
A NOTE ON A CAMOUFLAGE PURSUIT PROBLEM

A.D. RAWLINS

Abstract. Motion camouflage is a pursuit strategy whereby a predator moves
towards a prey while appearing stationary to the prey except for the change
in its perceived cross section as it approaches. If the effect of cross section size
with distance is ignored then this means that the target is unable to discern
that the aggressor is moving . The aggressor appears to be at its initial position
or is camouflaged by a stationary object in the background. We shall derive
a closed form solution to the problem of camouflage pursuit for a particular
situation. Although general differential equations have already been derived
for this strategy they have not been solved in closed form.

1. Introduction

Motion camouflage is a pursuit strategy whereby a predator moves towards a
prey while appearing stationary to the prey except for the change in its perceived
cross section as it approaches. Throughout the pursuit the pursuer remains between
the prey and a stationary point, which the pursuer is using to camouflage itself. If
the effect of size with distance is ignored then this means that the target is unable
to discern that the aggressor is moving. The aggressor appears to be at its initial
position or is camouflaged by a stationary object in the background. This type
of pursuit strategy is observed in insects like dragonflies. Recently, an interesting
article by Duncan Graham-Rowe [1] in the New Scientist, has explained why this
strategy is now also seen as a very effective way of using missile defence systems.
In two papers Justh and Krishnaprasad [4] and Wei, Justh, and Krishnaprasad [5]
deal with the biological steering laws and the various pursuit strategies that are
used by insects and defence systems in detail as well as giving a good overview of
the subject and relevant references to the literature.They derive some approximate
mathematical results which are based on these steering laws. In a series of very
interesting articles Glendinning [2], [3] discussed the hidden or camouflage pursuit
problem from a mathematical point of view. He was able to derive the general
differential equation that described the path of the pursuer in cartesian coordinates;
and then numerically solve the differential equation to confirm the effectiveness of
the camouflage pursuit in comparison to other methods of pursuit like direct-line-
of-sight-pursuit that is used by heat seeking missiles. He showed that there is no
known closed form solution of the equations as a function of time; here we show that
by passing to intrinsic coordinates, closed form solutions to the phase curves can
be obtained. We shall consider a particular pursuit situation and derive a closed
form solution in quadratures which can be put in terms of an elliptic integral of
the second kind. This will be achieved by using intrinsic coordinates to formulate
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Figure 1. Geometry of the path of the target and the pursuer.

and solve the differential equation problem. The solution for the pursuit path and
the time and distance can be quickly calculated and displayed by using a simple
Mathematica programme.

2. Formulation of particular pursuit problem

The specific two dimensional pursuit problem we shall consider takes place in
a vertical plane with cartesian coordinates (x, y). A target(prey) is moving in
a straight line y = h[m] with a constant speed v[ms−1]. This target is being
pursued by a predator moving with a constant speed u[ms−1]. Initially, at time
t = 0, the predator is located at the origin (0, 0) and the prey is located at the
point (−d, h), d > 0, h > 0. The initial angle of elevation between the predator
at (0, 0) and the prey at (−d, h) is π − ψ0. For t > 0 the pursuer pursues the
target employing the camouflage strategy. Thus throughout the pursuit the pursuer
remains between the prey and the initial stationary point (0, 0) (against which the
pursuer is camouflaging itself). The geometry of the situation is shown in Figure 1.

Let the position of the pursuer at time t be (x, y) then from the Figure 1 we
have by similar triangles that

(1)
h

vt− d
=

y

x
.

Now differentiating with respect to time t, and using Newton’s notation
dx
dt = ẋ, d2x

dt2 = ẍ, gives
v

h
=

ẋy − xẏ

y2
,

or
vy2

h
= ẋy − xẏ.
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Now differentiate again with respect to time gives

(2) 2
v

h
yẏ = ẍy − ÿx = ẍ− ÿ

vt− d

h
.

3. Solution of the differential equation for path of pursuit

We shall now convert this equation (2) into intrinsic coordinates ψ and s, where ψ
is the angle that the tangent to the pursuing curve makes with the x-axis and s is the
distance traveled by the pursuer at time t, see Figure 1. Note that 0 < ψ < ψ0 < π.
The relationship between the intrinsic coordinates and cartesian coordinates is as
follows

ẋ =
dx

dt
=

dx

ds

ds

dt
= cos ψṡ = u cos ψ.

ẏ =
dy

dt
=

dy

ds

ds

dt
= sin ψṡ = u sin ψ.

Thus

ẍ =
dẋ

dt
=

d(u cos ψ)
dt

= −u sin ψψ̇.

ÿ =
dẏ

dt
=

d(u sin ψ)
dt

= −u cosψψ̇.

By substituting these results into the equation (2) we get

2
v

h
u sin ψ = −u sin ψψ̇ − vt− d

h
u cosψψ̇,

or by rearranging we get the basic differential equation

(3)
dt

dψ
+

1
2
t cot ψ = − h

2v
+

1
2

d

v
cot ψ.

This first order differential equation (3) can be integrated by multiplying across by
the integrating factor

√
sin ψ. Thus we get

d(t
√

sin ψ)
dψ

= −h
√

sin ψ

2v
+

1
2

d

v

cos ψ√
sin ψ

.

Integrating from an initial angle ψ0(0 < ψ0 < π) when s = 0 at t = 0 we have

t
√

sin ψ = − h

2v

∫ ψ

ψ0

√
sin νdν +

1
2

d

v

∫ ψ

ψ0

d(sin ν)√
sin ν

.

The time passed by the pursuer is thus given by

t = − h

2v
√

sin ψ

∫ ψ

ψ0

√
sin νdν +

d

v
[1−

√
sinψ0√
sin ψ

],

and by using the fact that s = ut the distance traveled by the pursuer in this time
t is given by

s(ψ) =
uh

2v
√

sin ψ

∫ ψ0

ψ

√
sin νdν +

ud

v
[1−

√
sin ψ0√
sin ψ

],
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and since, d = h cot(π − ψ0) then

s(ψ) =
uh

2v
√

sin ψ

∫ π
2−ψ

π
2−ψ0

√
cos νdν − uh cot ψ0

v
[1−

√
sin ψ0√
sin ψ

].

This last expression is also the intrinsic equation of the path of pursuit. It is also
worth noting that since
∫ ϕ

0

√
cos wdw =

∫ ϕ

0

√
1− 2(sinw/2)2dw = 2

∫ ϕ/2

0

√
1− 2(sinw)2dw = 2E[ϕ/2, 2],

where E[φ, m] is the incomplete elliptic integral of the second kind, then we can
also represent these expressions for time and path length in the form

(4) t(ψ) = − h

v
√

sin ψ
(E[

π

4
− ψ

2
, 2]− E[

π

4
− ψ0

2
, 2])− h cot ψ0

v
[1−

√
sinψ0√
sin ψ

].

(5) s(ψ) =
uh

v
√

sinψ
(E[

π

4
− ψ

2
, 2]− E[

π

4
− ψ0

2
, 2])− uh cot ψ0

v
[1−

√
sin ψ0√
sin ψ

].

4. Some properties of the solution

The cartesian equation for of the path of pursuit is given by using the parametric
representation

x =
∫ s

0

cosψds =
∫ ψ

ψ0

cos w
ds(w)
dw

dw.

y =
∫ s

0

sin ψds =
∫ ψ

ψ0

sin w
ds(w)
dw

dw.

In particular since

ds(w)
dw

=
uh

2v

d

dw
(

1√
sin w

∫ ψ0

w

√
sin µdµ− 2 cot ψ0[1−

√
sin ψ0√
sin ψ

]),(6)

= −uh

2v
(1 +

cos w

2(sin w)
3
2

∫ ψ0

w

√
sinµdµ +

cos ψ0 cosw√
sin ψ0(sinw)

3
2
);

then we get

y = −uh

2v

∫ ψ

ψ0

(sin w +
cosw

2
√

sin w

∫ ψ0

w

√
sin µdµ +

cosψ0 cosw√
sin ψ0

√
sin w

)dw,

which on carrying out a few integrations gives

y =
uh

2v
(cos ψ−cosψ0)− uh

4v

∫ ψ

ψ0

cos w√
sinw

∫ ψ0

w

√
sin µdµdw+

uh cos ψ0

v
[1−

√
sinψ√
sin ψ0

].

By making the change of integration variable µ = π
2 − σ we get

(7)

y =
uh

2v
(cos ψ−cosψ0)+

uh

4v

∫ ψ0

ψ

cosw√
sin w

∫ π
2−w

π
2−ψ0

√
cos σdσdw+

uh cos ψ0

v
[1−

√
sin ψ√
sin ψ0

].
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(8)

y =
uh

2v
(cos ψ−cosψ0)+

uh

2v

∫ ψ0

ψ

cosw√
sin w

(E[
π

4
−w

2
]−E[

π

4
−ψ0

2
])dw+

uh cosψ0

v
[1−

√
sin ψ√
sin ψ0

].

We can also interchange the order of integration in the double integral in the ex-
pression (7) to give the equivalent representation

y =
uh

2v
(cos ψ−cosψ0)+

uh

4v

∫ π
2−ψ

π
2−ψ0

√
cos σdσ

∫ π
2−σ

ψ

cosw√
sin w

dw+
uh cos ψ0

v
[1−

√
sin ψ√
sin ψ0

],

y =
uh

v
(cos ψ − cosψ0)− uh

2v

√
sinψ

∫ π
2−ψ

π
2−ψ0

√
cos σdσ +

uh cosψ0

v
[1−

√
sin ψ√
sinψ0

].

(9) y =
uh

v
(cos ψ − cos ψ0

√
sin ψ√
sin ψ0

)− uh

2v

√
sin ψ(E[

π

4
− ψ

2
, 2]− E[

π

4
− ψ0

2
, 2]).

It is interesting to note that by eliminating y between (8) and (9) we derive an
interesting identity for the integral of an elliptic function in terms of an elliptic
function.

Clearly from the geometry of the problem for an initial angle ψ0 = π/2 then
ψ decreases monotonically as the distance s increases. This is not obvious for an
arbitrary initial angle of attack. This can be proved analytically as follows. From
the expression (6) we need to prove that for 0 < ψ < ψ0 < π

cos ψ

2(sinψ)
3
2
F (ψ) > 0,

where

F (ψ) =
∫ ψ0

ψ

√
sin µdµ + 2

(sinψ)
3
2

cosψ
+ 2

cosψ0√
sin ψ0

.

Then equivalently we need to prove that F (ψ) > 0 for 0 < ψ < ψ0 < π/2; and that
F (ψ) < 0 for π/2 < ψ < ψ0 < π. To this end we take the derivative of F (ψ) giving

F ′(ψ) = −
√

sin ψ + 3
√

sinψ +
2(sinψ)

5
2

(cos ψ)2
=

2
√

sinψ

(cosψ)2
> 0.

Thus F (ψ) is a monotonic increasing function of ψ in the range 0 < ψ < π.
For 0 < ψ < ψ0 < π/2 then

∫ ψ0

0

√
sin νdν + 2

cosψ0√
sin ψ0

< F (ψ) <
2

cosψ0

√
sin ψ0

;

hence F (ψ) > 0.
For π/2 < ψ < ψ0 < π then

−∞ < F (ψ) <
2

cosψ0

√
sin ψ0

;

hence F (ψ) < 0. We also remark that from the expression (9) we can determine the
angle ψ if capture occurs. Clearly capture will occur when y = h. Thus from (9)
we have the analytic condition for capture is that the equation:
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(10)

G(ψ) = −h+
uh

v
(cos ψ−cos ψ0)+

uh

2v

√
sin ψ

∫ ψ

ψ0

√
sin νdν+

uh cosψ0

v
[1−

√
sin ψ√
sin ψ0

] = 0,

has a root. We shall first show that G(ψ) is a monotonic decreasing function of ψ
for 0 < ψ < ψ0 < π. To this end it can be shown that

(11) G′(ψ) = −uh cosψ

4v sin ψ
(2

(sinψ)
3
2

cos ψ
+ 2

cosψ0√
sin ψ0

+
∫ ψ0

ψ

√
sin νdν),

G′(ψ) = −uh cos ψ

4v sin ψ
F (ψ).

Thus by using the properties of F (ψ) derived above, the monotonicity of G(ψ)
follows. We also note that

−h < G(ψ) <
h

v
(u− v).

It follows that there will only be one root for u ≥ v and none for u < v. Hence
provided the pursuit can carry on without time or energy constraint the predator
will capture the prey for u ≥ v, but the prey will escape capture for u < v. Knowing
the above properties we can dictate the capture distance in terms of ψ. For example
we can plot the graph of s(ψ) (for a given angle of prey sighting ψ0), against ψ
by using (5), see Figure 2, and read off the value of ψ corresponding to a required
distance of capture s. Alternatively, from an analytic point of view for a given
angle ψ0 the capture angle ψ is given by solving the transcendental equation (10),
G(ψ) = 0.

5. Numerical and graphical results

Some graphs of a few situations, where capture or interception of target by the
pursuer occurs at the point of intersection of the straight line of the target and the
curved path of the pursuer, are shown below by using Mathematica. In Figure 2 the
plot of the distance s(ψ) against ψ is given for u = 1.1, v = 1, h = 100, ψ0 = 3π/4;
the corresponding target line and curve of pursuit with the capture intersection
shown is given in Figure 3. In Figures 4 to 6 the paths of pursuit for values of the
parameter u = 1, u = 1.1, u = 2 are given for ψ0 = 7π/8, 6π/8, ...π/8 and v = 1. It
can be seen that the larger the initial angle ψ0 that the pursuer initiates the pursuit
the sooner the target is intercepted. In Figure 7 the graph of v = 1, ψ0 = 3π/4
for the various values of u = 1, 2, ...7 are given. In figure 8 the plots of the pursuit
paths for direct-line-of-sight and camouflage pursuit are shown. The curve for the
direct-line-of-sight-pursuit is calculated from the paper of Eliezer and Barton [6].
It can be seen that the camouflage pursuit path captures the prey before the direct-
line-of-sight-pursuit path. We notice from these graphs that the target is captured
sooner the earlier the pursuer sees, and starts its pursuit,that is, the larger the
angle ψ0.
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6. Conclusions

We have derived an exact solution to a camouflage pursuit problem which will
be useful in comparing approximate solutions obtained by other means. Although
the solution is ostensibly in two dimensions in real life where three dimensions is
applicable it is suggested that pursuit will take place in a plane formed by the line
of the target and the initial point of location of the prey. This could be achieved by
predator reorientation by swivelling or realigning him/herself appropriately. This
would need to be observed in nature to be verified. From my own experience
on approaching ponds dragonflies on spotting me do realign themselves to offer
the smallest cross section. To the authors knowledge this is the only know exact
solution to a camouflage pursuit problem. We have derived some important analytic
properties of the solution. By using the exact solution we confirm numerically the
efficacy of the camouflage pursuit over the direct-line-of-sight-pursuit as a capture
mechanism. Thus the methods of pursuit used by insects such as dragon flies to
capture prey is more effective than heat seeking missiles that are used in defence
systems. This is another case Darwin’s survival of the fittest; where insects in
nature have improvised a sophisticated pursuit mechanisms for survival of their
species. Finally we remark it would be interesting to consider the more complex
problem of finding the initial angle ψ0 that is required to achieve capture for a given
limitation on the distance s(ψ) (and hence energy) of travel by the pursuer.
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Figure 2. Graph of the distance s(ψ) against ψ for u = 1.1, v =
1, h = 100, ψ0 = 3π/4.
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Figure 3. The pursuit curve and the straight line path of the
target for u = 1.1, v = 1, h = 100, ψ0 = 3π/4.



A NOTE ON A CAMOUFLAGE PURSUIT PROBLEM 9

100 100 200

50

100

ψο=7π/8

ψο=6π/8

ψο=5π/8
ψο=4π/8

ψο=3π/8

ψο=2π/8

ψο=π/8

x

y

u=1,  v=1,  h=100

Figure 4. The paths of pursuit for u = 1, v = 1, h = 100 and
various initial angles of sighting ψ0.
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Figure 5. The paths of pursuit for u = 1.1, v = 1, h = 100 and
various initial angles of sighting ψ0.
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Figure 6. The paths of pursuit for u = 2, v = 1, h = 200 and
various initial angles of sighting ψ0.
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Figure 7. The paths of pursuit for v = 1, h = 100 and initial
angle of sighting ψ0 = 3π/4 for various values of pursuer speed u.
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Figure 8. The paths of pursuit for u = 2, v = 1.2, h = 100 and
initial angle of sighting ψ0 = π/2, for camouflage and line-of-sight
pursuit.
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