent lines.

3. Transform the contour γ using the steepest descent lines.

4. Using Laplace’s method find an asymptotic form.
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The matter of the Laplace’s method: assume that the function f(x) has a unique

global maximum at x0. Then, the value f(x0) will be larger than other values

f(x). If one multiplies this function by a large number M , the gap between

Mf(x0) and Mf(x) will only increase, and then it will grow exponentially for

the function eMf(x). So, significant contributions to the integral of this function

will come only from points x in a neighborhood of x0.

b∫

a

eMf(x)dx ≈
√

2π

M |f ′′(x0)|e
Mf(x0), as M →∞,

where x0 is not an endpoint of the interval of integration, second derivative

f ′′(x0) < 0.

Theory, background and other information about saddle point method can be

found in [66, 67].

1.2.4 Stationary phase method for one-dimensional inte-

grals

The method of stationary phase was developed by Lord Kelvin in the 1887 to

solve integrals encountered in the study of hydrodynamics.

Using the stationary phase method one can evaluate integrals of the form:

I =

∞∫

−∞

F (x)eiνφ(x)dx,

where φ(x) is a rapidly varying function of x over most of the range of integration,

F (x) is by comparison slowly varying, ν is a large positive parameter. The major

contribution to the value of the integral I arises from the neighborhood of the

end points of the domain of integration and from the neighborhood of stationary

points, i.e. where dφ

dx
= 0. Stationary phase points can be denoted as xs and

defined by φ′(xs) = 0. In the neighborhood of stationary points F (x) ≈ F (xs)

since F (x) is assumed to be slowly varying function. Hence, this term can be

moved outside the integral. First two non-zero terms of a Taylor expansion of
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φ(x) near the point xs are:

φ(x) ≈ φ(xs) +
1

2
φ′′(xs)(x− xs)

2.

Substituting this into the initial integral gives

I ≈ F (xs)e
iνφ(xs)

∞∫

−∞

eiνφ′′(xs)(x−xs)2/2dx.

Further integration and contributions from the end points lead to the formula:

I ≈
√

2π

νφ′′(xs)
F (xs)e

i(νφ(xs)+π/4).

For more detailed information see, for example, [66, 67, 68].

1.2.5 Numerical integration

The main idea of the numerical integration is to compute an approximate solution

to a definite integral:

I =

b∫

a

f(x)dx.

There are many methods of approximating the integral with arbitrary precision,

especially for smooth well-behaved functions f(x), integrated over a small number

of dimensions and if the limits of integration are bounded. A good example

of those methods is Trapezium Method (for other methods see, for example,

[69, 70]).

Trapezium Method:

To calculate the value of the integral over the given segment [a, b] one should

consider a partition {x0 = a, x1 = a+ b−a
n

, . . . , xn−1 = a+(n−1) (b−a)
n

, xn = b}
of the [a, b]. Hence,

I =

b∫

a

f(x)dx =
n∑

i=1

xi∫

xi−1

f(x)dx,
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Ii =

xi∫

xi−1

f(x)dx ≈ f(xi−1) + f(xi)

2
(xi − xi−1).

The last formula means that the value of Ii can be approximated by the area of

the corresponding trapezium with the precision

|Ri| 6 (b− a)3

12n2
Mi, where Mi = max

x∈[xi−1,xi]
|f ′′(x)|.

So, the approximation for the initial integral is:

I ≈ h

(
f(x0) + f(xn)

2
+

n−1∑
i=1

f(xi)

)
, where h =

b− a

n
,

with the precision

|R| 6 (b− a)3

12n2
M, where M = max

x∈[a,b]
|f ′′(x)|.



Chapter 2

Behaviour of elastically

supported infinite string under

accelerated moving point load

2.1 Statement of the problem

Consider an infinite string lying on an elastic support and subject to a point force

uniformly accelerating from the rest (see Figure 2.1). Transverse vibrations of a

string are described by the equation

− T
∂2y

∂x2
+ m

∂2y

∂t2
+ ky = Pδ [x− s(t)] , s(t) =

αt2

2
, (2.1)

where T - a string tension, m - a linear mass, k - a support stiffness coefficient,

α - an acceleration of a point where a load P is applied. We introduce the

non-dimensional variables:

ξ = x

√
k

T
, τ = t

√
k

m
, a = α

m√
kT

,

s1(τ) =
ατ 2

2
, y =

P√
kT

w,

δ[ξ − s1(τ)] =

√
T

k
δ[x− s(t)].

17
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w u

λ

ξ

Figure 2.1: Elastically supported string under moving load

This system of parameters were selected as the most suitable. It was previously

used in [59]. We have got 7 dimensional parameters and 4 non-dimensional param-

eters and three global dimensions (length, time, mass) and by the Buckingham

π theorem, it is a complete system of parameters.

Using these parameters we can rewrite (2.1) as a non-dimensional equation of

motion (e.g. see [59, 55] for more details)

− ∂2w

∂ξ2
+

∂2w

∂τ 2
+ w = δ (ξ − s1(τ)) , s1(τ) =

1

2
aτ 2, (2.2)

where τ is a time, ξ is a coordinate, a is an acceleration, w is transverse displace-

ment and δ denotes Dirac delta function; in doing so, dimensionless sound wave

speed, stiffness of the elastic support and magnitude of the moving load all take

the unit values.

The solution of the equation (2.2) with homogeneous initial data can be expressed

as

w(ν, λ, u) = νI, (2.3)

where

I =

u∫

0

J0(νφ(u, λ, t))H(t2 − (λ + ut− t2/2)2)dt
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with

φ(u, λ, t) =
√

t2 − (λ + ut− t2/2)2,

where H denotes the Heaviside step function. The last integral depends on three

problem parameters including the load speed u = aτ , the moving coordinate

λ = ξ − 1
2
aτ 2, and the parameter ν = 1/a. The large values of the parameter

ν (ν À 1) are associated with the dynamic phenomena observed when the load

speed passes through the critical value u = 1, i.e. the sound wave speed in a

string, with a small acceleration a. Non-uniform asymptotic forms of the function

(2.3) were derived in [59].

2.2 Canonical integrals introduction and their

asymptotic behaviour

Consider the integral

F(γ) =

b∫

a

J0(γf(p))dp, b > a, (2.4)

where γ is a large real parameter and J0 denotes the zero-order Bessel function

of the first kind. Away from the zeros of the argument f(p), the Bessel function

of the integrand (2.4) behaves as (see [71])

J0(γf(p)) ∼
√

2

πγf(p)
cos

(
γf(p)− π

4

)
, γ À 1. (2.5)

As a result, the integral (2.4) can be evaluated using the standard method of

stationary phase.

Let now f(a) = 0, f ′(a) > 0 and f(p) = f ′(a)(p− a) + ... (|p− a| ¿ 1). Assume

for the sake of simplicity that the function f(p) has no stationary points and

zeros over the domain of integration in (2.4) (see [68, 72] for further details). So,

substitution s = γf ′(a)(p− a) gives:

F(γ) ∼ 1

γf ′(a)

γf ′(a)(b−a)∫

0

J0(s)ds.
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Finally, for γ À 1 [73] it appears that

F(γ) ∼ 1

γf ′(a)

∞∫

0

J0(s)ds =
1

γf ′(a)
.

Thus, the contribution of the zeros of the J0 argument is of the same asymptotic

order O(γ−1) as that of ordinary stationary phase points (the additional factor

γ−1/2 comes from the asymptotic formula (2.5)).

In this thesis integrals of the following type

F(γ, β) =

b∫

a

J0(γf(p, β))dp, (2.6)

are investigated with an extra real parameter β. The main focus is on the uniform

asymptotic analysis in terms of the parameters γ and β, dealing in particular

with the dominant contributions of the J0 zeros, which cannot be reduced to the

well known uniform generalizations of the stationary phase method including,

for example, the Airy function (e.g. see [68] and reference therein). To this

end, canonical integrals are introduced. They play the same role as the above

mentioned Airy function (and some others) do in the well established case of the

oscillating sinusoidal functions. If, for example, in (2.6)

f(p, β) = p
√

p + β, β ≥ 0, (2.7)

and the limits of integration are a = 0 and b = ∞, then the substitution p =

γ−2/3s implies

F(γ, β) = γ−2/3F1(ϑ),

where

F1(ϑ) =

∞∫

0

J0

(
s
√

ϑ + s
)

ds. (2.8)

Here and below ϑ = βγ2/3 is a real non-negative parameter.

For the same limits of integration in (2.6) and with

f(p, β) = (p + β)
√

p, β ≥ 0, (2.9)
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it appears that

F(γ, β) = γ−2/3F2(ϑ),

where

F2(ϑ) =

∞∫

0

J0(
√

s(ϑ + s))ds. (2.10)

The last canonical integral arises from letting

f(p, β) = p
√

β − p, β ≥ 0 (2.11)

with the limits a = 0 and b = β. In this case

F(γ, β) = γ−2/3F3(ϑ),

where

F3(ϑ) =

ϑ∫

0

J0

(
s
√

ϑ− s
)

ds. (2.12)

In more general situations when the formulae (2.7), (2.9) and (2.11) correspond to

the local approximations of the Bessel function argument near its zeros and for the

arbitrary limits of integration one may expect that the canonical integrals (2.8),

(2.10) and (2.12) will appear as the leading order terms in related asymptotic

expansions. All of these integrals naturally arise in the moving load problem for

a string (this will be considered in Section 2.3).

The behaviour of an argument of the Bessel function in all the canonical integrals

(2.8), (2.10) and (2.12) is strongly affected by the parameter ϑ. In particular, in

(2.8) and (2.10) it has, respectively, the limiting forms ϑ1/2s and ϑs1/2 for ϑ À 1

and tends to s3/2 for ϑ ¿ 1 in both integrals. In (2.12) the argument of J0 is

uniformly small for ϑ ¿ 1, whereas it takes large values outside the vicinities of

the end points, in this integral for ϑ À 1.

The asymptotic behaviour of the functions Fi (i = 1, 2, 3) in the domain of small

and large values of the parameter ϑ plays a very important role in the present

thesis and definitely should be considered in detail. It is clear that (see e.g. [73])

lim
ϑ→0

Fj(ϑ) =

∞∫

0

J0(s
3/2)ds =

2
√

π

3Γ (5/6)
, j = 1, 2. (2.13)
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It is also evident that

F3(ϑ) ∼ ϑ as ϑ ¿ 1, (2.14)

since J0(s
√

ϑ− s) ∼ 1.

The asymptotic analysis for ϑ À 1 requires more delicate calculations. Namely,

the functions Fi (i = 1, 2, 3) should be expressed in terms of the integrals of

the Hankel function H
(1)
0 . Changing variables in (2.8), (2.10) and (2.12) by the

formulae s = −ϑ(z2 + 1), s = ϑz2 and s = ϑ(z2 + 1), respectively gives

F1(ν) = −2ν2/3Re

i∞∫

i

H
(1)
0 (iνh)zdz, (2.15)

F2(ν) = 2ν2/3Re

∞∫

0

H
(1)
0 (νh)zdz, (2.16)

and

F3(ν) = 2ν2/3Re

0∫

−i

H
(1)
0 (iνh)zdz, (2.17)

where ν = ϑ3/2 À 1 and h(z) = z(z2 + 1).

The asymptotic behaviour of the Hankel function in (2.15) - (2.17) for ν|h| À 1

is given by (see [71])

H
(1)
0 (iνh) ∼ −i

√
2

πνh
e−νh (2.18)

and

H
(1)
0 (νh) ∼ e−

πi
4

√
2

πνh
eiνh. (2.19)

The exponentials in the right-hand sides of the formulae (2.18) and (2.19) moti-

vate making use of the steepest descent method (e.g. see [72, 74]) when evaluat-

ing the original integrals (2.15)–(2.17). The introduction of a complex variable

z = x + iy gives the following representation for h(z)

h(x + iy) = hr(x, y) + ihi(x, y),

where

hr(x, y) = Reh(x + iy) = x(x2 − 3y2 + 1),

hi(x, y) = Imh(x + iy) = y(3x2 − y2 + 1). (2.20)
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In case of the function F1, the integral (2.15) can be presented as (see Figure 2.2)

∫

C1

=

∫

C11

+

∫

C12

, (2.21)

where C1 is the original path of integration in (2.15), C11 is the steepest descent

path through the point z = i corresponding to the exponential in (2.18) and

C12 is the path along the circle of an infinitely large radius. Here and below the

integrands in the all symbolic formulae are omitted.

Along C11, which is the steepest descent path, Imh(z) = Imh(i) = 0 (see (2.18)).

Therefore, from (2.20)

y =
√

3x2 + 1.

C1

C12

C11

x

y

1
π/3

0

Figure 2.2: Contour integration in (2.15)

Start with the first integral in (2.21). Near the end point z = i on C11 one has

h(z) ≈ −2x, z ≈ i and dz ≈ dx. Thus,

∫

C11

∼ i

−∞∫

0

H
(1)
0 (−2iνx)dx. (2.22)
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It is clear that the contribution of the integral along C12 vanishes. Then, by

substituting x1 = −2νx in (2.22) from (2.21) follows

∫

C1

∼ − i

2ν

∞∫

0

H
(1)
0 (ix1)dx1 = − 1

πν

∞∫

0

K0(x1)dx1 = − 1

2ν
,

where K0 denotes the Macdonald function. Finally, from (2.15)

F1(ϑ) ∼ 1√
ϑ

. (2.23)

To establish the asymptotic behaviour of the functions F2 and F3 the calculation

of the saddle points required for the function h(z). Setting h′(z) = 0 gives

3z2 + 1 = 0. The saddle points become z1,2 = ± i√
3
.

Next, consider the integral (2.16). The steepest descent path through the saddle

point z1 = i√
3

is determined by the condition Reh(z) = Reh( i√
3
) = 0 resulting in

(see (2.19) and (2.20))

y =
1√
3

√
x2 + 1. (2.24)

C2

C22

C21

C23

x

y

1/
√

3

π/6
0

Figure 2.3: Contour integration in (2.16)

Similarly to (2.21) the integral (2.16) can be presented as (see Figure 2.3)

∫

C2

=

∫

C21

+

∫

C22

+

∫

C23

,
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where C21 is the part of the imaginary axis between the points z = 0 and z =

i/
√

3, C22 is the steepest descent path and C23 is the path along the circle of an

infinitely large radius.

Along the path C21 z = iy and h(z) = i(1− y). Then

∫

C21

= −

1√
3∫

0

H
(1)
0

[
i(1− y2)

]
dy.

The real part of the last integral is equal to zero and it does not affect the

asymptotic behaviour of F2 (see (2.16)). Use of the formula (2.19) gives

∫

C22

∼ −i

√
2

πν

∞∫

0

1

hi

exp (−νhi) (x + iy)

(
1 + i

dy

dx

)
dx, (2.25)

where the steepest descent path y(x) is given by (2.24) whereas

dy

dx
=

x√
3(x2 + 1)

, hi =
2

3
√

3

√
x2 + 1(4x2 + 1).

Laplace’s method (e.g. see [72, 74]) in (2.25) provides the asymptotic formula.

It is

∫

C2

∼ exp

(
− 2ν

3
√

3

)
1√
πν

∞∫

0

exp
(
−
√

3νx2
)

dx =
1

2ν
exp

(
− 2ν

3
√

3

)
. (2.26)

Now, inserting (2.26) into (2.16) gives

F2(ϑ) =
1

ϑ1/2
exp

(
−2ϑ3/2

3
√

3

)
. (2.27)

The path of integration for the function F3 is shown in Figure 2.4. Here the path

C31 goes along the real axis, the path C32 goes along the steepest descent paths

associated with the saddle point z2 = − i√
3

and C33 is the steepest descent path

through the point z = −i.

Along the path C32 Imh(z) = Imh(− i√
3
) = − 2

3
√

3
and on this path

x =

(
y +

1√
3

) √
y − 2/

√
3

3y
. (2.28)
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The equation of the path C33 follows from the condition Imh(z) = Imh(−i) = 0.

The result is

y = −
√

3x2 + 1.

C3

C32

C33

C31 x
y

−1/
√

3

-1

π/3

0

Figure 2.4: Contour integration in (2.17)

As above, the studied integral can be presented as a sum, i.e.

∫

C3

=

∫

C31

+

∫

C32

+

∫

C33

.

Along the path C31 y = 0 and h(z) = x(x2 + 1). The integral

∫

C31

= −
∞∫

0

H
(1)
0

[
ix(x2 + 1)

]
xdx,

takes an imaginary value and does not contribute to the function F3.

The integral along the path C33 is similar to that along C11 (see (2.22)). In this

case ∫

C31

∼ −i

−∞∫

0

H
(1)
0 (−2iνx)dx =

1

2ν
.
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Near the saddle point z2 = − i√
3
, one can derive from (2.28) y ≈ − 1√

3
+ x,

z ≈ − i√
3
, dz ≈ (1 + i)dx and h(z) ≈ 2

√
3x2 − 2

3
√

3
i. Hence,

∫

C32

∼ i

√
2
√

3

πν
exp

(
−i

2ν

3
√

3

) +∞∫

−∞

e−2
√

3νx2

dx,

and ∫

C3

∼ 1

ν

[
1

2
+ i exp

(
−i

2ν

3
√

3

)]
. (2.29)
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Figure 2.5: The functions F1 and F2. Asymptotic functions (dashed line
and asterisk) and numerics (solid line).
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Figure 2.6: The function F3. Asymptotic functions (dashed line) and nu-
merics (solid line).
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ϑ F1 F2 F3 ϑ F1 F2 F3

0.0 1.04713 1.04713 0.00000 2.6 0.58912 0.11115 1.76045
0.1 1.01559 0.98280 0.10000 2.7 0.58088 0.09995 1.73827
0.2 0.98573 0.91931 0.19997 2.8 0.57263 0.08843 1.70562
0.3 0.95731 0.85697 0.29983 2.9 0.56431 0.07774 1.66250
0.4 0.93014 0.79721 0.39947 3.0 0.55592 0.06911 1.60906
0.5 0.90419 0.74135 0.49870 3.1 0.54759 0.06270 1.54554
0.6 0.87948 0.68948 0.59730 3.2 0.53947 0.05738 1.47232
0.7 0.85611 0.64039 0.69501 3.3 0.53174 0.05167 1.38993
0.8 0.83418 0.59273 0.79150 3.4 0.52454 0.04511 1.29901
0.9 0.81374 0.54625 0.88640 3.5 0.51796 0.03857 1.20037
1.0 0.79476 0.50200 0.97932 3.6 0.51197 0.03343 1.09492
1.1 0.77713 0.46135 1.06979 3.7 0.50648 0.03026 0.98372
1.2 0.76065 0.42469 1.15733 3.8 0.50131 0.02824 0.86796
1.3 0.74507 0.39101 1.24142 3.9 0.49626 0.02589 0.74891
1.4 0.73014 0.35877 1.32152 4.0 0.49116 0.02241 0.62798
1.5 0.71564 0.32725 1.39704 4.1 0.48587 0.01832 0.50663
1.6 0.70144 0.29713 1.46740 4.2 0.48036 0.01503 0.38642
1.7 0.68751 0.26977 1.53200 4.3 0.47467 0.01345 0.26893
1.8 0.67391 0.24590 1.59023 4.4 0.46893 0.01316 0.15576
1.9 0.66077 0.22483 1.64149 4.5 0.46332 0.01276 0.04852
2.0 0.64826 0.20502 1.68519 4.6 0.45802 0.01116 -0.05122
2.1 0.63651 0.18539 1.72079 4.7 0.45315 0.00852 -0.14195
2.2 0.62562 0.16623 1.74774 4.8 0.44880 0.00612 -0.22225
2.3 0.61556 0.14884 1.76558 4.9 0.44492 0.00515 -0.29082
2.4 0.60625 0.13423 1.77387 5.0 0.44142 0.00561 -0.34651
2.5 0.59751 0.12214 1.77225

Table 2.1: Tabulated values of canonical integrals

Substitution (2.29) into (2.17) leads to the formula

F3(ϑ) ∼ 1

ϑ1/2

(
1 + 2 sin

(
2ϑ3/2

3
√

3

))
. (2.30)

Further, we may expect that the canonical integrals (2.8), (2.10) and (2.12) de-

scribe the uniform asymptotic behaviour of more complicated integrals of this

type for the case in which the intermediate range ϑ ∼ 1 is also of interest.

The comparison of the asymptotic forms of the functions Fi (i = 1, 2, 3) with

the results of numerical computations for the integrals (2.8), (2.10) and (2.12)

is presented in Figures 2.5 and 2.6. Here and below the trapezium method with

10000-30000 points was used for numerical integration. The solid line in the first
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and second quadrants of Figure 2.5 corresponds to the computed values of the

integrals (2.10) and (2.8), respectively. The asymptotic representations (2.23)

and (2.27) are plotted in this figure by the dashed line. In addition, the limiting

value (2.13) is denoted by an asterisk. In Figure 2.6 the results of the numerical

evaluation of the integral (2.12) (solid line) are shown with its asymptotic forms

(2.14) and (2.30) (dashed line). The tabulated values of the functions Fi are

also displayed in Table 2.1. Here and below all the numerical calculations were

performed in SciLab.

2.3 Constant acceleration case

Below we investigate the string behaviour at a moving point λ = 0, where a force

is applied, and also at a moving singularity λ = − (u−1)2

2
, which is actually a shock

wave which appeared after the passage through the sound wave speed. This value

can be easily found (see details in [59]). The latter arises when passing through

the sound speed and coincides with a point λ = 0 at u = 1. The aforementioned

moving points are of most interest when investigating the passage through the

sound wave barrier. Here three combinations of the problem parameters are

studied.

2.3.1 The displacement under the load before the passage

(u ≤ 1 and λ = 0)

In this case the original integral in (2.3) becomes

I =

u∫

0

J0(νφ(u, 0, t))dt, (2.31)

with

φ(u, 0, t) = t

√
1− u2 + t− t

[
(1− u) +

t

4

]
. (2.32)

In the vicinity of the end point t = 0 in the integral (2.31) one has φ(u, 0, t) ≈
t
√

1− u2, if t ¿ 1− u. Otherwise, for 1− u ¿ t ¿ 1 it appears that φ(u, 0, t) ≈
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t3/2. The formula

φ(u, 0, t) ≈ t
√

1− u2 + t, t ¿ 1, (2.33)

contains both of the limiting forms.

As above, to the leading order we can substitute infinity at the upper limit of the

last integral. Finally, the following simpler integral is obtained

I ∼
∞∫

0

J0

(
νt
√

1− u2 + t
)

dz. (2.34)

Next, changing the independent variable by t1 = tν2/3 we establish the sought

for uniform asymptotic behaviour in the parameters ν and u

I ∼ ν−2/3

∞∫

0

J0

(
t1

√
ν2/3(1− u2) + t1

)
dt1, (2.35)

or

I ∼ ν−2/3F1(η), (2.36)

where the fundamental parameter η determines the scaling of the problem. It is

given by

η = ν2/3(1− u2). (2.37)

Outside the characteristic zone η ∼ 1 (1− u2 ∼ ν−2/3) the function F1 in (2.36)

can be reduced to the local forms (2.13) for η ¿ 1 (1 − u2 ¿ ν−2/3) and (2.23)

for η À 1 (1 − u2 À ν−2/3). Such an observation is relevant for other integrals

considered below in this section.

2.3.2 The displacement under the load after the passage

(u ≥ 1 and λ = 0)

Here

I =

u∫

2(u−1)

J0(νφ(u, 0, t))dt, (2.38)

with

φ(u, 0, t) =
t

2

√
(t− 2(u− 1))(2(u + 1)− t).



Chapter 2. String behaviour under moving point load 31

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0

1

2

3

4

5

6

u

w(ν, 0, u)

ν = 100

ν = 50̀ `̀

ν = 10

0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10
0

2

4

6

8

10

12

u

w(ν, 0, u)

ν = 1000

ν = 500̀ `

ν = 250

Figure 2.7: Uniform asymptotic behaviour (solid line) and numerics (dashed
line) of the function (2.3) using integrals (2.31) (u ≤ 1) and (2.36) (u ≥ 1).

In this case the function φ(u, 0, t) near the end point t = 2(u− 1) is presented as

φ(u, 0, t) ≈ t
√

t− 2(u− 1). (2.39)

After changing the independent variable by

t1 = ν2/3(t− 2(u− 1)), (2.40)
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it appears that

I ∼ ν−2/3

∞∫

0

J0

(
(t1 + 2ν2/3(u− 1))

√
t1

)
dt1 = ν−2/3F2(2ν

2/3(u− 1)). (2.41)

This asymptotic result is of interest only over the narrow vicinity of the sound

wave speed (u−1 ∼ ν−2/3) due to the exponential decay of the function F2. In this

case, the parameter η may be introduced in the last formula setting 2−u ≈ u2−1.

2.3.3 The displacement at the moving singularity

(u ≥ 1 and λ = −1
2(u− 1)2)

We have in (2.3)

I = I1 + I2, (2.42)

with

I1 =

u∫

u−1

J0

(
νφ

(
u,−1

2
(u− 1)2, t

))
dt, (2.43)

and

I2 =

u−1∫

(
√

u−1)2

J0

(
νφ

(
u,−1

2
(u− 1)2, t

))
dt, (2.44)

where

φ

(
u,−1

2
(u− 1)2, t

)
=

= ±(t− (u− 1))

√
−1

4
(t− (

√
u− 1)2)(t− (

√
u + 1)2). (2.45)

Here and below the signs ”+” and ”−” correspond to the integrals I1 and I2,

respectively.

The parameter range can be restricted by the values of u that are close enough

to the value u = 1. In this case
√

u + 1 ≈ 2 may be set. Next, the function

(2.45) might be expanded near the left end point in the integral (2.43) and over

the whole integration domain in the integral (2.44). It becomes

φ

(
u,−1

2
(u− 1)2, t

)
≈ ±(t− (u− 1))

√
t− (

√
u− 1)2.
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Figure 2.8: Uniform asymptotic behaviour (dashed line) and numerics (solid
line) of the function (2.3) using integrals (2.42).

Now, change of the variables in the integrals (2.43) and (2.44) by the formula

t1 = ±ν2/3(t− (u− 1)) (2.46)

gives the result

I1 ∼ ν−2/3

∞∫

0

J0

(
t1

√
t1 + 2(

√
u− 1)ν2/3

)
dt1 =

= ν−2/3F1(2(
√

u− 1)ν2/3),
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and

I2 ∼ ν−2/3

2(
√

u−1)ν2/3∫

0

J0

(
t1

√
2(
√

u− 1)ν2/3 − t1

)
dt1 =

= ν−2/3F3(2(
√

u− 1)ν2/3).

Finally,

I ∼ ν−2/3
[F1(2ν

2/3(
√

u− 1)) + F3(2ν
2/3(

√
u− 1))

]
. (2.47)

Similar to the previous case, we may operate with the functions Fj

(−1
2
η
)

(j =

1, 3) in the vicinity of the sound wave speed where
√

u− 1 ≈ 1
4
(u2 − 1).

2.3.4 Numerical results

The numerical examples are presented in Figures 2.7 and 2.8. In Figure 2.7 the

computed values of the function (2.3) are displayed using the formulae (2.31) and

(2.38) (dashed line) along with its uniform asymptotic behaviour given by the

formulae (2.36) and (2.41) (solid line). The graphs of the function (2.3) in case

of the integral (2.42) (dashed line) and the uniform asymptotic formula (2.47)

(solid line) are plotted in Figure 2.8.

These figures illustrate the uniform validity of the derived asymptotic formulae

in case of the moving load problem for a string. The striking difference between

the asymptotic behaviour of the functions F1 and F2 for ϑ À 1 leads to a strong

asymmetry of the transition curves in Figure 2.7. In Figure 2.8 the function

F3 reproduces the oscillatory patterns associated with the passage through the

sound wave barrier.

2.4 Constant deceleration case

Here we briefly describe an inverse transition through the sonic speed. In partic-

ular we would like to pay attention on a string behaviour under a moving load

just after the passage. In this case u ≤ 1 and λ = 0. Similar to the previous
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section we obtain an integral:

w = ν

0∫

−2(1−u)

J0

(
ν

√
−1

4
z2(z + 2(1− u))(z − 2(1 + u))

)
dz. (2.48)

Since z ≈ 0 and u is in the vicinity of 1 then z − 2(1 + v1) ≈ −4 . Thus

w = ν

0∫

−2(1−u)

J0

(
νz

√
z + 2(1− u)

)
dz.

Changing variables as z = ν−2/3y gives

w = ν1/3

0∫

−ν2/3(1−u)

J0

(
y
√

y + 2ν2/3(1− u)

)
dy.

Introducing a new notation a = 2ν2/3(1− u) we obtain

w = ν1/3

0∫

−a

J0

(
y
√

y + a
)
dy.

Since J0 is an even function then substitution y = −t leads to

w = ν1/3

a∫

0

J0

(
t
√

a− t
)
dt = ν1/3F3(a) = ν1/3F3(2ν

2/3(1− u)). (2.49)

So, the derived asymptotic solution (2.49) is based on the function F3 introduced

above. As one can see in Figure 2.9 it provides a very close approximation (solid

line) to the exact integral solution (2.48) (dashed line) in the vicinity of sound

speed.

2.5 Arbitrary acceleration case

In this section we provide a draft of how to deal with the arbitrary acceleration

using the results for the constant one, which were obtained above. As an example
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Figure 2.9: Asymptotic and numerical results for the integral (2.48).

we consider two possible paths: s(τ) = u0τ + ετ2

2
and s(τ) = −A cos(ετ) (respec-

tive speeds are u(τ) = u0 +ετ and u(τ) = A sin(ετ)) (see Figure 2.10). Note that

the first path presents inverse transition from arbitrary to uniform acceleration

case.

Consider the general integral solution for the main problem (2.2) with a general

path function s1(τ) (not necessary equal to aτ2

2
) in the right hand side of the

equation.

w =

τ∫

0

J0

(√
ζ2 − (λ + s1(τ)− s1(τ − ζ))2

)
σdζ. (2.50)

Here and below σ has the following behaviour:

σ =

{
1, if ζ2 − (λ + s1(τ)− s1(τ − ζ))2 > 0;

0, if ζ2 − (λ + s1(τ)− s1(τ − ζ))2 < 0.

In the vicinity of ζ = 0, one can expand the path function s1 as

s1(τ − ζ) ≈ s1(τ)− u(τ)ζ +
du

dτ

ζ2

2
, ζ ¿ 1. (2.51)
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Figure 2.10: Transition through the sound wave barrier with constant accel-
eration and sinusoidal speed function. The transition moment for each case is

shown by a circle

Substitution (2.51) into (2.50) leads to

w =

δ∫

0

J0




√
ζ2 −

(
λ + u(τ)ζ − du

dτ

ζ2

2

)2

 σdζ. (2.52)

Assumption u = k(ετ) gives

w =

δ∫

0

J0




√
ζ2 −

(
λ + kζ − ε

dk

dτ

ζ2

2

)2

 σdζ.

After the substitutions ζ =
z

ε
it appears

w =
1

ε

εδ∫

0

J0


1

ε

√
z2 −

(
ελ + kz − dk

dτ

z2

2

)2

 σdz.
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Now, assume that ν =
1

ε
and λ1 = ελ =

λ

ν
and get

w = ν

δ/ν∫

0

J0


ν

√
z2 −

(
λ1 + kz − dk

dτ

z2

2

)2

 σdz.

Consider the case when λ1 = 0:

w = ν

δ/ν∫

0

J0


ν

√
z2 − k2z2 + k

dk

dτ
z3 −

(
dk

dτ

)2
z4

4


 σdz.

Since the last term is a small value of the fourth order, it can be neglected and

we obtain the following formula

w = ν

δ/ν∫

0

J0

(
ν

√
z2(1− k2) + k

dk

dτ
z3

)
σdz. (2.53)

Two cases with respect to values of k, namely, k < 1 and k > 1 (here k is assumed

to be in the vicinity of unity), should be considered:

(i) k < 1

Consider the (2.53) and assume that in the second term under a radical

sign k ≈ 1. In this case z2 dk

dτ
can be moved from the square root sign and

w = ν

δ/ν∫

0

J0

(
νz

√
dk

dτ

√
(1− k2)/

dk

dτ
+ z

)
dz.

Making a substitution z = y

(
ν

√
dk

dτ

)−2/3

and also assuming that the

upper limit in integral is going towards ∞, one may get

w = ν1/3

(
dk

dτ

)−1/3
∞∫

0

J0


y

√
(1− k2)ν2/3

(
dk

dτ

)−2/3

+ y


 dy,

or

w = ν1/3

(
dk

dτ

)−1/3

F1

(
(1− k2)ν2/3

(
dk

dτ

))
.
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(ii) k > 1

By analogy with the previous case, we consider the integral (2.53), but

here the lower limit is changed because the phase function should be non-

negative on the entire interval of integration.

w = ν

δ/ν∫

2(k−1)


dk

dτ




4/3

J0


νz

√
dk

dτ

√√√√z − k2 − 1

dk

dτ


 dz.

Substitution z = y

(
ν

√
dk

dτ

)−2/3

and the assumption that the upper inte-

gration limit is going towards ∞ imply that

w = ν1/3

(
dk

dτ

)−1/3

×

×
∞∫

2(k−1)ν2/3



dk

dτ




4/3

J0


y

√
y − (k2 − 1)ν2/3

(
dk

dτ

)−2/3

 dy.

Now, assume that k2 − 1 ≈ 2(k − 1) and make the substitution x = y −
(k2 − 1)ν2/3

(
dk

dτ

)−2/3

. The result is

w = ν1/3

(
dk

dτ

)−1/3
∞∫

0

J0

(
√

x

(
x + 2(k − 1)ν2/3

(
dk

dτ

)−2/3
))

dx,

or

w = ν1/3

(
dk

dτ

)−1/3

F2

(
2(k − 1)ν2/3

(
dk

dτ

)−2/3
)

.

So, the general case asymptotic forms are:

w = ν1/3

(
dk

dτ

)−1/3

F1

(
(1− k2)ν2/3

(
dk

dτ

))
, (k < 1)
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and

w = ν1/3

(
dk

dτ

)−1/3

F2

(
2(k − 1)ν2/3

(
dk

dτ

)−2/3
)

, (k > 1).

It remains to substitute the example paths into the latter formulae.

(i) k = ετ = v

Thus, ∂k
∂τ

= 1 and it leads to

w = ν1/3F1

(
(1− v2)ν2/3

)
, (k < 1)

and

w = ν1/3F2

(
2(v − 1)ν2/3

)
, (k > 1).

Here we note that these results are exactly the same as the ones given in

Section 2.3, but here they are obtained for a more general case.

(ii) k = A sin(ετ)

Assume that ν = 1
ε

and k ≈ 1 (so ∂k
∂τ

= A cos(ετ) = A
√

1− sin2(ετ) =√
A2 − 1). In this case

w =
(
ε
√

A2 − 1
)−1/3

F1

(
1− A2 sin2(ετ)
(
ε
√

A2 − 1
)2/3

)
, (k < 1) (2.54)

and

w =
(
ε
√

A2 − 1
)−1/3

F2

(
2 (A sin(ετ)− 1)
(
ε
√

A2 − 1
)2/3

)
, (k > 1). (2.55)

The graphs given in Figures 2.11–2.13 geometrically describe the exact and

asymptotic solutions for the different values of the parameters A and ν.

Comparing these figures one can notice that the derived formulae (2.54)

– (2.55) provide a better approximation for integral solution (2.50) when

parameter ν is sufficiently large and parameter A is close to the unity (note

that A can not be less or equal to 1, otherwise there is no passage through

the critical speed), i.e. when the transition is quite slow. As you can see,

there are some local corners and roughness (especially sufficiently far from

critical speed) on the lines on the figures. These features appear because

of some local errors in numerical integration.
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Figure 2.11: The exact solution (2.50) (dashed line) along with the asymp-
totic solution (2.54)–(2.55) (solid line) under the load for ν = 250

2.6 Special asymptotic forms

2.6.1 Steady speed asymptotic behaviour near the load

case

Again, consider (2.50) and the series (2.51), but now only the first two terms of

the series are the object of the attention, due to the fact that the speed is steady,

or zero acceleration. So,

w =

δ∫

0

J0

(√
ζ2 − (λ + uζ)2

)
σdζ,

or after some transformations of the phase function

w =

δ∫

0

J0

(√
(1− u2)

(
ζ − λ

1− u

)(
ζ +

λ

1 + u

))
σdζ.
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Figure 2.12: The exact solution (2.50) (dashed line) along with the asymp-
totic solution (2.54)–(2.55) (solid line) under the load for ν = 100

The roots of the phase function are

T0 =
λ

1− u
; T1 =

λ

1 + u
, (T0 > T1).

Now one can make a substitution

p = ζ − Ti, (i = 0 if λ > 0; i = 1 if λ < 0).

So now there are two cases of λ values for the case of u < 1:

(i) λ > 0

In this case

w =

δ−T0∫

0

J0

(√
(1− u2) p

(
p +

2λ

1− u2

))
dp.
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Figure 2.13: The exact solution (2.50) (dashed line) along with the asymp-
totic solution (2.54)–(2.55) (solid line) under the load for ν = 50

(ii) λ < 0 It brings:

w =

δ−T1∫

0

J0

(√
(1− u2) p

(
p +

2λ

1− u2

))
dp.

So, the limit case will be if d = δ− Ti →∞, and the result for a steady speed is:

wst =

∞∫

0

J0

(√
(1− u2)

(
p2 +

∣∣∣∣
2λ

1− u2

∣∣∣∣ p

))
σdp. (2.56)

The integral (2.56) is a well-known integral, that can be calculated analytically

wst =
1√

1− u2
exp

( |λ|√
1− u2

)
.

For the case of u > 1 there is another substitution q = ζ − T1.

Again there are two cases:
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λ

w

Figure 2.14: The exact solution (solid line) along with the static speed solu-
tion (dashed line) for u < 1 (u = 0.8).

(i) T1 < τ < T0

In other words, the above mentioned substitution gives 0 < d < 2λ
1−u2 = 2γ.

And the integral transforms into

w =

τ∫

T1

J0

(√
(1− u2)q (q + T1 − T0)

)
dq =

=

a∫

0

J0

(√
(u2 − 1) (−q2 + 2γq)

)
dq.

(ii) τ > T0
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Here d > 2γ and thus

w =

T0∫

T1

J0

(√
(1− u2)q (q + T1 − T0)

)
dq =

=

2γ∫

0

J0

(√
(u2 − 1) (−q2 + 2γq)

)
dq.

The limit case is when d = 2γ (τ = T0) and hence

wst =

d∫

0

J0

(√
(u2 − 1) (−q2 + 2γq)

)
dq.

This is a well-known integral that can be calculated analytically

wst =
2 sin

[
|λ|√
u2−1

]
√

u2 − 1
.

λ

w

Figure 2.15: The exact solution (solid line) along with the static speed solu-
tion (dashed line near the load point, black triangle) for u > 1 (u = 2.5).
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2.6.2 Asymptotic behaviour near singularity area

Here the stationary points are considered, one for the area in front of the shock

wave and two of them beyond the shock wave. This section contains only the con-

stant positive acceleration case, because it is too hard to find such an asymptotic

representations for more complicated cases.

Figure 2.16: Evolution of the phase function (expression under square roots
in (2.57)) against z for the different values of λ for u = 2.5

So, consider the following integral:

I =

u∫

0

J0


ν

√
z2 −

(
λ1 + uz − 1

2
z2

)2

 dz. (2.57)

We need to find the contribution of all stationary points by the classic stationary

phase method. For this, first we have to transfer the Bessel function in the

integral (2.57) to its asymptotic formula with an exponential function, as follows

J0(ν
√

Φ(z)) ≈
√

2

πΦ(z)
Re exp

(
Φ(z)− π

4

)
. (2.58)
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Now one may use the stationary phase method. To do so one or two (depending on

the value of λ, see Figure 2.16) stationary points should be found. It is impossible

to make it analytically, due to the complicated nature of the phase function. So,

it was done by numerical methods. After finding these phase points, it remains

to substitute the results into the following formula

I1,2 =

√
2π

ν|Φ′′(z0)|f(z0) cos
(
ν
√

Φ(z0)− π

4
+

π

4
sgn (Φ′′(z0))

)
,

where Φ is a phase function, f(z) - is a term, staying before exp in the (2.58), z0

is a stationary point, calculated numerically.

The final step is to find a sum of contributions of all the stationary points. This

will tend to the asymptotic result (see Figures 2.15 and 2.17), that works near

the shock wave (λ3, red diamond) and at the end of singularity area (λ4, green

diamond).

λ

w

Figure 2.17: The exact solution (solid line) and static speed solution with
contributions from stationary points of phase function (dashed line) for u > 1

(u = 2.5).
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2.7 Summary

In this chapter we investigated the asymptotic behaviour of an elastically sup-

ported infinite string under a moving point load.

The auxiliary canonical functions Fi, i = 1, 2, 3, were introduced, asymptotically

analyzed and tabulated in Section 2.2. Using these functions the uniform asymp-

totic formulae for a string under the constant accelerating and decelerating point

loads were obtained in Sections 2.3 and 2.4 respectively.

The asymptotic formulae for an arbitrary acceleration case were presented and

then applied for the case of sinusoidal load speed u(τ) = A sin(ετ) in Section 2.5.

It was shown that the canonical functions Fi, i = 1, 2, 3, can successfully be used

in an arbitrary acceleration case as well.

In Section 2.6 we obtained the approximate formulae for the vicinity of point load

and singularity area behind the shock wave using the steady speed asymptotic

expansion with the additional contributions from the stationary points where

appropriate.



Chapter 3

Vibrations of an infinite half

plane under moving point load

3.1 Statement of the problem

The main object of consideration is an elastic isotropic infinite half plane (−∞ <

x < ∞, 0 ≤ y < ∞) subject to a point load (line load for three dimensional case)

of an amplitude P0 moving along the surface y = 0 with a constant acceleration

a (see Figure 3.1).

We start with the asymptotic model which was suggested in [61] and describes

the half plane behaviour for the load speeds close to the Rayleigh wave speed.

In doing so, the model ignores the bulk compression and shear waves, which

appear in general Lamé equation for the half plane. The horizontal and vertical

displacements u1 and u2 can be expressed in terms of the Lamé potentials φ and

ψ (in frames of general elastic theory):

u1 = φx − ψy, u2 = φy + ψx. (3.1)

Here and below subscripts x and y denote the partial derivatives ∂
∂x

and ∂
∂y

.

Further on we will use both of these notations.

The elliptic equations for the interior field in the above mentioned model can be

expressed in the form

φyy + k2
1φxx = 0, ψyy + k2

2ψxx = 0, (3.2)

49
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P0

at

x

y

Figure 3.1: Elastic isotropic infinite half plane subject to a moving point
load

where

k2
i = 1− c2

R

c2
i

, (i = 1, 2), (3.3)

and

(1 + k2
2)

2 = 4k1k2. (3.4)

The formula (3.4), using expression (3.3), can be written as the classic Rayleigh

equation:

4

√
1− c2

R

c2
1

√
1− c2

R

c2
2

−
(

2− c2
R

c2
2

)2

= 0

and, thus, gives the dependence between cR and the Poisson ratio, which is coming

from the bulk wave speeds c1 and c2.

Here cR denotes the Rayleigh wave speed, c1 and c2 are the longitudinal and shear

wave speeds, respectively.

At the surface y = 0 we have the following boundary conditions

φxx(x, 0, t)− c−2
R φtt(x, 0, t) = AP0δ

(
x− 1

2
at2

)
(3.5)

and

− 2

1 + k2
2

φy(x, 0, t) = ψx(x, 0, t). (3.6)
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Here t is a time, δ is the Dirac function, A is a material constant

A = − k1k2(1 + k2
2)

2µ[k2(1− k2
1) + k1(1− k2

2)− k1k2(1− k4
2)]

, (3.7)

where µ is the Lamé elastic modulus. The equation (3.5) is a hyperbolic equa-

tion for an elastic potential φ for y = 0, equation (3.6) gives a differential relation

between both potentials. Later we assume the equation (3.5) subject to homoge-

neous initial conditions.

So, in this chapter we consider the problem (3.2) with the boundary conditions

(3.5) and (3.6), find an explicit analytic solution and provide the further analysis

of the solution by creating the simpler asymptotic forms.

3.2 Boundary conditions. An infinite string un-

der the moving load.

In this section we analyze the hyperbolic problem on the surface. In order to do

it we need to solve the equation:

fxx − c−2
R ftt = AP0δ

(
x− 1

2
at2

)
,

or, equivalently,

ftt = c2
Rfxx − AP0c

2
Rδ

(
x− 1

2
at2

)
(3.8)

with homogeneous initial conditions. This is an inhomogeneous second order

partial differential equation. It describes the behaviour of an infinite string under

the moving point load. All the parameters are given in Section 3.1.

To solve the equation (3.8) consider the corresponding homogeneous one (details

can be found in [75])

ftt = c2
Rfxx

with the following conditions

f |t=τ= 0, ft |t=τ= −AP0c
2
Rδ

(
x− aτ 2

2

)
.
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The solution to the homogeneous equation has a form

f(x, t) = −AP0cR

2

t∫

0




x+cR(t−τ)∫

x−cR(t−τ)

δ

(
ξ − aτ 2

2

)
dξ


 dτ.

The result of the inner integration is the Heaviside function denoted as H. Hence,

f(x, t) = −AP0cR

2

t∫

0

[
H

(
x + cR(t− τ)− aτ 2

2

)
−H

(
x− cR(t− τ)− aτ 2

2

)]
dτ.

λ

φ

λ2λ1

Figure 3.2: Boundary condition for v = 0.95 (λ1 = −1.40125, λ2 = 0.49875)

Introducing a moving coordinate system: (s, t) =
(
x− at2

2
, t

)
and changing vari-

able r = t− τ give

f(s, t) =
AP0cR

2

t∫

0

[
H

(
s + r(at + cR)− ar2

2

)
−

−H

(
s + r(at− cR)− ar2

2

)]
dr. (3.9)
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λ

φ

λ2λ3λ1

Figure 3.3: Boundary condition for v = 1.05 (λ1 = −1.60125, λ3 = −0.00125,
λ2 = 0.49875). On the insert you can see magnified vicinity of the shock wave,

shown as black triangle

The arguments of the Heaviside functions in the integrand are the quadratic

polynomials of r. Their roots are

r1,2
1 =

(at± cR) +
√

(at± cR)2 + 2as

a
,

r1,2
2 =

(at± cR)−
√

(at± cR)2 + 2as

a
, (3.10)

where numbers 1 and 2 in superscripts correspond to the first and second Heavi-

side functions in (3.9) and, consequently, plus and minus signs respectively.

In order to resolve the integral one should define the intervals inside [0, t], where

the Heaviside functions are not equal to zero. Only these intervals bring a non-

trivial contribution to the result.

To reduce the number of parameters and simplify the further calculations it is

useful to make (3.10) non-dimensional by introducing new variables

v = t
a

cR

and λ =
as

c2
R

.
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In this case the roots (3.10) can be written as

ρ1,2
1 = (v ± 1) +

√
(v ± 1)2 + 2λ,

ρ1,2
2 = (v ± 1)−

√
(v ± 1)2 + 2λ,

where upper indices 1 and 2 correspond to the plus and minus signs respectively.

Note that ρ1,2
2 < ρ1,2

1 .

To define the intervals mentioned above it is sufficient to consider the following

cases

(i) 0 < ρ1,2
2 < v; 0 < ρ1,2

1 < v: the length of the interval is ρ1,2
1 − ρ1,2

2 .

(ii) ρ1,2
2 < 0; 0 < ρ1,2

1 < v: the length of the interval is ρ1,2
1 .

(iii) 0 < ρ1,2
2 < v; ρ1,2

1 > v: the length of the interval is v − ρ1,2
2 .

(iv) ρ1,2
2 < 0; ρ1,2

1 > v: the length of the interval is v.

These cases should be considered for v ≤ 1, 1 ≤ v ≤ 2 and v ≥ 2.

To classify the roots we use the notation

λ1 =
1− (1 + v)2

2
, λ2 =

1− (1− v)2

2
, λ3 = −(1− v)2

2
,

s1 =
c2
R − (cR + at)2

2a
, s2 =

c2
R − (cR − at)2

2a
, s3 = −(cR − at)2

2a
.

The results (for non-dimensional variables along with dimensional ones) obtained

via straightforward calculations are presented in the Table 3.1.

Remark: Further on in this thesis we consider only the data displayed in the first

and second columns of Table 3.1 (see Figures 3.2 and 3.3 respectively), because

our main object of interest is the vicinity of the transition through the Rayleigh

speed. Note also that the model, described in this work, does not involve the

passage through the sonic speed. So, the results obtained within the framework

of this model do not describe adequately the real behaviour of a half plane in

case when the velocity of the load is greater than the sound wave speed.
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3.3 The exact solution over the interior

First of all, it is necessary to state again, that the term ”exact solution” does

not mean exact solution within the framework of the general theory of elasticity,

but only the solution within the framework of the asymptotic model (see [61])

without any additional assumptions and approximations.

This section is dedicated to the calculation of the displacements (3.1). In order to

do that we need to find the Lamé potentials φ and ψ by resolving the equations

(3.2) with the boundary conditions (3.5) and (3.6).

Two speed intervals at ≤ cR and at ≥ cR are considered separately and the

corresponding results are given below.

3.3.1 Before the passage

Start with the equation (3.2) for the potential φ, rewritten in the variables y and

s:

φyy + k2
1φss = 0 (3.11)

with the boundary condition, obtained in Section 3.2

φ(s, 0, t) = f(s, t) =





AP0cR

2

(
t− r1

2

)
, for s1 ≤ s ≤ 0;

AP0cR

2

(
t− r2

1

)
, for 0 ≤ s ≤ s2;

0, otherwise.

(3.12)

The associated fundamental solution Φ(x, y) of the boundary-value problem

Φyy + k2
1Φxx = 0, Φ(x, 0) = δ(x)

is

Φ(x, y) =
k1y

π(x2 + (k1y)2)
. (3.13)
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Then the solution for the potential φ(s, y, t) can be found as a convolution of

(3.13) and (3.12) (details can be found in [75]):

φ(s, y, t) =

∞∫

−∞

φ(r, 0, t)Φ(s− r, y)dr =
1

π

s2∫

s1

k1y

(r − s)2 + k2
1y

2
φ(r, 0, t)dr

Integration by parts gives

φ(s, y, t) = − 1

π

s2∫

s1

arctan

(
r − s

k1y

)
∂φ(r, 0, t)

∂r
dr. (3.14)

Partial derivative of the potential φ(r, y, t) with respect to r at y = 0 is

∂φ

∂r
(r, 0, t) =





AP0cR

2
1√

(cR+at)2+2ar
, for s1 < r < 0;

−AP0cR

2
1√

(cR−at)2+2ar
, for 0 < r < s2.

(3.15)

Since the boundary condition (3.12) and, consequently, the partial derivative

(3.15) are different for the intervals s1 ≤ s ≤ 0 and 0 ≤ s ≤ s2, then the integral

(3.14) can be written as:

φ(s, y, t) = −AP0cR

2π
(I1 − I2) ,

where

I1 =

0∫

s1

arctan
(

r−s
k1y

)
√

(cR + at)2 + 2ar
dr; I2 =

s2∫

0

arctan
(

r−s
k1y

)
√

(cR − at)2 + 2ar
dr. (3.16)

First, we calculate the integral I1. After an elementary transformation it can be

written in the form

I1 =
1√
2a

0∫

s1

arctan
(

r−s
k1y

)
√

r +
(

cR+at√
2a

)2
dr.
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Applying integration by parts with

u = arctan

(
r − s

k1y

)
, du =

1

k1y

1

1 +
(

r−s
k1y

)2 dr;

v = 2

√
r +

(
cR + at√

2a

)2

, dv =
1√

r +
(

cR+at√
2a

)2
dr,

one can obtain

I1 =
1√
2a


2

√
r +

(
cR + at√

2a

)2

arctan

(
r − s

k1y

)


0

s1

− Ĩ ,

where

Ĩ =
1

k1y

0∫

s1

2

√
r +

(
cR+at√

2a

)2

1 +
(

r−s
k1y

)2 dr.

To simplify the calculation of Ĩ let us introduce the change of variables

z =

√
r +

(
cR + at√

2a

)2

.

Then,

r = z2 −
(

cR + at√
2a

)2

, dr = 2zdz,

and the limits of integration are:

cR√
2a

,
cR + at√

2a
.

Hence,

Ĩ = k1y

cR+at√
2a∫

cR√
2a

4z2dz

z4 − 2z2b1 + b2
1 + (k1y)2

,

where b1 =
(cR + at)2

2a
+ s.
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Factorizing the denominator and applying partial fractions to the integrand, one

can get:

Ĩ = k1y

cR+at√
2a∫

cR√
2a

[
2z√

2b1+2α1

z2 −√2b1 + 2α1z + α1

−
2z√

2b1+2α1

z2 +
√

2b1 + 2α1z + α1

]
dz,

where α1 =
√

b2
1 + (k1y)2.

The further transformations of Ĩ are

Ĩ =
k1y√

2b1 + 2α1




cR+at√
2a∫

cR√
2a

2z −√2b1 + 2α1 +
√

2b1 + 2α1

z2 −√2b1 + 2α1z + α1

dz−

−

cR+at√
2a∫

cR√
2a

2z +
√

2b1 + 2α1 −
√

2b1 + 2α1

z2 +
√

2b1 + 2α1z + α1

dz


 =

=
k1y√

2b1 + 2α1

ln
z2 −√2b1 + 2α1z + α1

z2 +
√

2b1 + 2α1z + α1

∣∣∣∣
cR+at√

2a
cR√
2a

+

+ k1y

cR+at√
2a∫

cR√
2a

dz(
z −

√
2b1+2α1

2

)2

+
(
α1 − 2b1+2α1

4

) +

+ k1y

cR+at√
2a∫

cR√
2a

dz(
z +

√
2b1+2α1

2

)2

+
(
α1 − 2b1+2α1

4

) =

=

[
k1y√

2b1 + 2α1

ln
z2 −√2b1 + 2α1z + α1

z2 +
√

2b1 + 2α1z + α1

+

+
2k1y√

2α1 − 2b1

(
arctan

z −
√

2b1+2α1

2√
2α1−2b1

2

+ arctan
z +

√
2b1+2α1

2√
2α1−2b1

2

)] ∣∣∣∣
cR+at√

2a
cR√
2a

.

Finally,

I1 =
1√
2a

[ξ1(s, y, z2)− ξ1(s, y, z1)],
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where

ξ1(s, y, z) = 2z arctan
z2 − b1

k1y
− k1y

β1

ln
z2 − β1z + α1

z2 + β1z + α1

−

−2k1y

γ1

[
arctan

2z − β1

γ1

+ arctan
2z + β1

γ1

]
, (3.17)

z1 =
cR√
2a

, z2 =
cR + at√

2a

and

b1 =
(at + cR)2

2a
+ s, α1 =

√
b2
1 + (k1y)2,

β1 =
√

2α1 + 2b1, γ1 =
√

2α1 − 2b1. (3.18)

The integral I2 can be calculated in exactly the same way. The result is:

I2 =
1√
2a

[ξ2(s, y, z4)− ξ2(s, y, z3)],

where

ξ2(s, y, z) = 2z arctan
z2 − b2

k1y
− k1y

β2

ln
z2 − β2z + α2

z2 + β2z + α2

−

−2k1y

γ2

[
arctan

2z − β2

γ2

+ arctan
2z + β2

γ2

]
, (3.19)

z3 =
cR − at√

2a
, z4 =

cR√
2a

,

and

b2 =
(cR − at)2

2a
+ s, α2 =

√
b2
2 + (k1y)2,

β2 =
√

2b2 + 2α2, γ2 =
√

2α2 − 2b2. (3.20)

Hence, the potential φ(s, y, t) for cR ≥ at is

φ(s, y, t) =
AP0cR

2π
√

2a
[ξ1(s, y, z2)− ξ1(s, y, z1) + ξ2(s, y, z3)− ξ2(s, y, z4)]. (3.21)

To calculate the potential ψ one needs to solve the second equation in (3.2) with

the boundary condition (3.6). In order to use this boundary condition, the partial
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derivative
∂φ

∂y
should be calculated. To simplify this operation, one can use the

notation:

bi =
1

2a
b′i, αi =

1

2a
α′i, βi =

1√
2a

β′i, γi =
1√
2a

γ′i, i = 1, 2,

zj =
1√
2a

z′j, j = 1, 2, 3, 4,

ξi(s, y, z) =
√

2aξ′i(s, y, z), i = 1, 2,

where

b′i = (cR ± at)2 + 2as, α′i =
√

(b′1)2 + (2ak1y)2, i = 1, 2,

β′i =
√

2(b′1 + α′1), γ′i =
√

2(α′1 − b′1), i = 1, 2,

z′1 = z′4 = cR, z′2 = (cR + at), z′3 = (cR − at)

and

ξ′i(s, y, z′) =
1

a
z′ arctan

(z′)2 − b′i
2ak1y

− k1y

β′i
ln

(z′)2 − β′iz
′ + α′i

(z′)2 + β′iz′ + α′i
−

−2k1y

γ′i

[
arctan

2z′ − β′i
γ′i

+ arctan
2z′ + β′i

γ′i

]
, i = 1, 2.

Here and below we use the notation without dashes but keep in mind that all the

parameters are defined as the ”dashed” ones above.

Partial derivative of the potential φ can be obtained straightforward. Performing

the massive (but relatively simple) calculations one can get:

∂φ

∂y
(s, y, t) =

ϑ

π

[
∂ξ1

∂y
(z=cR+at)− ∂ξ1

∂y
(z=cR)+

∂ξ2

∂y
(z=cR−at)− ∂ξ2

∂y
(z=cR)

]
.

where

∂ξi

∂y
= −k1

[(
1

βi

− f 2y2

αiβ3
i

)
ln

z2 − βiz + αi

z2 + βiz + αi

+

+ 2

(
1

γi

− f 2y2

αiγ3
i

)(
arctan

2z − βi

γi

+ arctan
2z + βi

γi

)]
. (3.22)

Here and below f = 2ak1, ϑ = AP0cR

2
.
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For the sake of simplicity one can rewrite (3.22) as

∂ξi

∂y
= −k1

[
βi

4αi

ln
z2 − βiz + αi

z2 + βiz + αi

+
γi

2αi

(
arctan

2z − βi

γi

+ arctan
2z + βi

γi

)]
,

using the equalities

1

βi

− f 2y2

αiβ3
i

=
βi

4αi

,
1

γi

− f 2y2

αiγ3
i

=
γi

4αi

.

Note that both equations in (3.2) have the same form, the only difference is in the

coefficient for
∂2

∂s2
. Hence, using the boundary condition (3.6), we can state that

the partial derivatives
∂ψ

∂s
(s, y, t) and

∂φ

∂y
(s, y, t) are different only in a constant

coefficient − 2
1+k2

2
. So, partial derivative of the potential ψ is

∂ψ

∂s
(s, y, t) =

2ϑk1

(1 + k2
2)π

[
∂ζ1

∂s
(z = cR + at)− ∂ζ1

∂s
(z = cR)+

+
∂ζ2

∂s
(z = cR − at)− ∂ζ2

∂s
(z = cR)

]
,

where

∂ζi

∂s
=

β̃i

4α̃i

ln
z2 − β̃iz + α̃i

z2 + β̃iz + α̃i

+
γ̃i

2αi

[
arctan

2z − β̃i

γ̃i

+ arctan
2z + β̃i

γ̃i

]
. (3.23)

Here and below α̃i, β̃i, γ̃i are the same as αi, βi, γi, but with k2 instead of k1

in their definitions. This distinction comes from the different coefficients in the

equations (3.2).

Note that
∂

∂s

(
β̃i

4a

)
=

β̃i

4α̃i

,
∂

∂s

(
γ̃i

2a

)
= − γ̃i

2α̃i

,

hence, by integrating (3.23), one can obtain:

ζi =
β̃i

4a
ln

z2 − β̃iz + α̃i

z2 + β̃iz + α̃i

− γ̃i

2a

[
arctan

2z − β̃i

γ̃i

+ arctan
2z + β̃i

γ̃i

]
+ F. (3.24)

To complete the calculation of the potential ψ, it remains to find explicitly the

function F in (3.24). If one compares the formulae (3.23) and (3.24) it becomes
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clear that the partial derivative of F has a form:

∂F

∂s
= − 2z(bi − z2)

(bi − z2)2 + f 2y2
,

consequently,

F = − z

2a
ln

(bi − z2)2 + f 2y2

B
.

The quantity B is an arbitrary element and does not depend on s. Since the

argument of the logarithm should be non-dimensional, one can put B = c4
R.

Then,

F = − z

2a
ln

(bi − z2)2 + f 2y2

c4
R

and the formula (3.24) transforms to

ζi =
β̃i

4a
ln

z2 − β̃iz + α̃i

z2 + β̃iz + α̃i

− γ̃i

2a

[
arctan

2z − β̃i

γ̃i

+ arctan
2z + β̃i

γ̃i

]
−

− z

2a
ln

(bi − z2)2 + f 2y2

c4
R

. (3.25)

With respect to (3.25), the potential ψ has a form

ψ(s, y, t) =
2AP0cR

2π

k1

1 + k2
2

[ζ1(z = cR + at)− ζ1(z = cR)+

+ ζ2(z = cR − at)− ζ2(z = cR)] . (3.26)

It remains to calculate explicitly the displacements (3.1). We remind that (s, t) =

(x − 1
2
at2, t), it means that the partial derivative with respect to s can be used

instead of
∂

∂x
.

So, the derivatives of the potentials φ and ψ are

∂φ

∂s
=

AP0cR

2π

[
∂ξ1

∂s
(z = cR + at)− ∂ξ1

∂s
(z = cR)+

+
∂ξ2

∂s
(z = cR − at)− ∂ξ2

∂s
(z = cR)

]
, (3.27)

where

∂ξi

∂s
=

ak1y

αiβi

ln
z2 − βiz + αi

z2 + βiz + αi

− 2ak1y

αiγi

[
arctan

2z − βi

γi

+ arctan
2z + βi

γi

]
;
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∂φ

∂y
=

AP0cR

2π

[
∂ξ1

∂y
(z = cR + at)− ∂ξ1

∂y
(z = cR)+

+
∂ξ2

∂y
(z = cR − at)− ∂ξ2

∂y
(z = cR)

]
, (3.28)

where

∂ξi

∂y
= −k1

[
βi

4αi

ln
z2 − βiz + αi

z2 + βiz + αi

+
γi

2αi

(
arctan

2z − βi

γi

+ arctan
2z + βi

γi

)]
;

∂ψ

∂s
=

2AP0cR

2π

k1

1 + k2
2

[
∂ζ1

∂s
(z = cR + at)− ∂ζ1

∂s
(z = cR)+

+
∂ζ2

∂s
(z = cR − at)− ∂ζ2

∂y
(z = cR)

]
, (3.29)

where

∂ζi

∂s
=

β̃i

4α̃i

ln
z2 − β̃iz + α̃i

z2 + β̃iz + α̃i

+
γ̃i

2α̃i

[
arctan

2z − β̃i

γ̃i

+ arctan
2z + β̃i

γ̃i

]
;

∂ψ

∂y
=

AP0cR

2π

k1

1 + k2
2

[
∂ζ1

∂y
(z = cR + at)− ∂ζ1

∂y
(z = cR)+

+
∂ζ2

∂y
(z = cR − at)− ∂ζ2

∂y
(z = cR)

]
, (3.30)

where

∂ζi

∂y
=

f 2y

4aα̃iβ̃i

ln
z2 − β̃iz + α̃i

z2 + β̃iz + α̃i

− f 2y

2aα̃iγ̃i

[
arctan

2z − β̃i

γ̃i

+ arctan
2z + β̃i

γ̃i

]
.

The last step is to substitute the formulae (3.27)–(3.30) into (3.1). The result is:

u1 =
∂φ

∂s
− ∂ψ

∂y
=

AP0cR

2π

[
∂ξ1

∂s
(z = cR + at)− ∂ξ1

∂s
(z = cR)+

+
∂ξ2

∂s
(z = cR − at)− ∂ξ2

∂s
(z = cR)

]
−

− 2k1

1 + k2
2

[
∂ζ1

∂y
(z = cR + at)− ∂ζ1

∂y
(z = cR)+

+
∂ζ2

∂y
(z = cR − at)− ∂ζ2

∂y
(z = cR)

]
, (3.31)
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u2 =
∂φ

∂y
+

∂ψ

∂s
=

AP0cR

2π

[
∂ξ1

∂y
(z = cR + at)− ∂ξ1

∂y
(z = cR)+

+
∂ξ2

∂y
(z = cR − at)− ∂ξ2

∂y
(z = cR)

]
+

+
2k1

1 + k2
2

[
∂ζ1

∂s
(z = cR + at)− ∂ζ1

∂s
(z = cR)+

+
∂ζ2

∂s
(z = cR − at)− ∂ζ2

∂s
(z = cR)

]
. (3.32)

3.3.2 After the passage

This part of the thesis describes how to calculate the displacements (3.1) for the

load speed greater than the Rayleigh speed. The procedure is very similar to the

one given in the previous subsection. First, we calculate the potential φ, then

the potential ψ and, finally, the displacements u1 and u2.

To calculate the potential φ we start with the same equation (3.11) as before but

the boundary condition is different, namely,

φ(s, 0, t) =





AP0cR

2
(t− r2

1), for 0 ≤ s ≤ s2;

AP0cR

2
(t− r1

2 + r2
2 − r2

1), for s3 ≤ s ≤ 0;

AP0cR

2
(t− r1

2), for s1 ≤ s ≤ s3;

0, otherwise.

(3.33)

One can notice that the difference between the boundary conditions (3.12) and

(3.33) is an additional contribution that appears in the interval s3 ≤ s ≤ 0. So,

it is clear that the potential φ is

φ(s, y, t) = −AP0cR

2π
(I1 − I2 + I3) , (3.34)

where I1 and I2 are the same as in formulae (3.16) in Section 3.3.1. Integral I3 is

the ”additional contribution” mentioned above. It can be obtained in the same

way as the integrals I1 and I2 in previous section and has the following form:

I3 = −2

0∫

s3

1√
(at− cR)2 + 2ar

arctan
r − s

k1y
dr, (3.35)
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where

s3 = −(at− cR)2

2a
.

Similar to the previous section, to simplify the calculations we introduce a change

of variables:

z =

√
r +

(at− cR)2

2a
.

Hence, the integral (3.35) can be rewritten as

I3 = −2

at−cR√
2a∫

0

1√
(at− cR)2 + 2ar

arctan
r − s

k1y
dr.

Repeating the same steps as in Section 3.3.1 for the integral (3.35) one can obtain

I3 = − 1√
2a

[2ξ2(z = z3)− 2ξ2(z = 0)︸ ︷︷ ︸
=0

] = − 2√
2a

ξ2(z = z3),

where ξ2 is defined by the formula (3.19) and z3 =
at− cR√

2a
. To simplify the

expression for I3 the ”dashed” parameters from the previous section can be used.

As it was mentioned before dashes themselves are omitted. It makes the notation

shorter and easier to read. After this operation I3 becomes

I3 = −2ξ2(z = at− cR). (3.36)

The potential φ can be found by substituting the formulae (3.16) and (3.36) into

(3.34). The result is

φ(s, y, t) =
AP0cR

2π
[ξ1(z = at + cR)− ξ1(z = cR)−

− ξ2(z = at− cR)− ξ2(z = cR)] . (3.37)

By analogy with Section 3.3.1 the potential ψ can be calculated by using the

result for φ and the second equation in (3.2) with the boundary condition (3.6).

Note that in the formulae (3.21) (before the Rayleigh speed) and (3.37) (after

the Rayleigh speed) the expressions for the potential φ have the same structure.
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Using this fact and the calculations for ψ from the previous section, we get

ψ(s, y, t) =
AP0cR

2π

k1

1 + k2
2

[ζ1(z = at + cR)− ζ1(z = cR)−
− ζ2(z = at− cR)− ζ2(z = cR)] . (3.38)

It only remains to find the displacements u1 and u2. To do it the derivatives

φs, φy, ψs and ψy should be calculated and substituted into formulae (3.1). The

result is

u1 =
∂φ

∂s
− ∂ψ

∂y
=

AP0cR

2π

[
∂ξ1

∂s
(z = at + cR)− ∂ξ1

∂s
(z = cR)−

− ∂ξ2

∂s
(z = at− cR)− ∂ξ2

∂s
(z = cR)

]
−

− 2k1

1 + k2
2

[
∂ζ1

∂y
(z = at + cR)− ∂ζ1

∂y
(z = cR)−

− ∂ζ2

∂y
(z = at− cR)− ∂ζ2

∂y
(z = cR)

]
, (3.39)

u2 =
∂φ

∂y
+

∂ψ

∂s
=

AP0cR

2π

[
∂ξ1

∂y
(z = at + cR)− ∂ξ1

∂y
(z = cR)−

− ∂ξ2

∂y
(z = at− cR)− ∂ξ2

∂y
(z = cR)

]
+

+
2k1

1 + k2
2

[
∂ζ1

∂s
(z = at + cR)− ∂ζ1

∂s
(z = cR)−

− ∂ζ2

∂s
(z = at− cR)− ∂ζ2

∂s
(z = cR)

]
. (3.40)

Let us mention a remarkable property of the expressions for the displacements

u1 and u2. Since the derivatives of ξ2 and ζ2 are odd functions, we can state that

the pairs of formulae (3.31), (3.32) and (3.39), (3.40) are equivalent. Moreover,

they provide the same results at a critical point which is the Rayleigh speed. So,

the solution of the main problem is smooth for all the considered speed intervals,

including the passage through the critical speed.

The graphs given in Figures 3.4 and 3.5 display the horizontal and vertical dis-

placements u1 and u2 under a moving point load for the different values of a

dimensionless parameter â that represents a combination of an acceleration a

and a depth y as â = ay
c2R

. As one can see the most dramatic transition effects
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â=10−3

â=5·10−4

â=10−4

âτ

u1

Figure 3.4: Dimensionless exact solution for horizontal displacement u1 for
various values of parameter â

appear for the smallest value of the parameter. Clearly, the regions of the maxi-

mum effect (in particular, the peaks right after the critical speed) become more

local as the parameter â decreases.

3.4 Asymptotic forms for the solution

In Section 3.3 the exact solution for the main problem was obtained. The explicit

formulae for the displacements u1 and u2 contain many parameters and look

massive. This section is dedicated to the asymptotic analysis of formulae (3.31)–

(3.32) and (3.39)–(3.40).

To make the analysis of the expressions for the displacements u1 and u2 a bit

simpler sometimes it is useful to introduce the following new parameters:

σ =
s

y
, τ =

tcR

y
, â =

ay

c2
R

.
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â=10−3

â=5·10−4

â=10−4

âτ

u2

Figure 3.5: Dimensionless exact solution for vertical displacement u2 for
various values of parameter â

Further on we assume that y 6= 0, so we consider the solution over the interior

only.

The main reason for introducing these parameters is to make the solution non-

dimensional. Let us note that the parameters a, s, t and y appear in the explicit

formulae for u1 and u2 in the following ”pairs”: as, at and ay, which can be

expressed in the language of the new parameters σ, τ and â as

as = âσc2
R, at = âτcR, ay = âc2

R. (3.41)

It is clear that there is no depth variable y in the new notation but it is contained

implicitly in all three new parameters. Further on one should keep in mind that

the main focus is to analyze the solution near the surface, i.e. for y ¿ 1.

In this section we use the non-dimensional quantities b̂i, α̂i, β̂i and γ̂i (and,

respectively, ˆ̃αi,
ˆ̃βi and ˆ̃γi) which can be expressed as

b̂i = (1± âτ)2 + 2âσ, α̂i =

√
b̂2
i + (2k1â)2, (3.42)
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β̂i =

√
2α̂i + 2b̂i, γ̂i =

√
2α̂i − 2b̂i, (3.43)

instead of bi, αi, βi and γi (and, respectively, α̃i, β̃i and γ̃i). Note that the ”old”

quantities are directly proportional to the corresponding ”new” ones (with some

constant coefficients). Note also, that here and below for b̂i plus and minus signs

refer to i = 1 and i = 2 respectively. In this view the partial derivatives of the

potentials φ and ψ are

∂φ̂

∂σ
=

∂ξ̂1

∂σ
(ẑ = 1 + âτ)− ∂ξ̂1

∂σ
(ẑ = 1) +

∂ξ̂2

∂σ
(ẑ = 1− âτ)− ∂ξ̂2

∂σ
(ẑ = 1), (3.44)

where

∂ξ̂i

∂σ
=

k1â

α̂iβ̂i

ln
ẑ2 − β̂iẑ + α̂i

ẑ2 + β̂iẑ + α̂i

− 2k1â

α̂iγ̂i

[
arctan

2ẑ − β̂i

γ̂i

+ arctan
2ẑ + β̂i

γ̂i

]
;

∂φ̂

∂y
=

∂ξ̂1

∂y
(ẑ = 1 + âτ)− ∂ξ̂1

∂y
(ẑ = 1) +

∂ξ̂2

∂y
(ẑ = 1− âτ)− ∂ξ̂2

∂y
(ẑ = 1), (3.45)

where

∂ξ̂i

∂y
= −k1

[
β̂i

4α̂i

ln
ẑ2 − β̂iẑ + α̂i

ẑ2 + β̂iẑ + α̂i

+
γ̂i

2α̂i

[
arctan

2ẑ − β̂i

γ̂i

+ arctan
2ẑ + β̂i

γ̂i

]]
;

∂ψ̂

∂σ
=

2k1

1 + k2
2

[
∂ζ̂1

∂σ
(̂z=1+âτ)− ∂ζ̂1

∂σ
(̂z=1)+

∂ζ̂2

∂σ
(̂z=1−âτ)− ∂ζ̂2

∂σ
(̂z=1)

]
, (3.46)

where

∂ζ̂i

∂σ
=

ˆ̃βi

4ˆ̃αi

ln
ẑ2 − ˆ̃βiẑ + ˆ̃αi

ẑ2 + ˆ̃βiẑ + ˆ̃αi

−
ˆ̃γi

2ˆ̃αi

[
arctan

2ẑ − β̂i

γ̂i

+ arctan
2ẑ + β̂i

γ̂i

]
;

∂ψ̂

∂y
=

2k1

1 + k2
2

[
∂ζ̂1

∂y
(̂z=1+âτ)− ∂ζ̂1

∂y
(̂z=1)+

∂ζ̂2

∂y
(̂z=1−âτ)− ∂ζ̂2

∂y
(̂z=1)

]
, (3.47)

where

∂ζ̂i

∂y
=

2âk2
2

2ˆ̃αi
ˆ̃βi

ln
ẑ2 − ˆ̃βiẑ + ˆ̃αi

ẑ2 + ˆ̃βiẑ + ˆ̃αi

− 4âk2
2

2ˆ̃αi
ˆ̃βi

[
arctan

2ẑ − β̂i

γ̂i

+ arctan
2ẑ + β̂i

γ̂i

]
.
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As a result, the expressions for the displacements u1 and u2 can be written as

û1 =
∂φ̂

∂σ
− ∂ψ̂

∂y
=

∂ξ̂1

∂σ
(̂z=1+âτ)− ∂ξ̂1

∂σ
(̂z=1)+

∂ξ̂2

∂σ
(̂z=1−âτ)− ∂ξ̂2

∂σ
(̂z=1)−

− 2k1

1 + k2
2

[
∂ζ̂1

∂y
(̂z=1+âτ)− ∂ζ̂1

∂y
(̂z=1)+

∂ζ̂2

∂y
(̂z=1−âτ)− ∂ζ̂2

∂y
(̂z=1)

]
, (3.48)

û2 =
∂φ̂

∂y
+

∂ψ̂

∂σ
=

∂ξ̂1

∂y
(̂z=1+âτ)− ∂ξ̂1

∂y
(̂z=1)+

∂ξ̂2

∂y
(̂z=1−âτ)− ∂ξ̂2

∂y
(̂z=1)+

+
2k1

1 + k2
2

[
∂ζ̂1

∂σ
(̂z=1+âτ)− ∂ζ̂1

∂σ
(̂z=1)+

∂ζ̂2

∂σ
(̂z=1−âτ)− ∂ζ̂2

∂σ
(̂z=1)

]
. (3.49)

The partial derivatives of φ and ψ and, thus, the displacements u1 and u2 above

are given for the speed less than cR. To obtain the solution after the transition

through the critical speed one should change the sign of the third summand in

the formulae for partial derivatives of the potentials and use z = âτ − 1 instead

of the argument z = 1− âτ . In this case the displacements are:

û1 =
∂φ̂

∂σ
− ∂ψ̂

∂y
=

∂ξ̂1

∂σ
(̂z=1+âτ)− ∂ξ̂1

∂σ
(̂z=1)− ∂ξ̂2

∂σ
(̂z= âτ−1)− ∂ξ̂2

∂σ
(̂z=1)−

− 2k1

1 + k2
2

[
∂ζ̂1

∂y
(̂z=1+âτ)− ∂ζ̂1

∂y
(̂z=1)− ∂ζ̂2

∂y
(̂z= âτ−1)− ∂ζ̂2

∂y
(̂z=1)

]
,(3.50)

û2 =
∂φ̂

∂y
+

∂ψ̂

∂σ
=

∂ξ̂1

∂y
(̂z=1+âτ)− ∂ξ̂1

∂y
(̂z=1)− ∂ξ̂2

∂y
(̂z= âτ−1)− ∂ξ̂2

∂y
(̂z=1)+

+
2k1

1 + k2
2

[
∂ζ̂1

∂σ
(̂z=1+âτ)− ∂ζ̂1

∂σ
(̂z=1)− ∂ζ̂2

∂σ
(̂z= âτ−1)− ∂ζ̂2

∂σ
(̂z=1)

]
.(3.51)

3.4.1 Non-uniform asymptotic formulae

This part of the thesis is divided into two sections. The first one is dedicated

to the steady speed case, i.e. when the load speed is constant. The result is

an asymptotic expansion, which can well describe the behaviour of a half plane

while the moving load speed is sufficiently far from the critical one. The other

section contains the approximation of displacements exactly in the case at = cR.
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The acceleration there is assumed to be quite small, but non-zero. In the second

section all the calculations are provided in dimensional quantities.

3.4.1.1 Steady speed asymptotic expansion

Consider the displacements û1 and û2 in case when â → 0 and âτ → v =

const and, consequently, 1
2
âτ 2 → vτ . This assumption allows to approximate the

parameters α̂i, β̂i and γ̂i by expanding a square roots using the formula:

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . . for |x| < 1. (3.52)

In view of this expansion the approximate formulae for the mentioned quantities

are

α̂i =
√

((1± âτ)2 + 2âσ)2 + (2âk1)2 =

= (1± âτ)2

√
1 +

4âσ

(1± âτ)2
+

(2âσ)2 + (2âk1)2

(1± âτ)4
≈

≈ (1± âτ)2

(
1 +

2âσ

(1± âτ)2
+

2(âσ)2 + 2(âk1)
2

(1± âτ)4
− 2(âσ)2

(1± âτ)4

)
=

= bi +
2(âk1)

2

(1± âτ)2
, (3.53)

β̂i ≈
√

2bi +
(2âk1)2

(1± âτ)2
+ 2bi = 2(1± âτ)

√
1 +

2âσ

(1± âτ)2
+

â2k2
1

(1± âτ)4
≈

≈ 2(1± âτ)

(
1 +

âσ

(1± âτ)2
+

â2k2
1

2(1± âτ)4
− â2σ2

2(1± âτ)4

)
, (3.54)

γ̂i ≈
√

2bi +
(2âk1)2

(1± âτ)2
− 2bi =

2âk1

1± âτ
. (3.55)

Let us note that the displacements ûi, i = 1, 2, are expressed via a sum of the

partial derivatives of the potentials, see the formulae (3.48)–(3.51). Each partial

derivative is a sum of the logarithms and the pairs of arctangents with some

coefficients. In every case one can note that there are two different coefficients

for logarithms and the same for pairs of arctangents. All the further calculations

start with the consideration of these coefficients.
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Consider the case v < 1. To calculate the displacement û1 we deal with the

partial derivatives of the potentials separately. Start with
∂φ̂

∂σ
. First we calculate

the coefficients in front of the logarithms using formulae (3.53)–(3.55).

âk1

α̂iβ̂i

≈ âk1

2(1± âτ)3
−−→
â→0

0, i = 1, 2. (3.56)

The coefficients for the arctangents are

2âk1

α̂iγ̂i

≈ 1

1± âτ
−−−→
âτ→v

1

1± v
, i = 1, 2. (3.57)

It is clear that the terms with the logarithms in
∂φ

∂σ
vanish. So, to approximate

∂φ̂

∂σ
it remains only to calculate the arctangents. To do it one needs to substitute the

expressions (3.53)–(3.55) and (3.57) into the formula (3.44). After some simple

transformations one can get

∂φ̂

∂σ
≈ 1

1 + v


− arctan

σ +
â(k2

1−σ2)

2(1+v)2

k1

+ arctan
4(1 + v)2 + 2âσ +

â2(k2
1−σ2)

(1+v)2

2âk1

+

+ arctan
2v(1 + v) + 2âσ +

â2(k2
1−σ2)

(1+v)2

2âk1

− arctan
2(1 + v)(2 + v) + 2âσ +

â2(k2
1−σ2)

(1+v)2

2âk1


 +

+
1

1− v


− arctan

σ +
â(k2

1−σ2)

2(1−v)2

k1

+ arctan
4(1− v)2 + 2âσ +

â2(k2
1−σ2)

(1−v)2

2âk1

−

− arctan
2v(1− v) + 2âσ +

â2(k2
1−σ2)

(1−v)2

2âk1

− arctan
2(1− v)(2− v) + 2âσ +

â2(k2
1−σ2)

(1−v)2

2âk1


 .

Taking a limit when â → 0 in the last expression gives the asymptotic formula

for the
∂φ̂

∂σ
:

∂φ̂

∂σ
≈ 1

1 + v

[
− arctan

σ

k1

+
π

2
+

π

2
− π

2

]
+

1

1− v

[
− arctan

σ

k1

+
π

2
− π

2
− π

2

]
=

= − πv

1− v2
− 2

1− v2
arctan

σ

k1

. (3.58)
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The calculations for
∂ψ̂

∂y
are very similar. The coefficients in front of the loga-

rithms in the expressions for
∂ψ̂

∂y
differ from the corresponding ones in

∂φ̂

∂σ
only by

a constant factor. So, they are equal to zero. By analogy with a partial derivative

for the potential φ̂ the coefficients in front of arctangents are

2âk2
2

ˆ̃αi
ˆ̃γi

≈ k2

1± v
, i = 1, 2,

and, thus, the asymptotic formula for the partial derivative of ψ is:

∂ψ̂

∂y
≈ − 2k1k2

1 + k2
2

πv

1− v2
− 2k1k2

1 + k2
2

2

1− v2
arctan

σ

k2

. (3.59)

So, substituting the formulae (3.58) and (3.59) into (3.48) and using the property

(3.4) the asymptotic formula for the displacement u1 in case of v < 1 is

û1 ≈ 2

1− v2

[
arctan

σ

k1

− 2k1k2

1 + k2
2

arctan
σ

k2

]
+

πv

2(1− v2)
(1− k2

2). (3.60)

To find an approximation for the displacement û2 in case of v < 1 one can follow

the steps performed for û1. Start with a derivative
∂φ̂

∂y
. The coefficients in front

of arctangents are

k1
γ̂i

2α̂i

≈ âk2
1

(1± v)3
−−→
â→0

0, i = 1, 2, (3.61)

in front of the logarithms are

− k1
β̂i

4α̂i

≈ − k1

2(1± v)
, i = 1, 2. (3.62)

So, the terms with the arctangents vanish and to calculate the derivative of the

potential φ̂ it only remains to substitute the expressions (3.53)–(3.55) and (3.62)
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into the formula (3.45). After some algebraic transformations it becomes

∂φ̂

∂y
≈ − k1

2(1 + v)


ln




2â2k2
1−â2(k2

1−σ2)

(1+v)2

4(1 + v)2 + 4âσ +
2â2k2

1+â2(k2
1−σ2)

(1+v)2


 −

− ln


1− 2(1 + v) + (1 + v)2 − 2âσ

(1+v)
− â2(k2

1−σ2)

(1+v)3
+ 2âσ +

2â2k2
1

(1+v)2

1 + 2(1 + v) + (1 + v)2 + 2âσ
(1+v)

+
â2(k2

1−σ2)

(1+v)3
+ 2âσ +

2â2k2
1

(1+v)2







− k1

2(1− v)


ln




2â2k2
1−â2(k2

1−σ2)

(1−v)2

4(1− v)2 + 4âσ +
2â2k2

1+â2(k2
1−σ2)

(1−v)2


 −

− ln


1− 2(1− v) + (1− v)2 − 2âσ

(1−v)
− â2(k2

1−σ2)

(1−v)3
+ 2âσ +

2â2k2
1

(1−v)2

1 + 2(1− v) + (1− v)2 + 2âσ
(1−v)

+
â2(k2

1−σ2)

(1−v)3
+ 2âσ +

2â2k2
1

(1−v)2





 .

Taking a limit when â → 0 or, equivalently, âτ → v one can get the asymptotic

formula for
∂φ̂

∂y
:

∂φ̂

∂y
≈ −k1

[
1

1− v2
ln(k2

1 + σ2)− 1

1− v2
ln(4τ 2)−

− ln(1− v)

1− v
− ln(1 + v)

1 + v
+

ln(2− v)

1− v
+

ln(2 + v)

1 + v

]
. (3.63)

To obtain an approximation for the partial derivative of the potential ψ̂ let us

note that the coefficients in front of arctangents tend to zero as well. The form

of coefficients in front of the logarithms is very similar to one in
∂φ̂

∂y
, namely,

β̂i

4α̂i

≈ 1

2(1± v)
(3.64)

and, thus, the asymptotic formula for
∂ψ̂

∂σ
is:

∂ψ̂

∂σ
≈ 2k1

1 + k2
2

[
1

1− v2
ln(k2

2 + σ2)− 1

1− v2
ln(4τ 2)−

− ln(1− v)

1− v
− ln(1 + v)

1 + v
+

ln(2− v)

1− v
+

ln(2 + v)

1 + v

]
. (3.65)
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Finally, the substitution of the formulae (3.63) and (3.65) into (3.49) gives the

approximation for the displacement û2:

û2 ≈ − k1

1− v2

[
ln(k2

1 + σ2)− 2

1 + k2
2

ln(k2
2 + σ2)

]
−

− k1(1− k2
2)

1 + k2
2

[
ln(1− v)

1− v
+

ln(1 + v)

1 + v

]
−

− 2k1(1− k2
2)

(1− v2)(1 + k2
2)

ln τ +

+
k1(1− k2

2)

1 + k2
2

[
ln(2− v)− ln 2

1− v
+

ln(2 + v)− ln 2

1 + v

]
. (3.66)

Consider now the case v > 1. By analogy with the previous case we need to

find the asymptotic formulae for the displacements û1 and û2. But instead of

formulae (3.48) and (3.49), one should use (3.50) and (3.51). The asymptotic

forms for the derivatives of the potentials φ̂ and ψ̂ and, thus, the displacements

can be obtained using exactly the same technique as above. They are

∂φ̂

∂σ
≈ 2

v2 − 1
arctan

(
σ

k1

)
+

πv

v2 − 1
− 2π

v − 1
,

∂ψ̂

∂y
≈ 2

v2 − 1
arctan

(
σ

k2

)
+

πv

v2 − 1
− 2π

v − 1
,

û1 ≈ 2

v2 − 1

[
arctan

(
σ

k1

)
− 2k1k2

1 + k2
2

arctan

(
σ

k2

)]
+

+
πv

2(v2 − 1)
(1− k2

2)−
2π

v − 1
(1− k2

2); (3.67)

∂φ̂

∂y
≈ −k1

[
− 1

v2 − 1
ln(k2

1 + σ2) +
1

v2 − 1
ln(4τ 2)−

− ln(v + 1)

v + 1
+

ln(2 + v)

v + 1
+

ln(v − 1)

v − 1
+

ln(2− v)

v − 1
− 2

ln v

v − 1

]
,

∂ψ̂

∂σ
≈ 2k1

1 + k2
2

[
− 1

v2 − 1
ln(k2

2 + σ2) +
1

v2 − 1
ln(4τ 2)−

− ln(v + 1)

v + 1
+

ln(2 + v)

v + 1
+

ln(v − 1)

v − 1
+

ln(2− v)

v − 1
− 2

ln v

v − 1

]
,
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û2 ≈ k1

v2 − 1

[
ln(k2

1 + σ2)− 2

1 + k2
2

ln(k2
2 + σ2)

]
−

− k1(1− k2
2)

1 + k2
2

[
ln(v + 1)

v + 1
− ln(v − 1)

v − 1

]
+

+
k1(1− k2

2)

1 + k2
2

[
ln(2 + v)− ln 2

v + 1
+

ln(2− v) + ln 2

v − 1

]
+

+
2vk1(1− k2

2)

(1 + k2
2)(v

2 − 1)
ln τ − 4k1 ln v

(1 + k2
2)(v − 1)

. (3.68)

Although the exact solutions (3.48)–(3.49) and (3.50)–(3.51) are, generally speak-

ing, the same pairs of functions (see the end of Section 3.3), pairs of the asymp-

totic formulae (3.60), (3.66) and (3.67), (3.68) are different. The difference is

expressed as an extra term in the second pair of the asymptotic forms. This

”addition” is generated by dynamical effects, caused by the passage through the

critical speed.

3.4.1.2 Asymptotic expansion on the Rayleigh speed

In this section we deal with the moment of passage through the Rayleigh speed

using the same dimensional notation that was used for calculating the exact

solution in Section 3.3. To construct the approximations for the displacements

on the critical speed we should put at = cR. In this case the parameters b1 and

b2 from (3.18) and (3.20) can be rewritten as

b1 = 4c2
R + 2as and b2 = 2as.

The arguments of the derivatives of functions ξi and ζi, i = 1, 2 become

z1 = cR, z2 = 2cR, z3 = 0, z4 = cR.

By analogy with the formulae (3.53)–(3.55), since
ay

c2
R

= â ¿ 1 and
s

y
= O(1),

one can use Taylor’s expansion (3.52) to obtain the expressions:

α1 = 4c2
R

√
1 +

as

c2
R

+
a2(s2 + (k1y)2)

4c4
R

≈ 4c2
R

(
1 +

as

2c2
R

+
a2(k1y)2

8c4
R

)
,

β1 ≈ 4cR

√
1 +

as

2c2
R

+
a2(k1y)2

16c4
R

≈ 4cR

(
1 +

as

4c2
R

+
a2((k1y)2 − s2)

32c4
R

)
,
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γ1 ≈ ak1y

cR

.

Note that the parameters α2, β2 and γ2 can not be expanded in the same way.

The direct substitution at = cR into the formulae (3.20) leads to

α2 = 2a
√

s2 + (k1y)2, β2 = 2
√

a

√√
s2 + (k1y)2 + s, γ2 = 2

√
a

√√
s2 + (k1y)2 − s.

Similar to Section 3.4.1.1 we consider the partial derivatives of the potentials

separately for each displacement. But here it is easier to deal with the deriva-

tives of the functions ξi and ζi individually. As before the expressions for the

displacements contain logarithms and arctangents with some coefficients.

Start with the first displacement. Consider the expression for
∂φ

∂s
(see formula

(3.27)). It consists of a sum of the four partial derivatives:
∂ξ1

∂s
(z = 2cR),

∂ξ1

∂s
(z = cR),

∂ξ2

∂s
(z = cR) and

∂ξ2

∂s
(z = 0). Clearly,

∂ξ2

∂s
(z = 0) is equal to zero.

All other terms are considered separately.

For
∂ξ1

∂s
(z = 2cR) the coefficients in front of logarithm and pair of arctangents

are
ak1y

α1β1

≈ ak1y

16c3
R

=
1

16cR

O(â) and
2ak1y

α1γ1

≈ 1

2cR

O(1).

Here and below all the approximations are obtained by substituting the param-

eters αi, βi and γi, i = 1, 2 into the corresponding expressions and keeping only

terms of the main order. Also, I would like to mention that nevertheless, in gen-

eral, in this section we use dimensional variables, we also use non-dimensional

variable â to describe and compare orders of terms in the expressions for deriva-

tive of the potentials φ and ψ and, thus, for the displacements u1 and u2. Now

we estimate a logarithm and each arctangent:

ln

[
4c2

R − 2cRβ1 + α1

4c2
R + 2cRβ1 + α1

]
≈

≈ ln




a2((k1y)2+s2)

4c2R

16c2
R + 4as + a2(3(k1y)2−s2)

8c2R


 ≈ ln

[
a2((k1y)2 + s2)

64c4
R

]
,

arctan

[
4cR − β1

γ1

]
≈ − arctan


s + a2((k1y)2−s2)

8c2R

k1y


 ≈ − arctan

s

k1y
,
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arctan

[
4cR + β1

γ1

]
≈ arctan


8c2

R + as + a2((k1y)2−s2)

8c2R

ak1y


 ≈ − arctan

8c2
R

ak1y
≈ π

2
.

Hence, the asymptotic formula for the first term of the derivative
∂φ

∂s
is

∂ξ1

∂s
(z = 2cR) ≈ ak1y

16c3
R

ln

[
a2((k1y)2 + s2)

64c4
R

]
+

1

2cR

[
arctan

s

k1y
− π

2

]
. (3.69)

For
∂ξ1

∂s
(z = cR) the coefficients in front of logarithm and pair of arctangents

are the same as for
∂ξ1

∂s
(z = 2cR). Now we can calculate a logarithm and each

arctangent:

ln

[
c2
R − cRβ1 + α1

c2
R + cRβ1 + α1

]
≈ ln

[
c2
R

9c2
R

]
= −2 ln 3,

arctan

[
2cR − β1

γ1

]
≈ − arctan


2c2

R + as + a2((k1y)2−s2)

8c2R

ak1y


 ≈ − arctan

2c2
R

ak1y
≈ −π

2
,

arctan

[
2cR + β1

γ1

]
≈ arctan


6cR + as

cR
+ a2((k1y)2−s2)

8c3R
ak1y
cR


 ≈ arctan

6c2
R

ak1y
≈ π

2
.

Hence, the asymptotic formula for the second term of the derivative
∂φ

∂s
is

∂ξ1

∂s
(z = cR) = −ak1y

8c3
R

ln 3. (3.70)

For
∂ξ2

∂s
(z = cR) the coefficients in front of logarithm and pair of arctangents are

ak1y

α2β2

=
k1y

4
√

a
√

s2 + (k1y)2

√√
s2 + (k1y)2 + s

∼ O

(
1√
â

)

and
2ak1y

α1γ1

=
k1y

2
√

a
√

s2 + (k1y)2

√√
s2 + (k1y)2 − s

∼ O

(
1√
â

)
.

Now we estimate a logarithm and pair of arctangents:

ln

[
c2
R − cRβ2 + α2

c2
R + cRβ2 + α2

]
≈ ln

c2
R

c2
R

= 0,
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arctan

[
2cR − β2

γ2

]
+ arctan

[
2cR + β2

γ2

]
≈ π.

Hence, the asymptotic formula for the third term of the derivative
∂φ

∂s
is

∂ξ2

∂s
(z = cR) = − k1yπ

2
√

a
√

s2 + (k1y)2

√√
s2 + (k1y)2 − s

∼ O

(
1√
â

)
. (3.71)

Using the formulae (3.69), (3.70) and (3.71) and also the fact that
∂ξ2

∂s
(z = 0) = 0

and keeping only the leading order term one can obtain the asymptotic formula

for the derivative of the potential φ:

∂φ

∂s
≈ k1yπ

2
√

a
√

s2 + (k1y)2

√√
s2 + (k1y)2 + s

. (3.72)

To find an approximation for the derivative of the potential ψ one should use the

same technique as for φ. Consider the expression for
∂ψ

∂y
(see formula (3.30)).

It consists of a sum of the four partial derivatives:
∂ζ1

∂y
(z = 2cR),

∂ζ1

∂y
(z = cR),

∂ζ2

∂y
(z = cR) and

∂ζ2

∂y
(z = 0).

For
∂ζ1

∂y
(z = 2cR) the coefficients in front of logarithm and pair of arctangents

are
2k2

2

1 + k2
2

ak1y

α̃1β̃1

≈ 2k2
2

1 + k2
2

ak1y

16c3
R

∼ O(â)

and
2k2

2

1 + k2
2

2ak1y

α̃1γ̃1

≈ 2k2
2

1 + k2
2

1

2cR

∼ O(1).

Now we estimate a logarithm and pair of arctangents:

ln

[
4c2

R − 2cRβ̃1 + α̃1

4c2
R + 2cRβ̃1 + α̃1

]
≈ ln

[
a2((k2y)2 + s2

64c4
R

]
,

arctan

(
4cR − β̃1

γ̃1

)
≈ − arctan

(
s

k2y

)
, arctan

(
4cR + β̃1

γ̃1

)
≈ π

2
.
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Hence, the asymptotic formula for the first term of the derivative
∂ψ

∂y
is

∂ζ1

∂y
(z = 2cR) =

2k2
2

1 + k2
2

(
ak1y

16c3
R

ln

[
a2((k1y)2 + s2)

64c4
R

]
+

+
1

2cR

[
arctan

(
s

k1y

)
− π

2

])
. (3.73)

For
∂ζ1

∂y
(z = cR) the coefficients in front of a logarithm and pair of arctangents

are the same as ones for
∂ζ1

∂y
(z = 2cR). Now we estimate logarithm and pair of

arctangents:

ln

[
c2
R − cRβ̃1 + α̃1

c2
R + cRβ̃1 + α̃1

]
≈ −2 ln 3

arctan

(
2cR − β̃1

γ̃1

)
≈ −π

2
, arctan

(
2cR + β̃1

γ̃1

)
≈ π

2
;

Hence, the asymptotic formula for the second term of the derivative
∂ψ

∂y
is

∂ζ1

∂y
(z = cR) ≈ −ak1y

8c3
R

2k2
2

1 + k2
2

ln 3. (3.74)

For
∂ζ2

∂y
(z = cR) the coefficients in front of logarithm and pair of arctangents are

2k1

1 + k2
2

ak2
2y

α̃2β̃2

=
2k2

2

1 + k2
2

k1y

4
√

a
√

s2 + (k2y)2

√√
s2 + (k2y)2 + s

∼ O

(
1√
â

)
,

and

2k1

1 + k2
2

2ak2
2y

α̃2γ̃2

=
2k2

2

1 + k2
2

k1y

2
√

a
√

s2 + (k2y)2

√√
s2 + (k2y)2 − s

∼ O

(
1√
â

)
.

Now we estimate a logarithm and pair of arctangents:

ln

[
c2
R − cRβ̃2 + α̃2

c2
R + cRβ̃2 + α̃2

]
≈ ln

c2
R

c2
R

= 0,
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arctan

[
2cR − β̃2

γ̃2

]
+ arctan

[
2cR + β̃2

γ̃2

]
≈ π.

Hence, the asymptotic formula for the third term of the derivative
∂φ

∂s
is

∂ζ2

∂y
(z = cR) ≈ − 2k2

2

1 + k2
2

k1yπ

2
√

a
√

s2 + (k1y)2

√√
s2 + (k1y)2 − s

. (3.75)

Using the formulae (3.73), (3.74) and (3.75) and also the fact that
∂ζ2

∂y
(z = 0) = 0

and keeping only the leading order term one can obtain the asymptotic formula

for the derivative of the potential φ:

∂ψ

∂y
≈ 2k2

2

1 + k2
2

k1yπ

2
√

a
√

s2 + (k2y)2

√√
s2 + (k2y)2 − s

. (3.76)

Finally, the asymptotic form of the first displacement can be written using for-

mulae (3.72) and (3.76):

u1 =
∂φ

∂s
− ∂ψ

∂y
=

k1yπ

2
√

a


 1

√
s2 + (k1y)2

√√
s2 + (k1y)2 − s

−

− 2k2
2

1 + k2
2

1
√

s2 + (k2y)2

√√
s2 + (k2y)2 − s


 . (3.77)

All the auxiliary calculations for the second displacement are quite similar to

the ones for u1. The final asymptotic representations for the derivatives of the

potentials φ and ψ and also for u2 are given below.

∂φ

∂y
≈

k1π
√√

s2 + (k1y)2 − s

2
√

a
√

s2 + (k1y)2
, (3.78)

∂ψ

∂s
≈ k1

1 + k2
2

π
√√

s2 + (k2y)2 − s
√

a
√

s2 + (k2y)2
, (3.79)

u2 ≈ k1π√
a




√√
s2 + (k1y)2 − s

2
√

s2 + (k1y)2
+

√√
s2 + (k2y)2 − s

(1 + k2
2)

√
s2 + (k2y)2


 . (3.80)
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âτ

u1

Figure 3.6: Asymptotic behaviour for uniform speed case (dashed line) with
exact solution (solid line) and asymptotic result on Rayleigh speed (star) with

â = 0.0001 for horizontal displacement u1

So, formulae (3.77) and (3.80) can be used to approximate the formulae (3.31)–

(3.32) on the Rayleigh speed.

Figures 3.6–3.7 and 3.8–3.9 show the graphical representation of the exact solu-

tion (solid line), steady speed (dashed line) and Rayleigh speed (star) approxi-

mations for the displacements u1 and u2 respectively for different values of the

parameter â. As one can see the steady speed asymptotic formulae provide a

good approximation out of the transient effect region. As mentioned above the

region of transition effects decreases while the parameter â becomes smaller, so,

the smaller the parameter â, the better steady speed approximation works closer

to the Rayleigh speed. It is also clear that our quite simple asymptotic formulae

derived for the Rayleigh speed give a very accurate approximation.
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âτ

u1

Figure 3.7: Asymptotic behaviour for uniform speed case (dashed line) with
exact solution (solid line) and asymptotic result on Rayleigh speed (star) with

â = 0.001 for horizontal displacement u1

3.4.2 Uniform asymptotic solution

In Section 3.4.1 we obtain several asymptotic formulae, which approximate the

exact solution (3.31)–(3.32) (or, equivalently, (3.39)–(3.40)) either exactly on the

Rayleigh speed (see (3.77) and (3.80)) or far from it (see (3.60) and (3.66) or (3.67)

and (3.68)). So, the local vicinity of the critical speed is not covered by them.

Note that in the previous section we have the only one small parameter, namely,

acceleration â. To describe the asymptotic behaviour of the exact solution near

the Rayleigh speed we should consider one more parameter (1− âτ)2 of the same

order as an acceleration â, i.e. â ∼ (1− âτ)2.

We introduce an auxiliary small quantity ε that has the same order as a parameter

â (and, consequently, (1− âτ)2). So,

O(â) = O((1− âτ)2) = O(ε), O(1− âτ) = O(
√

ε).



Chapter 3. Vibrations of infinite half plane 85

âτ

u2

Figure 3.8: Asymptotic behaviour for uniform speed case (dashed line) with
exact solution (solid line) and asymptotic result on Rayleigh speed (star) with

â = 0.0001 for vertical displacements û2

To find an approximation we use a procedure similar to the one for the non-

uniform asymptotic representations and use the non-dimensional parameters. So,

for each displacement the partial derivatives of the potentials are considered sep-

arately and as before we are interested only in terms of the leading order. Here

to make the description less massive we start with an identification of the orders

of all the auxiliary quantities. For the parameters (3.42)–(3.43) we get

b̂1 = (1 + âτ)2 + 2âσ ≈ (1 + âτ)2 = O(1),

α̂1 =
√

(1 + âτ)4 + (2âk1)2 ≈ (1 + âτ)2 = O(1),

β̂1 ≈
√

2(1 + âτ)2 + 2(1 + âτ)2 = 2(1 + âτ) = O(1),

γ̂1 =

√
2(

√
((1 + âτ)2 + 2âσ)2 + (2âk1)2 − (1 + âτ)2 − 2âσ) ≈ 2âk1

1 + âτ
= O(ε),

b̂2 = (1− âτ)2 + 2âσ = O(ε),

α̂2 =
√

((1− âτ)2 + 2âσ)2 + (2âk1)2 = O(ε),
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âτ

u2

Figure 3.9: Asymptotic behaviour for uniform speed case (dashed line) with
exact solution (solid line) and asymptotic result on Rayleigh speed (star) with

â = 0.001 for vertical displacements û2

β̂2 =
√

2(α2 + b2) = O(
√

ε),

γ̂2 =
√

2(α2 − b2) = O(
√

ε).

Consider the first displacement. The coefficients in front of the logarithm and

pair of arctangents for the derivative of
∂φ̂

∂σ
are

âk1

α̂1β̂1

= O(ε),
âk1

α̂2β̂2

= O

(
1√
ε

)

and
2âk1

α̂1γ̂1

= O(1),
2âk1

α̂2γ̂2

= O

(
1√
ε

)

respectively. Let us note that the leading order here is O
(

1
ε

)
. Hence, to find an

approximation for
∂φ̂

∂σ
we can neglect the terms of smaller order in advance. Now
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we calculate the logarithm and arctangents:

ln

[
(1− âτ)2 − β̂2(1− âτ) + α̂2

(1− âτ)2 + β̂2(1− âτ) + α̂2

]
− ln

[
1− β̂2 + α̂2

1 + β̂2 + α̂2

]
≈

≈ ln

[
(1− âτ)2 − β̂2(1− âτ) + α̂2

(1− âτ)2 + β̂2(1− âτ) + α̂2

]
.

Since the leading order term of the second logarithm’s argument is unity, it

vanishes as ln 1 = 0, and

arctan

[
2(1− âτ)− β̂2

γ̂2

]
+ arctan

[
2(1− âτ) + β̂2

γ̂2

]
−

− arctan

[
2− β̂2

γ̂2

]
− arctan

[
2 + β̂2

γ̂2

]
≈

≈ arctan

[
2(1− âτ)− β̂2

γ̂2

]
+ arctan

[
2(1− âτ) + β̂2

γ̂2

]
− π,

because the arguments of the last two arctangents are of order O
(

1√
ε

)
, which is

a sufficiently large number.

So, combining the last two results, one can write the approximation for the deriva-

tive of the potential φ̂:

∂φ̂

∂s
≈ âk1

α̂2β̂2

ln

[
(1− âτ)2 − β̂2(1− âτ) + α̂2

(1− âτ)2 + β̂2(1− âτ) + α̂2

]
−

− 2âk1

α̂2γ̂2

[
arctan

[
2(1− âτ)− β̂2

γ̂2

]
+ arctan

[
2(1− âτ) + β̂2

γ̂2

]]
+

2âk1π

α̂2γ̂2

. (3.81)

The coefficients in front of the logarithms and pairs of arctangents for
∂ψ̂

∂y
are:

2âk2
2

2ˆ̃α1
ˆ̃β1

= O(ε),
âk2

2

ˆ̃α2
ˆ̃β2

= O

(
1√
ε

)
,

and
4âk2

2

2ˆ̃α1
ˆ̃γ1

= O(1),
2âk2

2

ˆ̃α2
ˆ̃γ2

= O

(
1√
ε

)
.
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Note that all these coefficients have the same order as the respective ones for
∂φ̂

∂σ
. So, in this case one should consider the same logarithms and arctangents

as before. Hence, an approximation for the derivative of the potential ψ̂ has the

following form:

∂ψ̂

∂y
≈ 2k2

2

1 + k2
2

âk1

ˆ̃α2
ˆ̃β2

ln

[
(1− âτ)2 − ˆ̃β2(1− âτ) + ˆ̃α2

(1− âτ)2 + ˆ̃β2(1− âτ) + ˆ̃α2

]
−

− 2k2
2

1 + k2
2

2âk1

ˆ̃α2
ˆ̃γ2

[
arctan

(
2(1− âτ)− ˆ̃β2

ˆ̃γ2

)
+ arctan

(
2(1− âτ) + ˆ̃β2

ˆ̃γ2

)]
+

+
2k2

2

1 + k2
2

2âk1π

ˆ̃α2
ˆ̃γ2

. (3.82)

Combining the formulae (3.81) and (3.82), we can write down a uniform asymp-

totic representation for the first displacement:

û1 ≈ âk1

α̂2β̂2

ln

[
(1− âτ)2 − β̂2(1− âτ) + α̂2

(1− âτ)2 + β̂2(1− âτ) + α̂2

]
−

− 2k2
2

1 + k2
2

âk1

ˆ̃α2
ˆ̃β2

ln

[
(1− âτ)2 − ˆ̃β2(1− âτ) + ˆ̃α2

(1− âτ)2 + ˆ̃β2(1− âτ) + ˆ̃α2

]
−

− 2âk1

α̂2γ̂2

[
arctan

(
2(1− âτ)− β̂2

γ̂2

)
+ arctan

(
2(1− âτ) + β̂2

γ̂2

)]
+

+
2k2

2

1 + k2
2

2âk1

ˆ̃α2
ˆ̃γ2

[
arctan

(
2(1− âτ)− ˆ̃β2

ˆ̃γ2

)
+ arctan

(
2(1− âτ) + ˆ̃β2

ˆ̃γ2

)]
+

+ 2âk1π

[
1

α̂2γ̂2

− 2k2
2

1 + k2
2

1

ˆ̃α2
ˆ̃γ2

]
. (3.83)

To obtain an asymptotic formula for the second displacement let us find the orders

of the coefficients in front of the logarithms and arctangents in the expressions

for
∂φ̂

∂y
and

∂ψ̂

∂σ
. For the derivative of the potential φ̂ they are

−k1
β1

4α1

= O(1), − k1
β2

4α2

= O

(
1√
ε

)
,

−k1
γ1

2α1

= O(ε), − k1
γ2

2α2

= O

(
1√
ε

)
.
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â = 0.001

â = 0.0001

âτ

u1

Figure 3.10: Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of horizontal displacement u1 under moving point load

For the derivative of the potential ψ̂ the coefficients are

β1

4α1

= O(1),
β2

4α2

= O

(
1√
ε

)
,

γ1

2α1

= O(ε),
γ2

2α2

= O

(
1√
ε

)
.

Let us note that again we are interested only in the coefficients in front of ex-

actly the same logarithms and arctangents as those considered in case for û1.

So, by analogy with the first displacement, we can immediately write down the

asymptotic formulae for
∂φ̂

∂y
:

∂φ̂

∂y
≈ −k1

(
β̂2

4α̂2

ln

(
(1− âτ)2 − β̂2(1− âτ) + α̂2

(1− âτ)2 + β̂2(1− âτ) + α̂2

)
+

+
γ̂2

2α̂2

[
arctan

(
2(1− âτ)− β̂2

γ̂2

)
+ arctan

(
2(1− âτ) + β̂2

γ̂2

)
− π

])
, (3.84)
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â = 0.001

â = 0.0001

âτ

u1

Figure 3.11: Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of horizontal displacement u1 under shock wave

and for
∂ψ̂

∂σ
:

∂ψ̂

∂σ
≈ 2k1

1 + k2
2

ˆ̃β2

4ˆ̃α2

ln

(
(1− âτ)2 − ˆ̃β2(1− âτ) + ˆ̃α2

(1− âτ)2 + ˆ̃β2(1− âτ) + ˆ̃α2

)
−

− 2k1

1 + k2
2

ˆ̃γ2

2ˆ̃α2

[
arctan

(
2(1−âτ)− ˆ̃β2

ˆ̃γ2

)
+ arctan

(
2(1−âτ)+ ˆ̃β2

ˆ̃γ2

)
− π

]
. (3.85)
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Finally, using the formulae (3.84)–(3.85) we arrive at the asymptotic representa-

tion for the second displacement:

û2 ≈ k1

[
2

1 + k2
2

ˆ̃β2

4ˆ̃α2

ln

(
(1− âτ)2 − ˆ̃β2(1− âτ) + ˆ̃α2

(1− âτ)2 + ˆ̃β2(1− âτ) + ˆ̃α2

)
−

− β̂2

4α̂2

ln

(
(1− âτ)2 − β̂2(1− âτ) + α̂2

(1− âτ)2 + β̂2(1− âτ) + α̂2

)]
−

−k1

[
2

1 + k2
2

ˆ̃γ2

2ˆ̃α2

[
arctan

(
2(1− âτ)− ˆ̃β2

ˆ̃γ2

)
+ arctan

(
2(1− âτ) + ˆ̃β2

ˆ̃γ2

)
− π

]
+

+
γ̂2

2α̂2

[
arctan

(
2(1− âτ)− β̂2

γ̂2

)
+ arctan

(
2(1− âτ) + β̂2

γ̂2

)
− π

]]
. (3.86)

âτ

â = 0.0001

â = 0.001

u2

Figure 3.12: Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of vertical displacement u2 under moving point load

Formulae (3.83) and (3.86) are the same for the cases when âτ ≤ 1 and âτ ≥ 1,

i.e. valid for all values of the load speed that are mentioned at the end of Section

3.2. Let us remind that this is so because all the terms with the logarithms and

the arctangents in the expressions for the uniform asymptotic forms of û1 and û2

are odd.
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âτ

â = 0.001

â = 0.0001

u2

Figure 3.13: Uniform asymptotic behaviour (dashed line) and exact solution
(solid line) of vertical displacement u2 under shock wave

Now we will check how the obtained uniform asymptotic forms (3.83) and (3.86)

are connected to the respective formulae for the stationary case (see (3.60) and

(3.66)) and for the Rayleigh speed case (see (3.77) and (3.80)).

Start with considering (3.83) and (3.86) for âτ = 1, i.e. for the moment of passage

through the critical speed. In this case the auxiliary quantities b̂2, α̂2, β̂2 and γ̂2

can be rewritten as

b̂2 = 2âσ, α̂2 = 2â
√

σ2 + k2
1,

β̂2 = 2
√

â

√√
σ2 + k2

1 + σ, γ̂2 = 2
√

â

√√
σ2 + k2

1 − σ.

The formulae for the respective parameters with tildes are the same apart k2

instead of k1.
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The direct substitution of âτ = 1, b̂2, α̂2, β̂2, γ̂2 (and quantities with tildes) into

(3.83) and (3.86) and some obvious transformations lead to the following results:

û1 ≈ k1π

2
√

â


 1

√
σ2 + k2

1

√√
σ2 + k2

1 − σ
−

− 2k2
2

1 + k2
2

1
√

σ2 + k2
2

√√
σ2 + k2

2 − σ2


 , (3.87)

û2 ≈ πk1√
â




√√
σ2 + k2

1 − σ

2
√

σ2 + k2
1

+
1

1 + k2
2

√√
σ2 + k2

2 − σ
√

σ2 + k2
2


 . (3.88)

One can see that these expressions are a non-dimensional analogue to the asymp-

totic formulae, obtained for the case of the Rayleigh speed in Section 3.4.1.2. So,

we can state that our uniform approximations (3.83) and (3.86) transform to the

formulae (3.77) and (3.80) exactly on the critical speed.

Now in order to check how the uniform asymptotic formulae for û1 and û2 deal

with the stationary case we consider (3.83) and (3.86) for the load speed suffi-

ciently far from the critical one. So, the same assumptions as in Section 3.4.1.1,

i.e. when â → 0, âτ → v = const and 1
2
âτ 2 → vτ , can be used. All the calcu-

lations and arguments below are given for the case âτ < 1, but can be equally

applied for âτ > 1. Using the expansion (3.52) one can find the following repre-

sentation for the auxiliary parameters α̂2, β̂2 and γ̂2:

α̂2 ≈ (1− âτ)2

(
1 +

2âσ

(1− âτ)2
+

(2âk1)
2

(1− âτ)4

)
, (3.89)

β̂2 ≈ 2(1− âτ)

(
1 +

âσ

(1− âτ)2
+

â2(k2
1 − σ2)

2(1− âτ)4

)
, (3.90)

γ2 ≈ 2âk1

1− âτ
. (3.91)

Substituting (3.89)–(3.91) into (3.83) and (3.86) and taking a limit while â → 0,

âτ → v = const and 1
2
âτ 2 → vτ we get

û1 ≈ 1

1− v

[
arctan

(
σ

k1

)
− 2k1k2

1 + k2
2

arctan

(
σ

k2

)]
+

π(1− k2
2)

1− v
(3.92)
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âτ

u1

Figure 3.14: Uniform asymptotic behaviour with (solid line) and without
(dashed line) terms with logarithms of horizontal displacement u1 under mov-

ing point load

and

û2 ≈ −k1

[
1

2(1− v)

(
ln (k2

1 + σ2)− 2

1 + k2
2

ln (k2
2 + σ2)

)]
+

+
ln v

1− v

k2
2 − 1

k2
2 + 1

− ln 2τ

1− v

k2
2 − 1

k2
2 + 1

− 2 ln(1− v)

1− v

k2
2 − 1

k2
2 + 1

. (3.93)

As one can see, the latter expressions are different from those obtained in Section

3.4.1.1 (see (3.60) and (3.66)). However, to find the asymptotic formulae (3.83)

and (3.86) we assumed that 1 − âτ is a small parameter, thus, found that the

leading order terms are of order O
(

1
1−âτ

)
and neglected all the others. This can

explain the difference between the formulae (3.60), (3.66) and (3.92), (3.93).

The graphs on Figures 3.10–3.13 represent the exact solution (solid line) and

the uniform asymptotic solution (dashed line) obtained in this section for the

displacements under a moving point load (Figure 3.10 and Figure 3.12) and under

a shock wave (Figure 3.11 and Figure 3.13). Clearly, our asymptotic solution
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âτ

u2

Figure 3.15: Uniform asymptotic behaviour with (solid line) and without
(dashed line) terms with arctangents of vertical displacement u2 under moving

point load

provide a very accurate approximation for the vicinity of the Rayleigh speed, i.e.

for the transient effect region. As one can see the derived uniform asymptotic

formulae work well for the different sufficiently small values of the parameter â.

Note also that the formulae (3.92) and (3.87) do not contain terms with the

logarithms, as well as there are no terms with the arctangents in the formulae

(3.93) and (3.88). So, it is necessary to define their contribution to the main

uniform asymptotic expressions (3.83) and (3.86). As one can see from Figure 3.14

and Figure 3.15 these terms play a very important role in the region where the

uniform asymptotic formulae can be applied.

3.5 Summary

In this chapter we dealt with the asymptotic model given in [61] which describes

the Rayleigh waves which appear in an elastic half plane subject to a moving
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point load.

The boundary conditions for the main problem were obtained in Section 3.2 as

a solution for the problem of a string on the surface of a half plane subject to a

moving load.

The exact solution over the interior of a half plane was derived for a uniformly

accelerated load within the framework of the above mentioned model. The asymp-

totic analysis and graphical representation for this solution was given.

In Section 3.4.1 the steady speed and the Rayleigh wave speed asymptotic ex-

pansions were obtained. The graphical comparative analysis of the exact solution

and the approximations were provided for different moving load speed intervals

and values of the key small parameter â.

In the neighborhood of the Rayleigh speed we derived uniform asymptotic formu-

lae which can be applied for those values of moving load speed where â ∼ (1−v)2.

The obtained asymptotic forms were compared graphically with the exact solu-

tion. Some interesting properties of the uniform asymptotic formulae were dis-

covered and briefly studied.

So, our set of sufficiently simple asymptotic formulae obtained in this chapter

gives quite an accurate approximation for the very complicated exact solution

within the framework of the model.



Concluding remarks

In this thesis the asymptotic behaviour of an elastically supported string and an

elastic homogeneous half plane, both subject to a moving load, were considered.

For both structures uniform approximations which describe their behaviour for

the wide range of the load speed and in particular in the vicinity of the wave

speeds were derived; small magnitude of the load acceleration was assumed.

The asymptotic formulae obtained in this work were compared numerically (and

graphically) with the exact solutions and, in some cases, with each other.

To describe the string behaviour subject to a moving load the auxiliary canonical

functions Fi, i = 1, 2, 3, were introduced, asymptotically analyzed and tabu-

lated. Some asymptotic analysis techniques for integrals with Bessel functions

were improved. Uniform asymptotic formulae for a string under the constant

accelerating and decelerating point loads as well as for an arbitrary acceleration

case were obtained using the introduced canonical functions Fi, i = 1, 2, 3. As

an example of the approximation for an arbitrary accelerated load, the sinusoidal

load speed case was considered. Approximate formulae for the displacements in

the vicinity of a point load and a shock wave using the steady speed asymp-

totic expansion with additional contributions from the stationary points where

appropriate were derived.

Within the framework of the asymptotic model given in [61] the boundary con-

ditions and the exact solution (in form of elementary functions) for the main

problem over the interior of a half plane subject to a point load moving with a

small constant acceleration were obtained. The steady speed, the Rayleigh wave

speed and uniform asymptotic expansions were derived and compared with the

exact solution for different values of the parameters. All those formulae can be

applied for all the interior points of a half plane under the certain assumptions.

97
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Some interesting properties of the uniform asymptotic forms were discovered and

briefly studied.
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