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Abstract 
 

A magnetic bead-based DNA extraction and purification device has been designed to 
be used for extraction of the target DNA molecules from whole blood sample. Mixing 
and separation steps are performed using functionalised superparamagnetic beads 
suspended in the cell lysis buffer in a circular chamber that is sandwiched between 
two electromagnets. Non-uniform nature of the magnetic field causes temporal and 
spatial distribution of the beads within the chamber. This process efficiently mixes the 
lysis buffer and whole blood in order to extract DNA from target cells. Functionalized 
surface of the magnetic beads then attract the exposed DNA molecules. Finally, 
DNA-attached magnetic beads are attracted to the bottom of the chamber by 
activating the bottom electrode. DNA molecules are extracted from the magnetic 
beads by washing and re-suspension processes.  

The numerical simulation approach has been adopted in order to design the magnetic 
field source. The performance of the magnetic field source has been investigated 
against different physical and geometrical parameters and optimised dimensions are 
obtained with two different magnetic field sources; integrated internal source and 
external source. A new magnetic field pattern has been introduced in order to 
efficiently control the bulk of magnetic beads inside the mixing chamber by dynamic 
shifting of magnetic field regions from the centre of the coils to the outer edge of the 
coils and vice versa.  A Matlab code has been developed to simulate beads trajectories 
inside the designed extraction chip in order to investigate the efficiency of the 
magnetic mixing. A preliminary target molecule capturing simulation has also been 
performed using the simulated bead trajectories to evaluate the DNA-capturing 
efficiency of the designed extraction chip.  

The performance of the designed extraction chip has been tested by conducting a 
series of biological experiments. Different magnetic bead-based extraction kits have 
been used in a series of preliminary experiments in order to extract a more automation 
friendly extraction protocol. The efficiency of the designed device has been evaluated 
using the spiked bacterial DNA and non-pathogenic bacterial cell cultures (B. subtilis, 
Gram positive bacteria and E. coli, Gram negative bacteria) into the blood sample. 
Excellent DNA yields and recovery rates are obtained with the designed extraction 
chip through a simple and fast extraction protocol.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1   Introduction 

Over the past decade, miniaturisation has been the major trend in analytical 

chemistry and medical science with the scope to benefits from such scaling down 

factors [1-3]. The major motivation of the miniaturisation idea was inspired by the 

electronic industry that shifted from vacuum tubes to transistors and microelectronic 

chips. Such miniaturisation offers low cost, small size, high speed and operational 

simplicity compared to existing expensive, large size and time consuming laboratory 

based analysis techniques. In the standard method, the sample need to be collected 

from the site and sent to the specialised laboratories for analysis, which is a cost 

intensive and time consuming process. The next step is to perform the standard 

procedure, consuming large volumes of the reagents and using large and expensive 

instrumentations operated by a qualified person.  

Development of miniaturised laboratory analysis techniques is mainly the result of 

achievements in the field of microfabrication technology and microfluidics. The 

advent of micro-electro-mechanical-systems (MEMS) has created the potential to 

integrate electrical and mechanical components in the same platform using standard 

fabrication techniques of semiconductor industry with almost the same equipments 
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and materials. The range of MEMS applications is growing very fast toward the 

implementation of micro-sensors and micro-actuators in Micro-Total-Analysis-

Systems (µ-TAS) and Lab-on-a-Chip platforms (LOAC). 

On the other hand, implementation of the laboratory-based analytical techniques in 

the LOAC platforms requires fluid handling process in micro-scales. This 

requirement has led to the development of the micropumps, microvalves, micro-

filter, micro-separators and micromixers under microfluidics platforms. In fact, 

microfluidics enables the realisation of chemical and biological reactions in 

miniaturised integrated micromachined systems.  

The revolutionary idea of the lab-on-a-chip may have the greatest impact on the 

modern society’s health and life through shrinking the laboratory-based analytical 

techniques to a low-cost, fast and automated integrated microchip-based analysis.  

The application area is very vast from agricultural tests to forensic and bio-defence 

as well as food industry, pharmaceutical and diagnostics applications. For example in 

the pharmaceutical industry, large quantities of enzymes are used for drug design 

experiments to see which will block an enzyme related to a disease state. These tests 

are expensive and performed one at a time. These tests can be done in parallel and 

consuming small quantities of substances by using lab-on-a-chip systems.  

In the diagnostic sector, the application of lab-on-a-chip systems can be realised in 

automation of clinical diagnostic procedures to a miniaturised microchip. This will 

decrease the cost of the standard test by reducing the reagent consumption by order 

of 103-104 [2]. In this sector, the application of point-of-care (POC) diagnostic 

devices attracted enormous interest from both industry and academia in order to 

automate genetic diagnostic tests on an integrated microchip. Although diagnostic 

tests have wide applications in biotechnology and medicine such as agriculture and 

farming for detection of pathogens in food, the application of nucleic acid analysis in 

human whole blood is the subject of this research. The recent progress in the field of 

microfluidics such as integrated multiplexor [4], microfabricated reaction and 

separation systems [5] and integrated microfluidic DNA amplification [6] or 

miniature integrated LOAC system [7] proposes molecular detection in an integrated 

microfluidic device that will be commercially available within a few years. In this 

area, the application of these chips in detection of the sexually transmitted diseases 

(STDs) has the most immediate potential in the market.  
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Figure 1.1. Block diagram of a typical POC diagnostic device with specific application in DNA chip. 

1.2   Point of Care Diagnostic Devices 

Figure 1.1 illustrates a block diagram of a LOAC diagnostic chip. A POC diagnostic 

device has three main functionalities as: sample preparation, amplification (only for 

DNA) and sample analysis or detection. However, an additional step might be 

necessary for pre-processing of the sample to increase the concentration of the target 

molecules such as filtering and pre-mixing (i.e. urine sample). Sample preparation is 

the first function of the chip where the real sample will be introduced into the chip 

together with the appropriate reagents. This can be done using a micropump(s) or 

other syringe-based systems. A pre-processing stage might be necessary before 

injecting the raw sample and reagents into the device such as warming up the 

reagents and/or pre-mixing of the reagents and the sample. After injecting the sample 

into the device, it needs to be processed, which might involve micromixing, heating 

and separation. In case of DNA extraction from whole blood, the sample preparation 

involves efficient mixing of whole blood and the lysis buffer in order to lyse the 

target cells and extract DNA molecules. Released DNA molecules then need to be 

separated from the rest of cell debris and bio-fluid. 

Amplification is the next stage where the purified DNA molecule will be amplified 

to achieve the desired concentration, which is suitable for detection. This process can 

be fulfilled using thermal cycling PCR or isothermal amplification technique. 

Final stage is the nucleic acid detection using a suitable biosensor device. The most 

common technique in nucleic acid detection involves the immobilization and 

hybridization process. Immobilization is the process of immobilising a known 

sequence of single strand DNA probe to the functionalised surface of the biosensor. 

By introducing the target DNA sequence, hybridisation takes place, if the target and 
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probe are complementary to each other. The next step is to detect the signal from 

hybridisation action. There are two main approaches to detect the hybridisation 

signal; labelled and label-free. In the first approach, target molecules will be labelled 

with specific tags and the signal can be generated from the interaction between the 

label and sensor. Electrochemical and magnetic biosensors are the example of label-

based detection techniques. For example, the red-ox activity of the active label with 

the surface of the sensor in electrochemical sensors can be measured in the form of 

electric signal. The magnetic field of the magnetic bead tagged to the hybridised 

DNA molecule can change the resistance of the underlying GMR sensor and 

consequently, the signal can be measured as a variation in the sensor electric current. 

In the label-free detection techniques, the signal is mainly generated from the 

intrinsic properties of DNA molecules such as electric charge and mass variations. 

Occurrence of hybridisation can alter the total DNA mass on the surface of the 

sensor, which can be detected using quartz crystal microbalance sensor. Charge 

variation at the surface of the sensor can be detected using an underlying field effect 

sensor. 

However, whilst there has been a great deal of work in the core areas, such as, 

miniaturisation of PCR for amplification of DNA and development of miniaturised 

DNA biosensors in microchip format, less effort has been exerted toward 

miniaturisation of DNA extraction/purification process. In fact, most of the currently 

demonstrated microfluidic or microarray devices pursue single functionality and use 

purified DNA or homogeneous samples at the input. On the other hand, practical 

applications in the clinical and environmental analysis require processing of the 

samples as complex and heterogeneous as whole blood or contaminated 

environmental fluids. Due to the complexity of the sample preparation, most 

available biochip systems still perform this initial step off-chip using traditional 

bench-top methods. As a result, rapid developments in the back-end detection 

platforms have shifted the bottleneck, impeding further progress in rapid analysis 

devices, to the front-end sample preparation where the real samples are used. 

A problem with the currently available chaotic mixing in these platforms is that it 

usually requires the existence of moving parts, obstacles, grooves and twisted or 

three dimensional serpentine channels. The structure of these components tends to be 

complex, requiring complicated fabrication processes such as multi-layer stacking or 
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multi-step photolithography. Another problem with the existing DNA purification 

devices is that they are not suitable for integration in POC devices and are aimed 

toward laboratory-based bench-top purification processes. Therefore, the importance 

of fast, efficient and small-sized sample preparation and purification chip with the 

potential for integration in POC devices seems to be overlooked. Followings are 

some examples of the microchips and devices in such platforms. 

1.2.1   DNA Detection 

In the detection side, the research has conclusively resulted in many microchips 

capable of detecting target DNA in the sample. Since the redox-active molecule-

based detection of hybridization is well established, two commercialized DNA chips 

are now being introduced onto the molecular diagnosis market. The first example of 

such a DNA chip, called the eSensorTM, was developed by Motorola Life Sciences Inc 

[8] by using ferrocene as the active marker. This sensor was licensed to OsmeTech 

PLC for further commercialisation. Toshiba developed a CMOS-based DNA chip 

capable of detection single nucleotide polymorphisms (SNPs). This sensor was later 

licensed to Antara BioSciences Inc [9]. Recently DNA Electronics Ltd [10] 

developed another CMOS-based biosensor capable of detecting SNPs with the 

potential to be used in point of care diagnostic devices. This sensor is under 

validation process in collaboration with Pfizer Ltd. A magnetic-based DNA 

biosensor was developed by US-Naval Research Laboratory (NRL) using a giant 

magnetoresistive sensor (GMR) capable of detecting single magnetic bead used as 

the label [11]. This biosensor was later licensed to Seahawk Biosystems Corporation 

for further developments in clinical diagnostic applications. Although these DNA 

biosensors are fully functionalised as claimed, the inputs of such bio-chips are 

nothing but purified DNA sample. 

1.2.2   DNA Amplification 

Amplification has also grabbed significant attention with the scope to produce 

smaller, faster and automated amplification chips capable of performing multiplex 

PCR in one single cartridge. Fluidigm developed a PCR chip that can handle 48 PCR 

samples simultaneously using a digital array [12]. University of Utah, Centre of 
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Excellence for Biomedical Microfluidics, is developing a continuous flow PCR chip 

which is claimed to deliver 12 sec PCR cycles [13, 14].  

1.2.3   DNA Extraction and Purification 

In the purification platform, most work has been done on automation of the existing 

standard DNA purification protocols. Qiagen QIAcube is a fully automated robotic 

device developed to automate Qiagen spin-column kit [15]. This device can be used 

for purification of DNA, RNA and protein with the maximum of 12 samples per run. 

Although this device is fully automated, it has been designed for laboratory-based 

market and is not suitable for integration in POC devices. Roche MagNA PureTM is 

another robotic nucleic acid purification device which uses magnetic bead to isolate 

DNA from whole blood sample [16]. The total isolation time in this device takes up 

to 60min with 32 sample capacity. This device is designed for laboratory-based 

market and is not suitable for integration with POC devices.  

1.2.4   Microfluidic Chips with Sample Preparation Capability 

In addition to the above mentioned laboratory-based DNA extraction devices, there 

have been significant advances in development of integrated microfluidic chips for 

sample preparation in point-of-care diagnostic devices. The purpose of this section is 

to review the most important reported works on various types of the microfluidic 

extraction chips for application of the point of care diagnostic devices. This review 

covers both single functionality DNA purification chips and multi-functionality chips 

integrated with sample preparation chips.   

Since the early development of the chip-based capillary electrophoresis (CE) by 

Harrison et al. [17], several researchers have developed microfluidic devices by 

integrating DNA amplification (PCR) with capillary electrophoresis (CE) followed 

by microarray-based florescent detection systems [18-22]. A list of microfluidic 

chips for clinical and forensic analysis using combined PCR and CE can be found in 

the review paper published by Elisabeth Verpoorte [23]. 

On the other hand, there are some reports on combined sample preparation, 

amplification and detection integrated on a single microfluidic chip. Although there 

are few reports on the extraction and purification of nucleic acid from whole blood 
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[24], the majority of the reported chips are designed to purify nucleic acids from 

serum and cells lysate [25, 26].  

Since the aim of this work is to design a DNA extraction and purification device, the 

focus was given to review the reported microfluidic chips with sample preparation 

step. Although some reported microchips have used PCR-based thermal lysis to lyse 

the cells and extract the target DNA molecules, the majority of the reported chips 

have used solid-phase-extraction (SPE) technique to purify nucleic acids from 

various biological fluids. This technique includes: magnetic beads, silica 

columns/pillars, silica beads/particles, hybrid silica beads/sol-gel network and 

monoliths.  

Thermal cycling PCR can be used for the cell lysis process. In this method, DNA 

extraction and purification steps are eliminated and the thermal cell lysis takes place 

in the first cycle of the PCR by starting the PCR at a higher temperature (95 °C). 

However, this method is limited to the purified cells cultures and cannot be used for 

a crude sample such as whole blood. 

Waters et al. [19] reported a monolithic microchip device comprising a multiplex 

PCR chip integrated with electrophoresis sizing of the amplified products. Purified 

diluted E. coli cells culture was used as the input sample and the cells were lysed 

thermally by placing the entire microchip in a commercial thermal cycler. 

El-Ali et al. [27] reported a microfabricated PCR thermal cycling chip integrated 

with sample pre-treatment chip. The sample pre-treatment process was performed 

using dielectrophoretic (DEP) capturing of the target cells from the bio-fluid. The 

performance of the device was tested on a sample containing yeast cells and heparin, 

which is a well known PCR inhibitor.  

Yuen et al. [24] reported a microchip capable of blood sample preparation process 

and PCR amplification process in a silicon/glass microchamber. A series of 3.5 µm 

feature-size weir-type filters were fabricated inside the chamber using standard 

microfabrication technique in order to capture the white blood cells. The cells were 

lysed thermally by starting the PCR at higher temperature (5 min at 95 °C). The 

performance of the device was tested using small volumes of human blood (<3 µl) 

and a typical cell capturing efficiency ratio of 6.67% was achieved with the device. It 

was also noticed that higher cell capturing ratio can inhibit the PCR process due to 

the release of proteins from the lysed cells. Another filter-based sample processing 
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chip was reported by Hui et al. [28]. In this work, two different filters were designed 

to capture white blood cells and viral cells subsequently. The chips were fabricated 

using silicon/glass fabrication technology. No quantitative result was reported and 

the performance of the device was evaluated using the standard PCR and gel 

electrophoresis. 

In a different approach for thermal cell lysis, Lee et al. [29] reported a microchip 

comprising a PCR unit integrated with DNA extraction capability. In their work, a 

laser diode was used to increase the temperature of the carboxyl-terminated magnetic 

beads. Consequently, higher temperature magnetic beads can burst the cell 

membrane with efficient external mechanical vibration. The efficiency of the device 

was investigated using various bacterial and viral cells cultures mixed in human 

serum. In a different work reported by the same group [30], a fully integrated, 

pathogen-specific DNA extraction device was fabricated on a polymer-based CD 

platform. Magnetic beads were used for dual purposes, cell capturing and cell lysing 

agent. The surface of the magnetic beads were modified with pathogen specific 

antibodies and thus could be used to collect and separate target cells. In addition, 

laser-induced magnetic beads can act as a micro-heater and thus lyse the attached 

cells. A vortex mixing step was generated by alternate spinning of the CD using an 

external device and accurate spin program. The same external spinning method was 

utilised for fluid handling as well. The efficiency of the device was investigated 

using different bacterial and viral cells cultures spiked into whole blood.   

 In a different bead-based DNA extraction approach, Chung et al. [31] reported a 

serpentine microchannel with immobilised beads inside the channel walls. An 

external laboratory-based bi-directional microfluidic driving system was used to 

perform the mixing of lysis buffer and blood with forward and backward flows. The 

same method was used to capture released DNA on immobilised beads. The DNA 

extraction efficiency of the device was tested using spiked bacterial cells culture into 

the blood sample and the efficiency of the device was investigated using PCR and 

gel electrophoresis (indicating very low DNA recovery levels). 

In addition to the above mentioned DNA extraction methods, silica-based solid-

phase-extraction (SPE) is the most widely used technique to extract nucleic acids 

from biofluids using three main steps; bind, wash and elute steps. Basically, nucleic 

acids adsorb to the silica surface in the presence of a chaotrope. Some combination 
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of intermolecular electrostatic forces, dehydration and intermolecular hydrogen 

bonding are involved in the adsorption of DNA on the silica surface [32]. The next 

step, which is washing process, is performed using ethanol or isopropanol to remove 

the species that inhibit PCR. Finally, captured nucleic acids on the surface of the 

silica are resuspended by eluting in a low-salt solution. The main reports in this 

category involve micro-engineered micropillars, silica beads and sol gels. 

Micropillars can be microfabricated inside the channel to increase the surface to 

volume ratio, thus to increase the binding capacity of the device, in order to capture 

DNA molecules. In this method the surface of the silica micropillars acts as a binding 

site to capture DNA molecules. Although this is an efficient approach to increase the 

surface area, its application is restricted by the required complex and expensive 

fabrication process (reactive ion etching), which is not suitable for point of care 

diagnostic devices. On the other hand, the sample needs to be introduced into the 

device using a positive pressure or an external centrifugation step. In this case, the 

larger the surface area is, the longer the sampling process is. 

Christel et al. [33] reported a micro-device containing micropillars, which yielded a 

10-fold enhancement in the surface area in comparison with the standard channel. As 

the first represented microfluidic-based SPE device, an extraction efficiency of ~50% 

was reported for this device using a clean DNA sample. Cady et al. [34] reported a 

DNA purification device with similar micro-structured silicon-coated square-shaped 

pillars inside a silicon microfluidic channel. In their work, the total surface area was 

enhanced by 300-600% and cell lysate was used to investigate the efficiency of the 

device. On average, 10% of the bound DNA could be recovered using 50 µl of the 

elution buffer. A macro-scale-like elution volume of 250 µl was required to increase 

the recovery ratio, which is not suitable for the integration with other microfluidic 

chips in POC devices. 

Since the application of micro-structured pillars are limited by complex and 

expensive microfabrication process, the most widely used solid supports for nucleic 

acids in a microfluidic chip are limited to silica beads and porous silica beads/sol-gel 

columns to create packed solid columns.  In this method, a post-fabrication process is 

necessary to create the packed column inside the device. An external pressure source 

is necessary to introduce the sample into the device and to deliver the reagents 

necessary for the purification step. Due to the absence of internal cell-lysis and 

microfluidic mixing steps, this method is limited to samples containing free DNA 
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molecules, thus not suitable for processing of unlysed cells cultures and whole blood 

sample.  

Sol-gel phase and hybrid sol-gel/silica beads network have been used for the 

purification of DNA from different biological samples. A sol-gel is a colloidal 

suspension (sol) that can form a solid network (gel) in a transition phase [35]. 

The first use of silica resin for the purification of DNA from biological samples 

inside a capillary channel was reported by Tian et al. [36]. An extraction efficiency 

of 70% was achieved using direct extraction of the DNA from white blood cells 

(lysed outside of the device). Wolfe et al. [37] used the same method in a 

microfabricated microchip and investigated the efficiency of the device using 

different silica and silica beads/sol-gel matrices for DNA purification process. A 25 

µl aliquot of λ-phage DNA in guanidine stock solution was used as the input sample. 

A microfluidic DNA purification device was reported by Breadmore et al. [38] using 

hybrid silica beads/sol-gel structure in a straight channel. In this method, hybrid 

structure tends to be more stable during the experiment and the device was tested by 

different biological samples including free DNA sample and diluted frozen blood 

sample. In the latter experiment, the lysis process was performed outside of the chip 

using diluted lysed blood sample (100 times dilution). 

Wu et al. [39] reported another DNA purification device using hybrid compact silica 

beads in sol-gel matrix. The device was tested using different biological samples and 

a typical DNA extraction efficiency of 85% was achieved using free DNA sample. 

The efficiency of the device was tested using lysed blood sample as well and a 

typical efficiency of 68% was reported. However, blockage of sol-gel pores was also 

observed as the result of the presence of the components in the lysed blood. 

As an alternative to the standard column materials, organic monoliths with rigid and 

porous structure provided with pores ranging from nano to micrometer have also 

been used for DNA purification in microfluidic chips [40, 41, 42, 43, 44]. These 

monolith structures offer large surface area, high mass-transfer ratio and controllable 

pore size. Wen et al. [41] reported a DNA purification device in a capillary using a 

monolith structure. The efficiency of the device for DNA purification was tested 

using free DNA sample and low volume (<100 nl) diluted lysed blood sample and an 

extraction efficiency of 85% was achieved using free DNA sample. However, the 

application of this device was limited to a very low volume lysed blood due to the 
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chip blockage as the result of the presence of the components in the blood sample. In 

order to overcome the monolith blockage problem, a novel two-stage DNA 

purification device was developed comprising a reversed-phase column for protein 

capture in series with a monolith column for DNA purification process [42]. In this 

method, 80% of the proteins from a 10 µl blood were successfully captured in the 

protein capturing stage and a typical DNA extraction efficiency of 69% was achieved 

using the monolith. The blood sample was pre-processed outside of the device to lyse 

white blood cells. 

Chaotropic-based sample loading followed by an organic solvent wash in the solid-

phase extraction techniques may reduce the efficiency of the amplification process. 

This is because both chaotropic sample and organic solvent are well-known PCR 

inhibitors. Therefore, a novel aqueous-based pH-induced nucleic acid capture and 

release technique was developed by Landers group [45, 46] by using a chitosan 

phase in the extraction process. Beads coated with chitosan, bind DNA molecules at 

pH 5 and release them at pH 9. The hydrophilic surface of the beads can increase the 

DNA binding capacity by reducing the non-specific binding of proteins. The 

efficiency of the device was tested using free DNA sample and small-volume (0.2 µl) 

lysed blood sample (10-fold dilution using lysis buffer) with typical efficiencies of 

67% and 63% respectively.   

The majority of the above reviewed works have focused on the solid-phase 

extraction of nucleic acid with the aim to isolate DNA/RNA molecules from the cell 

lysate, serum or lysed blood. However, there are a number of integrated microfluidic 

devices with the ability to perform on-chip cell lysis and purification from various 

bio-fluids. Hong et al. [47] reported an integrated microfluidic device for extraction 

and purification of the nucleic acids from bacterial cells in a nano-litre-scale 

processor. In this device, cells and lysis buffer were introduced into the chip and 

complete lysis was achieved after several minutes using on-chip rotary mixer. Cell 

lysate was then flushed over an affinity column packed with oligo-dT polymer 

magnetic beads. After a washing process, captured DNA/mRNA molecules were 

eluted in the elution buffer. The capacity of the device was limited to the maximum 

sample volume of 1.6 nl, which is not suitable for blood-based point-of-care 

diagnostic devices. 
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Legendre et al. [48] reported a microfluidic device comprising an integrated online 

DNA purification and PCR in a valveless glass micro-device. The purification chip 

was made of silica beads/sol-gel hybrid bed to capture DNA released from various 

biological fluids. The efficiency of the device was tested using free DNA sample as 

well as whole blood sample. However, the blood sample was diluted over 120-fold 

and the lysis process was performed outside of the chip. This microchip was further 

developed by Easley et al. [49] comprising sequential DNA purification, PCR and 

electrophoretic separation and detection of target DNA. However, the lysis process 

was still performed off-chip and nano litre-volume of the diluted lysate was 

introduced into the chip. 

The only integrated microfluidic chip that contains all the necessary steps from 

sample-in to result-out was reported by Liu et al. [50, 51]. The reported bio-chip 

consists of sample preparation, amplification and microarray-based detection system. 

In the sample preparation stage, immune-magnetic beads were used to capture target 

cells. Cavitation microstreaming was implemented to facilitate cell capturing process 

from whole blood sample. An external magnet was used to concentrate and separate 

captured cells inside the PCR chamber during washing process. Cell lysis and DNA 

extraction was performed using thermal lysis at the first PCR cycle. The efficiency of 

the device was tested using spiked E. coli cells into the rabbit blood sample. A 

typical cell capture efficiency of 40% was achieved using Dynabeads. The duration 

for sample preparation process was reported as long as 50 minutes, which is a very 

long process and is not suitable for a point-of-care diagnostic device.  

As described earlier in this section, all of the reported sample processing microchips 

can be divided in three main groups as follows: 

• Thermal lysis and extraction chips using integrated PCR 

• Solid-phase extraction using magnetic bead 

• Solid-phase extraction (SPE) method using micropillars, silica beads and 

silica monolith 

Thermal cell lysis is the simplest method to lyse and extract DNA from target cells.  

In this case, the sample processing step can be simplified to target cell capturing and 

separation process. However, this method is limited to purified cells cultures and 

cannot be used with more complicated bio-fluids such as blood. Another problem 

with this technique is the sensitivity of PCR to large sample volume. Cell debris 
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released from lysis process contains components that can inhibit PCR process [24]. 

Therefore, this technique is limited to a very small sample volume.  

The next group of purification devices have used magnetic beads to selectively 

capture and separate target cells from bio-fluid. The lysis step in majority of them 

takes place using thermal cell-lysis either during PCR [50, 51] or by laser-inducing 

of the same magnetic beads [29, 30]. Since the lysis step takes place inside the PCR 

chip, the application of this technique is limited to small sample volumes. Another 

problem with this method is the fact that immune-magnetic beads are highly 

selective and are designed to bind to the specific cells. Therefore, different magnetic 

beads with different coatings are necessary for different target cells. Another 

disadvantage of this method is that the magnetic beads cannot capture free target 

DNA/RNA molecules existing within the serum.  

The most efficient nucleic acids purification chips were developed based on the 

application of SPE matrices. The efficiency of these chips was comparable to the 

standard magnetic bead-based and column-based commercial extraction kits. 

However, all of the reported works based on this technique have used serum lysate, 

free DNA, cells lysate and/or lysed blood in diluted format as the input sample. 

Despite their excellent nucleic acids capturing efficiency, there are some major 

limitations with using this technique within point-of-care diagnostic devices. First of 

all, these chips are more suitable for nucleic acids purification and the extraction step 

needs to be performed off-chip using standard bench-top techniques. This is because 

of small pore sizes in highly packed SPE matrices. Crude samples such as blood and 

high concentrated cells lysate contain large bio-molecules such as proteins and 

peptides that might block the pores and reduce the efficiency of the device. Another 

problem with this technique is related to fluid resistivity of the SPE matrices. 

Although, more compact silica network can increase the efficiency of the device, it 

also increases the fluid resistivity, thus increasing the total sampling time. Large 

volume of the buffer necessary to elute captured DNA molecules from compact silica 

network is another disadvantage of these chips. 

Therefore, none of the above reviewed works has successfully developed a fully 

functional sample processing bio-chip capable of extraction and purification of 

nucleic acids from a crude and heterogeneous sample such as whole blood. However, 

SPE systems are more suitable for POC applications when detecting minimal 
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residual disease and infectious agents with low copy number in the sample. 

However, design of SPE systems need to undergo fundamental evaluation to be 

suitable for both DNA extraction and purification process with increased capacity, 

high efficiency and low elution volumes. In this work, solid-phase extraction method 

was employed to design a microfluidic DNA extraction and purification device. 

However, the structure of the immobilised SPE systems was changed to a suspended 

magnetic beads format to be more suitable for cell lysis and extraction of DNA 

molecules from whole blood. In this method, an active and efficient magnetic mixing 

pattern was implemented to statistically increase the efficiency of cell-lysis and DNA 

capturing. Detail of the designed magnetic mixer can be found in Chapter 5 and 

Chapter 6. 

1.3   Aims and Objectives of the Research 

The main aim of this research is to design a fast and simple DNA extraction and 

purification system to address the need for such a system in a point-of-care 

diagnostic device. The desired characteristics of such a system are fast processing, 

low cost, high yield and quality. Fast and low cost diagnostic test are the most 

important motivations behind the idea of point of care diagnostic chips that can 

compete with the traditional assays. In the existing bench-top robotic 

extraction/purification devices, this process takes up to an hour. Adding up this time 

with the amplification and detection time, it is not desirable for a point-of-care 

diagnostic testing. 

The next important parameter is the yield of purified DNA molecule. It is very 

unlikely that a chip-based purification can compete with a spin-column purification 

method, which is the gold standard. A reasonable yield sufficient for the 

amplification process is the minimum requirement for such devices. The last 

parameter which is more important in the amplification process is the purity of the 

harvested DNA molecules. This is important because PCR is very sensitive to 

impurities that might inhibit the amplification process. Nevertheless, some 

isothermal amplification techniques such as LAMP (Loop-mediated Isothermal 

Amplification) are less sensitive to the purity of the DNA.  
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In order to design an optimised nucleic acid extraction and purification chip, most of 

the available literature has been reviewed and particular attention has been given to 

adapt the most suitable DNA extraction technique. The two most common DNA 

isolation methods are spin-column and magnetic bead-based protocols. Various kits 

are available in the market from different suppliers such as Qiagen, Invitrogen, 

AGOWA, Bilatec and Promega. The most common steps in the nucleic acid 

extraction and purification process are the incubation of sample in the lysis buffer, 

binding process, washing process and the elution step. Some kits have specific 

temperature requirements during incubation and other kits are not sensitive to the 

temperature. Despite the efficiency of reagents on lysing the target cells and loss of 

DNA during the washing process, efficient mixing of sample and magnetic beads is 

the key-factor in the yield of the magnetic bead-based kits. The other important 

factor is the potential of magnetic beads to specifically separate the purified target 

DNA molecules from the cell debris and the rest of the lysed blood. To achieve this, 

an on-chip clamping and heating mechanism is necessary. Therefore, based on these 

requirements and easier automation potential, magnetic bead-based purification 

protocol was selected in this research. The specific objectives of this research are 

summarised as follows: 

• Design of suitable microfluidic environment to perform the nucleic acid 

extraction and purification steps (the options are: continuous mode using 

microchannel and static mode using microchamber). 

• Using numerical simulation techniques to investigate time varying magnetic 

field based mixing of sample (whole blood) and lysis buffer containing 

suspended superparamagnetic beads to ensure efficient mixing and binding 

of released DNA molecules to the beads. 

• Carrying out experimental investigation of switching magnetic field to 

determine optimised frequency of mixing. 

• Carrying out experimental investigation of magnetic field clamping and 

washing to determine optimised DC current and required flow rate to 

minimise loss of magnetic beads. 

• Designing and developing incubation temperature control circuit using the 

same current carrying conductors used for switching magnetic field. 
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onment. 

• Selection of a suitable magnetic bead-based DNA extraction kit and 

adapting the bench-top protocol for the designed microfluidic envir

• Designing and fabricating microfluidic DNA extraction and purification 

microchips and experimentally investigating the DNA extraction efficiency 

using whole blood. 

1.4   Contribution to knowledge 

The following contributions to knowledge are claimed: 

• Design of a magnetic bead-based DNA extraction system using microfluidic 

microchamber and time varying magnetic field. 

• Design, development and optimisation of suitable internal and external 

magnetic field sources to achieve maximum mixing efficiency of DNA 

molecules and magnetic beads.   

• Development of a numerical model suitable for further investigation and 

optimisation of the designed DNA extraction system. 

• Determination of the optimised switching frequency and current using 

numerical analysis and experimental validations. 

• Development of an on-chip temperature control system and magnetic bead 

clamping process using the same current carrying conductors used for 

switching magnetic field. 

• Introduction and development of a novel dynamic switching magnetic field to 

increase the efficiency of the magnetic mixing and magnetic clamping using 

quadrupolic and solenoidal field patterns.  

• Adaption of the manual DNA extraction protocol to the automated friendly 

chip-based extraction protocol with shorter processing time. 

• Biological validation of the DNA extraction efficiency using designed DNA 

extraction microchips and non-pathogenic bacterial samples.  

1.5   Thesis Structure 

The main body of the thesis comprises eight chapters and two appendixes containing 

the Author’s list of publications and a schematic diagram of the designed power 
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supply. Each chapter starts with a brief introduction and ends with concise summary 

of the work done in the chapter.  

Chapter 2 reviews the most important reported works on various micromixing 

devices. Generally, the reported mixers have been categorised in two main groups as 

passive and active micromixing platforms. In passive mixers, the driving force is 

entirely geometrical and the mixing takes place mainly by diffusion in various 

schemes by using multi-lamination techniques. In some other passive mixers the 

mixing takes place through chaotic advection by modifying the channel geometry or 

implementation of various types of grooved obstacles. Active mixers are further 

categorised based on their actuation force as micro-stirrers, acoustic, electrokinetic 

and magnetic-based actuations. At the end of the chapter, a mixing device is 

introduced based on the magnetic actuation and magnetic beads. 

Chapter 3 gives a brief description of the magnetic materials and response of 

different magnetic materials exposed to an external magnetic field. In this chapter, 

the strength of magnetic force induced on a magnetic bead was calculated 

mathematically. This calculation is the base of the magnetic force calculations in the 

numerical simulations performed in Chapter 4 and Chapter 5. 

In Chapter 4, a commercial simulation package is employed to perform numerical 

investigations on different aspects of the magnetic coils in order to design a suitable 

actuation mechanism for the mixing unit. At the beginning of this chapter, the 

simulation package has been introduced and the accuracy and methodology of the 

magnetic simulation has been studied using a series of evaluation simulations. Where 

possible, the magnetic modelling was performed in three-dimensional simulation 

mode. 2D simulation mode was used in some simulations, which have axial 

symmetries. In this mode, the accuracy of the simulation can be improved by 

increasing the total number of elements in the mesh-generation process. Various 

types of conductor geometries have been investigated to be used for magnetic 

actuation in internal coil arrangements. After selection of coil geometry, optimisation 

process was performed by studying the effect of different geometrical variables such 

as conductor thickness and coil external diameter.  The optimisation process was 

applied to the external coil arrangements as well by studying the effect of coil 

thickness and coil external diameter as the key-factors. Finally, the effect of inter-

coils mutual effect was investigated in two coil arrangement scenarios as the lateral 
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and cross mutual effects between in-plane coils and face-to-face coils. This study led 

to the introduction of a novel dynamic magnetic field switching technique, which, 

can be used to improve the efficiency of the magnetic bead mixing in the chamber. 

In Chapter 5, the optimised coils in Chapter 4 are used to study the bead trajectories 

using a developed Matlab code linked with COMSOL multiphysics. This code was 

applied to both internal and external coil arrangements and two sizes of magnetic 

beads. The result of this study confirmed the concentric movement pattern of 

magnetic beads resulting in a clump of beads collected at the centre of the chamber. 

A surface coverage study was performed to estimate the surface coverage factor, 

which gives the information about the efficiency of the DNA collection process 

using resulted beads trajectories. 

Chapter 6 is devoted to a series of experiments to validate the results of numerical 

simulations provided in Chapter 4 and Chapter 5. A series of magnetic coil bobbins 

were fabricated and wound to perform the magnetic field strength measurements and 

thermal analysis using a temperature sensor. The thermal activity of the coils were 

measured in DC and AC mode of supplied current representing the switching mode 

during mixing and constant current mode during magnetic clamping mode. The 

effect of embedded heatsink was also investigated on the ratio of heat generations in 

the coils. A brief account of the fabrication process is provided for the 

microfabricated microchamber, supplementary docking station, capillary test-rig and 

the electronic power/control unit. The capillary test-rig was used to investigate the 

behaviour of the magnetic beads inside a capillary tube representing a section of the 

microchamber. This experiment resulted in adjustment of the frequency of the 

switching magnetic field. The effect of dynamic magnetic field switching was also 

investigated using quadrupolic and solenoidal field patterns. A 25µl PMMA/PDMS 

chamber was used to investigate the filling performance and investigate the 

efficiency of magnetic clamping force inside the chamber.  

Chapter 7 provides the results of the experimental evaluations of the designed DNA 

extraction device using real biological samples. In order to achieve this, bacterial 

DNA sample and cell cultures were spiked into the blood sample and the efficiency 

of the cell lysing and DNA binding was investigated using microfluidic 

microchamber and external magnetic coils. A pre-optimisation process was also 

performed in order to adapt the manual bench-top extraction protocol to a more 
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suitable automated chip-based extraction protocol. The adaption process was carried 

out using three different magnetic bead-based extraction kits and a standard column-

based extraction kit was used for bench-marking purpose. Selected modified 

extraction protocol was used to investigate the efficiency of the extraction device. 

The extracted DNA samples were analysed using UV spectrophotometry and 

quantitative real-time PCR assay to obtain the quality, yield and recovery rate of the 

extracted sample. 

Chapter 8 gives an overall conclusion on the work performed in this thesis and 

provides some suggestions for future research, which may potentially improve the 

performance of the extraction/purification process and increase the reliability of the 

proposed system for use in the point-of-care diagnostic devices.  



 
 
 

CHAPTER 2 

PASSIVE AND ACTIVE MICROMIXERS - A SURVEY 

 
2.1   Introduction 

In the past two decades, tremendous effort has been devoted to miniaturization in 

analytical chemistry and life science. Miniaturization of bio/chemical reactions is 

attractive for its potentials and advantages such as lower sample and reagent 

consumption, fast reaction time, lower cost, high throughput and automation 

possibility. The process of miniaturization involves microfabrication and employing 

microfluidics in general and micropumps, microvalves, biosensors and micromixers 

as supplementary parts. The applications of microfluidic are well studied from micro 

arrays and DNA sequencing to sample preparation and cell separation as well as 

DNA/protein detection. Because of its wide application area and fundamental role, 

microfluidics has attracted major interest from both industry and academia. The 

number of published literature is increasing rapidly in this area and many books are 

dedicated to microfluidics entirely [52-54].  

Besides fluid handling and micropumps, micromixers are one of the most important 

parts of the miniaturized microfluidic devices; the so called lab-on-a-chip (LOC) 
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platform. Micromixers perform the key-role in such devices in mixing different 

biofluids and chemical reagents. This mixing is essential for the chemical reactions 

to extract the desired result for downstream applications. The application of mixing 

is widely employed from drug delivery and sequencing to nucleic acid synthesis and 

protein folding as well as enzyme reaction. Recently, some extensive reviews have 

been published on micromixers, which cover all major published reports on different 

types of the microfluidic mixings from early diffusion mixers to more recent chaotic 

mixers [55-59]. More systematic reviews on micromixers can be found in [60-63]. 

The purpose of this chapter is to critically review the microfluidic micromixing 

mechanisms with the scope to summarize different types of mixers published in 

literatures. Although various types of micromixers will be reviewed in this chapter, 

the application of micromixing in LOC platform is more interesting. In LOC 

platform, the focus is on point of care (POC) devises with the application of nucleic 

acid purification process. A mixing unit is an important part of a POC device where 

complex chemical and biological reactions take place to release DNA molecules 

from target cells. The freed DNA molecules then will be collected and separated 

using efficient mixing of collection agents inside the lysate. Therefore, the optimised 

mixing mechanism must be adopted based on this specific application. 

2.2   Microfluidics 

The term microfluidics describes the behaviour of fluid in sub-millimetre sizes and 

deals with control and manipulation of small volume fluids in such small dimensions. 

In fact, microfluidic systems need to be designed and work at intersection between 

multidisciplinary fields of physics, chemistry and engineering. The main reason to 

study the behaviour of fluid at micro-scale is that the dominant forces may differ 

from macro to micro-scales. In micro-scale, surface tension is a major factor that 

might change the behaviour of the fluid.  In addition, the higher surface to volume 

ratio, higher mass-heat transfer ratio and low Reynolds number are other 

characteristic properties of microfluidic which needs to be fully understood and 

considered in design of any small-scale application. In this section, a brief 

introduction on microfluidics and its key-definitions is provided to describe the 

behaviour of fluid in small scale. This introduction will help to understand the 

concept of micromixing and its challenging research. 
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2.2.1   Basic Concepts and Definitions 

One of the important properties of a fluid is defined as viscosity (µ) which can be 

described as the ratio of shear stress to velocity gradient. In other word viscosity 

describes the resistance of a fluid to any deformation caused by either external body 

immersed in fluid or between different layers inside the fluid. Viscosity is important 

because it acts as an opposing force in mixing of two liquids. Viscosity of a fluid 

might change by changing the temperature or pressure but if the viscosity of a fluid is 

constant at all shear rates at constant temperature and pressure; the fluid is called 

Newtonian Fluid. The relationship between the shear stress and viscosity and 

velocity in Newtonian fluid can be described as follows: 

                                                            ሺ2.1ሻ 
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In which, τ is the shear stress, µ is the fluid dynamic viscosity coefficient and du/dy 

is velocity gradient. Water and most water-based fluid which are the fluid of interest 

in micromixing for POC devices are Newtonian fluids.  

Another important characteristic of a fluid is the flow regime when the fluid is forced 

to move. In microfluidics, the flow regime is mainly laminar which can be described 

as parallel streamlines with no disturbance between the lines. Laminar flow is 

associated with high momentum diffusion and low momentum convection as well as 

independent velocity and pressure from time. On the other hand, turbulence flow 

regime can be described by chaotic and stochastic properties. Turbulent flow is 

defined by low momentum diffusion, high momentum convection and dependency of 

velocity and pressure to time and space. Whilst viscous force is the dominant force in 

laminar flow, inertial force plays the main role in turbulent flow. Therefore, the flow 

regime must be relative to viscous and inertial forces. This relationship is defined as 

Reynolds number as a dimensionless parameter and is given by the ratio of inertial 

force (ρV2L2) to viscous force (µVL) as follows.  
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Where, V is the characteristic velocity of fluid, L is characteristic length of the 

geometry, ρ is the fluid density, µ is the dynamic fluid viscosity and ν is the 

kinematic viscosity of the fluid. 

Therefore, the flow regime can be identified by calculation of Reynolds number. In 

macro-scale, the dominant force is inertial force thus the flow regime is turbulent. On 

the other hand in micro-scale, fluid viscosity dominates and the flow is laminar. As a 

practical example, the water flow inside the pipe behaves laminar or turbulent at 

Reynolds numbers below 2300 and above 4000 respectively. In this example, the 

flow regime at Reynolds number between 2300<Re<4000 is transient which means 

partially laminar and partially turbulent. Therefore, the flow regime in micro-scale is 

completely laminar (Re<1), which makes the idea of mixing a very challenging topic 

at this low Reynolds number.    

2.2.2   Equation of Fluid Dynamic (Navier-Stocks Equations) 

Navier-stocks (N-S) equations are a non-linear set of differential equations which 

explain the motion of fluid in general. This equation is extracted by applying 

Newton’s second low to fluid motion by assumption of continuum fluid and small 

fluid velocity compared to speed of light. The general form of these equations has no 

general solution and is used in computational fluid dynamics. The general form of N-

S equations can be simplified by assumption of incompressible flow. This 

assumption explains that the divergence of velocity is zero (׏. ) and the density 

of fluid is independent of pressure. Therefore, the simplified form of N-S equations 

can be written as follow: 

ൌ െܲ׏ ൅ ௙ܤߩ ൅  ሺ2.3ሻ                                             ݑଶ׏ߤ

Where, P is the pressure, u is the velocity, µ is the viscosity and B is the other body 

forces 

In microfluidics, the fluid flow is called pressure-driven flow, which can be 

described by poiseuille law. This equation can be derived from N-S equations by 

applying boundary condition in microchannels. When a fluid is bounded by solid 

walls, the fluid velocity is zero at liquid-solid interface. This is because of molecular 

interactions between two phases which forces the fluid molecules to seek the 
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momentum and energy equilibrium of solid surface. This phenomenon is called no-

slip condition and will be used as boundary condition at interface between fluid and 

solid surfaces. Therefore, the flow pattern by applying no-slip condition can be 

extracted from N-S equations, which is extracted as follow for two dimensional 

flows. 

ൌ ߤ
߲ଶݑ
ଶݕ߲                                                           ሺ2.4ሻ 

ሻݕሺݑ ൌ
1

ߤ2

By applying the boundary condition and y=d/2: 

݀ܲ
ݔ݀ ቆ

݀ଶ

4 െ  ଶቇ                                               ሺ2.5ሻݕ

In which, u is the velocity, µ is the dynamic viscosity and P is the pressure. This 

equation describes a parabolic pattern of fluid velocity with highest point placed at 

the centre of the channel (Figure 2.1).  

2.3   Micromixing: Concepts and Limitations 

The low Reynolds number, dominant viscous force and strong surface tension imply 

the non-turbulent behaviour of the fluid at small-scale fluids mixing concept. The 

flow regime is completely laminar, thus no mixing takes place at fluids interface. 

Nevertheless, in laminar flow pattern diffusion is the only phenomena that might 

help the mixing. In addition, a chaotic mixing pattern can be developed inside the 

fluid to enhance the mixing by various schemes.  

 

Figure 2.1. Velocity profile of a steady pressure-driven laminar flow with no-slip boundary 
conditions developed in a micro-channel. 
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In general, micromixers can be categorised as passive and active mixers. Passive 

mixers are the most developed type of mixers and tremendous efforts have been 

devoted by different research groups on this subject. The interesting part of passive 

mixing is that the mixing process mainly relies on diffusion and to some extent 

chaotic advection and no external source of energy is required. On the contrary, 

active mixing relies on external source of energy to perform the mixing. In this type, 

the mixing process is mainly based on chaotic advection. Therefore, in the following 

sections, the diffusion and chaotic advection phenomena are discussed briefly prior 

to reviewing passive and active mixers.  

2.3.1   Diffusion 

Diffusion is the process of statistic distribution of the given entities over space 

caused by random motion of those entities. In this distribution, the given entity 

moves from regions of higher chemical potential towards lower chemical potentials. 

In physics, diffusion can be realised as heat diffusion and molecular diffusion or 

Brownian motion which is the subject of this section. Brownian motion acts in the 

presence of non-uniform distribution of molecules or particles inside a fluid. 

Diffusion can be described mathematically by Fick’s second law as follow: 

ൌ ܦ
߲ଶ߶
ଶݔ߲ ൌ  ଶ߶                                                ሺ2.6ሻ׏ܦ

஽ܬ ൌ െܦ
߲߶
ݔ߲

Where, Ф is the concentration of particles or molecules, D is the diffusion coefficient 

and t is the time. By assumption of steady state diffusion which means the 

concentration of molecules will not change by time, the above equation can be 

simplified to Fick’s first law: 

                                                             ሺ2.7ሻ 

߬ ؆
ଶܮ

ܦ2

Where, JD is the diffusion flux and x is the position. This equation measures the 

amount of substance which flows through the unit area during short time intervals. 

An estimation of the average time of diffusion for the suspended particles inside the 

fluid over a given distance of L is given by: 

                                                                 ሺ2.8ሻ 
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Where, τ is the time of diffusion and D is the diffusion coefficient or diffusivity and 

is defined as: 

௙
ܦ ൌ

ܶܭ
݂                                                                ሺ2.9ሻ 

Where, T is the absolute temperature, K is the Boltzmann’s constant (1.35×10-23) and 

ff is frictional coefficient, which is the resistance force against diffusion. For a 

spherical particle with radius of r suspended in liquid with dynamic viscosity of µ, ff

ribes that the diffusion time is proportional to square of diffusion 

length and Eq. (2.9) shows the temperature dependency of diffusion coefficient. By 

increasing the temperature the fluid molecules, which have more energy, will be 

ܮ  ൌ ߬ e to ,݉ߤ10 ؆ 7.93 ݉݅݊

Besides diffusion, advection is another form of mass transfer in fluid flows. Since 

e main fluid flow, it is not functional at 

ight enhance 

 

can be defined as: 

௙݂ ൌ  ሺ2.10ሻ                                                              ߤݎߨ6

Equation (2.8) desc

excited and increase the diffusion speed. Length dependency of diffusion time 

describes the limitation of diffusion mixing over longer distances. As an example, 

the diffusion time for a spherical particle with radius of ݎ ൌ  over a distance ݉ߤ1

of ܮ ൌ ߬ suspended in water can be estimated as long as ݉ߤ100 ؆  which ,ݏݎݑ݋݄ 13

is a very long diffusion time. The same average time can be calculated for a shorter 

diffusion length of which reduces the diffusion tim . 

Therefore, diffusion mixing over long distances seems to be unrealistic and is not 

desirable in bio-chemical analysis systems.  

2.3.2   Chaotic Advection 

advection acts at parallel direction to th

transversal mixing process. However, the so-called chaotic advection m

the mixing in microchannels significantly. Creation of heterogeneous mixture of 

homogeneous domains by creation of chaotic advection leads to a homogeneous 

mixture at molecular level by diffusion effect between adjacent domains [64]. 

Creation of chaotic advection in macro-scale can be performed by application of 

stirrers for example. In micro-scale channels, such techniques cannot be employed 

and chaotic advection is mainly created using special geometrical modifications or 

three-dimensional structures. Alternatively, an external force can be used to create 

chaotic advection in active micromixers.  



27 
CHAPTER 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

 based on passive mixing platform due to 

ction, droplet and chaotic 

le is based on diffusion phenomena. To 

achieve fast and efficient mixing, the mixing path needs to be decreased and contact 

ased. The simplest diffusion mixing 

gh supply pressure and high rigidity 

 

Figure 2.2. Schematic diagram of different mixing schemes in passive micromixing platform 

2.4   Passive Micromixing Platform 

The first type of micromixing device was

the simplicity of the concept. Passive mixers can be further categorised based on 

their arrangements of mixing phase to lamination, inje

advection categories. Figure 2.2 shows a schematic diagram of the different mixing 

schemes in passive micromixing platform. 

2.4.1   Basic T-mixer and Y-mixer 

As discussed earlier, mixing in micro-sca

surface at liquid-liquid interface need to be incre

can be realised using a two inlet T or Y-shape channel [65, 66]. Two different 

streams of fluid enter from each inlet and join at the junction and create laminar flow 

through the channel. Since the mixing here takes place merely by diffusion, a very 

long mixing channel is necessary. Alternatively, mixing can take place in shorter 

channels by increasing the Reynolds number [67, 68]. Higher Reynolds numbers can 

be achieved at the very high fluid flow-rates. Figure 2.3 illustrates the concept of 

lamination mixing using T- and Y-mixers [60].  

Wong at al [68] reported a chaotic mixing at Reynolds number of 500 in a T-mixer at 

velocity of 7.60 m/s and pressure of 7 bars. Although, a chaotic mixing can be 

created at this high velocity, it requires a very hi

microchannels and strong bonding technique. Figure 2.4 illustrates this type of mixer 

at different applied pressures. 
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Figure 2.4. Chaotic mixing at high Reynolds number and high flow velocities at T-mixer at different 
pressures. (a) 1.12 bar; (b) 1.88 bar; (c) 2.11 bar; (d) 2.48 bar; (e) 2.77 bar, (f) 4.27 bar [60]. 

Another method to facilitate the diffusion mixing in T-mixer is to decrease the 

diffusion length. Hinsmann et al [69] reported a rapid diffusion mixer by reducing 

the diffusion length to 5µm in a channel with 10µm depth and 1mm width. In this 

work two inlet streams were redirected in which they laminate on top of each other. 

Diffusion can take place in 100ms in stopped-flow mode. The mixing performance 

can be enhanced by roughening the channel walls [70] or throttling the channel 

obst ied 

version of basic mixer will be discussed in chaotic advection mixing section. 

surface between two flows by creating multi-lamination flow configuration. In this 

 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

gure 2.3. The concept of lamination mixing. a) T-mixer, b) Y-mixer. (Adopted from [6

 

entrance [71]. Alternatively, the mixer can be further modified by implementation of 

acles inside the channel to create vortices and chaotic advection. This modif

A numerical simulation of mixing characteristic of a T-mixer with rectangular cross-

section can be found in [72]. In this CFD simulation, the efficiency of mixing is 

investigated for three different flow regimes and various Reynolds numbers.   

2.4.2  Parallel Lamination Micromixing Scheme 

An effective method to improve the diffusion mixing is to increase the contact 
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place at 

kinetic 

forces as well [80-82]. The concept of multi-lamination and reported parallel 

d interdigitated 

mixer. 

 
Figure 2.5. Multi-lamination mixing scheme; (a) the concept [60]; (b) the concept of narrow channel 
to increase the diffusion speed [73]; (c, d) principle of lateral mixing and mixing of green and red ink 

at P=7.8 kPa [76]; (e) microfabricated parallel mixer [77]; (f) interdigitated channel structure [79]. 

concept, instead of using long mixing path, two main flow streams will be divided to 

the number of sub-streams to increase the contact surfaces. Diffusion takes 

each narrow channel very quickly, in shorter mixing path [71-77]. Another method to 

increase the contact surface is by making interdigitated channel structure [78, 79]. 

The flow is usually driven by pressure, but can be generated using electro

lamination mixers are illustrated in Figure 2.5 as well as reporte

Multi-lamination scheme can be used in a vortex mixer to enhance the mixing by 

creation of fast vortices in three-dimensional mixing pattern. In this type of mixing, a 

circular chamber [83, 84] is used with multiple inlets with a central outlet at top of 

the chamber. Hardt et al [85] numerically analysed a model of vortex mixer to 

investigate the performance of 3D vortex mixing. It was concluded that self-rotation 

effect takes place above the critical value of Reynolds number of 2.32.  The result of 

simulation was confirmed by experimental analysis using microscopy analysis 

(Figure 2.6). 
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Figure 2.7 Parallel lamination mixing using hydrodynamic focusing. (a) The concept of 

hydrodynamic focusing technique [60]; (b) Image of blue food colouring stream in the middle inlet 
and two sheath water streams on sides [88]; (c) Segmented Hydrodynamic focusing [89]. 

mixing. In this design, a relatively long channel is used with sample flow entering 

from the middle inlet which is sandwiched between two sheath solvent streams from 

side inlets (Figure 2.7a).  Since the length of diffusion in this type of mixer can be 

reduced to a very narrow stream, the mixing process can take place in less than a 

second. A very narrow mixing channel of 10×10 µm was used by Knight et al [86] to 

investigate the performance of the mixing by hydrodynamic focusing technique. The 

w  

ratio of sheath flow and a complet  be achieved in millisecond range 

[87]. This fast mixing is due to the very narrow diffusion length, which is a few 

micrometers in length, thus diffusion takes place instantly. A practical application of 

this type of mixer was used for cell infection (Figure 2.7b) by Walker et al [88]. A 

combination of hydrodynamic focusing and time-interleaved segmentation (Figure 

2.7c) was reported by Nguyen et al [89] by adding another solvent inlet in the m dle 

part. s of 

interl ersal 

mixing path, segmentation technique reduces the axial mixing path, hence, improve 

the mixing efficiency. 

HAPTER 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

gure 2.6. Vortex micro-mixers; (a) concept of the mixer, (b) cross-section view of vortex cham
wing mixing process (green indicates complete mixing), (c) a video capture of mixing dye at

velocity [83]. 

Hydrodynamic focusing is another concept of multi-lamination mixing scheme 

which is used to reduce the diffusion length in order to accomplish the fast diffusion 

idth of sample flow in this method can be narrowed down by adjusting the pressure

e mixing can

id

In this method the solute will be injected into the channel as a serie

eaved segments. Although hydrodynamic focusing reduces the transv
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An alternative to parallel lamination technique to increase the contact surface 

between two liquids is called serial lamination technique. In this method, to increase 

the contact surface, fluid steams will be created inside the main channel instead of 

using parallel multi-channels. To create multi-fluid streams inside the channel, a so-

called split and recombine (SAR) technique is employed. In this technique, the m in 

fluid steams will be split and redirected by re-shaping the channel geometry with 

s  

process might take many times to increase the diffusion mixing by decreasing the 

diffusion length. The conceptual diagram of serial lamination technique using split 

and recombine technique is illustrated in Figure 2.8 for variation of SAR technique 

arrangements. The split and combining method could be achieved in various 

configurations such as, vertical splitting and then horizontal combining (a) or 

horizontal splitting and vertical combining (b, c). 

Serial mixing was first reported by Branebjerg et al. [91] and Schwesinger et al. [92] 

to achieve fast diffusion mixing by application of multi-lamination flow strea s. 

HAPTER 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

 
Figure 2.8. The concept of serial lamination scheme in various split and recombining configurations 

[60]. 

 
Figure 2.9. Optical inspection image of micromixing using multi-lamination technique in SAR mixer. 

The dark and light grey colours are blue dyed water and glycerol-water solution respectively [93]. 

2.4.3  Serial Lamination Micromixing Scheme 

a

ubsequent recombining the streams by further rejoining the split channels [90]. This

m
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but the concept rem

mber (<1) and low 

pressure (0.2-5 kPa) [91]. Figure 2.9 depicts the result of micromixing in SAR 

 

Figure 2.11. Schematic diagram of intersecting liquid plug showing the flow pattern inside the mixer 
at different times [95]. 

Since then, different types of SAR mixers have been developed by various groups, 

ains the same [93-95]. The most interesting part of SAR mixers is 

that the multi-lamination pattern is achievable at low Reynolds nu

micromixer in a series of screen shots.  

SAR mixing concept was further elaborated by application of electrokinetic driven 

multi-channels [94, 95]. In this modified version, multiple intersecting sub-channels 

will be used to laminate and change the flow pattern. He et al [94], used electro-

osmosis flows in intersecting sub-channels to enhance mixing (Figure 2.10). In a 

different work reported by Melin et al [95], a pressure-driven flow was used in 

intersecting channel geometry to enhance mixing by changing the flow pattern 

(Figure 2.11). This design works only on plugs of two mixed liquids. 

 

Figure 2.10. electro-osmosis-driven SAR mixer. (a) the concept of mixing using intersecting channels 
showing how the mixing might occur on two discrete streams (darkened colour shows the mixing 

region). (b) the actual microfabricated mixer and SEM image of that [94]. 
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Fluids travelling inside a curved pipe or channel experience a radial pressure gradient 

as the result of interplay between inertial forces and centrifugal effects. These effects 

act along axial direction and radial direction along conduit’s curvature respectively. 

Fluid flow with these characteristics is known as Dean Flow. Under appropriate 

conditions, Dean Flow pattern can be generated in microchannels to enhance the 

mixing by creating transversal flow field. A two-dimensional SAR micromixer was 

reported by Sudarsan and Ugaz [96] by generating multi-laminated flow pattern by 

characteristic application of Dean Flow. Figure 2.12 illustrates the creation of 

bers (a, b) which can be used to create 

 

 

xer by creation of multi-laminated flow pattern; (d) Result of mixing 
rst and forth mixing blocks at different Reynolds and Dean numbers [96]. 

transversal flow under various Dean Num

ulti-laminated flow pattern(c). Mixing efficiency using planar SAR mixer i

n Figure 12d for various Reynolds and Dean Numbers 

m s

illustrated i after four

recombination blocks.  

 

Figure 2.12. (a, b) Transversal flow pattern by Dean Flow phenomena in circular channel; (c) The 
concept of 2D SAR mi

performance at the end of fi
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As a variation to Dean Flows, centrifugal effect can creates transversal flows in 

straight microchannels caused by Coriolis pseudo force [97, 98]. In this method, 

centrifugal force created by spanning the microchannel creates axial and transversal 

flows. By patterning the microchannel by split-and-recombine structures, force flow 

creates a multi-laminated flow pattern which can shorten the mixing time by up to 

two orders of magnitude.  

Rapid expansion in channel cross-section in conventional T-mixer can decrease the 

diffusion length between segmented serial laminated fluids. Coleman et al [99] 

reported a micromixer based on symmetric sequential injection geometry and 

expansion chamber. In this work a sequence of two fluids will be injected using 

modified T-mixer with added inlet in the middle part of T-junction. At the end of the 

mixer, an expansion chamber is designed to increase the axial diffusive mixing by 

decreasing the diffusion length caused by sudden expansion of segments. The 

efficiency of mixing depends on the frequency of the injection and an efficient 

mi  

microscopy result of the mixer at different frequencies [99]. 

xing of 99% was achieved in 2.3mm mixer length at a frequency of 10Hz (Figure

2.13).  

 

Figure 2.13. (a) Schematic of symmetrical sequential injection micromixer; (b) Fluorescence 
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plets of one liquid on top of the other liquid. This injection technique creates 

a number of micro-plums inside the sample liquid which in fact increase the contact 

surface between two fluids and helps the diffusion to takes place faster.  

An array of 400 nozzles was used in the work reported by Miyake et al [100] in a 

very thin micro-chamber to perform the lamination mixing by decreasing the 

diffusion length. A conceptual picture of micro-injection mixer with 400 nozzles is 

illustrated in Figure 2.14 showing the position of micro-nozzles and the micro-

chamber. Micro-nozzles used in this work are positioned in rows, 10-100µm apart 

and a fast mixing time of 1.2sec was reported for the total injected volume of 0.5µl 

and the injection flow rate of 0.75µl/sec.  

Obviously, this technique is limited to a very small-volume micromixing and might 

not be practical for larger-volume mixing requirements. Very similar mixing 

techniqu  

groups as w

2.4.4  Injection-Based Lamination Micromixing Scheme 

Injection technique can be used to create a matrix of small regional fluid lamination 

in SAR mixer. An array of micro-nozzles is used in this technique to inject micro-

size dro

e with different nozzle shapes and arrangements was reported by other

ell [101-103]. 

 

Figure 2.14. The concept of micro-injection technique employed to create regional  small-volume 
diffusion mixing using array of micro-nozzles [100]. 
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 place inside a droplet of nl/pl volume to 

achieve fast diffusion mixing. In this technique, a series of discrete droplets will be 

 mixing by increasing the inter-layer diffusion of two 

liquids. As a variation of this technique, droplets may be manipulated individually 

using pressure [104], by application of thermo-capillary effect [105] or 

electrowetting actuation [106]. Alternatively, an immiscible phase effect such as oil-

water can be employed to generate and carry droplets inside a carrier liquid such as 

oil [107, 108]. In this case, shear force between carrier liquid and droplet creates 

multi-laminated pattern of two liquids inside the drops. Figure 2.15 illustrates the 

concept and experimental result of this type of micromixing. Although the concept is 

multi-lam  chaotic 

2.4.5   Droplet-Based Lamination Micromixing Scheme 

Multi-lamination of two liquids can take

created from two liquids and will be forced to move inside the mixing path. The 

friction effect between channel wall and droplets together with droplet recirculation 

creates multi-layer streamlines inside the droplets during the drop’s motion. This will 

consequently enhance the

ination diffusion mixing, the reported mixer was claimed to create

advection inside the droplets by application of winding microfluidic channel.  

 

Figure 2.15. Droplet-based multi-lamination mixing. (a) Schematic of microfluidic network and a 
picture of experimental result of mixing of two dyed water samples. (b) Schematic diagram of creation 

of multi-layers inside the droplets [107]. 
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ing by 

splitting, folding, stretching and breaking of the flow or creation of local eddies in 

higher Reynolds numbers [109, 110]. This method of creating chaotic advection is 

useful in passive micromixers where the idea is to perform the mixing without any 

external forces. Nevertheless, chaotic advection can be induced in the flow using 

external forces, which is the subject of active mixing platform and will be discussed 

in next section.  

Employment of obstacle structures is among the simplest methods to create chaotic 

advection in the mixing channel. These obstacles can be placed inside the channel 

(Figure 2.16a) or can be created in the channel walls (Figure 2.16b).  

A numerical simulation was performed by Wang et al [111] to investigate the effect 

of different arrangements of obstacles inside the mixing channel on mixing 

performance. Obstacles of 60µm in diameter were placed in the middle of the 

300µm×100µm (width×depth) channel in different arrangements. The result of this 

simulation showed that obstacles cannot generate any eddies or recirculation at low 

Reynolds number. However, higher Reynolds numbers in asymmetric arrangement 

transfer at high Reynold ng significantly (Figure 

2.4.5   Chaotic Advection Micromixing Scheme 

As mentioned before, chaotic advection is another way of mass transfer in flows with 

low Reynolds number. The so-called chaotic advection can be created by creating 

some geometrical obstacles inside the mixing channel or by reshaping the channel 

itself. These geometrical modifications inside the channel can enhance the mix

of obstacles can force one fluid to flow into another one. This transversal mass 

s number can enhance the mixi

2.16c).  

The same concept was employed by Lin et al [112] in a 450pl microchamber and a 

number of seven 10µm diameter pillar-type obstacles were placed in the middle of 

the channel. The range of Reynolds number varies in different positions along the 

flow between 200 and 2000. A complete mixing was achieved in less than 50µs at 

this Reynolds number.  

Effect of side-wall obstacles on mixing performance was investigated by Wong et al 

[70] by means of numerical simulation. A cross-shaped mixing unit was used in this 

simulation with outlet cross-section of 30µm×40µm comprising two 10µm×10µm 
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dard T-shape mixer because of its larger contact surface by mixing 

middle fluid by two fluids from side-inlets. Nevertheless, a complete mixing of 

ent in 

mixing performance was thought to be the generation of eddies and lateral velocity 

obstructions inside the mixing channel. The mixer was designed to work in low 

of water (dark) and fluorescein at Re = 0.1 [113]. 

obstacles created in the channel walls. The use of cross-shaped mixing unit is 

preferred to stan

antibody (side-inlets) with enzymes (middle-inlet) was achieved in less than 1ms at 

the outlet channel in this simulation study (Figure 2.16d). The enhancem

components caused by side-wall obstacles.  

Recently, Bhagat et al [113] reported a micromixer using diamond-shaped 

Reynolds number (0.02<Re<10). Complete mixing of fluorescein and water was 

achieved in 7mm long channel at Reynolds number of 0.1 (Figure 2.17). 

 

Figure 2.16. The concept of inducing chaotic advection in passive mixers by insertion of obstacles in 
the channel. (a) Obstacles created in the channel walls. (b) Obstacles created by placing 3Dstructures 
in the channel side-walls [60]. (c) Simulation result of chaotic mixing using asymmetric arrangement 
of obstacles [111]. (d) Creation of chaotic mixing in a cross-shaped mixing unit using two side-wall 

obstacles [70]. 

 

Figure 2.17. Passive micromixer using implemented diamond-shaped obstructions. Mixing efficiency 
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igure 2.18). 

This channel type has been investigated numerically in the work carried out by 

Mengeaud et al [116]. The simulation was performed in various Reynolds numbers 

ranging from 0.26 to 267 and various ratios of length of periodic steps to channel 

width (s/w). The simulation result showed that below a critical Reynolds number of 

80, the flow profile is parabolic thus the mixing is entirely diffusion-based. Above 

this critical Reynolds number, a recirculation flow pattern was generated at channel 

turns causing transversal mass transfer between two fluids (Figure 2.18b). The 

efficient mixing will take place in an optimised s/w ratio. This s/w ratio was found to 

be 4, at Reynolds number of 267.  

In the past reviewed chaotic advection micromixers, a relatively high Reynolds 

numbers were used to create eddies and recirculation. Although high Reynolds 

number might be necessary to achieve high flow rate micromixing in some

m

G  

mixer design. Generally, a more complicated mixing path can be designed using 

twisted channels to increase the chaotic patterns at lower Reynolds numbers. In a 

work reported by Hong et al [119], an in-plane modified version of Tesla structures 

in 2D mode was designed to investigate the mixing performance numerically and 

experimentally. The mixing performance was improved significantly caused by 

n and 

Recirculation can be generated at the relatively higher Reynolds numbers around the 

turns in a curved [114], sawtooth [115] or zigzagged [116] channels (F

 

icrofluidic applications [117, 118], accurate microfabrication technique must be 

employed to acquire secure chip bonding and sealing.  

eneration of chaotic advection at lower Reynolds number needs more sophisticated

Coanda effect in this structure (Figure 2.19). At lower Reynolds numbers, diffusion 

ut above Reynolds number of 5, a mixtmixing is dominant b ure of diffusio

convection contribute to the mixing performance.  

 

Figure 2.18. Chaotic mixing in a zig-zag-shaped microchannel. (a) The concept [60], (b) Velocity 
vectors showing recirculation at turns in Reynolds number of 267 and s/w ratio of 4 [116]. 
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 to create chaotic mixing pattern (Figure 2.20a). 

The result showed that a uniform mixing was achieved at Reynolds numbers ranging 

×0.3mm) was 

 

Figure 2.20. Various serpentine microchannel structures [60]. 

In a different work reported by Liu et al [120], a 3D serpentine channel resembling 

C-shaped repeating units was used

from 6 to 70. The mixing performance was much faster than diffusion mixing or 

standard square-shaped channel. As a variation on this work, another three-

dimensional serpentine channel was used in a work reported by Vijayendran et al 

[121] (Figure 2.20b). A very wide channel cross-section (1mm

fabricated in L-shaped repeating units in total length of 30mm. The result indicated 

enhanced mixing by chaotic mixing pattern at tested Reynolds numbers of 1, 5 and 

20. 

Figure 2.19. Application of modified Tesla structures to generate chaotic advection in the 
micromixer. (a) The concept of chaotic mixing; (b) mixing performance in different positions of 9-

stage mixing unit [119]. 

 



41 
CHAPTER 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

]. In this mixing scheme, the laminar flow was repeatedly folded by splitting, 

rotating and recombining in the mixing path. This will exponentially increase the 

flow concentration at the mixer, which leads to a fast and efficient diffusion mixing. 

An effective mixing was achieved at low Reynolds number (Re=0.1-2) in a very 

short mixing path (Figure 2.21).  

A more geometrical complex micromixer was introduced by Park et al [123] using 

three-dimensional channel structure utilizing the theory of chaotic advection 

introduced in Ottino’s book [124]. Based on this theory, the mixing channel was 

designed to enhance mixing by increasing stretching and folding through rotation as 

well as breakup process, which creates smaller blobs exponentially (Figure 2.22a). 

The result of mixing showed 70% mixing after passing through 4mm mixing 

channel. This mixer was tested at different Reynolds number of 1, 10 and 50 and the 

mixing efficiency was enhanced significantly.  

Various twisted microchannel designs were used in a numerical simulation by Jen et

al [ l 

geometry were used for invest b-d). The channel walls were 

angled to produce a swaying fluid pattern which causes chaotic regime thus might 

ces 

com

 
Fi

 

Figure 2.22. Various complex design of twisted micromixers to create chaotic advection. (a) 3D 
twisted microchannel, (b) Inclined mixer, (c) Oblique mixer, (d) Wavelike mixer [60]. 

A more complicated design of mixing channel was reported by Chen and Meiners 

[122

 

64]. In this design three micromixers with inclined, oblique and wavelike channe

igations (Figure 2.22

creates chaotic advection. The result indicated that inclined-channel mixer produ

better chaotic mixing. This type of mixer can produces a similar mixing efficiency 

pared to the standard T-mixer in shorter mixing path (31% shorter).  

gure 2.21. (a) The topological structure of the mixer; (b) The performance of a six-stage mixer at 
Reynolds number of 0.1 on two fluorescently labelled protein solutions (top) and in an aqueous 54% 

glycerol solution (bottom) [122]. 



42 
CHAPTER 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

icrochannel can be used 

er improved 

by combination of Dean Flow pattern in curved microchannels with abrupt change in 

cross-section of the channel. The effect of this change in the cross-section of the 

channel along the flow path can create expansion vortex effect that results in chaotic 

advection mixing of two fluids. Vortex can take place above certain Reynolds 

number caused by sudden expansion and pressure gradient. Combination of vortex 

e

vortex flow pattern which ca mixing significantly. Figure 

2.23b illustrate schematic diagram of the asymmetric serpentine micromixer 

incorporating Dean Effect and expansion vortex effect. The result of vortex effect 

using coloured dye streams is shown in Figure 2.23c at two different Dean Numbers. 

The result of mixing of fluorescein dyed fluids is illustrated in Figure 2.23d at 

different Reynolds numbers (6.4<Re<32.2) at various cross-sectional areas. A level 

of 80% f 32.  

ixing of two fluids inside the mixing channel. 

Application of ablated wells was first reported by Johnson et al [127] by creation of a 

A combination of chaotic advection and multi-lamination technique was used in a 

micromixer reported by Chang and Cho [125]. The 3D mixing path was patterned in 

two blocks of PDMS layer to create whirls and multi-lamination. The mixer was 

tested over a wide range of flow rates at various Reynolds numbers. This mixer can 

work efficiently in Reynolds number ranging from 0.26 to 26 at mixing length 

ranging from 2.8mm to 5.8mm. 

As mentioned before, Dean Flow phenomena takes place in spiral and curved 

channels. Realisation of Dean Phenomena in planar spiral m

in diffusion-based mixers to create multi-laminated flow pattern, which results in fast 

mixing of two fluids. Sunderan et al [126] reported a planar serpentine mixer which 

uses Dean Flow pattern to create multi-laminated flow pattern. Experimental results 

indicated efficient mixing of two coloured fluids at Reynolds numbers ranging from 

0.02 to 18.6.  

In a different work [96], it was shown that mixing efficiency can be furth

ffect in horizontal plane coupled with Dean Effects in vertical plane creates multi-

n increase the efficiency of 

 mixing was achieved at 7.8mm length of channel at Reynolds number o

Another method of creating chaotic advection is by creation of rips and grooves 

inside the microchannel [127-130]. In this method one fluid will be forced to move in 

lateral direction by a series of oblique rips or grooves. Subsequently, the force fluid 

circulates spatially repeatedly using multi-rips and grooves. This will create an 

effective chaotic advection m
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series of slanted wells in the channel using pulsed UV excimer laser. The channel 

was fabricated in width of 72µm and 28µm at top and bottom respectively with 31µm 

in depth. Four ablated wells were fabricated with 14 µm in depth.  An 

electroosmotic-driven flow was used in this experiment and 75% mixing was 

achieved at low flow rates of 0.06 cm/s. the performance of mixing was tested at 

higher flow rate of 0.81 cm/s and a good mixing of 80% was achieved in 443µm 

channel length. This mixing performance requires 2.3cm diffusion mixing path in a 

similar standard T-mixer (Figure 2.24).  

 
Figure 2.23. (a) Schematic of spiral mixer using Dean flow effect; (b) Schematic of serpentine mixer 
with abrupt cross-section expansions; (c) Creation of vortex at high Dean number; (d) Efficiency of 

mixing at different places marked in (a) for various Dean numbers [96, 126]. 

 

Figure 2.24. A Fluorescent microscopy image of mixing performance at two different flow rates (0.06 
cm/s and 0.81 cm/s) in a T-shaped channel with four ablated wells (b, c) and standard T-shape channel 

without well (e and f) [127]. 



44 
C

 

Figure 2.25. A comparison of mixing performance of three different micromixers at Reynolds number 
of 0.001 in mixing of 2 mM solution of Fluorscein-labelled polymer in water/glycerol mixtures (0 and 

80% glycerol). (a) Y-mixer with no structure, (b) Y-mixer with straight ridges (c) Staggered 
herringbone structure mixer [128]. 

In a similar work, Stroock et al [128-130] reported a chaotic mixer by creating two 

different groove patterns in the mixing channel. The performance of these two 

chaotic m t 

Reynolds number ranging from 0.001 to 100 (Figure 2.25). In fact in staggered 

groove pattern, the alteration in the orientation of the herringbones between half 

cycles exchanges the positions of the rotation centre. This will induces a chaotic 

pattern subject to a repeated sequence of rotational and extensional local flows.  

The generation of chaotic advection caused by helical flow pattern in microchannels 

with grooves was the subject of some numerical simulation studies. In these 

simulations, the effect of different groove pattern was investigated such as: single-

sided straight ridge pattern [131], double-sided straight ridge pattern [132] and 

mixing channel. The fabrication of different groove pattern including staggered 

herringbone structure on PDMS substrate was reported by Lim et al [134]. In this 

method a high brightness diode-pumped Nd-YAG laser was used for direct ablation 

on PDMS.  

Application of patterning using heterogeneous surface charge was investigated by 

Biddis et al [135]. In this study, various charge patterns were investigated and it was 

indicated that mixing efficiency can be improved by creation of localised flow 

HAPTER 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

groove patterns was tested in different Reynolds number and a very successful 

ixing was achieved in so-called staggered herringbone mixer (SHM) a

staggered herringbones structure [133].  The result of these simulations confirmed 

the occurrence of rotational flow pattern and subsequent chaotic advection in the 
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circulation regions. Mixing efficiency was improved by 22% and 68% for the applied 

electric fields of 70 V/cm and 555 V/cm. Figure 2.26 shows the result of this study in 

comparison to the mixer without surface charge.  

The concept of helical mixing in slanted grooves was further improved by 

implementation of parallel barrier structures in the channel [136]. The application of 

embedded barrier improves the mixing performance by changing the elliptical 

pattern to hyperbolic flow pattern in the barrier zone (Figure 2.27). The mixing 

channel is 240µm in width, 60 µm in depth and 21 mm in length with barrier cross-

section of 40µm×30µm. A numerical study of mixing performance in barrier 

Reynolds numbers (Re≈30) fluid and faster mixing. A 

embedded micromixer was conducted by Kang et al [137] by focusing on effect of 

periodic and aperiodic sequence of mixing protocols. It was found that higher 

 results in larger rotation of 

proper selection of aperiodic sequence will results in faster and more uniform mixing 

than a periodic sequence in a certain Reynolds number.  

The most complicated design of chaotic mixer was reported by Bertsch et al [138] 

using miniaturised version of conventional large-scale static mixer used in food-

processing industry. In this work, two types of mixers were tested and fabricated 

using integral micro-stereo-lithography process. This fabrication technique allows 

the manufacturing of more complex geometries in polymers. A cut-off view of these 

mixers is illustrated in Figure 2.28 with intersecting-elements-pattern in the mixing 

tube (a) and a series of parallel right/left-hand short helix elements in the tube (b).  

 
Figure 2.26. Chaotic mixing using surface charge. (a) Different surface charge patterns used for the 

study, (b) The mixing result without surface charge, (c) The mixing result in presence of surface 
charge with six patches staggered charge pattern and applied voltage of 280 V/cm [135]. 
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stigated by numerical simulation of 

 

Figure 2.28. Helical mixing tubes. (a) Cut-off view of intersecting-elements-pattern mixing tube, (b) 
Cut-off view of helical-pattern mixing tube; (c) and (d) the simulation result of particle mixing at 

Reynolds number of 12 for mixing tubes of (a) and (b) respectively [138]. 

These kinds of structures enhance the mixing by splitting, rearranging and combining 

the fluids in the intersecting-pattern mixer and rotational flow pattern in helical-

channel mixer. The efficiency of mixing was inve

the 65000 uniformly distributed particles flow at Reynolds number of 12 (Figure 

2.28c and d). This study indicated that both geometries perform efficient chaotic 

mixing at low Reynolds number. The intersecting-pattern tube creates more efficient 

chaotic mixing in comparison to helical-pattern mixing tube. 

 

Figure 2.27. The concept of barrier embedded micromixer. (a) Schematic view, (b) Elliptic flow 
pattern, (c) Hyperbolic flow pattern [136]. 
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ce such as pressure, 

temperature, electrokinetic or magnetic. Figure 2.29 illustrate a schematic diagram of 

various types of active mixers based on their activation source.  

2.5.1   Micromixing Using Miniaturised Micro-Stirrers 

Stirring two liquids using impellers is the most common method of mixing in macro-

scales. In this method, the mixing takes place by creation of turbulence caused by 

rotation of the stirrer. As discussed before, creation of turbulence in micro-scale is 

not possible due to the low Reynolds number. Nevertheless, application of stirring-

bars in micro-scale might enhance the mixing by creating more interfacial areas and 

chaotic advection pattern through forced lateral and rotational flows. Analogous to 

the macro-scale solution, several miniaturised stirrers have been developed to 

perform mixing in micro-scales [139-141]. Lu et al [139] reported a micromixer 

based on micromachine ctivated externally by 

 

Figure 2.29. Classification of active micromixers based on external source of activation 

2.5 Active Micromixing Platform 

The next micromixing platform relies on creation of chaotic regimes inside the mixer 

by application of an external source of energy. Since an external force will be used to 

generate the disturbance inside the mixer, the mixer geometry is less complex in 

comparison to passive mixers. Active micromixers can be categorised based on the 

source of external force used for creation of disturban

d magnetic bar, which can be a

application of rotational magnetic field. Fast and successful mixing was achieved in 

PDMS-based mixing channel, mixing chamber and large mixing chamber using a 

3×3 mixer array.  
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ir-bar monolithically integrated 

in parylene channel [140]. The diameter of the rotor and thickness of the stir-bar used 

isturbance 

s will 

 

Figure 2.30. Micromixing using micro-impellers. (a) Optical image of the mixer; (b) Mixing 
perf r 

This work was further improved by fabrication of a st

in this experiment were 400µm and 16µm respectively. Figure 2.30 illustrate a 

picture of this micro-impeller (a) and the result of mixing of different food colour 

dyes in water is presented at the rotation speed of 150rpm (b). The application of 

magnetic-driven rotating-bar can be used for pumping the liquid inside the 

microchannels as well (c). 

2.5.2   Micromixers Based on Pressure Field D

One of the simplest methods used for micromixing is the creation of disturbance in 

laminar flow pattern by applying pulsing flow pattern. In this method, two fluid

be injected into a T-mixer in which one fluid will be pushed into the mixer during a 

faction of time and will be stopped in order to push the other fluid in. the pressure 

applied by this switching pattern creates disturbance in segmented fluids inside the 

microchannel. Continuous switching flow pattern can be used to achieve full mixing 

of two fluids very quickly. Deshmukh et al [142, 143] used a Y-mixer to mix water 

and water/glucose by application of pressure-driven flow pattern. In this work an 

integrated micropump was used to create the pulsing flow pattern by switching on 

and off the micropump. The result of this experiment in different stages is illustrated 

in Figure 2.31.  

ormance of different coloured waters at different times; (c) the application of this device fo
pumping [140]. 
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lacement and the outlet is across one 

as 

performed in different pulsation phase shifts between two flows. The result of 

 

 

Figure 2.32. Numerical simulation result of mixing performance by applying sinusoidal pressure d 
to m 

In a similar work, Fujii et al [144] used the same mixing concept of pressure flow 

pattern using an external micropump to perform mixing inside a Y-mixer.  

Alternatively, pressure-driven flows can be applied smoothly using a sinusoidal flow 

pattern. In this method the pressure will be applied to one or both flows gradually 

from one or both inlets [145] or from multi inlets [146]. Glasgow and Aubry [145] 

investigated the performance of sinusoidal pressure field pattern on mixing inside a 

T-mixer with two inlets having 90 degree disp

inlet. A CFD simulation of aqueous solution at Reynolds number of 0.3 w

simulation indicated that applying pressure from one inlet will increase the interface 

area between two fluids and increase the mixing performance. The result showed an 

increase in the mixing efficiency by 83%. This was achieved by applying the 

pressure field to the perpendicular inlet.   

Figure 2.31. Pressure-field mixing. (a) Steady flow; (b) Top stream is stopped for 1/6 sec; (c) Bottom 
stream is stopped; (d) Switching flow pattern at frequency of 3Hz [142]. 

fiel
both inlets with 180° phase shift. (a) The snap-shots are taken from the outlet cross-section, 2m

down the channel; (b) Mixing profile across the channel at different times [145]. 
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ttern with 

° °

er numerical modelling to characterise the 

performance of the pulsing-flow-pattern was presented by Okkels and Tabeling [147]. 

2.5.3   Acoustic-based External Disturbance Source 

Acoustic wave is another source of energy that can be used as external source of 

disturbance in micromixers. The pioneering work on application of acoustic waves in 

microfluidic application was reported by Moroney et al [148]. In this work, the 

application of ultrasonic Lamb waves was used for pumping fluid in small-scales

materials (quartz crystal) due to the applied voltage. Therefore, by applying an AC 

voltage to the material at resonant frequency of material, a continuous periodic 

mechanical distortion can be generated. This effect has found its way in design of 

active micropumps [148, 149]. However, this effect can be used in micromixers to 

create disturbance in the fluids to enhance mixing. Rife et al [149] reported an 

acoustic actuator using ultrasonic piezoelectric transducers that can be used for 

pumping and mixing by acoustic attenuation. Focused acoustic waves have been 

used to generate lateral movements in liquids using thin film piezoelectric 

transducers in circular sectors [150]. 

of red bl  of high 

frequency (3.5MHz) proved to be useful for mixing of biological samples. Biological 

The mixing performance was decreased to 58% improvement by applying in-phase 

pressure flows to both inlets. However, out of phase sinusoidal pressure pa

a phase shift of 90  and 180  result is much improved mixing performance by 

creating multi stretch and folding of two fluids in the channel. Figure 2.32 illustrate 

the CFD simulation result of this mixing method with 180° phase shift between two 

inlet flows.  

This mixing concept was further elaborated by Niu and Lee [146] by increasing the 

number of inlets positioned across the mixing channel. In this work, a particle 

tracking simulation was performed in order to optimise the pulsation frequency and 

investigate creation of chaotic behaviour of the flow pattern inside the channel using 

Lyapunov exponents. It was indicated that the mixing performance is related to the 

pulsation frequency. In this work, the multi-pressure flow pattern was controlled by a 

computer-aid source-sink system. A furth

. 

The concept of acoustic actuation is based on mechanical displacement of some 

Yasuda [151] reported a high frequency acoustic micromixer to perform the mixing 

ood cells using piezoelectric zinc oxide thin film. The application
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howing the performance of mixing by ultrasound irradiation.  

wn as 

 

samples are very sensitive to the temperature induced by acoustic energy. In 

addition, ultrasonic waves around 50 kHz might generate cavitations in the water 

based biological solution, which is a harmful condition for biological samples. 

Therefore, a mega hertz range of ultrasound frequency is recommended for handling 

biological samples. A picture of Yasuda’s ultrasound mixing chamber is illustrated in 

Figure 2.33 s

Further application of acoustic mixing was reported by Yang et al [152, 153] using 

piezoelectric PZT ceramic at low frequencies (48 kHz and 60 kHz) for mixing of 

ethanol-water and uranine-water. The temperature rise was measured as 15°C during 

the activation of the mixer.  

Acoustic streaming is another variation of acoustic micromixing. This technique 

benefits from the chaotic flow pattern created by cavitation microstreaming at lower 

band of acoustic waves (kHz-range). The surface of a trapped bubble in liquid acts as 

a vibrating membrane in the presence of acoustic field. The resonant frequency of 

vibration mainly depends on bubble size. The friction force generated at bubble-

liquid interface creates a fluid flow around the interface, which is kno

cavitation microstreaming.  

Figure 2.33. Acoustic mixer. (a,b) Schematic illustration of the mixing chamber at vertical and 
horizontal cross-section; (c,f) schematic of region B in (a); (d,g) Red blood cells and fluorescent dye 

before activation of the mixer; (e,h) Red blood cells and fluorescent dye during activation [151].  
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 2mm in diameter, inside the mixing chamber. The 

experimental result indicated a complete mixing of two liquids in less than 2 minutes 

(Figure 2.34). With no acoustic streaming, this mixing might take place in six hours 

by pure diffusion. In addition, it was found that higher voltage amplitude and use of 

square wave results in faster mixing performance  

Acoustic stirring in higher frequencies can also be used in micromixing. Yaralioglu 

et al [156] reported an acoustic micromixer using an integrated piezoelectric 

transducer in a conventional Y-mixer made of PDMS. In their work, the transducer 

was made by deposited zinc oxide thin film on the surface of quartz substrate. The 

transducer was designed to operate at the frequency of 450MHz. 

A mixer based on surface acoustic wave (SAW) using interdigitated transducers was 

reported by Tseng et al [157]. In this work the transducer was placed outside the 

mixing channel to alleviate heat generation inside the mixer. Acoustic energy 

generated by transducer excites longitudinal waves into the fluid through solid-liquid 

in  

Ap e 

droplets by generating eddies and circulations [158]. 

 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

 

Figure 2.34. Micromixing based on cavitation microstreaming. (a) Schematic of mixer and bubble 
array; (b) Schematic of fluid stream induced by an air bubble; (c-e) and (g-j) The mixing performance 

of a single bubble and an array of 9 bubbles at different times (given on the pictures) [154]. 

A practical application of acoustic microstreaming in micromixing was reported by 

Liu et al [154, 155]. In this work, an integrated PZT transducer was used to activate 

an array of 9 air pockets,

terface at a specific angel which depends on solid-liquid refraction characteristic.

plication of concentrated SAW has also been used to perform mixing insid
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Beside acoustic streaming and cavitation microstreaming, acoustic standing waves 

also have been used in micromixers [159]. While acoustic streaming is mainly a 

volume effect, acoustic standing wave is a radiation force which acts at the interface 

between two fluids. In addition, acoustic streaming propagates perpendicular to the 

fluid direction but acoustic standing waves radiate parallel to the flow direction. 

Therefore, a small density variation between two fluids is enough to cause the 

mixing at the liquid-liquid interface.  

2.5.4   Micromixing Based on Thermal Disturbance 

Thermal disturbance has been the subject of micromixing in some limited reports. 

The fact that diffusion coefficient is directly related to the temperature implies that 

increasing the tem

the variation in viscosity of water from 10

fferent temperature from 80°C to 

perature will decrease the diffusion time. The more interesting fact 

is that the viscosity of fluids is highly sensitive to the temperature. As an example, 

°C to 80°C is nearly four times less. 

Therefore, the efficiency of mixing might be enhanced by increasing the fluid 

temperature.  

Mao et al [160] reported an investigation of micromixing based on linear temperature 

gradient across the array of microchannels. In their work, the array of microfluidic 

channels were placed between a hot fluid source on one side and a cold fluid sink on 

the other side. This setup created a linear temperature gradient across the 

microchannels in which each channel was at a di

8°C. The efficiency of mixing was investigated by measuring the quantum yield of 

semiconductor crystals. An important characteristic of these crystals is the 

temperature dependency of their fluorescence quantum yield. The experimental 

result indicated an order of magnitude change in the quantum yield of these particles 

over 70°C variation in temperature.  

In a different thermal mixer, Tsai and Lin [161] reported a micromixer based on 

thermal bubble agitation mechanism. In this work a nozzle-diffuser bubble actuated 

micropump was employed to generate the bubbles in various frequencies. The 

oscillatory flow generated by thermal bubbles of micropump can induce wavy 

interface to increase the surface contact between the fluids thus enhance the mixing. 

The optimised mixing was achieved at the frequency of 200Hz. 
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ps. The application of electrokinetic forces to 

manipulate the suspended particles inside the fluid is called dielectrophoresis which 

crofluidics. 

In this section, the stress is on application of these forces on microfluidic 

ixing of two fluids of different electrical 

properties [162, 163]. Moctar et al [162] reported an electrohydrodynamic mixer 

 this picture that the performance of mixing is 

improved at stronger electric field. 

ed as 5000 µm. 

2.5.5   Micromixing Based on Electrokinetic Forces 

The next group of micromixing lays blow the electrokinetic force as the external 

source of activation. Electrokinetic is the study of the motion of the selected entities 

subjected to the electric field. If this force is applied to the fluid, the term is called 

electro-hydrodynamic or electroosmotic forces. These types of forces have been 

widely utilised in design of micropum

has found it way in manipulation and separation of small particles in mi

micromixing. 

2.5.5.1   ElectroHydroDynamic (EHD) Micromixers 

In the presence of electric charges in fluid subjected to an electric field, these charges 

will be dragged toward the opposite electrode through the fluid. This phenomenon 

has been employed to enhance the m

using a conventional T-mixer and an array of electrodes perpendicular to the channel 

and the fluid direction. Corn oil and doped-dyed corn oil with similar mechanical 

properties (viscosity and density) at Reynolds number of 0.02 were used for mixing. 

The effect of DC and AC (square wave and sinusoidal) electric field was studied on 

mixing performance. By applying the electric field of 4×105 V/m, a transversal flow 

will be generated at fluids interface, which destabilise the interface. This effect led to 

an instant mixing of two fluids in less than 0.1 second. The mixing is effective at 

both DC and AC electric field and only depends on the amplitude of the field. Figure 

2.35 illustrate the result of EHD mixer on mixing of two corn oils at different applied 

electric fields. It is clearly shown in

In a similar concept, Tsouris et al [163] reported an EHD micromixer to perform the 

mixing of two miscible fluids such as alcohols in a T-mixer. The strength of applied 

electric field was up to 2×106 V/m in a channel with 450 µm in width. The 

experimental results indicated a very successful mixing of two liquids in 150 µm 

mixing length. This length for pure diffusion mixing was measur
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. Electro-hydrodynamic mixing. (a) Schematic of setup configuration; (b-d) The 

performance of the mixing of two corn oil streams (pure and dyed) at (b) no field applied, (c) DC field 
× 5 × 5

e 

Figure 2.35

of 4 10  V/m, (d) DC field of 6 10  V/m [162]. 

2.5.5.2   Electroosmotic Micromixers 

The surfaces of most microfluidic materials such as glass, plastics and polymers 

reveal a net negative charge when interfaced with an aqueous solution. In the 

presence of these negative charges, an electric double layer will be created at the 

interface from positive charges (cations) presented in the solution. The depth of this 

layer is known as Debye length, which is the distance from the interface to where the 

electric potential energy is equal to the thermal energy. In the presence of an external 

electric field along the interface, positive charges presented in electric double layer 

will be dragged toward the cathode. The adjacent liquid to the double layer 

experience a net momentum and force the bulk of liquid to move toward the cathode. 

This phenomenon is called electroosmotic flow and is defined as the motion of bulk 

fluid at the solid-liquid interface due to the externally applied electric field. Although 

electroosmotic flow has widely been used in microfluidic micropumps, this section is 

more concern about the application of electroosmotic flow in design of active 

micromixers. 

 Lin et al [164, 165] reported an electroosmotic driven micromixer in a conventional 

T-mixer using switching DC field. The performance of the conventional switching 

mode was compared to the proposed pinched switching mode experimentally as well 

as using numerical simulation. In conventional mode, one inlet is connected to the 

applied voltage, but in pinched mode both inlets are connected to the applied voltag
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(Figure 2.36a). The results indicated higher mixing performance of the pinched mode 

(97%) in comparison with the conventional mode (45-60%) at the distance of 1mm 

down the mixing channel. This is because the cyclic switching of the voltage drags 

the fluid into the channel and creates electrokinetic instability, hence, improve the 

mixing efficiency. In this work, optimised frequency of switching was investigated 

based on the magnitude of applied voltage. These optimal frequencies are 2Hz and 

8Hz under low applied voltage of 60 V/cm and high applied voltage of 180 V/cm 

respectively. The results of simulation and experiments are illustrated in Figure 2.36b 

for optimal frequencies at different applied voltages. 

Application of AC electroosm

electrodes laid paralle his configuration, the 

otic flow in micromixing was investigated by Sasaki et 

al [166]. In this work, AC voltage was applied to a pair of coplanar meandering 

l beneath the channel (Figure 2.37a). In t

tangential electric field creates two circular flow patterns inside the microchannel 

(Figure 2.37b).  

 

Figure 2.36. The electroosmotic mixer. (a) The concept of pinched mode switching mode; (b) The 
result of simulation and experiment at two different applied voltages under optimal frequencies [164]. 

 

Figure 2.37. (a) Schematic of channel and meandering electrodes; (b) Cross-sectional view of flow 
circulation under AC electric potential; Fluorescence micrograph of mixing at (c) No applied voltage 

and (d) Applied voltage of 20 V (p-p) [166]. 
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 stable modulation of two fluids in the channel was achieved in 

frequencies ranging from 0.01 Hz to 1 Hz. 

In a different approach Wu and Liu [168] reported an electroosmotic mixer based on 

temporal and spatial modulation of ζ-potential of channel surface. In this work, a 

conventional T-mixer was used and a series of asymmetric herringbone aluminium 

electrodes embedded at the middle of the channel. By controlling and varying the

v f 

the external potential across the channel, a local flow circulation zone was generated 

concept; (b) the re equencies [167]. 

The meandering shape of electrodes creates an asymmetric circulation of two flows 

to cross the boundary between two fluids and hence, enhance mixing. A rapid 

dilution mixing was achieved in 0.18 sec at flow velocity of 12 mm/s inside the 

mixing channel, 120 mm in width. This performance is 20-fold faster than the 

performance of pure diffusion mixing in the same condition with no external force. 

On a different electroosmotic mixing concept, Tang et al [167] reported a 

modulation-based flow pattern using periodic switching of electroosmotic flows 

between two inlets. This flow pattern will create a segmental pattern of two fluids 

inside the mixing channel and improve the mixing significantly. The result of 

simulation and experiment indicated a threshold frequency above which the 

modulation is not possible. This threshold frequency depends on the fluid flows and 

channel dimension. Figure 2.38 illustrate a schematic diagram of the mixer and 

simulation results at different dimensionless frequencies. Nevertheless, a 

reproducible and

 

oltage of these embedded electrodes, the surface charge, hence, the ζ-potential o

the surface was controlled by inducing positive or negative polarity. By activation of 

as the result of interactions between different polarity double layers. The concept of 

this circulation flow pattern is demonstrated in Figure 2.39a.  

 

Figure 2.38. Modulation-based electroosmotic flow mixer. (a) Schematic diagram of the setup and the 
sult of simulation at different dimensionless fr
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rapid and homogeneous 

icated an effective 

mixing ratio of 90% within 5 mm length of the microchannel (Figure 2.39c).  

A two-dimensional numerical investigation of electroosmotic flows driven by a 

uniform electric field in a conduit with non-uniform distribution of ζ-potential was 

performed by Qian and Bau [169]. In this simulation, local ζ-potential values were 

induced and controlled by a series of embedded electrodes at top and bottom of the 

conduit. It was shown that by appropriate modulation of the ζ-potential, various flow 

patterns can be created inside the conduit. These flow patterns can efficiently mix 

two fluid

Figure 2.39. (a) Schematic of creation of circulation flow pattern; (b) Schematic of the mixer and 
electrode pattern; (c) The result of CFD simulation at different channel cross-sections [168]. 

 

Figure 2.40. Ac electroosmotic mixer. (a and b) Schematic of mixing channel and chamber setup; (c 
and d) Time-step images of mixing performance for channel and chamber based mixing setups [170]. 

Nevertheless, creation of the local flow circulation results in 

mixing of two fluids. Numerical and experimental results ind

s by inducing chaotic advection patterns.  
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Another electroosmotic micromixer was reported by Oddy et al [170] by creating 

oscillating electroosmotic flow inside the mixing channel and mixing chamber using 

AC sinusoidal applied voltage. It was found that application of AC voltage creates 

electrokinetic instability by creation of rapid periodic stretch and folding inside the 

mixer. This instability can be used to stir the fluid streams with Reynolds numbers of

or l 

(Fig  

well as electroosmotic flow streams. The time-scaled performance of the mixing was 

improved by almost two orders of magnitude in comparison to pure diffusion-based 

mixing. 

2.5.5.3   Dielectrophoretic Micromixers 

Dielectrophoresis (DEP) is the movement of polarisable particle/body subjected to a 

non-uniform electric field. Non-uniform nature of the electric field induces non-

uniform distribution of electric dipoles on the particle/body, which induces a net 

electric force. If the polarisability of the particle is higher than the surrounding 

medium, the particle will be dragged toward higher field region (positive DEP). 

Otherwise, the particle will be repelled from higher field region under negative DEP 

force [171]. The application of dielectrophoresis in mixing of two fluids can be 

realised through stirring effect of suspended particles inside the fluids. In this 

method, stretch and folding of the particle trajectory create disturbance in the fluids

i

The application of dielectrophoresis activated micromixer was reported by Deval et 

stretch 

f the mixer and electrode pattern; (b) 
Stretch and folding of polystyrene particles [173]. 

 

der of unity. The mixing was successfully performed in both mixing channe

ure 2.40c) and mixing chamber (Figure 2.40d) under pressure flow streams as

 

nterface as the result of friction forces in liquid-solid interface.  

al [172] and Lee et al [173]. In this work a time dependent Dielectrophoretic force 

was applied to a mixture of suspended polystyrene particles in DI water inside a 

patterned microchamber. The result of simulation and experiment indicated 

and folding pattern will be created by activation of DEP force (Figure 2.41b).  

 

Figure 2.41. Dielectrophoretic micromixer. (a) Top view o
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esence of an electric field. Moving charges experience Lorentz force in the 

n of coupled magnetic and electric 

field can induce Lorentz force on charged particles inside an electrolyte solution. 

currents, which creates eddies and enhances mixing.  Figure 2.42 illustrate the 

laminar vortex flow on top and bottom of a chamber results in generation of 3D 

vertical vortex flow caused by Ekman pumping mechanism. This method was 

studied numerically and experimentally and the results indicated that mixing is more 

efficient at resonant frequency. The mixing time in this mixer can take up to an hour 

for a typical vortex zone of 2.2cm×2.2cm. 

This pattern creates chaotic particle trajectories which might enhance the mixing. 

Further evaluation of effectiveness of mixing by polystyrene particle was not 

supplied in this work.  

2.5.6   Magnetic Micromixers 

2.5.6.1   Magneto-Hydrodynamic (MHD) Micromixers 

Charged particles inside an electrolyte will be dragged toward opposite field region 

in the pr

presence of magnetic field. Therefore, applicatio

This effect, which is known as Magneto-hydrodynamic (MHD) effect, has been used 

in micromixers [174, 175].  

Bau et al [174] reported a MHD mixer using alternating electric field applied to an 

array of deposited gold electrodes on the wall of a conduit. The conduit was filled 

with an electrolyte solution and subjected to a uniform magnetic field perpendicular 

to the surface of the electrodes. The interdigitated pattern of electrodes, generate 

electric currents in various directions, which in turn induces opposite Lorentz forces. 

Since the pattern of electrodes can be fabricated in different shapes and positioned in 

different orientations, the induced Lorentz force can creates a chaotic pattern of local 

schematic depiction of the MHD mixer and an experimental result of mixing of a dye 

stream in electrolyte solution. 

Solomon and Mezic [175] reported a 3D vortex mixer derived by a weak time 

dependent 2D MHD flow. Generation of a pair of weak two-dimensional horizontal 
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all-size magnetic particles [176]. Since bio-fluids are 

tic force was applied using embedded 

electrodes at the bottom of the channel. A chaotic mixing pattern of magnetic beads 

was created using specific switching combination of the electrodes by creating 

 2 – PASSIVE AND ACTIVE MICROMIXERS – A SURVEY 

 
Figure 2.42. MHD micromixer. (a) Schematic diagram of the mixer and electrode pattern; (b-e) 

Deformation of dye stream under Lorentz force and mixing in solution [174]. 

2.5.6.2 Magnetophoreti

Magnetophoretic phenomena and its application to induce magnetic force on 

magnetic particles is the subject of the next chapter (Chapter 3) and will be discussed 

in more detail later. In this section the aim is to review micromixers that use 

magnetophoretic force as the external source of force to create disturbance in the 

mixing zone. The magnetophoresis force is analogous to dielectrophoresis force 

acting on magnetic dipoles. If a magnetically permeable body is exposed to a non-

uniform magnetic field, the interaction between internal magnetisation of the body 

and external magnetic field creates a net force, which is towards the higher region of 

field strength. This force has been widely used in manipulation and separation of bio-

molecules by application of sm

inherently of non-magnetic nature, application of MAP force in micromixers is 

performed using suspended magnetic particles in the fluid. Therefore, the magnetic 

force is meant to perform the mixing by stirring the magnetic beads across the fluids 

interface. The spatial movement of magnetic beads inside the mixer drags the fluids 

from one side to the other side of the interface as a result of friction force.  

Suzuki et al [177-180] reported a magnetic micromixer using a conventional T-mixer 

with serpentine mixing channel. Magne
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efficient stretch and folding of material lines. Figure 2.43 illustrate the serpentine 

magnetic mixer and efficiency of the mixing by applying the magnetic force. A good 

mixing was reported in less than 10s at 1.3 mm mixing length by applying magnetic 

force of 1×10-12 N.  

Another rotational magnetic field mixer was reported by Rong et al [181]. The nature 

of the magnetic force is usually one directional force, which leads to collection of 

magnetic particles at higher magnetic field region. Efficient mixing takes place by 

spatial mixing of magnetic beads inside the mixer. Therefore, in the absence of 

magnetic repulsive force, opposite directional attractive force need to be applied. 

This implies that to generate rotational magnetic field, at least three pairs of magnetic 

poles are required. In the wo

was place e mixing 

channel. It was shown that sequential activation of pole pairs can create a rotational 

ils are placed outside of the 

rk reported by Rong et al, a set of three magnetic poles 

d outside the mixing zone placed at the junction of a Y-shap

force exerted on the magnetic particles. The magnetic co

mixing zone and the magnetic field is introduced through implementation of 

magnetic tips. The strength of applied magnetic force was in order on 1×10-8 N. 

Application of this mixer is for mixing of cells and magnetic particles in order to 

collect the cells by active surface functionality of the particles. The concept of 

mixing sequence of this magnetic rotational field mixer is illustrated in Figure 2.44. 

Magnetic bead tend to chain up and stick to each other inside the fluid when 

subjected to a DC or AC magnetic field. In fact if the strength of magnetic field is 

strong enough, a very compact and porous bulk of magnetic particles will be created 

inside the mixing channel. This effect has been used to enhance the mixing by 

creating dynamic porous structure inside the channel. When the flow passes through 

this magnetic porous structure, chaotic advection flow pattern forces two fluid 

streams to mix very quickly.  

 
Figure 2.43. Magnetic micromixer; (a) The serpentine magnetic mixer showing no mixing when the 

magnetic field is not activated; (b) Performance of the mixing after activation of magnetic field 
disturbance [178]. 
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, f=100 Hz and B=5 mT. (c) SPS at u=0, f=5 Hz and B=5 mT. (d) 
SPS at u=0.4 cm/s, f=5 Hz and B=25 mT. (e) SPS at u=0.4 cm/s, f=5 Hz and B=20 mT [176]. 

Rida et al [176, 182, 183] used this magnetic structure to perform mixing inside a Y-

shape mixer. The magnetic field was generated using an external electromagnet and 

was introduced to the side walls through embedded permalloy layer. Figure 2.45 

illustrate schematic diagram of this magnetic mixer with integrated permalloy parts

A  

(SP
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Figure 2.44. Magnetic rotational field mixer; (a) Cross-sectional and (b) 3D views of fabricated 

mixer; (c) The static working principle; (d) Dynamic working principle [181]. 

 

Figure 2.45. (a) Schematic view of magnetic supra-particle structure (SPS) in a microfluidic channel; 
(b) SPS at zero fluid velocity (u=0)

. 

n image of the magnetic clustering structure, so-called supra-particle structure

S) is shown in Figure 2.45b-e, which is shown at different magnetic field strength 
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and during perfusion of fluid. This mixing method is very similar to the concept of 

large conventional static mixers used by Bertsch et al [138] in design of chaotic 

helical mixer. The advantage of this method is the dynamic structure of the porous 

structure that can be agitated using DC and AC magnetic field. The efficiency of this 

mixer was tested using fluorescent and non-fluorescent streams and 70% and 95% 

mixing efficiency was achieved at flow rate of 5mm/s at DC and AC magnetic field 

modes respectively. 

Shikida et al [184, 185] reported a droplet-based magnetic mixer using differential 

magnetic field generated by magnetic field modulation of a permanent magnet and 

integrated electromagnet. In this work the electromagnet was created using multi-

layered aluminium foils to control the heat dissipation ratio. 

The gener ging part 

of magnetic mixers [186]. This work was done by employing expensive multi-

layered fabrication processes in conventional MEMS magnetic-based fabrication 

techniques. Lin et al [187] reported a particle-based magnetic gradient generator 

using micron-sized nickel particles implemented in the channel walls. Applied 

external magnetic field induces magnetic moment in the nickel particles. These 

particles can increase and concentrate the external magnetic field and generate higher 

magnetic gradient. It was shown that the magnetic force generated in the presence of 

these pa  the concept 

of em

ation of strong magnetic field inside the mixer is the most challen

rticles is 3.31 times greater in magnitude. Figure 2.46 illustrate

bedded nickel particles in the side wall of cell separator.  

 

Figure 2.46. Schematic diagram of enhancing the magnetic gradient by application of embedded 
nickel particles (The picture describe the separation of magnetic bead attached to the cells) [187] 
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cation. However, the application of this method is limited to a 

 

creasing the 

the adaptation of the column-based DNA extraction technique to a microfluidic-

based micro-chip format.  The results of the reported works have shown that 

comparable results to that of the standard bench-top method were achieved using 

chip-based techniques [36, 39, 41, 42]. However, chip-blockage is the major issue 

with these chips using a heterogeneous sample such as whole blood, which contains 

various large-size molecules. Therefore, the application of the SPE columns remains 

limited to the purified DNA sample or diluted cell-lysate.  

Another well-established solid-phase extraction technique is the silica-coated 

magnetic bead suspended in lysis buffer. Although the efficiency of this technique is 

not as good as column-based extraction, this technique can easily be adapted and 

us t. 

2.6   Conclusion and Discussion 

As discussed in the previous chapter (Chapter 1, Section 1.2.4), the majority of the 

reported sample processing bio-chips have used solid-phase extraction system (SPE) 

to purify nucleic acids. Thermal lysis of the purified target cells was also used in 

some other bio-chips to perform the amplification step without the needs for DNA 

extraction and purifi

very low cell concentration due to the presence of PCR inhibitors inside the cell 

membrane. In addition, a pre-processing step is necessary to capture and purify the 

target cells using a bench-top or chip-based protocol. Therefore, their application is 

not suitable for POC devices when detecting minimal residual disease and infectious

agents with low copy number in the sample. 

On the other hand, SPE systems are the most reliable and well-established techniques 

for nucleic acid extraction and purification process. This is because of the excellent 

bonding capacity between silica surface and nucleic acids. This unique bonding 

property has led to the development of many commercial laboratory-based nucleic 

acid extraction and purification kits [15, 16]. These kits can be divided into two main 

groups; column-based extraction kits and magnetic bead-based extraction kits. 

Compact and porous silica matrix is the base of all column-based extraction kits, 

which is the gold standard of nucleic acid extraction and purification. In this method, 

compact silica matrix increases the total bonding surface area, thus in

chance of DNA capturing. Due to this fact, tremendous effort has been devoted on 

ed to extract and purify DNA molecules from whole blood in micro-chip forma
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method mainly depends on the 

efficiency of mixing the magnetic beads within the sample. The larger aspect ratio 

to effectively lyse the cell membrane. After complete lysis process, released DNA 

 

ulti-lamination mixers is 

more efficient when using non-suspension fluids. Various types of passive mixers 

The efficiency of the DNA capturing in this 

together with an efficient mixing pattern can increase the efficiency of the DNA 

capturing in a microfluidic system. Therefore, the purpose of this work is to design 

and develop a DNA extraction device to be used with an adapted standard magnetic 

bead-based DNA extraction protocol. 

The standard process involves the extraction of DNA molecules from lysis of 

pathogenic viral and bacterial cells inside a heterogeneous medium such as whole 

blood. The lysis process takes place by introducing the lysis buffer into the blood 

sample followed by an enzymatic incubation step at the designed temperature. The 

incubation conditions, such as temperature and pH, are necessary for the lysis buffer 

molecules need to be captured on the surface of the suspended magnetic beads. 

Finally, a washing process is necessary in order to purify the captured DNA 

molecules from the rest of fluid containing cell debris, proteins and other potent PCR 

inhibitors. Therefore, there are three main steps that need to be considered in 

designing the DNA extraction device in this work. These steps are efficient cell lysis, 

efficient DNA binding and efficient DNA purification. 

The purpose of this chapter was to review and study different reported microfluidic 

mixers in order to adapt the most suitable mixing platform to be used with the 

selected magnetic bead-based extraction protocol. In the passive mixing platforms, 

where the mixing entirely relies on diffusion and chaotic advection created by

geometrical modification, the fabrication is limited to geometrical complexity of the 

mixer itself. Since the efficiency of these mixers is mainly based on the diffusion, 

and this is done by decreasing the characteristic length of the diffusion, the majority 

of these mixers have small channel depth. This is particularly problematic when 

using suspension fluids such as magnetic beads/lysis buffer, which might result in 

channel blockage. However, the application of passive m

have already been used in micro-chips using SPE systems [34, 42, 45]. 

From various types of the reported active mixers, the application of electrokinetic 

mixers is limited to the fluids with particular physical and chemical properties. For 

example, MHD mixers only work with electrolyte solutions, EHD mixers work with 
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be used for the efficient mixing of the magnetic beads within the blood/lysis buffer. 

olecules remain 

highly conductive fluids, electroosmotic mixers work with high pH fluids and 

polarisable particles are necessary in dielectrophoretic mixers. In addition, the 

implementation of various electrode patterns is essential in all of the electrokinetic 

mixers, which adds an extra cost and complexity to the manufacturing process.  

In the active mixing platform, the piezoelectric mixers and the magnetic mixers can 

The implementation of a piezoelectric mixer in a fully integrated POC device was 

first reported by Liu et al. [50, 51]. However, this mixer was used to capture the 

target cells on the surface of the immune-magnetic beads. Magnetic mixing platform 

can also be used in this work due to the presence of magnetic beads in the fluid [188-

191]. 

Chung et al. [31] reported a magnetic bead-based DNA extraction device using 

immobilised magnetic beads on the channel walls and the solution flowing back and 

forth. The efficiency of the device was compared with the free bead sample and an 

88-fold improvement was observed with the immobilised beads extraction technique. 

The probability of collision between the beads and the DNA is low due to the 

existence of other large molecules in the blood. In the presence of an external 

perturbation, the relative locations of the beads and DNA m

unchanged. On the other hand, the probability of collision increases dramatically 

when the beads are immobilised. This is mainly because of the changes in the 

relative locations of the beads and DNA molecules. This fact implies that in order to 

increase the efficiency of DNA extraction, either magnetic beads or the fluid need to 

be immobilised. 

2.6.1 Introduction of a Novel Magnetic Micromixer for 
Extraction of DNA from Whole Blood 

Based on the above discussion, piezoelectric micromixers seem not to be suitable for 

the efficient mixing of the magnetic beads and the solution. Therefore, the only 

method that can selectively agitate the magnetic beads inside the immobilised 

solution is through the application of switching magnetic field.  

The application of non-uniform external magnetic force generates effective spatial 

and temporal mixing of magnetic beads in the fluid to collect suspended DNAs. The 

non-magnetic nature of the bio-fluid and biological entities eliminates the effect of 
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r the 

mixer. 

the tem

magnetic force on these entities. Attached DNA molecules to the magnetic beads can 

be harvested through the application of DC magnetic field by clamping the beads at 

the bottom of the mixing unit. Despite most chemical reactions, in this work the 

generated heat resulted from joule heating of the electromagnets can be used fo

enzymatic incubation process and helps to lyse the cells membranes. In addition, the 

viscosity of fluid decreases by increasing the temperature, which improves the spatial 

movement of the magnetic beads inside the mixer. Although the spatial-temporal 

movement of the magnetic beads inside the mixer might help efficient mixing of the 

whole blood and lysis buffer, this process can take place entirely by diffusion. This 

may be realised by creating the maximum contact surface and minimum diffusion 

length in the 

Figure 2.47 depicts a schematic diagram of the proposed magnetic mixer/separator in 

a cross-sectional view. Since the blood/lysis buffer mixture needs to be incubated at 

a certain temperature, the static mixing concept is introduced through the application 

of micro-chamber. To decrease the diffusion length, two fluids need to be laminated 

on top of each other, which can be created by introducing two fluids to the opposite 

inlets at T-junction at the perimeter of the mixing chamber. This will create 

maximum contact surface between the fluids, thus decreasing the diffusion time. In 

this scenario, the diffusion time can be estimated based on Equation (2.8). Given the 

characteristic value of diffusion coefficient for liquids as ܦ ൌ 1 ൈ 10ିଽ݉ଶିݏଵ, the 

average diffusion time of ߬ ൌ  can be calculated for a typical diffusion length ݏ22.5

of ܮ ൌ  This diffusion time is negligible in comparison with the total .݉ߤ150

incubation time (5-10 minutes). It worth mentioning that diffusion time decreases as 

perature increases during the incubation.  

 
Figure 2.47. Schematic of proposed magnetic mixer using two external electromagnets placed on top 

and bottom of mixing chamber. 
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In the following chapters (Chapter 4 - Chapter 7), the detail of the operating 

characteristics of this proposed micromixing chamber is described. Both simulation 

and experimental work that were concluded are reported and critically appraised. 

 



 
 
 

CHAPTER 3 

MAGNETOPHORESIS 

 

3.1   Introduction 

Magnetic particles have been the subject of research for a long time. Nowadays, their 

application has been widely spread in biotechnology from biosensors to magnetic 

separators and bio-manipulation. The non-magnetic nature of biological entities, 

make it very powerful candidate to employ magnetic particles to selectively 

separate/manipulate the molecule of interest from the mixture of different molecules. 

This work can be done by employing right surface coating on magnetic particles. By 

application of non-uniform magnetic field, these magnetic particles can be mixed in 

biofluids and capture the target molecule. These beads then can be separated 

magnetically from the rest of the fluid to downstream biological activities.  

Different magnetic particles in various sizes and coatings are commercially available 

from different vendors. Whilst, they have different magnetic properties and 

fabrication technologies, all of them are based on application of small magnetic 

particles as single or multi cores inside a polymeric body. The magnetic core of this 

particles, make it easy to induce a net magnetic moment by applying an external 

magnetic field.  The key-point here is the pattern of external magnetic field. The term 

‘Magnetophoresis’ is an analogue to dielectrophoresis which describe the net force 
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applied on a non-conductive material under the influence of non-uniform electric 

field. Therefore, magnetophoresis describes the magnetic force applied on a 

magnetised body under the influence of non-uniform magnetic field.  

In this chapter, a brief review of magnetic field and magnetic materials is given and 

finally applied force on a magnetic particle in non-uniform magnetic field is 

calculated mathematically.  

3.2   Magnetic Field and Magnetic Materials 

Unlike electric field, which can be generated by even a single electric charge, 

magnetic field is completely different and cannot be generated by a single magnetic 

charge. This is because there is no single magnetic charge. Therefore, magnetic field 

lines have no origin and end. Instead, magnetic field lines are always in close loops. 

In fact the origin of magnetic field is related to movement of electric charges. For 

example, electric current in a copper wire which is a collective motion of electrons, 

creates magnetic field. In more detail example, the spinning movement of electrons 

around nucleus creates magnetic field [192, 193].  

Magnetic dipole can be realised when the magnetic field lines have sense of 

direction. This can happen in a solenoid, when magnetic field lines enter from top or 

bottom, depending on the electric current direction, and leave from other end of 

solenoid. In this case the south pole is where the lines enter the solenoid and the 

north pole is the other side.  The solenoid is an example of electromagnet which 

means the magnet is created using forced electric current. The natural source of 

magnetic field can be found in rare earth magnet. In this example, the origin of 

magnetic field is not the forced current; instead the source is the spin effect of 

electrons in the material [193].  

Nevertheless, what is important in this work is the study of reaction of different 

materials to external magnetic field. Unlike different reactions of materials to electric 

field as conductors, dielectrics and semiconductors, the reaction of materials to the 

magnetic field is more close to the magnetic dielectric. This is because there is no net 

magnetic charge in analogue to electric charge. Therefore, all materials react to the 

external magnetic field by change of spin orientation at atomic level. The different 



72 
CHAPTER 3 ‐ MAGNETOPHORESIS 

atomic level reaction of materials can be realised as different macro-size 

classifications for materials. These materials are described below.  

3.2.1   Diamagnetism  

Consider atoms in which the net field produced by motion of orbital electrons is 

cancelled out by net field generated by spin electrons. These atoms have no net 

magnetic field in the absence of external field and thus such a material has no 

permanent magnetic moment m0. By applying external magnetic field, the orientation 

of orbital electron will change to oppose the external field. This produces an internal 

magnetic field, the same as external magnetic field and in opposite direction. 

Therefore, the external magnetic field generates no magnetic torque on this material. 

This effect in materials is called Diamagnetism. Although, there is a small difference 

between internal and external magnetic field, this effect is very small and can be 

ignored in most cases. Since this effect arises from the spin effect of electron in 

atoms, all materials show diamagnetism. Copper, Gold and Silicon are examples of 

diamagnetic materials [192]. 

3.2.2   Paramagnetism  

In some materials, the magnetic field generated by electron spin and orbital motion 

do not cancel each other out.  Therefore, the atom has a net magnetic moment. This 

effect though will be cancelled in random orientation of atoms in material and the net 

magnetic moment of material is zero. In the presence of external magnetic field, 

there is a small torque on each atomic moment which tends to aligns atomic 

moments with the external magnetic field. This alignment increases the value of 

magnetic flux density (B) inside the material. Since diamagnetic effect still is 

operating on orbital electrons, it might counteract with the above increase. If the 

result of interaction between these two effects is an increase in the internal magnetic 

field, the material is called Paramagnetic. Otherwise the material is still diamagnetic. 

Potassium, Tungsten and Oxygen are examples of paramagnetic materials [192]. 

3.2.3   Ferromagnetic, Ferrimagnetic and Anti-ferromagnetic Materials  

Atomic moment in these materials is very strong, which cause the adjacent atoms to 

either co-align or counter-align. In Ferromagnetic materials, the strong magnetic 

moment of free spin electron cause relatively large dipole moment. Inter-atomic 
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forces between these atoms align them in a parallel manner over a large atomic 

region which is called Domain.  These domains have different shapes and sizes 

ranging from one micrometer up to few centimetres. Depending on size and in 

ferromagnetic materials, these domains are aligned in different directions in which 

they cancel each other out. By applying external magnetic field, stronger domains in 

direction of external field tend to grow up by using neighbouring domains. This 

effect creates relatively strong internal moment compared to external field. Although, 

the opposing domains still are present, by increasing external field they shrink into 

the aligned domains. This will increase the magnetisation of bulk material until at 

certain point in which increase in external field has less effect on internal 

magnetisation of material. In this state the material is saturated, which means aligned 

domains have filled the bulk material. After removal of external magnetic field, the 

random alignments of domains does not create an overall cancelation of individual 

moments and there is a residual magnetic moment left in the material.  

Therefore, the state of ferromagnetic materials is different after each exposure to an 

external magnetic field. This property of ferromagnetic material is called hysteresis 

which means the material has a memory of previously applied field. The hysteresis 

loop of these materials shows the magnetisation memory state of material as well as 

saturation point. Iron, Nickel and Cobalt are the only materials that show 

ferromagnetic behaviour in room temperature though they lose this property above 

Curie temperature. In addition, some alloy of these materials such as Alnico which is 

aluminium-nickel-cobalt alloy, exhibit ferromagnetic behaviour [192].  

In contrary to co-alignment of atoms in ferromagnetic materials, adjacent atoms tend 

to counter-align and cancel each other’s moment out in Antiferromagnetic materials. 

The overall internal magnetic moment is zero and will be affected by external field 

slightly. Although many oxides, sulphides and chlorides show antiferromagnetic 

behaviour, manganese oxide was the first antiferromagnetic discovered material. 

Antiferromagnetism is often present at below room temperature.  

In some materials, the alignment of atoms is in a situation in which their moments 

oppose each other but does not fully cancel each other out. Therefore, in response to 

an external field they show large internal magnetic moment. These materials are 

called Ferrimagnetic and their magnetic moment is less than ferromagnetic 

materials. Since the conductivity of these materials is below the conductivity of 
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semiconductors they are suitable for high frequency alternating field application. The 

example of this material is Ferrites which are mostly used in high frequency 

transformer cores. Another important example from this group is iron oxide 

magnetite (Fe3O4). These materials also lose their magnetic characteristic above 

Curie temperature [192].  

3.2.4   Superparamagnetism  

Superparamagnetism is created by embedding small size ferromagnetic materials in 

non-ferromagnetic matrix. In this mixture, the magnetic domains in ferromagnetic 

materials are separated from each other in a way that there is no interaction between 

them. The size of ferromagnetic particle needs to be selected in such a way that the 

particle comprises a single domain. Theoretically, the size of single domain is 

calculated as 14nm in diameter. The width of domain wall is a function of magneto-

crystalline anisotropy, the exchange energy and lattice spacing of the crystal 

structure [194]. By decreasing the size of domains down to 15nm, particles domain 

reduces to a single domain and the domain wall will disappear. Since there is no 

extension of domain in the presence of external field, domain will reach saturation 

level in lower strength of external field. Demagnetisation takes place very quickly by 

the same reason in single domain particles. Therefore, the residual magnetic moment 

is eliminated because of random orientation of bulk compound material. These 

materials are called superparamagnetic because their bulky behaviour is similar to 

paramagnetic materials below Curie temperature [192].  

An important application of superparamagnetic material is in audio and video 

recording tapes. Another important application of superparamagnetism is in 

fabrication of magnetic beads which is the subject of this thesis. A very wide range 

of commercially available magnetic particles are designed to exhibit 

superparamagnetic behaviour. This is because in the presence of external field, 

ferromagnetic particles tend to aggregate due to residual induced field. Therefore, in 

biotechnological applications where magnetic particles are mixed in a bio-fluid and 

external magnetic field is used for mixing and manipulation, superparamagnetic 

behaviour of particles is a necessity. A summary of different magnetic materials 

based on spin and domain arrangement is shown in Figure 3.1. Table 3.1 shows some 

characteristics of magnetic materials.  
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Figure 3.1 Schematic depictions of spin arrangements in different types of magnetic materials [195]. 

Table 3.1. Characteristics of magnetic materials (adopted from [192]) 

Classification Magnetic Moments  values omments 

Diamagnetic ݉௢௥௕ ൅ ݉௦௣௜௡ 0 ൌ ௜௡௧ܤ ൏  No Domain ܤ

Paramagnetic ݉௢௥௕ ൅ ݉௦௣௜௡ ൌ ݈ܽ݉ݏ ௜௡௧ܤ  ൐ ܤ N݈  o Domain 

Ferromagnetic |݉௢௥௕| ا ห݉ ௜௡ห ௦௣ ௜௡௧ܤ ب M ܤ

|݉௢௥௕| ا ห݉௦௣௜௡ห ܤ௜௡௧ ൌ A ܤ

ulti Domains 

Antiferromagnetic nti-Parallel Domains 

Ferrimagnetic |݉௢௥௕| ൏ ห݉௦௣௜௡ห ܤ௜௡௧ ൐ Un ܤ

Superparamagnetic |݉௢௥௕| ا ห݉௦௣௜௡ห ܤ௜௡௧ ൐  Single Domain ܤ

equal Anti-parallel Domains 

Magnetic field intensity H is described as the external source of magnetic field and is 

ܤ ൌ  ሺ3.1ሻ                                                                     ܪ଴ߤ

measured in unit of [A/m]. On the other hand, internal magnetization M is defined as 

the magnetic dipole moment per unit volume and has a unit similar to magnetic field. 

The difference here is that the source of external magnetic field is electric current 

and the current source of internal magnetization is orbital electrons and electron 

spins [192]. The density of magnetic flux B which is measured in Tesla (T) can be 

defined for free space medium as a linear function of magnetic field as: 
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where µ0 is the permeability of free space (ߤ଴ ൌ ߨ4 ൈ 10ି଻ ܰ. .(ଶିܣ

To find the actual relationship between magnetic field and magnetic flux density, 

internal magnetisation of material needs to be considered as well. The value of B in 

ܤ ൌ ܪ଴ሺߤ ൅  ሻ                                                              ሺ3.2ሻܯ

This means that, the magnetic flux density is related to vector sum of internal and 

external magnetizations. Since the magnetisation of material is a function of external 

ܤ ൌ ܪ଴ሺߤ ൅ ߯௠ܪሻ ൌ ܪ௥ߤ଴ߤ  ሺ3.4ሻ                                         ܪߤ

௥ߤ ൌ 1 ൅ ߯௠                                                           ሺ3.5ሻ 

ߤ ൌ  ௥                                                              ሺ3.6ሻߤ଴ߤ

In which ߤ௥ is defined as relative permeability and ߤ is defined as permeability. 

Therefore, the relationship between B and H can be simplified to: 

3.3   Force on a Magnetized Particle in a Magnetic Field 

Magnetic particles used in this work for extrac on of DNA molecules from whole 

blood are designed to exhibit superparamagnetic behaviour. These particles are 

netic 

 

general is given as: 

magnetic field H, the relationship between magnetization and external magnetic field 

can be explained by defining magnetic susceptibility of ߯௠ in linear isotropic media 

as follow: 

ܯ ൌ ߯௠ܪ                                                                ሺ3.3ሻ 

therefore: 

ൌ

where 

and 

ܤ ൌ  ሺ3.7ሻ                                                               ܪߤ

ti

mixed with blood and other reagents and are exposed to a non-uniform mag

field in order to create sufficient mixing to increase the chance of DNA-Particle 

bindings. Magnetic particles will be magnetised under external magnetic field and 
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al filed. The other applied force is called 

ed in which 

will experience net magnetic force under non-uniform magnetic field. To investigate 

the performance of mixing and to optimise the designed pattern of applied magnetic 

field, the motion of magnetic particles need to be investigated. This investigation can 

be performed numerically using commercial simulation software. To be able to 

perform this simulation, calculation of net magnetic force on a magnetic particle in 

the presence of external field is essential. There are other forces influencing magnetic 

particles in a fluid such as gravity and hydrodynamic forces. Hydrodynamic force is 

applied to all cases in which there is motion of solid in fluid. This force together with 

gravity force will be investigated in detail in Chapter 5. Therefore, in this section the 

emphasis is to calculate the net magnetophoretic (MAP) force applied on magnetic 

particles. 

Magnetic force applied on a magnetised particle under the influence of external field 

can be identified as two distinct sources. The main induced force is called ‘imposed 

field’, which is the direct result of extern

‘mutual particle’, which is the result of other neighbouring magnetic particles [196]. 

In the latter case that magnetic particles are placed very close to each other, their 

internal magnetic field might be mutually influenced. This mutual interaction can be 

described in two ways; internal field of one particle induces an additional magnetic 

moment in other particle. In addition, the magnetic field of one particle can give rise 

to the inhomogeneity of the field pattern on other particles. Hence, the subject 

magnetic particle can experience an extra net magnetic force from neighbouring 

particles as well as external magnetic field source.  

However, the mutual effect is very weak compared to the external field effect and 

decreases very quickly by inverse square distance from the surface of the particle. 

Therefore, this effect can be considered if particles are very closely pack

their weak magnetic field can mutually interact. In particle laden fluid when the 

concentration of magnetic particles is very low, by assumption of uniform 

distribution of particles in the medium, the distance between particles is large enough 

to ignore mutual interaction. The threshold concentration depends on many 

parameters such as particle size and magnetic susceptibility. Nevertheless, for 

micron-size magnetic particles, in concentrations equal or less than 1015 particles/m3 

the mutual effect can reasonably be ignored [197]. At this concentration the spatial 

distance between two neighbouring particles is 10µm. With regard to small particle 
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ective magnetic moment on a particle is 

 and net magnetic polarization of 2 is 

rmeability of µ1.The sphere and fluid 

 volume magnetisation M is a function of internal magnetisation plus linear or 

non-linear function of external field H. This general expression can be used for any 

of paramagnetic, diamagnetic or ferromagnetic particles. Here it is assumed that the 

Ψ             

Which has an assumed solution for Ψଵ and Ψଶ inside and outside of the sphere as 

Ψଵሺݎ, ሻߠ ൌ െܪ଴. .ݎ cos ߠ ൅
ܺ. c ߠ

ଶݎ

size, this distance is large enough to ignore particle-particle mutual interactions. In 

most commercial DNA purification kits, the concentration of magnetic bead is well 

below this threshold concentration. Therefore, in this chapter, the mutual particle-

particle effect will be ignored and the force induced by external source of magnetic 

field will be numerically calculated.  

There are two approaches to calculating the induced magnetic force on a single 

particle due to the external field; moment-energy [196] and thermodynamic [197] 

methods. In this chapter, induced eff

calculated, based on moment-energy approach, which leads to an expression for the 

induced magnetic force on a particle.  

To obtain a generalised expression of magnetic force on magnetic particles, a 

homogeneous sphere with radius of R M

suspended in a magnetically linear fluid with pe

is exposed under almost uniform magnetic field intensity of H0.  Figure 3.2 shows a 

schematic diagram of fluid and magnetic particle under external magnetic field. The 

relationship between B, H and M is defined by Equation (3.2), which can be rewritten 

as: 

ܤ ൌ ܪ଴ሺߤ ൅ ሻܯ ൌ ܪ଴ሺߤ ൅ ߯௠ܪሻ                                           ሺ3.8ሻ 

The

particle magnetisation is parallel to external magnetic field direction and there is no 

electric current flow in the medium (׏ ൈ ܪ ൌ 0). By these assumptions, the 

magnetostatics problem can be solved by definition of a scalar potential Ψ as follow 

[196]: 

ܪ ൌ െ׏                                                  ሺ3.9ሻ 

follow: 

os
ݎ     , ൐ ܴ                            ሺ3.10ሻ 

Ψଶሺݎ, ሻߠ ൌ െܻ. .ݎ cos ,ߠ ݎ      ൏ ܴ                                          ሺ3.11ሻ 
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Figure 3.2. Sphere of radius R and permeability µ2 immersed in a media of permeability µ1 and 

subjected to a uniform magnetic field of magnitude H0. 

Where X and Y are constants and their value can be determined using two boundary 

conditions at the particle surface. In Equation (3.10), the first term is the contribution of 

external magnetic field and the second term is contribution of the dipole mo ent of 

ma n 

is the continuity of en particle and the 

fluid.  

௥ଵܪଵߤ ൌ ௥ଶܪ଴ሺߤ ൅ ݎ      ,௥ଶሻܯ ൌ ܴ                                    ሺ3.13ሻ 

Where 

௥ଵ ݎ߲

m

gnetized sphere to magnetic potential outside the sphere. The first boundary conditio

 magnetostatic potential at the boundary betwe

Ψଵሺݎ ൌ ܴ, ሻߠ ൌ Ψଶሺݎ ൌ ܴ,  ሻ                                        ሺ3.12ሻߠ

And the second boundary condition which defines the continuity of the magnetic flux 

density at particle-fluid interface.  

ܪ ൌ െ
∂Ψଵ                                                        ሺ3.14ሻ 

௥ଶܪ ൌ െ
∂Ψଶ

ݎ߲                                                        ሺ3.15ሻ 

 .௥ଶ are the normal magnetic field intensity in fluid and sphere respectivelyܪ ௥ଵ andܪ

Therefore, by using the above boundary conditions in assumed solutions of Equation 

(3.10) and Equation (3.11), the coefficients X and Y can be determined as follow 

[196]: 
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ܺ ൌ
଴ߤ െ ଵߤ

଴ߤ ൅ ଵߤ2
ܴଷܪ଴ ൅

଴ܴଷߤ

଴ߤ ൅ ଵߤ2
 ଶ                                   ሺ3.16ሻܯ

ܻ ൌ
ଵߤ3

଴ߤ ൅ ଵߤ2
଴ܪ െ

଴ߤ

଴ߤ ൅ ଵߤ2
 ଶ                                     ሺ3.17ሻܯ

Where, Y describes the magnitude of uniform magnetic field H2 inside the sphere. To 

extract the value of effective magnetic dipole moment of sphere (݉௘௙௙), dipole term 

in Equation (3.10) is compared with the magnetic potential of a dipole [198]: 

Ψௗ௜௣௢௟௘ ൌ
ܴ݉

ଷݎߨ4 ൌ
݉ cos ߠ

ଶݎߨ4 ൌ
ߠݏ݋ܿܺ

ଶݎ                                           ሺ3.18ሻ 

ߤ െ ߤ

The second term in Equation (3.10) gives the value of effective magnetic moment as: 

݉௘௙௙ ൌ ܺߨ4 ൌ ଷܴߨ4 ൤ ଴ ଵ

଴ߤ ൅ ଵߤ2
଴ܪ ൅ ଴

଴ߤ ൅ ଵߤ2

ߤ
 ଶ൨                   ሺ3.19ሻܯ

The first part explains the net effect of particle on fluid and the second term is the 

magnetisation of the magnetic sphere itself. This equation can be simplified in case 

of magnetic particle in free space in which ߤ ൌ ߤ . 

݉௘௙௙ ൌ ଷܴߨ4 ଴ߤ

଴ߤ ൅ ଵߤ2

ଵ ଴

 ଶ                                             ሺ3.20ሻܯ

In a particle with radius of R and permeability of ߤଶ, which is magnetically linear, 

ଶ ଶܪଶ                                                             ሺ3.21ሻ 

where ߯ଶ is the susceptibility of magnetic particle and is defined as: 

߯ଶ ൌ
ଶߤ

଴ߤ

the magnetic moment can be defined as: 

ܯ ൌ ߯

െ 1                                                            ሺ3.22ሻ 
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 be rewritten as follow: 

݉௘௙௙ ൌ ଷܴߨ4 ଶߤ െ ଵߤ

ଶߤ ൅ ଵߤ2

Therefore, by substituting the Equation (3.21) and Equation (3.22) in Equation 

(3.20), the effective magnetic moment can

଴ܪ ൌ 3ܸ
ଶߤ െ ଵߤ

ߤ ൅ ଵଶߤ2
 ଴                            ሺ3.23ሻܪ

, V 3) and using the 

expression for the energy of dipole, the magnetic force induced on a particle can be 

calculated as follow: 

ߤ െ ߤ

Where  is volume of the particle. Therefore, from Equation (3.2

ܷ ൌ െ݉. ܤ ൌ െߤଵ݉௘௙௙. ଴ܪ ൌ െ4ߤଵܴߨଷ ଶ ଵ

ଶߤ ൅ ଵߤ2
଴ܪ

ଶ                       ሺ3.24ሻ 

௠ܨ ൌ െܷ׏ ൌ .ሺ݉׏ ሻܤ ൌ .൫݉௘௙௙׏ଵߤ ଴൯ܪ ൌ ଵܴଷߤߨ2 ଶߤ െ ଵߤ

ଶߤ ൅ ଵߤ2
଴ܪ׏

ଶ        ሺ3.25ሻ 

Therefore 

௠ܨ ൌ ଵܴଷߤߨ2 ଶߤ െ ଵߤ

ଶߤ ൅ ଵߤ2
଴ܪ׏

ଶ                                             ሺ3.26ሻ 

Where ܨ௠ is the magnetophoresis force expression of a magnetic particle in non-

uniform magnetic field ܪ଴. From this equation the following conclusions can be 

extracted: 

• Magnetic force is a function of particle volume 

• Magnetic force is proportional to permeability of medium, ߤଵ. 

ce the term ܪ׏଴
ଶ can be written as ܪ଴.  ଴, magnetic force is directlyܪ׏

proportional to magnetic field intensity and its gradient thereof. 

• If the permeability of particle is bigger than that of fluid (ߤଶ ൐  ଵ), theߤ

ma

magnetic field intensity. In contrary, if the permeability of medium is bigger 

le ଶ ଵ

 be negative. Therefore, the particle will be repelled from higher field 

sity.  

• Sin

gnetophoresis force is positive and particle will be attracted toward higher 

than that of partic ߤ)  ൏ ߤ ), the magnetophoresis force applied on particle 

will

intensity and will be attracted to lower field inten
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magnetic force can be rewritten as follow: 

௠ܨ ൌ ଴ܴଷߤߨ2

Finally, assuming the medium is of non-magnetic nature (ߤ଴ ൌ  ଵ), the equation ofߤ

௥ߤ െ 1
௥ߤ ൅ 2 ଴ܪ׏

ଶ                                             ሺ3.27ሻ 

(3.27) can be used in this work to calculate the magnetic force induced in magnetic 

This magnetic force expression will be used in a magneto-hydrodynamic model of 

side the m

 optimise the performance of the device. 

3.4   Summary 

In this chapter, a brief description of magnetic materials was given to understand the 

ation effect, which is important to prevent permanent bead clustering 

effect during purification process.  

 

expression was simplified to Equation (3.27) with the assumption of non-magnetic 

which is valid in this work. This equation will be used for 

calculation of induced magnetic force inside the magnetic models in Chapter 4. In 

This assumption is valid in this work, since the fluid medium is a mixture of whole 

blood and biological reagents which are of non-magnetic nature. Therefore, Equation 

particles.  

particle motion in fluid to simulate the particle trajectories in agnetic mixer. 

This particle trajectory study can be used to

behaviour of different materials subjected to magnetic field. Among various 

materials, superparamagnetic materials are the core of most magnetic beads used in 

DNA purification kits. The most important property of this material is the fast 

demagnetis

The magnetic force induced in superparamagnetic beads was calculated based on 

moment-energy method under influence of non-uniform external magnetic field. This

nature of the fluids, 

Chapter 5, the calculated magnetic force will be used in a bead trajectory simulation, 

using Matlab source codes, to study the behaviour of the magnetic beads under 

designed magnetic field patterns. 



 
 
 

CHAPTER 4 

ELECTROMAGNET DESIGN AND OPTIMIZATION 

 

4.1   Introduction 

The purpose of this chapter is to numerically design a magnetic bead-based mixer 

using internal/external electromagnets and superparamagnetic beads to be used for 

DNA extraction from whole blood. The idea is to apply non-uniform magnetic field 

to agitate magnetic beads in lysis buffer/whole blood mixture combined in a 

chamber. This action will efficiently cause the lysis buffer to lyse the target cells to 

release the DNA molecules. Subsequently, released DNA molecules will be collected 

by magnetic beads. The pattern of magnetic force applied to the beads must 

inherently possess unique properties to cause temporal and spatial distribution of 

beads within the chamber. Since the force applied on the magnetic bead is a function 

of magnetic field (H) and its gradient (∇H) thereof, key properties of the 

electromagnet are the magnetic field strength and its gradient inside the chamber. To 

achieve the desired magnetic field pattern, different possible coil geometries are 

simulated using COMSOL Multiphysics simulation package. Both internal and 

external coils are examined and their limitation is studied. Among various 

geometries, circular spiral coil exhibits the optimal force pattern inside the micro-

chamber. Geometrical dimensions of internal and external coils are examined and 

optimised dimensions of the coil are concluded from simulation study. 
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4.2   Simulation Software 

The concept of proposed DNA purification chip was previously introduced in 

Chapter 2 (Section 2.6.3, Figure 2.47). The core of the DNA extractor is a magnetic 

mixer consists of two sets of current carrying conductors placed on top and bottom of 

the chamber. The efficiency of mixing highly depends on the magnetic field pattern 

generated by top and bottom conductors.  

The most accurate method to solve the magnetic problem is to solve Maxwell’s 

equations with appropriate boundary conditions. Unfortunately, there are very 

limited cases that these equations can be solved using the given boundary conditions. 

Due to the geometrical complexity of the magnetic coils in this work, there is no 

analytical solution to calculate the magnetic field generated by coils. It become 

worse, in case of calculating the magnetic force induced on magnetic particles. A 

solution to these magnetic problems is the application of numerical techniques to 

find an approximate solution for partial differential equations. Finite element method 

(FEM), finite volume method (FVM) and finite different method are three common 

techniques to solve partial differential equations numerically. In these methods, the 

geometry and the domain will be discriminated to finite elements, and the final 

solution is the sum of discrete solutions on each discrete element. Therefore the 

accuracy of the solution increases by increasing the number of discrete elements. 

Among different numerical techniques, finite element method (FEM), which is often 

the most accurate approximation technique, is more common technique in solid-

based simulations and structural mechanics. On the other hand, FVM and FDM, 

which use slightly different descretization of the problem to large number of grids, 

have widely been used in computational fluid dynamics (CFD) modelling package.  

There are many commercial simulation packages based on FEM modelling 

techniques for solution of partial differential equations such as: COMSOL 

Multiphysics, ANSYS and CFD-ACE+. In this work COMSOL Multiphysics was 

selected to model the magnetic problem because of its outstanding features. 

COMSOL Multiphysics is well-known finite element package that can be used for 

simulation of multiphysics problems. Versatility of COMSOL software in coupling 

different application modes brings the opportunity to simulate magnetic, fluidic and 

thermal behaviour of the model simultaneously and study their interactions at the 

same time. COMSOL uses Maxwell’s equations in FEM approximation method to 
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solve magnetic problems. A unique feature to COMSOL Multiphysics is that, the 

underlying equations for electromagnetics are automatically available in all of the 

other application modes, thus the coupling is much easier between different 

application modes. Another important advantage of COMSOL is the COMSOL 

script and MATLAB export link, which can be used to incorporate the model with 

other products in those technical computing environments. 

4.2.1   COMSOL Multiphysics 

In this work, which involves different current carrying conductors, Electromagnetics 

Module was used. To simulate spiral coils in 3D mode, Magnetostatics Application 

Mode (emqa) in the AC/DC Module was used, which describes magnetostatics of 

conducting and magnetic materials. In this application mode, vector magnetic 

potentials in Cartesian coordinates (Ax, Ay and Az) are the dependent variables and 

electric current can be used as input in model’s subdomain settings. To simulate non-

circular patterns, either Magnetostatics Application Mode or Electric and Induction 

Current Application Mode can be used, which describes the quasi-statics of 

electromagnetic field system for conducting, magnetic and dielectric materials. In 

this mode, vector magnetic potentials in Cartesian coordinates (Ax, Ay and Az) and 

electric potential (V) are the dependent variables and electric current can be 

calculated from electric potential by the software. COMSOL uses electric potential to 

calculate electric current in order to calculate vector magnetic potentials. 

Subsequently, other magnetic parameters will be calculated from vector magnetic 

potentials. 

 In some cases, 3D application mode is not the most suitable mode for simulation of 

magnetic problems. In such cases, due to the geometrical complexities and 

subsequent mesh generation, large computing time and computer memory is 

necessary. In case of spiral conductors, 2D application mode can be used with some 

appropriate assumptions.   

2D simulation, which considers structures axially symmetric around Z-axis with 

current in the angular direction, can be used only for circular geometries with 

application of Azimuthal Induction Currents (emqa) in Magnetostatics Application 

Mode or Quasi-statics Application Mode. Table 4.1 shows a summary of different 
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ܤ ൌ
଴ܫ଴ߤ

ݎߨ2

application modes used for simulation in this thesis. As it is shown in this table, a 

Partial Differential Equation (PDE) application mode is used to calculate magnetic 

force applied on magnetic beads inside the chamber. In addition, heat transfer 

module is used to calculate the thermal effect of the conductors. 

4.3   Magnetic Field Calculation 

In this section, a simple conductor geometry is used to investigate accuracy of 2D 

and 3D simulation in COMSOL Multiphysics. The magnetic field created by long 

current-carrying wire has a well-known analytical solution that can be found in any 

physics textbook.  The magnetic field created by long current carrying wire is: 

          ሺ݂ݎ ݎ݋ ൒ ܴሻ                                              ሺ4.1ሻ 

ܤ ൌ ൬
଴ܫ଴ߤ

ଶ൰ܴߨ2 ݎ ݎ݋ሺ݂         ݎ ൏ ܴሻ                                          ሺ4.2ሻ 

଴ ൌ ߨ4 ൈ 10ି଻ ܶ. ܣ/݉

Where, B is magnetic field in Tesla, I0 is current passing through the wire in Ampere, 

r is the radius from the centre of the wire cross-section in meters, R is the radius of 

wire in meters and µ0 is permeability of vacuum (ߤ ). 

Table 4.1. List of application modes used for simulations in this chapter. 

COMSOL 
Module 

COMSOL 
Sub-module 

Application 
Mode 

Space 
Dimension 

Dependent 
Variables 

AC/DC Module Statics 
Magnetic 

Magnetostatics 
(emqa) 

3D Ax, Ay, Az 

AC/DC Module Quasi-statics 
Magnetic 

Induction Current 
(emqa) 

3D Ax, Ay, Az 

AC/DC Module Quasi-statics 
Electromagnetic 

Electric and 
Induction Current 

(emqa) 

3D Ax, Ay, Az, V 

AC/DC Module Statics 
Magnetic 

Azimuthal 
Induction 

Currents (emqa) 

2D Aphi 

AC/DC Module Quasi-statics 
Magnetic 

Azimuthal 
Induction 

Currents (emqa) 

2D Aphi 

COMSOL 
Multiphysics 

PDE Modes PDE, General 
forms 

2D, 3D User Defined 

Heat Transfer 
Module 

- General Heat 
Transfer (htgh) 

2D, 3D T, J 
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To evaluate accuracy of simulation, the above current-carrying wire is simulated in 

COMSOL Multiphysics in 2D and 3D modes. In 2D simulation mode it is possible to 

apply infinite wire length but the space domain surrounding the wire is finite. Both 

space domain and wire length need to be assumed with a finite length in 3D mode. 

Detail of wire dimensions and simulation detail are given in Table 4.2. Figure 4.1 

shows magnitude of magnetic field against radius (r) in a long current carrying wire 

calculated by standard equations, Equation (4.1) and Equation (4.2). Figure 4.2 and 

Figure 4.3 show a cross-sectional (left) and radial (right) plots of magnetic flux 

density simulated by COMSOL software in 2D and 3D modes respectively. 

As it is shown in Figure 4.2 and Figure 4.3, both 2D and 3D modes accurately 

simulate the magnetic problem and their result is very close to the standard 

equations. 2D simulation gives slightly better result as it uses less assumption 

compared to 3D mode. In addition, 2D simulation mode has some more benefits as 

follows. Computation time in 2D mode is very low even with extra fine meshing. 

Very large space domain can be used, which increases the accuracy of simulation 

result. Whilst 2D mode offers very fast and simpler simulation condition, it is limited 

to geometrical symmetry. There are two geometrical symmetries available in 

COMSOL 2D mode, perpendicular symmetry and axial symmetry. Whilst 

perpendicular symmetry is suitable for geometries with one infinite dimension (i.e. 

long wires), axisymmetric symmetry is suitable for shapes with axial symmetry (i.e. 

circular coils). 

 

Figure 4.1. Magnetic flux density of a long current carrying conductor 
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Table 4.2. Details of simulation used in Figure 4.2 and Figure 4.3. 

Application 
Mode 

Space 
Dimension 

Wire Dimensions 
(Length/Radius) 

I(A) Space Domain 
(XYZ) 

Standard Equations - Infinite/0.5mm 1 Infinite 
Magnetostatics (emqa) 3D 1cm/0.5mm 1 5cm/5cm/5cm 

Perpendicular Induction 
Currents (emqa) 

2D Infinite/0.5mm 1 10cm/10cm/Infinite 

 
Figure 4.2. Simulation result of magnetic flux density of long wire in 2D mode. a) Cross-sectional 

plot of magnetic flux density. b) Radial plot of magnetic flux density.  

 
Figure 4.3. Simulation result of magnetic flux density of long wire in 3D mode. a) Cross-sectional 

plot of magnetic flux density. b) Radial plot of magnetic flux density. 

4.4   Calculation of Magnetic Force Using PDE Mode 

As described in Equation (3.27), the magnetic force applied on a magnetic bead 

exposed to a non-uniform magnetic field is a function of magnetic field strength H 

and magnetic field gradient of ∇H. COMSOL Multiphysics calculates different 

magnetic variables for a given geometry using appropriate boundary conditions. 

These variables are magnetic flux density B, magnetic field strength H and magnetic 

potential A. COMSOL initially calculates the magnetic potential A and then 
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recalculates other variables (B and H) by using first order derivative of dependent 

variable A. The problem with COMSOL is that the vector-elements cannot return 

second order derivatives of the dependent variables and the first order derivative is 

already used for calculation of B and H. Therefore, it is not possible to calculate 

magnetic force applied on magnetic beads directly in any magnetic module of 

COMSOL. This problem can be solved by application of partial differential 

equations (PDE) implemented in COMSOL. The method of magnetic force 

calculation using PDE Mode is described as follow: 

1. Introduction of new set of variables in PDE mode 

2. Solving the magnetic problem in magnetic module 

3. Storing  the solution  

4. Update solver condition to evaluate initial value expression using stored 

solution in the solver manager 

5. Set initial values in the subdomain setting for both applications (PDE and 

Magnetic application modes) 

6. Update the magnetic solver with the new set of second derivatives extracted 

from PDE mode 

Finally, the magnetic force can be calculated with defining force equation in the 

global expression of COMSOL. It is worth mentioning that application of PDE mode 

is limited to 3D application modes for simulation of spiral coils. 

4.4.1   Calculation of Magnetic Force Applied on a Magnetic Particle 

In this section, a typical magnetic force on a magnetic particle is calculated using 

COMSOL and the effect of various parameters on the strength of magnetic force is 

studied. Figure 4.4 depicts a simple setup that consist of a straight wire with circular 

cross-section and a magnetic particle placed above the wire at a distance of h. 

Magnetic force is calculated using the following expression: 

                                                   ሺ4.4ሻ 
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ates magnet 75%. Therefore, 

Where, µ0 is permeability of vacuum, µr and R are magnetic permeability and radius 

of magnetic particle respectively and H is magnetic field strength generated by 

current I. F0 is constant coefficient, if the magnetic property of particle is known and 

will be calculated outside of COMSOL. Equation (4.3) describes applied magnetic 

force on a magnetic particle exposed to a non-uniform magnetic field H. There are 

many variables influencing the amplitude of magnetic force. Beside magnetic field 

strength H and its gradient ∇H, particle physical properties such as volume and 

magnetic permeability directly influence the strength of magnetic drag force. In 

addition, distance of particle from source of magnetic field shows a critical effect as 

well. These variables are listed below and are either investigated analytically or by 

means of simulation. 

A. µrB: Relative magnetic permeability of particle 

B. R: Particle radius 

C. I: Electrical current passing through the source of magnetic field 

D. h: Distance between magnetic field source and the particle 

4.4.1.1   Effect of Particle Physical & Magnetic Property on Magnetic Force  

Figure 4.5 (a & b) shows variation of magnetic force coefficient (F0) against 

different relative permeability of magnetic particle (µrB) and its radius (R) based on 

Equation (4.4). As displayed, amplitude of magnetic force shows direct dependency 

to the volume of particle. On the other hand, effect of particle relative permeability is 

not significant for µrB > 10. Particles with higher relative permeability (contain more 

iron alloys) seem to exhibit ferromagnetic behaviour, thus tend to aggregate inside 

microfluidic channels. Relative permeability of particles ranging between 2 ൏ ௥஻ߤ ൏

20 gener ic force coefficient of 25% ൏ ଴ܨ ൏

optimization is a trade-off between magnetic force and aggregation probability. The 

higher the particle permeability, the greater is magnetic drag force and higher chance 

of aggregation. Figure 4.5 (c & d) shows the result of magnetic force variation 

against the particle distance from the wire (h) for different particle permeabilities 

(Figure 4.5c) and different particle sizes (Figure 4.5d). These graphs show that there 

is a close agreement between result of simulation and analytical calculation based on 

Equation (4.4). From magnetic point of view, the bigger the size of particle, the 

greater the influence of magnetic force. 
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௥஻ ൌ 2

௥஻ ൌ 2

 
Figure 4.4. Schematic diagram of a long current carrying wire and a magnetic particle placed above 

the wire at the distance of h. 

 

Figure 4.5. Effects of particle physical and magnetic property on magnetic force. a) Magnetic force 
against magnetic permeability of the particle. b) Magnetic force variation due to the particle radius 

ߤ) ). c) Magnetic force versus h for different relative permeabilities. d) Magnetic force versus h 
for different particle radius. 

4.4.1.2   Effect of Electric Current I and Distance h on Magnetic Force 

Figure 4.6 illustrates a surface plot of magnetic force applied on a typical magnetic 

particle, 2 µm in diameter and relative magnetic permeability of ߤ . Figure 4.7 

shows the simulation result of magnetic force applied on a magnetic particle for the 

arrangement in Figure 4.4 for two different currents given in Table 4.3.  This result 
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shows that magnetic force responds to square of current I, and drops by inverse 

square of distance h (Figure 4.7). This is not surprising as Equation (4.3) shows that 

magnetic force is directly related to derivative of square of magnetic field: 

On the other hand, from Equation (4.1): 

ܤ ؠ ܪ ן ܫ
                                                               ሺ4.6ሻ 

ቐ ܨ௠ ן
1
rଶ

By combining Equation (4.5) and Equation (4.6): 

௠ܨ  ן Iଶ
                                                                  ሺ4.7ሻ 

Figure 4.6. A cross-sectional plot of magnetic force pattern across a long wire generated by electric 
current of ܫ ൌ  This force is applied on a magnetic particle with 2 µm in diameter and relative .ܣ 1

magnetic permeability of ߤ௥஻ ൌ 2. 

Therefore, to maximize the magnetic force on a selected magnetic particle, maximum 

electric current and minimum distance from source of magnetic field is necessary. 

Maximum electric current through a conductor is limited by the maximum 

temperature rise in the conductor as the result of joule heating. On the other hand 

minimum particle-magnet distance is mostly limited by fabrication technology. 
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Particle Radius / 
Permeability 

Parti
from Wire 

Wire Diameter Current 

Table 4.3. Detail of parameters used in simulation for Figure 4.6 and Figure 4.7 

cle Distance Wire Length 

2 µm / 2 1 mm 1 cm 1 mm 1 A 

2 µm / 2 1 mm 1 cm 1 mm 2 A 

 

 

Figure 4.7. Effect of electric current variation on magnetic force applied to the magnetic particle 

In the the above section (4.4.1), the effect of various geometrical and m gnetic 

pa f 

he particles. In fact a relative permeability of ߤ௥஻ ൌ 20 produce 75% of 

order, which describes the importance of particle size on induced magnetic 

• Magnetic force increases by increasing the electric current of magnetic source 

by square law. 

a

rameters were investigated using analytical and numerical analysis on strength o

magnetic force applied on magnetic particles. The result of this study is summarised 

as follow: 

• The magnitude of induced force is less sensitive to the magnetic permeability 

of t

the maximum force expected from permeability of the particle material. 

• The relationship between the magnetic force and particle radius is in cubic 

drag force. 

• Magnetic force decreases by increasing the distance between particle and 

source of magnetic field by square law. 
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um current, minimum mixing depth 

ixer. 

 a pair of magnetic coils. The efficiency of 

A molecules highly depends on efficiency of 

the magnetic mixing of magnetic beads inside the microchamber. Chamber depth, 

al coils are 

more compact and might have smaller size and dimensions, their implementation in 

In order to increase the efficiency of the mixing, the mixer need to be optimised 

considering above parameters. Therefore, maxim

and bigger magnetic particles are the key parameters that increase the mixing 

efficiency of the proposed m

4.5   Electromagnet Design 

The concept of the proposed magnetic mixer was introduced in Chapter 2 (section 

2.6.3 & Figure 2.47), using static magnetic mixing technique by application of a 

microchamber sandwiched between

proposed system on purification of DN

magnetic property of magnetic beads and size of the beads, strength of magnetic field 

and physical property of the fluids (i.e. viscosity of the blood and buffers) are among 

the most important factors that directly influence the efficiency of the mixing. The 

effects of chamber depth (h), bead permeability (ߤ௥஻) and size (R) as well as electric 

current (I) were investigated through numerical and analytical analysis. Some 

important factors such as magnetic bead and buffer properties are limited by the 

supplier of the DNA purification kits and might be variable form various suppliers. 

Therefore, these parameters are not considered in design of magnetic coils in this 

chapter. Instead, the emphasis in this work is to optimise the magnetic mixing unit 

through accurate design of magnetic field source with respect to the chamber 

geometry and fabrication simplicity. Hence, two important parameters that need to be 

considered in this design are the chamber depth and effective magnetic field pattern.  

Chamber depth is the function of total chamber volume as well as penetration depth 

of magnetic field. Therefore, the optimisation process mainly depends on efficiency 

of magnetic field pattern, which leads to optimisation of chamber depth based on 

other parameters such as magnetic beads properties and buffer condition. 

In design of magnetic field source, two different configurations are considered based 

on the fabrication point of view, microfabricated internal coils and miniaturised 

external coils. Besides different magnetic characteristics, these two configurations 

have significant impact on the final purification device. Although, intern

the chamber walls increase the fabrication complexity and cost. This is not suitable 
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hamber 

ir of conductors embedded on top and 

nsulation layers separate the actual mixing area 

is work, the aim is to 

magnetic flux of the 

in a POC device with disposable cartridge type. On the other hand, in external coils 

configuration, the chamber design and fabrication is much simpler, which reduce the 

cost of final disposable cartridge. Another disadvantage in design of internal coil 

configuration is the limited heat dissipation ratio resulted from Joule heating of coil 

conductors. Thermal activity of external coils can be controlled by design of 

appropriate temperature control systems (i.e. heatsink or miniaturised fan). 

Nevertheless, both internal coil and external coil configurations are considered in this 

work, and their efficiency is investigated by means of numerical simulations. 

4.6   Internal Coil Design 

A schematic diagram of proposed magnetic mixer using internal coil configuration is 

illustrated in Figure 4.8. This mixing device comprises a circular four-port c

made of PDMS sandwiched between a pa

bottom of the chamber walls. Two i

from the conductor surfaces to eliminate any electrochemical activity between 

current carrying conductors and biofluids inside the chamber. The thickness of this 

insulation layer is in the order of a few micrometers. 

Although with recent improvements in MEMS microfabrication technology it is 

possible to pattern various two-dimensional and three-dimensional multi-layered 

conductor geometries on plastic and glass, this process will increase the complexity 

of fabrication and increase the total costs. Therefore, in th

design a simple, low cost and effective conductor pattern using standard 

microfabrication technology. However, the first limitation is the maximum thickness 

of electrode patterning using metallic electroplating technique. In this method, the 

maximum thickness that can be electroplated is limited to less than 100 µm and more 

preferably 25µm. Therefore, in design of internal magnetic source in this work, the 

thickness of conductors was assumed to be less than 100 µm. 

Generally, on-chip planar two-dimensional electrode-patterning can be categorised 

into two main groups based on their magnetic field patterns, multi-mutual and single-

mutual inductors. In multi-mutual inductors, the conductors are mainly patterned in 

parallel directions in which the mutual effect between the 

neighbouring electrodes will add-up and leads to exponential increase in the total 

magnetic flux of the electrode pattern. The most common examples of this electrode 
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mance of three common types of electrode 

 

Figure 4.8. Basic schematic cross-sectional view of proposed DNA purification chip showing the 
position of coils and the chamber. 

 

Figure 4.9. Three most common types of planar electrode patterns. a) Square spiral. b) Circular spiral. 
c) Serpentine electrode. 

pattern are planar circular spiral and planar square spiral (Figure 4.9 a & b). On the 

other hand, in single mutual inductors, the magnetic fluxes of two neighbouring 

conductors are in opposite directions, and thus their mutual effect does not increase 

the total magnetic flux of the inductor. An example of this electrode pattern is planar 

serpentine electrodes (Figure 4.9c).  

Since the main objective in design of electromagnet is to generate maximum 

magnetic field strength, spiral conductor geometry seems to be a better option 

compared to serpentine electrode pattern. Nevertheless, in this section, a simulation 

is carried out to investigate the perfor

pattern, circular spiral, square spiral and serpentine-shape electrodes. 
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A comparison result of magnetic flux density between circular spiral and square 

spiral using COMSOL Multiphysics simulation is shown in Figure 4.10. These 

graphs are extracted across diametric lines from the middle of the spirals and above 

the surface of the conductors. To compare a circular spiral with a square spiral, their 

surface coverage needs to be identical. This indicates that both spirals can fit to 

identical volumes circular-shaped and square-shaped chambers with fixed chamber 

depth. An electric current density of ܬ ൌ 1 ൈ 10ହ ܣ/݉ଶ was applied to both spirals 

with 2 mm conductor thickness. With these assumptions, circular spiral generates

magnitude of circular spiral to sq 11%.  

e result is shown in surface plot m

 

Figure 4.10. Magnetic flux density of circular and square spirals along diametric line. 

 

stronger magnetic flux density compared to square spiral. The average increase in 

uare spiral is about ൎ

A similar magnetic field comparison between multi-mutual and single mutual 

inductors was carried out by design of three-dimensional models of square spiral and 

serpentine electrode in COMSOL. Geometrical details of this simulation are given in 

Figure 4.11. The outer diameter of both inductors is identical and a square-shape 

conductor cross-section of ܹ ൌ 1 ݉݉ is used for simulation with similar current 

density of ܬ ൌ 1 ൈ 10଺ ܣ/݉ଶ. Figure 4.12 shows the result of this simulation for 

serpentine electrode and square spiral. Th ode for 

(Figure 4.12 a & b) and across the diametric line of A-A as shown in Figure 4.11 

(Figure 4.12c). Simulation is repeated for different electrode surface coverage’s in 

case of spiral coil (75%, 90% and 99%).  
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Figure 4.11. Detail of models used in simulation of Figure 4.12.  

 

Figure 4.12. Plot of magnetic flux density generated by square shape spiral and serpentine electrode. 
Surface plots of magnetic flux density on top of (a) square spiral and (b) serpentine electrode. c) 

Diametric plots of magnetic flux density across the lines of A-A for serpentine electrode and square 
spiral with different electrode surface coverage (75%-green. 90%-black and 99%-blue). 
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As it is shown in these graphs, magnetic flux density generated by serpentine 

electrode is weaker than spiral coil. The advantage of serpentine electrode is the 

pattern of magnetic flux density, which has multi-peaks uniformly spread across the 

whole area. On the other hand, spiral coil has higher overall flux density and has a 

very high peak at inner edges of the coil. Another advantage of spiral coil is that the 

position of central peaks can be controlled by changing coil internal diameter (din). 

To fabricate spiral coil patterns, an additional layer is necessary to establish the 

electrical connectivity of the middle connector. This will increase the complexity and 

cost of fabrication compared to planar serpentine electrode. However, based on these 

simulations, planar circular spiral generates stronger magnetic field compared to 

square spiral and serpentine electrode. Therefore, from magnetic field point of view, 

circular spiral coil is a suitable choice to be used in internal-coil-configuration of the 

proposed magnetic mixer. 

4

As me

݊. ௖ܣ ൅ ሺ݊ െ 1ሻܣ௦                                                   ሺ4.8ሻ 

.6.1   Key-type Electrode 

ntioned above, the most important disadvantage of circular spiral coil is the 

fabrication complexity regarding electric connection from the middle-end of the 

spiral. In order to overcome this problem, a modified version of spiral coil is 

introduced as illustrated in Figure 4.13. This modified version, which is called one 

turn coil or simply key-type electrode, generates the same magnetic field as the spiral 

coil, if the product of ݁ݎ݁݌݉ܣ ൈ  is a constant. In key-type electrode, the ݊ݎݑܶ

electrode patterning and the electric connections can be established in the same layer. 

In addition, the multi-turn electrode patterning is reduced to a single-turn electrode. 

Therefore, fabrication of key-type electrode is much simpler than circular spiral and 

serpentine electrode. 

Another important advantage of the key-type electrode is the lower electric resistance 

compared to the spiral coil. This factor can be described based on the total cross-

sectional difference between two coils. In key-type electrode, the total cross-section 

area is: 

௞ܣ ൌ

Where, ܣ௞, ,௖ܣ  ௦and n are key-type electrode cross-section area, spiral conductorܣ

cross-section area, spacing cross-section area and number of turns respectively. 

Therefore, total cross-section area in key-type electrode is higher than spiral coil 
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ing. Key-type ele

onductor width/thickness/spacing of ௖ܹ ൌ ௖ݐ ൌ ܵ ൌ 1݉݉ and 

 key-type electrodes create similar magnetic flux density pattern. At very 

close distances from the conductor surface, spiral coil generates a multi sharp, tooth-

like pattern, which is due to the sharp edge of conductors. In general, key-type 

e makes 

oil external 

. Schematic diagram of key-type electrode and planar spiral coil. 

by ሺ݊ െ 1ሻܣ௦. Moreover, total wire length in key-type electrode is shorter than spiral 

coil. Shorter wire length and wider cross-section results in lower electric resistance 

hence, reduce Joule heat ctrode can handle higher current compared 

to spiral coil and therefore, generates stronger magnetic field and force.  

Figure 4.14 shows a typical magnetic flux density for key-type and spiral coils at 

different heights from the surface (Z-values). In this simulation, spiral coil has n=4 

turns with identical c

is connected to a current source of ܫ௦ ൌ  On the other hand, key-type electrode is .ܣ1

connected to a current source of ܫ௞ ൌ ݁ݎ݁݌݉ܣto makes it as identical ሺ ,ܣ4 ൈ

 ሻ as that of spiral coil. This result shows that with the identical condition, spiral݊ݎݑܶ

coil and

electrod a better choice to generate stronger magnetic force with higher 

electric current value.  

Since key-type electrode represents a better magnetic field pattern compared to 

planar circular spiral coil, hereafter, this type of electrode is discussed in more detail 

to investigate effect of geometrical variations in magnetic force of internal coil 

configuration. Because the thickness of conductors in this configuration is limited 

to ݐ௞ ൑ electrode width (Wk) and c ,(fabrication limitation) ݉ߤ 100

diameter (dout) are two parameters that will be used for optimisation process. 

 
Figure 4.13
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Figure ral coil 

4.6.2   Effect of Electrode Width of Key-type Electrode, (Wk), on 
Magnetic Force  

The effect of conductor width of key-type electrode on magnetic force was 

investigated using numerical simulation. This simulation was carried out by the 

assumption of fixed values of conductor thickness, ݐ௞ ൌ  and the ratio of ,݉ߤ 100

conductor width to total width of the electrode, dout / din = 2. The value of magnetic 

force and magnetic field were calculated at fixed current density of ܬ ൌ 2 ൈ 10଼, and 

for a typical magnetic bead with diameter of ݀௕௘௔ௗ ൌ  and relative magnetic ݉ߤ1

permeability of ߤ௥ ൌ 10, placed at the inner edge of the electrode. This simulation 

was repeated for different conductor width (Wk) using the K-factor, which is defined 

as the ratio of conductor width to conductor thickness: 

ܭ ൌ ௞ܹ

௞ݐ
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4.14. Comparison between magnetic flux density of key-type electrode and spi

                                                            ሺ4.9ሻ 

The value of K-factor for different electrodes used in this simulation is given in 

Table 4.4.  

External Diameter (m)

B
 (m

T)

 
KeyType (z=0)
KeyType (z=0.5)
KeyType (z=1)
Spiral (z=0)
Spiral (z=0.5)
Spiral (z=1)
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Table 4.4.  The ratio of conductor width to conductor thickness. 

K-factor Conductor 

Width, Wk 

Conductor 

Thickness, tk 

Coil Internal 

Diameter, din 

Coil External 

Diameter, dout 

0.25 25 µm 100 µm 50 µm 100 µm 

0.5 50 µm 100 µm 100 µm 200 µm 

1 100 µm 100 µm 200 µm 400 µm 

2 200 µm 100 µm 400 µm 800 µm 

4 400 µm 100 µm 800 µm 1600 µm 

8 800 µm 100 µm 1600 µm 3200 µm 

Figure 4.15 shows the variation of magnetic flux density, B (blue line), and magnetic 

force, Fm (red line), against different K-factors. As it was expected, the magnitude of 

magnetic flux density increases by increasing the conductor width (higher K-factors). 

Since the strength of magnetic force is directly related to the strength of magnetic 

field, H (Equation (4.3)), a proportional behaviour was expected for the graph of 

magnetic force.  However, the result of magnetic force variation indicates an 

unexpected sharp peak of magnetic force at the point of K = 1. This graph can be 

explained in detail based on Equation (4.3) at different K-factors. 

ܭ • ൏ 1: In this region, the value of conductor thickness is higher than the 

netic 

ge of conductor, is shifted toward inner section of the 

on Equation (4.3), magnetic force is a function of magnetic field intensity (H) 

and magnetic field gradient ( H). On the other hand, graph of magnetic flux 

hows th

ܭ • ൐ 1: Since the ratio of magnetic flux density is incremental in this region, 

the lower magnetic force ratio (H.∇H), indicates that the ratio of magnetic 

field gradient decreases by increasing the ratio of K-factor.  

value of conductor width. This indicates that, the centre of higher mag

flux density, at the ed

conductor as illustrated in Figure 4.15 (b & c). As the result of this magnetic 

field shifting, the magnitude of magnetic force decreases at the conductor 

edge. 

ܭ • ൌ 1: At this point, the width and thickness of conductor are equal. Based 

∇

density s at, the value of H is not maxima at this point. Therefore, at 

this critical value of K = 1 with square-shaped conductor cross-section, the 

product of H.∇H is maxima. 
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nsity in two different 

f the magnetic force will be at different distances from the surface of 

aximum thickness of ݐ௞ ൌ  ,݉ߤ 100

optimised coil external diameter ݀௢௨௧was investigated based on variation of the 

chamber depth ݀௖௛. 

 

 
Figure 4.15. a) The variation of magnetic flux density (blue line) and magnetic force (red line) against 
conductor cross-section ratio (K). b, c) Cross-sectional plots of magnetic flux de

K-factors of K=2 (b) and K=0.5 (c) 

4.6.3   Optimised Chamber depth (dch), Based on Coil External 
Diameter (dout) in Key-type Electrode 

In the previous section, the optimised cross-section of key-type electrode was 

investigated based on the maximum magnetic force generation. This maximum force 

was measured on the surface and at the inner edge of the conductor. In this section, 

the variation o

the conductor. Figure 4.16 illustrates a schematic of the chamber and key-type 

electrodes. For simplicity, the key-type electrode was modelled with a ring-shaped 

circular electrode.  In this picture, ݐ௞ and ௞ܹ  are the thickness and the width of the 

key-type electrode respectively. Inner and outer diameter of the electrode are shown 

with ݀௜௡ and ݀௢௨௧ respectively and the chamber depth is shown by ݀௖௛. Since the 

thickness of the conductor is limited to the m
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Figure 4.16. Schematic of the DNA purification chamber using integrated internal key-type electrodes 
(to reduce the simulation complexity, key-type electrodes are replaced by identical ring-shaped 

circular electrodes). 

Figure 4.17 shows the simulation result of magnetic force variation against coil 

external diameter at different heights from the conductor surface (h). In this

2 ൈ 10଺ ܣ/݉ଶ. The conductor surface coverage was assumed to be 50% (݀௢௨௧/

 of the 

coil alon  comparison, all graphs have 

 

simulation, the force was calculated on a magnetic bead with diameter of ݀஻௘௔ௗ ൌ

௥ߤ and relative magnetic permeability of ݉ߤ1 ൌ 10 at fixed current density of ܬ௖ ൌ

 

݀௜௡ ൌ 2) in all simulations. The force is plotted radially across the top surface

g the AD line as shown in Figure 4.16. For easy

been normalized for coil external diameter. From these graphs it can be concluded 

that there are three different areas which respond differently to the dimension 

change. These areas are as follow:  

1. Internal section of the coil: This area is not covered by conductors (݀௜௡). 

Since the width of this area was assumed to be half the coil diameter, a 

quarter of whole coil surface and hence, one quarter of the magnetic beads 

will be covered by this area (assuming the beads are spread very uniformly 

across the surface). Generally, in this section magnetic force decreases with 
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increasing  v

 c  dimension will change. For instance, a 400 µm diameter coil, 

which has square conductor cross-section, is suitable for use with the 

chamber depth up to 50µm. For higher chamber depth the strength of 

magnetic force decreases sharply. 

2. Conductor section: this area is fully covered by current carrying conductors 

and comprises three quarter of coil active area, and hence, covers majority of 

magnetic beads. Figure 4.18b shows variation of magnetic force along a 

vertical line at the middle of this area (point C in Figure 4.16). Once again, 

selection of optimized dimension for coil diameter depends on the actual 

depth of working chamber. For instance, a 400 µm diameter coil represent 

higher magnetic force for distances up to 20µm and for a chamber with depth 

of 100µm, the optimized coil diameter is ݀௢௨௧ ൌ  which represent ,݉ߤ1600

higher magnetic force compared to other coils arrangements. 

3. Inner edge of coil: this area is the interface between the two previous 

sections. Since the majority of magnetic flux converges at this point, both 

magnetic field strength (H) and its gradient (∇H) thereof are very high at 

inner edge of the conductor. In fact, by increasing the coil external diam er, 

Therefore, selection of an optim eter for integrated internal coil 

magnetic bead

ber depth and coil ex

ized coil diameters are ex

igure 4.19. A

 coil external diameter. Figure 4.18a shows the ariation of 

magnetic force along a vertical line (point A in Figure 4.16) above different 

coils. Therefore, depending on the maximum height of the working chamber, 

optimum oil

et

magnetic force at this point can be increased significantly.  

um external diam

mainly depends on the working chamber depth. The result of simulation, gives 

different optimised coil external diameter per chamber depth based on above three 

areas. However, the area covered by the conductor surface covers the majority of the 

s population (75%). Therefore, this area was selected for optimisation 

of cham ternal diameter. Based on this assumption, the identified 

optim tracted for different chamber depth, as illustrated in 

F s shown in this figure, the strength of magnetic force decreases by 

increasing the chamber diameter (red solid line), which indicates that internal coil 

configuration is not a suitable choice for large-volume microchambers. Nevertheless, 

this information is just a guideline for estimation of optimized dimension and might 

slightly vary due to practical limitations.  
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Figure 4.17. Radial plot of effect of coil outer diameter on magnetic force experienced by a magnetic 

particle at different heights above the coil surface. h=10µm (a), h=50µm (b) and h=150µm (c). 
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Figure 4.18. Vertical plot of magnetic force generated by different coils along perpendicular lines at 

the centre of coil (a) and middle of winding section (b). 

 
Figure 4.19. Optimised coil diameter in different chamber depth 
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4.6.4   Application of Magnetic Core in Internal Coil 

The application of a magnetic core is another method to amplify the strength of 

magnetic field. The concept of magnetic amplification is illustrated in Figure 4.20a 

depicting the cross-sectional view of a circular spiral, embedded inside a ring-shaped 

magnetic material. The application of magnetic core is to create a low reluctance 

magnetic circuit for magnetic flux to pass through. This low reluctance circuit 

increases the magnetic flux density, thus generates higher magnetic force.  

In this section, the application of magnetic core was investigated using numerical 

simulation techniques to evaluate the performance of integrated magnetic core on 

strength of magnetic field. To achieve this, the strength of magnetic flux density at 

the inner conductor edge of a circular spiral coil (Point A at Figure 4.20a) was 

measured and compared at three different scenarios, no core, full core and half core 

(Figure 4.20b-d). 

Figure 4.20b shows a cross-sectional plot of magnetic flux density generated by 

planar circular spiral coil, which generates a maximum flux density of ܤ௘ௗ௚௘ ൌ

0.645 ݉ܶ at the inner edge of the coil. A similar simulation was performed on the 

same coil by incorporating the magnetic coil with a full magnetic core (Figure 

4.20c). The result indicated that, a 934 times amplification of magnetic flux density 

was achieved inside the magnetic core using a typical relative permeability of ߤ௥ ൌ

1000. However, the magnetic flux density at the inner conductor edge was amplified 

1.63 times (ܤ௘ௗ௚௘ ൌ 1.05 ݉ܶ). This ratio was measured as 1.42 times amplification 

௘ௗ௚௘ܤ) ൌ 0.91 ݉ܶ) in half-core spiral coil (Figure 4.20d).  

Variation of the magnetic flux density against relative permeability of the magnetic 

core is illustrated at Figure 4.21. This information is shown at two different points 

(A, B in Figure 4.13a) in full-core spiral configuration. These graphs indicate that the 

magnetic field of spiral coil is less sensitive to the permeability of the core, above a 

critical permeability of ߤ௥ ൌ 100. Therefore, wide range of magnetic materials can 

be used as the core material (i.e. Nickel with typical permeability of 600). 

From fabrication point of view, integration of magnetic core to th  spiral coil 

magnetic core increases the magnetic field up to 63%. A similar amplification can be 

e

increases the fabrication complexity and costs. On the other hand, application of 
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achieved by doubling the conductor thickness using multi-layer fabrication. 

Therefore, application of magnetic core is not a suitable field amplification method 

in a low cost, disposable diagnostic chip.  

 

 

 

 

Figure 4.20. a) The concept of magnetic amplification using integrated magnetic core. Cross-sectional 
plots of magnetic field, generated by a circular spiral coil (a), full-core spiral (b) and half-core spiral 

(c). 
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ariation of magnetic flux density against relative permeability of the core. 

ternal coil

mperature contr

Peltier elements), which add more cost on fabrication process. 

of magnetic force is a solution to overcome these problems. Since 

external magnetic source can be fabricated using miniaturised solenoid coils, the 

                 

Figure 4.21. V

4.7   External Coil Design 

As discussed in previous section, integrated internal coil is suitable for small-volume 

extraction chamber as the result of limited conductor thickness. Although a larger 

microchamber can be used by increasing the number of conductors in a series of key-

type electrodes, it increases the ratio of inactive areas between electrodes. Another 

problem with in  configuration is the limited control over its thermal 

activity. This can be achieved using on-chip te olling systems (i.e. 

External source 

strength of magnetic field can be controlled either by increasing the number of turns 

or increasing the electric current. The fact that the magnetic source is not embedded 

in the micro-chip reduces the fabrication complexity and cost significantly. 

Moreover, the thermal activity of external coil can be controlled by application of 

low-cost conductive and/or convective cooling systems (such as application of 

conductive heatsink or convective air-flow fans).  

In this section, the application of the external magnetic source is investigated using 

numerical simulation techniques. As it was concluded from the previous section 
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 chip with external magnetic coils is 

illustrated in Figure 4.22.  

A numerical simulation was performed to extract the optimised geometrical 

dimensions. These parameters are the coil cross-section (ܣ௦) and thickness (ݐ௦). The 

actual winding cross-section (ܣ௦) was assumed to be fully covered by the conductor 

surface. This assumption reduces the simulation complexity and computer process 

time in three-dimensional simulation mode.  

4.7.1   Efficient Winding of External Coil 

As mentioned above, the external coil can be fabricated by a winding a copper wire 

on a miniaturised bobbin. A cross-section of the actual winding area is shown in 

Figure 4.22 and is characterised by its winding width ( ௦ܹ) and winding depth (ݐ௦ሻ. In 

this section these parameters were used to extract the optimised winding cross-

section (ܣ௦) that produces maximum magnetic force.  

Figure 4.23 shows the result of simulations for two different winding cross-sections. 

In these simulations, the winding cross-section was kept constant and the simulation 

was carried out for different thicknesses and width of winding section. This 

simulation is carried out for two different square cross-sections 

of ܣௌ ൌ 25µ݉ଶ ܽ݊݀ ܣௌ ൌ 4݉݉ଶ. The magnetic force is calculated on a magnetic 

bead placed above the coil surface (݄ ൌ  and the results are normalized for (݉ߤ 500

comparison purpose.  

In this simulation, σ is defined as the ratio of winding width to winding thickness 

ߪ) ൌ ௦ܹ/ݐ௦). This result shows that the magnetic force is maximised when the 

winding cross-section is square-shaped. This means that the number of turns along 

the length of the coil must be equal to the number of turns along the width of the coil. 

In the other word, the product of (݁ݎ݁݌݉ܣ ൈ is maximised, when ௌܹ (ݏ݊ݎݑݐ ൌ  .ௌݐ

Although both winding width and thickness were used as the variable parameters in 

this simulation, this result is in close agreement with the result of simulation 

extracted from internal coil configuration (section 4.6.1). 

(4.6), circular coils generate stronger magnetic field compared to other multi-mutual 

and single-mutual inductors. Therefore, in this section, a pair of miniaturised 

solenoid with circular windings is selected as the source of magnetic field. The 

concept of DNA extraction/purification
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ss-sections. 

 
Figure 4.22. Schematic of DNA purification chip using external coil configuration. 
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alised by increasing the conductor cross section in the 

the overall chamber dimensions, which in turn, limits the horizontal expansion of the 

ௌ ter diameter assumption.  

ion of the magnetic force against 

tiv

magnetic permeability of, ߤ ൌ 10 at fixed current density of, ܬ ൌ 2 ൈ 10 . The 

 (Figure 4.24a) and ݄ ൌ

is simulation shows that magn

r times of 

urther increase in the conductor thickness. This is because, the 

different heights above the coil surface (Figure 4.24 a-c). The validation of this effect 

ous simulation, but the m

4.7.2   Effect of Coil Thickness on Fixed Width 
From previous section it was concluded that a maximum magnetic force with a fixed 

conductor cross-section takes place with square-shape conductor section. However, 

this is the optimum condition in which the magnetic force is maximised with a fixed 

product of (݁ݎ݁݌݉ܣ ൈ  Any further increase in the supplied electric current .(ݏ݊ݎݑݐ

or number of turns results in increase of the magnetic force strength. Increasing the 

number of turn can be re

vertical and/or horizontal directions (along  ௌܹ ݐ ݎ݋ௌ). Among these two parameters, 

vertical expansion of the cross-section becomes the only option, when the horizontal 

expansion is not possible. For example, the outer diameter of the coil is limited by 

coil. Therefore, in this section, the effect of coil expansion in vertical direction 

(along ݐ ) was investigated with the fixed coil ou

Figure 4.24 shows the result of simulation for variat

different coil thicknesses. The outer diameter of the coil used in this simulation 

was, ݀௢௨௧ ൌ 8 ݉݉ and with fixed conductor width of, ௦ܹ ൌ 2 ݉݉. The magnetic 

force was calculated on a magnetic bead with diameter of, ݀஻௘௔ௗ ൌ and rela ݉ߤ1 e 

௥ ௖
଻

magnetic force was plotted across the coil diameter (A-D line in Figure 4.22) at 

different heights above the coil surface, ݄ ൌ ݉ߤ 500

݄) and along a vertical line (Figure 4.24b) ݉ߤ 1000 ൌ 0 െ 2 ݉݉) from the middle 

of the conductor, as shown by point-C in Figure 4.22. The variation of magnetic 

force was investigated for variation of conductor thickness ranging between ݐௌ ൌ

0.5 ݉݉ to ݐௌ ൌ 24 ݉݉.  

Th etic force increases significantly, by increasing the 

thickness of the conductor up to fou its width. However, this effect will 

saturate afterward by f

centre of the magnetic flux shifts from inner edge of the conductor toward middle of 

the coil (as discussed in section 4.6.2, Figure 4.15). The same concept is valid at 

was investigated for different coil external diameters (݀௢௨௧ ൌ 8, 16, 32 ݉݉) and the 

results are compared to each other, as illustrated in Figure 4.25. The simulation 

conditions were kept similar to the previ agnetic force was 

measured at inner tip of the conductors (point-B in Figure 4.22).  
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Figure 4.24. Variation of magnetic force against thickness of the conductor across a diametric line A-
D (shown in Figure 4.22) at, (a) , (b)   and, (c) along vertical line (point-C). 

Figure 4.25. Effec n for different coil 
external diameters. 

 
t of conductor thickness on magnitude of magnetic force, show
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F  

nal square shape cross-

ௌ

m effec

rom graphs of Figure 4.25, it can be extracted that 95% of thickness effect takes

giplace with increasing the thickness to four times of ori

section, therefore: 

ሻݔ௠ሺ݉ܽܨ ؆ 2 ൈ  ሻ                                                    ሺ4.10ሻݎݍ௠ሺܵܨ

ݐ ሺ݉ܽݔሻ ؆ 4 ൈ  ሻ                                                     ሺ4.11ሻݎݍௌሺܵݐ

Where, ݐௌሺܵݎݍሻ and   ܨ௠ሺܵݎݍሻ are the winding thickness and magnetic force 

generated by a coil with square shape winding cross-section respectively 

and ݐௌሺ݉ܽݔሻ and ܨ௠ሺ݉ܽݔሻ are, the maximu tive thickness and the maximum 

magnetic force generated by extending the winding depth. If the width of winding 

( ௌܹ) is 50% of the coil radius: 

௧ܹ ൌ
௖௢௜௟ݎ

2 ൌ
݀௢௨௧

4                                                  ሺ4.12ሻ 

And because in square-shaped winding, ௌܹ ൌ  ௌ then by comparing Equation (4.11)ݐ

h means, the fixed width

ents. Regardless of coil position in the chamber, design of each 

and Equation (4.12): 

ሻݔௌሺ݉ܽݐ ൌ ݀௢௨௧                                                        ሺ4.13ሻ 

Whic optimised thickness, for a coil with , is equal to the 

outer diameter of the coil. Further increase in thickness of winding will increase the 

magnetic force but in a very slow rate, which might not be reasonable due to the 

bigger dimension of the coil.  

4.8   Final Chamber Coil Setup 

Based on extracted information from simulation results, design of electromagnet and 

different coil arrangement can be optimised for internal and external coil 

arrangem

electromagnet is application specific. There are many variables affecting the final 

coil design as follow: 

• Chamber depth: Since the strength of magnetic force decreases by Inverse 

Square of depth, it is very important to calculate penetration depth of 

magnetic force based on chamber depth. 

•  Chamber volume: Based on the application, chamber volume might vary to 

accommodate required bio-fluid inside the chamber. Since the total volume 
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• Magnetic Bead Property: There are many different magnetic beads 

commercially available for extraction of DNA or other bio-molecules. 

Characteristics of these beads vary from different manufacturers. These 

properties are the relative magnetic permeability (ߤ௥஻) and size of the beads 

(݀௕௘௔ௗ). The magnetic property of beads will directly affect the amplitude of 

magnetic force they experience. Effect of dimension can be realized in the 

amplitude of magnetic and viscous forces experienced by the magnetic 

beads. In addition, if the size of bead is comparable to the chamber 

dimension, there might be a risk of bead clogging inside the chamber and 

microfluidic network due to the chaining effect of magnetic beads under the 

influence of magnetic field. 

•   Extraction protocols: Different commercially available extraction kits have 

different extraction protocols for buffers and sample to be used for optimum 

purification of target molecules. In other words, the ratio of target sample to 

chemical buffers differs in different kits. This will affect the total volume of 

the chamber, if there is a limitation of target sample to be used for 

extraction.  

• Joule heating: Whilst magnetic force increases as the square of electric 

current, Joule heating increases in the same ratio. In some purification 

erheating, h might d

maximum allowed electric current must be considered in design of the 

magnetic coils. Joule heating is more important in internal coil design as the 

coil is embedded inside the chip and any temperature rise will be transferred 

to the chamber directly. In the case of external coil, there is a possibility to 

dissipate the heat by designing a suitable heatsink module. 

In conclusion, design of electromagnet is a very complicated process, which has 

dependency on many variables. In other words, coil design for magnetic mixing is 

application specific. In the case of DNA extraction and purification, which is the 

subject of this work, the emphasis is to design an electromagnet based on total 

volume of the chamber, which is a function of minimum required sample and 

of the chamber is a function of chamber depth and width, coil arrangement 

must be optimized to cover the whole chamber area and specially the 

chamber depth. 

protocols, incubation at high temperature is one of the kit’s requirements. In 

order to avoid ov  whic amage the microchamber, the 



117 
CHAPTER 4 - ELECTROMAGNET DESIGN AND OPTIMIZATION 

extraction protocols. Chamber volume is a function of chamber depth and diameter. 

A chamber depth above ݀௖௛ ൐  increases the diffusion length, and thus ݉ߤ 500

requires long incubation time. Moreover, generation of efficient switching magnetic 

field becomes more challenging, across a chamber with higher depth ratio (݀௖௛ ൐

 Hereafter, in this work, the total volume of the chamber will be calculated .(݉ߤ 100

based on the maximum chamber depth of ݀௖௛ ൌ and ݀௖௛ ݉ߤ 100 ൌ 300 െ

 .for internal and external coil arrangements ݉ߤ 500

4.9   Inter-coil Mutual Effects 

In designing the magnetic mixer the main target is to perform efficient mixing and 

binding of DNA molecules to achieve highest yield. Efficiency of mixing increases 

b  

of magnetic force generators on different sides of the chamber in order to drag the 

ds cannot be inverted to generate repulsing force, a minimum 

number of two coils are required to operate in opposite directions. Arrangement of 

coils is based on the chamber shape and geometry and total volume of the chamber. 

If the numbers of coils are more than one pair, these coils might have mutual effect 

 other. T utual ef

the mutual effect needs to be investigated between every coil, which has overlapping 

 of m

• Lateral mutual effect 

• Cross mutual effect 

This type of mutual effect is concerned with coils positioned in the same plane next 

to each other. This arrangement of coils is realised, when the chamber size is bigger 

the mutual magnetic effect, generated by in-plane coils, a model of four coil 

y application of spatial magnetic force on magnetic beads. This requires a number

beads to different sides of the chamber. The higher the displacement of the beads, the 

higher the probability of collecting the target molecules. Since the magnetic force 

applied on the bea

on each his m fect happens, if their working cycle overlaps. In fact, 

working cycle with other coils. Based on the coil arrangements in this work, there are 

two types utual effects need to be investigated separately. These effects are as 

follow:  

4.9.1   Lateral Mutual Effect 

than the coil and more than one coil is placed on each side of the chamber. This is 

necessary to cover the chamber surface with magnetic force pattern. To investigate 
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illustrated in Figure 4.26. This simulation was carried 

out using ring-shaped circular conductors with outer diameter of ݀௢௨௧ ൌ 8 ݉݉ and 

௥ܹ௜௡௚ ൌ 2݉݉. An effective spacing 

x density on the surface of the coils, across the diagonal lines 

ils. This reduction ratio is higher at 

ner edge of the coil. The direction of this flux is 

arrangement by applying opposite-direction electric current to the neighbouring 

arrangement was simulated using COMSOL Multiphysics, and the result was 

compared to a single coil, as 

equal conductor thickness/width of ݐ௥௜௡௚ ൌ

of ܵ ൌ 1 ݉݉ was considered between coils in four-coil arrangement. The force was 

calculated on the magnetic beads with relative permeability of ߤ௥ ൌ 10 and diameter 

of ݀௕௘௔ௗ ൌ ܬ at current density of ݉ߤ1 ൌ 2 ൈ 10଻ ܣ/݉ଶpassing through the coils, in 

clockwise direction. 

A plot of magnetic flu

of A-A and B-B (as shown in Figure 4.26 c & d) are shown in Figure 4.26 (a & b). 

These graphs show that, the interaction between magnetic flux of two neighbouring 

coils reduces the peak of magnetic flux of both co

two adjacent edges of conductors (8%), and is lower at two distant edges (3.5%). 

More detail calculation was performed using evaluation of total magnetic energy 

density inside the subdomain. This calculation showed an average reduction ratio of 

4.94% in total magnetic energy density of four-coil arrangement, compared to single 

core arrangement.  

Another simulation was performed to investigate the effect of inter-coil mutual 

interactions on the strength of the magnetic force. The result of this simulation is 

shown in Figure 4.26 (c & d). These plots were captured on the surface of the coils. 

By similar calculation of average magnetic force between two above coils 

arrangements showed an average reduction ratio of 6.88% in four-coil arrangement 

compared to single coil arrangement.  

This evaluation describes an overall mutual effect of in-plane coils assuming all coils 

are activated and have 100% overlap in working cycle. Obviously, any other working 

cycle results in fewer disturbances in magnetic flux and magnetic force. This 

conclusion is not unexpected as the majority of magnetic flux in a planar coil is 

concentrated on the coil surface at in

perpendicular to the coil surface. Therefore, major parts of the magnetic flux 

generated by neighbouring coils are isolated from each other.  

Further investigation of in-plane mutual effect was performed in the above four-coil 
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sult shows that, the average magnetic flux 

gure 4.26. Mutual t of neighbouring coils. (a, b) 
) and single coils (b) arrangements, across diametric lines of A-A and B-B. (c, d) 

Surface plots of magnetic force at the surface of the four-coil (c) and single coil (d) arrangements.  

coils. The result of this simulation is shown in Figure 4.27 with corresponding 

current directions of each coil. This re

density and average magnetic force of each coil, in four-coil arrangement, increases 

by ≈6% compared to the single coil arrangement. This is because of positive mutual 

effect between magnetic flux of two neighbouring coils with opposite electric current 

directions. Therefore, in any in-plane multi-coil arrangement, which have 

overlapping working cycle, electric currents of the coils must be applied in opposite 

directions. This will increase the strength of magnetic force, as the result of positive 

mutual effect. 

 

 
Fi  effec Plots of magnet flux density at the surface of 

the four-coil (a

 
Figure 4.27. The effect of opposite-direction electric currents on the mutual effect of four-coil 

arrangement. a) Plot of magnetic flux density. b) Plot of magnetic force. 
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1. No overlap: This pattern is the normal switching pattern of magnetic flux 

 no overlap between two coils in their working cycle 

is picture, the bottom coil is activated. The pattern of 

magnetic flux indicates that the magnitude of magnetic flux density is higher 

section and gradually decreases to the middle 

magnetic flux of two face to face coils add up with each other in the middle 

the am

concentr ux is higher insi

wn with arrows in Figure 4.29b, which resemble magnetic flux 

inside a solenoid. 

this arrangement is across the surface of winding section. An arrow plot of 

4.9.2   Cross Mutual Effect 

Beside in-plane magnetic mutual effect between the coils, the other mutual effect can 

be realized between coil pairs on two opposite sides of the chamber. In fact these 

coils have been placed on opposite sides in order to create spatial magnetic mixing 

pattern. Usually, these two coils should not have an overlap in their activation time. 

Figure 4.28 shows a cross-section plot of magnetic flux density pattern for three 

different scenarios. These three scenarios are as follow: 

density when there is

(Figure 4.28a). In th

at the inner tip of winding 

section and external edge of the coil. This pattern of magnetic flux drags 

magnetic beads toward the higher field intensity, which is the inner edge of 

winding section. 

2. Overlap with Parallel Electric Current: In this mode, both coils are activated 

and have an overlap in their working cycle. The polarity of electric current is 

in the same direction for both coils with identical current magnitude. This 

simulation result is shown in Figure 4.28b. This plot shows that in this mode 

section of the chamber and creates a stronger flux pattern. On the other hand, 

plitude of combined magnetic flux at outer section of the chamber will 

cancel-out. In fact this coil set up creates a bigger solenoid coil in which the 

ation of magnetic fl de the solenoid. This field 

pattern is sho

3. Overlap with Opposite Currents: This mode is similar to the previous mode 

with different current directions. The result of simulation for this mode is 

shown in Figure 4.28c. This coil arrangement creates a field pattern similar 

to quadrupole magnet. Therefore, the magnetic flux density in the middle 

part of quadrupole is minimal, as the opposite fluxes cancel each other out. 

Instead the magnitude of flux is maxima at the vicinity of the poles, which in 
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he direction of magnetic beads, experiencing this field pattern, 

 

Figure 4.28. Cross-section plot of magnetic flux density of parallel coil arrangement in switching 
mode (a), overlapping cycle with parallel currents (b) and overlapping cycle with opposite-direction 

electric currents (c). 

magnetic flux density confirms this type of field pattern (Figure 4.29a). 

Therefore, t

shifts from the inner edge of the coil toward the outer edge of the coil. 
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Figure 4.29. Arrow-plot of magnetic flux density showing the magnetic mutual effects. a) 
Quadrupolic coil arrangement. b) Solenoidal coil arrangement. 

In conclusion, magnetic mutual effects have some advantages and disadvantages. On 

one side, the in-plane mutual effect between neighbouring coils disturbs the pattern 

of magnetic fluxes and hence reduces the magnitude of applied force. On the other 

side, application of cross mutual effect between two coils can be consider as an 

advantage in order to control the behaviour of magnetic beads inside the chamber. In 

f

mi e 

areas with higher field intensity and gradient. Based on optimum conditions and the 

frequency of switching field, these beads might end up in the middle section very 

quickly. This will indicates the end of mixing period. Therefore, mixing time is 

limited to the position of beads inside the chamber and beads should collect target 

molecules during migration time from outer section toward middle section of the 

chamber. This type of mixing might be efficient in some cases with accurate force 

pattern design but is not efficient in every case. For instance, in DNA extraction 

process, DNA molecules need to be released from white blood cells using 

app ill 

take place i ols). If the 

an lysis period, beads will pile up with no DNA 

attached at the middle part of chamber.  

t can be adopted to clamp 

magnetic beads. In most magnetic bead extraction processes, it is necessary to wash 

act, in normal switching magnetic force pattern, direction of bead-flow is toward the 

ddle section of the coil. This is because magnetic beads tend to migrate to th

ropriate lysis buffer. Lysis process is not an instant chemical reaction and w

n a couple of minutes (it depends on the extraction protoc

migration time of beads is less th

Therefore, with quadrupolic arrangement of coils there is a possibility to unpile the 

beads and return them to the beginning of migration track. In this case, the magnetic 

mixing and collection of target molecules can be repeated. This action can be 

repeated as much as necessary to achieve required efficiency.  

In addition, application of solenoidal coil arrangemen
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tware. In these simulations two magnetic coils are 

ber. The distance between coils is 2mm and 

 
Figure 4.30. 3D simulation result of quadrupolic and solenoidal coil arrangements. (a, b) Cross-

sectional plot of magnetic force for solenoidal (a) and quadrupolic (b) coil arrangement. (c, d) Surface 
magnetic force plot of solenoidal (c) and quadrupolic (d) coil arrangement at 0.6mm above the coil 

surface. 

cell debris off the beads and collect the target molecule. This will require an on-chip 

clamping process. Switching magnets can be used as clamping magnet with 

application of DC magnetic field. Solenoidal coil arrangement generates stronger 

clamping magnetic field pattern in comparison to single magnet strategy (using 

bottom coil).  

Figure 4.30 shows a 3D simulation result of quadrupolic and solenoidal 

arrangements using COMSOL sof

placed at top and bottom of the cham

coil’s overall diameter is set to ݀௢௨௧ ൌ 8݉݉. Figure 4.30 (a & b) shows cross-

section plot of magnetic force applied to a magnetic bead of 1µm in diameter and 

relative permeability of ߤ௥ ൌ 10. Figure 4.24 (c & d) shows a surface plot of 

magnetic force at a height of 600µm above the coil surface. These surface plots of 

force clearly describe the difference between solenoidal pattern (c) and quadrupolic 

pattern (d). Solenoidal pattern is more concentrated on inner edge of the coil with 

higher intensity, and quadrupolic pattern is more spread on the winding surface and 

is less concentrated. 
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It is worth mentioning that, a hybrid force pattern can be generated using normal 

switching pattern, solenoidal and quadrupolic pattern. Hybrid pattern can be used in 

order to create a very versatile mixer, which offers more flexibility in movement of 

bead flow inside the chamber. This will increase the chance of collecting the target 

molecules. The application of different mixing patterns in magnetic mixing and 

clamping is presented in Chapter 5 and Chapter 6. 

4.10   Summary 

In this chapter, a preliminary simulation study was performed to design a magnetic 

bead-based micro-mixer to be used for extraction and purification of DNA molecules 

from whole blood. Simulation was performed using commercial simulation software, 

COMSOL multiphysics. Different electromagnetic modules were used to accurately 

model this magnetic problem in 3D mode and where possible in 2D mode. PDE 

module in COMSOL was used to calculate magnetic force experienced by magnetic 

particles.  

Various coil geometries were investigated to select the most appropriate coil 

arrangement for internal and external coil setup. Among different coils, key-type 

electrode seems to be the best candidate for internal coil setup. This is because of 

less fabrication complexity, higher cross-section ratio and lower electric resistance. 

Since the thickness of coil is limited by fabrication limitations, the optimised overall 

diameter of the coil is limited to a couple of millimetres with the chamber depth of 

up to 150µm. Therefore, internal coil setup is more suitable for small volume 

chambers. However, larger chamber can be used by adopting multi-key-type 

electrode pattern. 

Spiral solenoid was selected to be used in external coil arrangement. A simulation 

study was carried out on different geometrical parameters of the external coil to 

investigate the effect of coil cylindrical height and outer diameter to achieve the 

d  

force can be generated by a squa tion of winding section. Further 

simulation on effect of cylindrical height showed that, the maximum effective height 

is equal to outer diameter of the coil.  

A simulation study was carried out to investigate the mutual effect of neighbouring 

coils on each other. The result of in-plane coil arrangement showed small disturbance 

esired strength of magnetic force. This study showed that the maximum magnetic

re-shape cross sec
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and reduction in the magnetic field by supplying the electric current in parallel 

directions. This is because of negative mutual effect between neighbouring coils. 

However, by supplying the electric current in opposite directions, the strength of 

magnetic field increases, as the result of positive mutual interactions. On the other 

hand, the result of cross mutual effect opened a new advanced pattern of magnetic 

force, which can be used to increase the efficiency of mixing and clamping. 

Supplying the electric current in parallel directions, results in creation of solenoidal 

field pattern. Th ux of both coils 

at the centre of the chamber. On the other hand, opposite-direction supplied current, 

is magnetic field pattern, concentrate the magnetic fl

shifts the centre of the magnetic field toward outer section of the chamber. Therefore, 

these two hybrid field patterns can be used to manipulate the bulk of magnetic beads 

more efficiently, inside the chamber.  

Based on these preliminary studies, trajectories of beads were investigated to asses 

and quantify mixing efficiency. This is presented in Chapter 5.  



 
 
 

CHAPTER 5 

BEAD TRAJECTORIES AND OPTIMIZATION 

 

 

5.1   Introduction 

In the previous chapter, COMSOL multiphysics software was used to simulate the 

magnetic force pattern generated by different magnetic sources. Different 

geometrical parameters were studied and were optimised for integrated internal coil 

arrangement as well as external coil arrangement. Optimisation of internal coil was 

based on the practical limitation of the maximum conductor thickness, due to 

fabrication limitation. This limitation, limits the penetration depth of the magnetic 

force, and thus the chamber depth. Therefore, the application of internal coil 

arrangement is more suitable for small-volume mixing chamber. On the other hand, 

optimisation of external coil arrangement was investigated based on the larger 

distance between the coil surface and the microchamber. External coil arrangement 

has less physical limitation in order to generate sufficient magnetic force pattern 

inside the chamber, and therefore, is a better choice to be used for large-volume 

mixing chamber. However, in order to evaluate and compare the efficiency of 

internal and external coil arrangements, their maximum supplied electric current 

need to be extracted. Maximum current density can be calculated in a thermoelectric 

equilibrium. Therefore, based on maximum current density it is possible to evaluate 
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௖௛ ൌ ݉ߤ 100

௖௛ ൏ ݉ߤ 100

௖௛ ൐ ݉ߤ 100

,݉ߤ 00 ௞ܹ ൌ 0.5 ݉݉, ݀௢௨௧ ൌ 2 ݉݉) was 

ܳ ן .ଶܫ ܴ                                                                   ሺ5.1ሻ 

performance of internal and external coils in achieving efficient mixing. The 

efficiency of mixing can be evaluated using bead trajectory study. This study can be 

performed using Matlab software coupled with COMSOL. Therefore, a Matlab 

source-code was developed to evaluate the performance of designed magnetic coils 

and extract the optimised mixing frequency using bead trajectory simulation. 

5.2   Internal Coil 

As discussed in Chapter 4, internal coil is limited by thickness of conductor. This is 

because traditional metal deposition techniques such as sputtering and e-beam 

depositions are not suitable methods for making thick conductors. Electroplating of 

high-conductive material such as gold and copper can be used to fabricate thicker 

conductor patterns [199, 200]. By using electroplating, a conductor thickness of 10-

100µm can be fabricated. Therefore, the maximum conductor thickness that can be 

used to design an internal coil is 100 µm. However, using electroplating technique, it 

is possible to fabricate multi-layers to achieve higher conductor thickness to 

withstand desired currents. This will complicate the fabrication process, which is not 

desirable.  

As mentioned previously (section 4.62 Chapter 4), the optimised coil outer diameter 

depends on the depth of working chamber (this information was summarised in 

Figure 4.19). Based on this information, a chamber depth of ݀  was 

selected for bead trajectory study. A chamber depth of ݀ , results in 

stronger magnetic force, but increases the risk of clumping the beads inside the 

chamber and microfluidic network. The strength of magnetic force decreases 

significantly, for a chamber depth of ݀ . Based on the selected chamber 

depth and the graphs of Figure 4.19, a 2 mm in diameter key-type electrode (ݐ௞ ൌ

1 selected to be used in the bead trajectory 

study. 

5.2.1   Internal Coil Maximum Current Density 

Joule heating, also known as ohmic heating, describes the amount of heat generated 

by passage of an electric current through a conductor. It was first studied by J. P. 

Joule in 1841 and is explained by Joule’s first law as follow: 
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Where, Q is the released energy in the form of heat generated by current I passing 

through a conductor with ohmic resistance of R. In atomic level, joule heating is the 

 ଶ                                                                ሺ5.2ሻܫ

by substituting Equation (5.2) into Equation (5.1): 

                                                    ሺ5.3ሻ 

Which describes that amplitude of magnetic force is directly proportional to 

temperature rise in coil.  

ule’s law describes that the amount of heat generated in a 

current carrying conductor is related to the time as well: 

                                          ሺ5.4ሻ 

This equation explains that the amount of heat will increase with time, but in reality 

temperature rise stops at an equilibrium point. Based on first law of thermodynamics, 

which represents the key-type electrode, 

was selected to investigate the thermal analysis. The electrode had a thickness 

 conductor m perature-dep

ሺܶሻߩ ൌ ଴ሺ1ߩ ൅ ଴ሺܶߙ െ ଴ܶሻሻ                                          ሺ5.5ሻ 

result of released kinetic energy of electrons (in conductors), when they collide with 

atoms. As described in Joule’s equation, the amount of heat is proportional to square 

of electric current. From Equation (4.7): 

௠ܨ ן

௠ܨ ן ܳ            

More accurate form of Jo

ܳ ൌ .ଶܫ ܴ.                 ݐ

generated heat will be dissipated by means of conductive, convective transfers and 

radiation. The amount of heat dissipation depends on the steady-state temperature 

and thermal property of materials and the medium. In this work, COMSOL General 

Heat Transfer Module in coupled with Conductive Media DC Module was used to 

simulate this thermal problem. By solving this problem, steady-state temperature in 

conductors was calculated at equilibrium point for different current densities and the 

maximum current density was extracted based on designed coil geometry. This 

maximum current density was used thereafter to calculate the magnitude of magnetic 

force and bead trajectory studies. 

A simple model of a ring-shape conductor, 

of ݐ௞ ൌ and width of ௞ܹ ݉ߤ100 ൌ  Heat dissipation was assumed to be .݉ߤ500

convective flux to surrounding air at temperature of ஺ܶ௜௥ ൌ 20Ԩ. Copper was used as 

the aterial with tem endent resistivity of: 
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ture and α

simulation is given 

in Table 5.1. Figure 5.1 shows heat transfer simulation result of the model for 

different current densities. This simulation was repeated and is shown for conductor 

cross-section of ݐ ൌ  The result shows that by decreasing the conductor .݉ߤ25

Where, ρ0 is the resistivity at reference tempera 0 is the temperature 

coefficient of material. Physical property of copper used for this 

௞

thickness, capacity of conductor to handle electric current increases. By reducing the 

thickness, the relationship between conductor cross-section areas of two rings is as 

follow: 

ଶܣ ൌ
1
4  ଵ                                                         ሺ5.6ሻܣ

Where, ܣଵ and ܣଶ are the cross-section area of conductors (measured in ݉ଶ) with 

thickness of ݐ௞ଵ ൌ ௞ଶݐ and ݉ߤ 100 ൌ  respectively. On the other hand, the ݉ߤ 25

electrical resistance, R of a conductor can be calculated as: 

ܴ ൌ ߩ
݈
 ሺ5.7ሻ                                                          ܣ

easured in (m

the material measured in 

(Ω. ݉). By comparing the electrical resistance of the two simulated electrodes using 

Equation (5.6) and Equation (5.7), the relationship between the ohmic resistances of 

two conductors can be extracted as: 

ܴ ൌ 4ܴ                                                           ሺ5.8ሻ

tio and equal heat dissipation ratio, the 

relationship between current densities of the conductors, ܬଵ and ܬଶ can be extracted by 

substituting Equation (5.6) and Equation (5.7) in Equation (5.4).  

݂݅ ܳ

Where, ݈ is the length of conductor m ), A is the conductor cross-section 

area measured in (݉ଶ) and ߩ is the electrical resistivity of 

ଶ ଵ  

Where, ܴଵ and  ܴଶ are the electric resistance of conductors with thickness of ݐ௞ଵ ൌ

௞ଶݐ and ݉ߤ 100 ൌ   .respectively ݉ߤ 25

By assumption of equal heat generation ra

ଵ ൌ ܳଶ
ூୀ௃஺
ሳልሰ ଶܬ ൌ  ଵ                                           ሺ5.9ሻܬ2
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Table 5.1. Property of copper wire used for simulations. 

Property of Material Copper 

Thermal Conductivity K (W/m.K) 400 

Density ρ (Kg/m ) 8700 3

Heat Capacity at Constant Pressure Cp (J/Kg.K) 385 

Resistivity at Reference Temperature ρ0 (Ω.m) 1.72×1 -8 0

Temperature Coefficient α (1/K) 0.0039 

 
Figure 5.1. Steady state temperature graph for two different internal coil thicknesses. 

The graphs of Figure 5.1 show a very close agreement between the above calculation 

and simulation result. Steady state temperature of 60°C occurs with current densities 

of  ܬଵ ൌ 5.3 ൈ 10଻ and   ܬଶ ൌ 10.1 ൈ 10଻ at the electrodes with thickness of ݐ௞ଵ ൌ

ݐ and ݉ߤ100 ൌ  .respectively ݉ߤ25

A current density of ܬ ൌ 5 ൈ 10଻ܣ/݉ଶ was selected for simulation as the steady-

nsfer between r nd the media is only

. The temperature will decr idering heat transfer between the 

conductor and surrounding materials, which will be used for microfabrication and 

trate.  
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state temperature at this current density was ௦ܶ௦ ൌ 56Ԩ. This temperature is 

necessary for the incubation of lysis/binding buffer and blood sample. The heat 

tra ing a  through convective flow to surrounding 

air ease by cons

selection of solid subs

In order to investigate the performance of magnetic mixing, beads trajectories inside 

the chamber need to be studied. This study cannot be performed using COMSOL 
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ost-processing. Bead trajectory study needs an accurate 

les inside 

viscous fluid is rather a complicated process, which involves hydrodynamic 

stigate 

trough heat transfer between phases [201].  Momentum coupling take place through 

multiphysics, as this software has generally been designed to simulate the physics 

problems through finite element modelling. COMSOL script to some extent can be 

used for some preliminary p

simulation by using proper programming software. The source code for this program 

will use the raw data from COMSOL simulation in order to perform the bead 

trajectory study. COMSOL multiphysics offers a solution to this problem via an 

internal link to Mathworks Matlab software. By using this link, all simulation result 

will be transferred to Matlab in order to perform required post-processing.  

5.3   Motion of Magnetic Particles Inside Viscous Fluid 

Further processes to investigate the path of magnetic bead inside the microchamber 

needs a proper physical model. This model describes the magneto-hydrodynamic 

behaviour of magnetic particles inside a fluid. Study of spherical partic

interactions in multiphase flow. The aim of this chapter is not to deeply inve

this matter. However, the objective is to build a simple model, which describes the 

behaviour of magnetic beads inside the chamber under influence of magnetic force. 

Therefore, this model can be used to evaluate the strength of magnetic force and 

extract the frequency of mixing. In order to build this simplified model, dominant 

forces on magnetic beads need to be extracted. Since this model involves motion of 

solid particles inside a liquid, this flow is considered as multiphase flow. Phase in 

general refers to any state of matter such as solid, liquid and gas. Figure 5.2 shows a 

schematic diagram of more common multiphase flows. As shown in this diagram, 

two-phase flow refers to liquid-liquid, liquid-gas, liquid-solid and gas-solid flows. 

An example of liquid-gas is bubbles inside the liquid or liquid drops in gas. A three 

phase flow is realized when the flow is a solid-liquid-gas mixture. In this study, solid 

magnetic particles are suspended inside the liquid; the problem is limited to liquid-

solid two-phase flow. Another important aspect of multiphase flows is the coupling 

between different phases. For example in two phase flow, if only one phase has 

influence on other phase, the coupling is called one-way. If both flows have mutual 

interaction, then the flow is coupled two-way. Coupling may take place through 

mass, momentum and energy transfer between different phases. Mass coupling may 

take place through condensation or evaporation and energy coupling can take place 
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ber (Re<<1). In this situation, the fluidic problem is reduced to two-

 

 

Figure 5.2. Schematic diagram of different phase flows. 

hydrodynamic interactions between different forces such as drag force. In more 

complicated description of the couplings, the flow might be considered as a four-

way-coupled flow. This flow describes the interaction between different liquids and 

beads with counting the solid-solid interaction between magnetic beads.  The 

interaction between beads can be described as particle-particle collision in two-phase 

flow regime.  

Particle-particle interaction will take place, if the concentration of particles exceeds a 

certain number. The mutual effect between particles can be ignored for concentration 

below 1015 particle/m3 [202]. Therefore, four-way coupling is not applicable in this 

study. Since the fluid is assumed to be static inside the chamber and the velocity of 

particles relative to liquid is very low, the flow regime can be considered at very low 

Reynolds’s num

phase flow with one-way coupling. This is because the motion of particles has no 

effect on the flow pattern. One-way coupling is valid here as only the fluid has effect 

on particle flow. This effect, which is known as drag force, is a function of fluid 

viscosity. 

Another force acting on magnetic particles is the gravitational force. This force needs 

accurate consideration as it mainly depends on the mass property of both beads and

fluid. Figure 5.3 shows a schematic diagram of forces acting on a magnetic particle 

inside a fluid. 
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Figure 5.3. Schematic diagram of different forces acting on a magnetic particle inside a fluid

5.3.1   Magnitude of Gravity Force 

In general, magnetic beads are made of a mixture of iron oxide (Fe2O3 or γFe3O4) 

and polymers. The ratio of magnetic material varies from supplier to supplier and 

they are supplied in various shapes and diameters. Table 5.2 shows an example of 

three different magnetic beads and their properties. In this table, a typical gravity 

force applied on each bead is calculated. This calculation is based on suspension of 

beads in water. A typical magnetic force applied on each bead is given as well. 

Clearly the magnitude of magnetic force is much higher than gravity force. 

Practically, the bio-fluids of interest in this work, which contain whole blood, lysis 

and binding buffer, are more viscous than water. This indicates that the magnitude of 

gravity force on the magnetic beads can be less than that shown in Table 5.2. Hence, 

the to-

hydrodynamic model of magnetic beads inside the chamber can be simplified by a 

inant forces are induced magnetic force 

. 

 effect of gravity force can be ignored in this work and the magne

two-phase flow and one-way coupling. Dom

and opposing viscous drag force. 

Table 5.2. Property of different magnetic particles and magnitude of gravity force on them. 

Bead Dynal M-280 Dynal MyOne Spherotech CM-10 

Diameter dp (µm) 2.83 1.05 1.2-1.4 

Average Density ρp (g/cm3) 1.4 1.7 1.58 

Gravity Force in water Fg (N) 4.744×10-14 4.24×10-15 6.67×10-15 

Average Magnetic Force F  (N) 4×10-13 2×10-14 4×10-14 m
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de of drag force depends on many parameters 

includ ical 

particle inside a fluid can be described by particle’s Reynolds number:  

ൌ
ߩ݀ݑ

ߤ

5.3.2   Viscous Drag Force 

The analytical expression of magnetic force acting on a magnetic particle under 

influence of a non-uniform magnetic field was calculated in Chapter 3. Another 

dominant force, which has effect on motion of magnetic particles inside the chamber, 

is viscous drag force. Drag force can be described as the resistance of fluid to 

movement of particle. This force is always relative and in opposite direction to 

particle movement. The magnitu

ing particle and fluid properties. Relative flow condition for a spher

ܴ݁௣                                                       ሺ5.10ሻ 

s) are  and viscosity of fluid, d (m) is er of 

spherical particle and ݑ ሺ݉/ݏሻis the velocity of particle relative to the fluid.  

Navier-Stokes hydrodynamic 

Drag force also known as Stokes law (Equation (5.10)), is valid at very low particle 

Reynolds number (ܴ݁௣ ൏ 2), which is the case in microfluidics [204]. Drag force is a 

mixture of skin friction force and pressure force. Friction force, which acts in a 

ndicular 

direction to the surface. Primarily pressure force acts on front and back sides as other 

 ݑ݀ߤߨ  :݁ܿݎ݋ܨ ݁ݎݑݏݏ݁ݎܲ

Where, ρ (kg/m3) and µ (Pa. density  diamet

Fundamental governing law in this situation is the 

equation of motion. This equation was solved by Stokes [203] for simplified case of 

creeping flow. Creeping flow describes the case of very low velocity relative flow of 

particles and fluid. The drag force extracted for this case is as follow: 

ௗܨ ൌ  ሺ5.11ሻ                                                      ݑ݀ߤߨ3

Where, ߤ ሺܲܽ. /ሺ݉ ݑ ሻ is the viscosity of fluid, ݀ሺ݉ሻ is the diameter of particle andݏ

 .is the velocity of particle relative to the fluid ݏ

tangential direction parallel to the surface of the particle, constitutes two third of drag 

force. The remaining part comprises pressure force, which acts in a perpe

segments of this force cancel each other out. These segments of drag force can be 

written as follow.  

 ݑ݀ߤߨ2 :݁ܿݎ݋ܨ ݊݋݅ݐܿ݅ݎܨ ݊݅݇ܵ
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5.3.3   Equation of Motion of Magnetic Particle 

Newton’s second law of motion: 

As discussed above, magnetic force and viscous drag force are dominant forces in 

this study. The equation of magnetic bead’s velocity can be extracted by solving 

݉௣
ݑ߲
ݐ߲ ൌ ௠ܨ െ  ሺ5.12ሻ                                              ݑ݀ߤߨ3

Where, ݉௣ is mass of magnetic particle and ܨ௠ is the external magnetic force. 

By applying magnetic force on magnetic particle, particle moves towards high 

intensity magnetic field. The moment particle starts to move, drag force acts on the 

particle. When the velocity of particle increases, drag force increases. At steady-state 

condition, there is no acceleration in the particle velocity and both magnetic force 

and drag force are equal and in opposite directions. Particle moves at constant 

velocity afterward. This term al velocity can be extracted from Equation (5.12) as 

follow: 

ݑ ൌ

in

௠ ݀ߤߨ3
௠ܨ                                                           ሺ5.13ሻ 

Particle reaches this velocity in a fraction of time, which can be calculated as: 

߬ ൌ
௣݀ଶߩ

ߤ18

Where, ݑ௠ is the steady-state velocity of particle. 

                                                            ሺ5.14ሻ

Where, ߩ௣ is the density of particle and ߬ is the particle relaxation time. Calculation 

Maximum current density was calculated previously using thermal analysis in 

COMSOL multiphysics heat transfer module. A simplified magneto-hydrodynamic 

model was introduced in order to describe interactions between different forces 

 

of this time constant for Dynal M-280 magnetic bead in water (data is given in Table 

2) gives relaxation time of ߬ ൌ 623 ൈ 10ିଽ ݏ, which is less than a micro second and 

can be ignored in this work. Therefore, the terminal velocity can be used directly for 

the simulation of magnetic particle tracking inside the chamber.  

5.4   Particle Tracking Using Internal Coils 
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he microchamber. Based on this 

model, terminal velocity of magnetic bead was extracted (Equation (5.13)). This 

s. The 

magnitude of magnetic force is not constant and will change when the particle 

moves. Therefore, in the simulation program, the velocity of magnetic bead was

calculated in discrete time frames. In each time frame, the magnitude of magnetic 

s the total numbe

 order to calculate 

s the magnetic force. 

governing motion of magnetic particle inside t

equation can be used in a tracking program to study magnetic beads trajectorie

 

force, hence velocity was assumed to be constant. In order to increase the accuracy 

of simulation, time frames were accurately selected. The time frame selection was 

based on trial and error, a rs of frames depend on magnetic bead 

property, strength of magnetic force and viscosity of fluid. 

Based on above assumption a Matlab code was developed in

particle motion in the chamber during mixing. This code uses partial differential 

equations created by COMSOL PDE Module and calculate

Magnetic field vector components of ܪ௫,  ௭ were normally calculated byܪ ௬ andܪ

COMSOL AC/DC Module and their first derivatives, ܪ௫௫,  ௭௭ wereܪ ௬௬ andܪ

calculated by COMSOL PDE Module. Therefore, magnetic force can be calculated 

as follow: 

࢓ࡲ ൌ ଴ܴଷߤߨ2 ௥ߤ െ 1
௥ߤ ൅ 2 ଶࡴ׏ ൌ .ࡷ ௫ܪ൫׏

ଶ ൅ ௬ܪ
ଶ ൅ ௭ܪ

ଶ൯             ሺ5.15ሻ 

ൌ .ܭ ቈቆܪ௫.
௫ܪ߲

ݔ߲ ൅ ௬ܪ
௬ܪ߲

ݔ߲ ൅ ௭ܪ
௭ܪ߲

ݔ߲ ቇ ݅ ൅ ቆܪ௫.
௫ܪ߲

ݕ߲ ൅ ௬ܪ
௬ܪ߲

ݕ߲ ൅ ௭ܪ
௭ܪ߲

ݕ߲ ቇ ݆

൅ ቆܪ௫.
௫ܪ߲

ݖ߲ ൅ ௬ܪ
௬ܪ߲

ݖ߲ ൅ ௭ܪ
௭ܪ߲

ݖ߲ ቇ ݇቉ 

ࡷ ൌ ଴ܴଷߤߨ2
௥ߤ ൅ 2
௥ߤ െ 1

 

After calculation of force vector on each particle, vector particle 

velocities ݑ௫,  ௭ were calculated based on Equation (5.13) in differentݑ ௬ andݑ

directions of x, y and z. Particle movement in three dimensions can be calculated for 

each time frame. Therefore, particle trajectories can be evaluated by integrating sum 

of discrete velocities using Euler integration method as follow: 
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௣ݎ ൌ න ௠ݑ . ݐ݀ ൌ
௠ܨ

 ሺ5.16ሻ                                               ݀ߤߨ3

5.4.1   Simulation Setup 

Based on the above procedure, a pair of ring-type electrode representing the key-type 

electrode was used for simulation of internal coil configuration. These two rings 

were placed on top and bottom of a chamber of depth of ݐ௖௛ ൌ The current .݉ߤ 100

density was adjusted to the maximum value of ܬோ௜௡௚ ൌ 5 ൈ 10଻ܣ/݉ଶ, which creates 

the maximum temperature of ௦ܶ௦ ൌ 56Ԩ.  Both coils were placed at a distance of 10 

µm from the chamber surface, which resembles an insulation layer and/or chamber 

 

Figure 5.4. Schematic cross-sectional view of internal coil arrangement used in simulation. 

 

wall thickness. Two fluid viscosities of ߤ ൌ 0.001 ܲܽ. ܵ and ߤ ൌ 0.002 ܲܽ. ܵ were 

used in simulations. Detail of the geometry used in this simulation is given in Figure 

5.4. Table 5.3 shows the parameters used for the simulations.  

Table 5.3. The parameters used for the simulation. 

Ring Thickness, tR 100 µm 

Conductor Width, WR 500 µm 

Ring Internal/External Diameter, din/dout 1mm/2mm 

Total Current Density, JR 5 × 107 A/m2 

Chamber Depth/Width/Volume, tch/Wch/Vch 100 µm/2mm/314nl 

Beads Relative Permeability, µrB 10 

Bead Diameter, dBead 1 µm/3 µm 

Fluid Viscosity, µ 0.001/0.002 Pa.S 
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5.4.2   Particle Trajectory Using 1µm Diameter Beads 

Figure 5.5a shows simulation results of bead trajectories performed using 1 µm 

beads. A set of eleven beads were placed on top of the chamber in a horizontal 

arrangement along radial line from centre of the chamber (as shown by A-C line in 

Figure 5.4). Coils were activated with an equal duty cycle of 20s, which gives a 

frequency of ݂ ൌ  Figure 5.5b shows another simulation results that was .ݖܪ0.025

carried out in the same conditions, but magnetic beads were placed in a vertical line 

perpendicular to coil surface at one end of the chamber (as shown by A-D line in 

Figure 5.4). Since the magnetic force pattern is uniformly distributed across any

circu ils, 

was selected to study the behaviour of the magnetic beads. These simulations were 

performed for a tota

ement study (Figure 5.5a), describe the 

agnetic force in move magnetic 

cted, particles close to the inner edg experience 

er. Particles close to the centre and outer 

 placed in weaker magnetic force region and their 

The results of vertical particle arrangement study (Figure 5.5b), describe the speed of 

 of the beads can 

om coils, exp

Since water viscosity was used in these simulations, the terminal velocity of 

magnetic beads reduces in higher viscous fluid, such as lysis buffer and whole blood 

 

lar path inside the chamber, a 2D plane, perpendicular to the chamber and co

l mixing time of ݐ ൌ 5 ݉݅݊. 

The results of horizontal particle arrang

efficiency of vertical component of m ment of 

particles. As it was expe e of the coil 

stronger magnetic force and move fast

boundary of the chamber are

respond is slower. 

particles toward the centre of the chamber. The movement pattern

be divided into two different groups, transient mode and steady-state mode. In 

transient mode, the bulk of magnetic beads will be divided to two streams and each 

bead stream moves toward one coil surface. This is because, the average magnetic 

force, experienced by magnetic beads, from each coil is not equal. Particles closer to 

the top or bott erience a net force toward those coils.  

After transient mode, two magnetic bead streams are fully trapped by one coil. In the 

steady-state mode, magnetic beads follow a similar parallel movement pattern 

(zigzag) toward stronger magnetic field region at the inner edge of the coil. 

Durations of transient and steady-state modes depend on various parameters such as, 

the strength of magnetic field, particle size and magnetic property. 
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 surface properly, at the given frequency of f = 0.025 Hz. This 

 
Figure 5.5. Simulation result of bead trajectories for beads of 1µm in diameter and relative 

permeability of ߤ௥ ൌ 10 at switching frequency of ݂ ൌ ܬ and current density of ݖܪ 0.025 ൌ 5 ൈ
10଻ ܣ/݉ଶ. a) Vertical study. b) Horizontal study 

mixture. This can be solved by increasing the activation time of the coils (decreasing 

the frequency). However, lower frequencies increase the overall mixing time, which 

is not desirable. Another solution to overcome this problem is by increasing the size 

of magnetic beads. Another important factor that influences the mixing efficiency is 

the surface coverage. Despite transient mode, magnetic beads trajectories do not 

cover the chamber

problem can be solved either by decreasing switching frequency or increasing the 

size of magnetic beads. As mentioned above, lower switching frequencies are not 

desirable. Therefore, larger-size magnetic beads need to be used in the mixing 

chamber using internal coil arrangement. 
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5.4.3   Particle Trajectory Using 3µm in Diameter Beads 

A similar set of simulations were performed using 3µm diameter magnetic beads to 

investigate the effect of bead size on particle trajectory. In these simulations, 

viscosity of fluid was doubled, which is more realistic value for Blood/Lysis buffer 

mixture. The results of these simulations are shown in Figure 5.6 in horizontal 

arrangement, (a) and vertical arrangement (b) for a total mixing time of t = 3 min. A 

switching frequency of f = 0.05 Hz was extracted based on trial and error to achieve 

full coverage at the middle of mixing zone (point B, as shown in Figure 5.4). Despite 

faster respond of magnetic beads in this simulation setup, the overall behaviour of 

the beads is similar to the previous simulations.  Duration of transient mode is 

decreased due to the increase in the strength of magnetic force. In the steady-state

mode, both vertical and horizontal velocities of the beads are increased. The average 

vertical and horizontal velocities are uv = 5 µm/sec and uH = 2.5 µm/Sec respectively.  
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Figure 5.6. Simulation result of bead trajectories for beads of 3µm in diameter. a) Vertical study. b) 

Horizontal study 
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two coils, each stream of beads needs to travel at least half the chamber depth during 

activation time. In this case that the depth of travel is 50µm, the minimum activation 

time is 10 second. This activation time results in travelling distance of 50µm in 

vertical direction. Activation time of less than 10 second will increase the stretch and 

folding of magnetic beads in zigzag path, but reduces the efficiency of mixing by 

reducing the chamber coverage. Higher activation times might increase the surface 

coverage by cross mixing of two bulk of beads, but decrease the stretches and 

folding. Stretch and folding describe the number of times beads are attracted to 

coil. The higher this number, the higher the chance of DNA/Bead binding. 

In another simulation, a total number of 500 beads (5 ൈ 10ଵସ ݏ݈݁ܿ݅ݐݎܽ݌/݉ଷ) were 

placed inside the chamber in a uniform distribution to cover the whole surface area, 

from centre of the chamber to one end of the chamber. The horizontal and vertical 

distances between neighbouring beads were 20 ݉ߤ and 10 ݉ߤ respectively. 

Simulation time was set to three minutes and conditions were similar to the previous 

simulation. The result of particle trajectories is shown in Figure 5.7.  

On the conductor surface, beads are divided into two groups. The numbers of b

attracted to the top electrode are more than the number of beads attracted to the 

bottom electrode. This is because the simulation was started by top electrode, and 

t  

coverage as the magnetic force is w rea. Colour intensity describes the 

Horizontal velocity indicates that after 200 sec, all particles are collected at inner 

edge of the coil. The average vertical velocity can be used to extract the optimum 

frequency of mixing. Since magnetic beads within the chamber are acted upon by 

each 

eads 

hus more beads end up at this electrode. In central part, beads show lower surface

eaker in this a

total surface coverage and explains that bead density increases in the vicinity of inner 

edge of conductors. This is because beads tend to travel toward this point.  

Figure 5.8 shows snapshot of beads’ position in different times. A set of 20 beads in 

two columns are positioned at one end of the chamber. Positions of beads are 

captured from the start of simulation to the end at 30 second time intervals.  Bead 

behaviour can be explained in four different stages as follow: 

1. Initial position: this step is shown with blue dots and explains the primary 

uniform distribution of magnetic beads. 
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3. Steady state mode: in this mode all beads are divided into two groups (brown, 

magenta and cyan dots). Each group is attracted to one individual coil and 

ds me ogether

-chamber for a period of 3 
min and switching frequency of ݂ ൌ  .The colour intensity describes the surface coverage .ݖܪ 0.05

 

Figure 5.8. Snapshot of beads position at different time (30 sec intervals). 

2. Transient mode:  where the beads start to rearrange themselves into two 

different groups (red and green dots).  

 

beads will move in a parallel path to each other. 

4. Clump mode: this mode takes place in the vicinity of inner edges of coils. In 

this mode two different bulk of magnetic bea rge t  and bounce 

between two coils together (yellow dots).  

 

Figure 5.7. Cross-sectional view of bead trajectories for 500 beads in half
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F tic beads tra  
different times (30 sec intervals). 

Figure 5.9 shows a different view of beads’ migration toward the centre captured 

from top of the chamber. A total number of 320 magnetic beads were placed at outer 

diameter of the chamber between two coils. Coils were activated in sequence with 

frequency of ݂ ൌ  Positions of beads were captured in 30 sec time intervals .ݖܪ0.05

and are shown in different colours. Pattern of movement is similar to a series of 

concentric circles. All magnetic beads were collected at inner edge of the coil in 180 

second. 

5.4.4   Evaluation of Surface Coverage Using Target Molecule Capturing  

In order to evaluate the efficiency of mixing using the above simulations, a Matlab 

code was developed to investigate the surface covered by magnetic beads 

trajectories. By using this calculation it was possible to identify the number of target 

molecules that can be captured using the mixing pattern described above. To perform 

this calculation, total mixing surface was assumed to be covered by target molecules. 

In order to capture more accurate result, dimension of target molecules assumed to 

be negligible compared to dimension of beads. Magnetic bead captures target 

molecule, if they make physical contact along bead trajectory path. A number of 500 

beads were uniformly distributed inside the chamber in a 2D cross-sectional plane. 

This plane was limited by conductor surface on top and bottom. The horizontal and 

vertical distances between neighbouring beads were 20 ݉ߤ and 10 ݉ߤ respectively. 

 

igure 5.9. Surface plot of magne jectories from outer section of the coil toward centre in
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Figure 5.10 shows the result of simulation inside the chamber working area. Blue 

dots describe the areas not covered by bead trajectories and therefore, no target 

molecule will be captured in these areas. As it is shown in this plot, majority of un-

captured molecules appear on chamber outer diameter and in the central part. This is 

the area that magnetic force strength is weak and velocity of beads is minimal. On 

the other hand, capturing increases toward coil’s inner edge, where all bead will be 

collected. This is because the natural direction of bead flow is toward this area. 

Calculation shows that surface coverage is, ܨܥ ൌ 87.54% with this pattern of beads 

flow. In order to evaluate the effect of bead concentration on capturing efficiency, 

simulation was repeated with different numbers of beads and capturing efficiency 

was recorded (Figure 5.11). In these simulations, distribution of beads is not uniform 

and they are placed at one end of the chamber, where the magnetic force is minimal.  

 
Figure 5.10. Simulation result of surface coverage by beads trajectories (blue dots show the areas not 

end of the chamber. 
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Figure 5.11. The relationship between surface coverage and number of beads if they are placed at one 
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Figure 5.12. Target molecule capturing simulation. a) Detail of magnetic bead and target molecule 
distributions. b) The result of capturing simulation using a total number of 500 beads and 490 target 

The graph of Figure 5.11 shows that even with lower concentration of beads it is 

possible to achieve high surface coverage, if these beads are placed at the chamber 

outer diameter.  

To evaluate the surface coverage efficiency, a total number of 500 beads and 490 

target molecules were distributed uniformly inside the same surface area (Figure 

5.12a). The result obtained shows that 429 target molecules were captured by 

magnetic beads (red stars) and 61 molecules (blue squares) were not captured (Figure 

5.12). This gives the capturing efficiency of 87.55%, which is in close agreement 

with the result of total surface coverage calculated above.  
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molecules. Red dots show the captured molecules by beads and blue squares show uncaptured 
molecules. 
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A stronger magnetic field can be generated using external arrangement of the 

magnetic coils. Although the distance between the chamber surface and coil actual 

surface is very long (ൎ ݁ݎ݁݌݉ܣ  the bigger product of ,(݉ߤ 500 ൈ  generated ݏ݊ݎݑܶ

by this coil arrangement can compensate the strength of magnetic field. The 

performance of the external coil was investigated in Chapter 4 and optimised 

dimensions were given in section 4.7.2. Based on these calculations, it was shown 

that square-shapes cross-section generates the optimum magnetic force with constant 

cross-section area ( ௌܹ ൌ  ௌ). In addition, it was concluded that the magnetic force isݐ

maxima, if the value of coil conductor thickness (ݐௌ) is equal to the value of the coil 

outer diameter (݀௢௨௧). Therefore, the optimised range of coil conductor thickness can 

be explained by the value of coil external diameter and by the assumption of, ݀௢௨௧ ൌ

2݀௜௡. 

݀௢௨௧

4

5.5   External Coil 

൏ ௌݐ ൏ ݀௢௨௧                                                 ሺ5.17ሻ 

This equation shows the relationship between the conductor thickness of the coil and 

the outer diameter of the coil. The outer diameter of the coil can be defined by the 

total volume of the chamber. In this work, a typical small-volume chamber was 

selected to perform the bead trajectory study. Figure 5.13 shows a schematic diagram 

of the chamber using external coil arrangement. The chamber was ݀௢௨௧ ൌ 8 ݉݉ in 

d

c  

of cham ber 

side. To perform the beads trajectory study using this coil arrangement, the 

al Coil Maximum Current Density 

analysis is shown in Figure 5.14 for different coil thickness. In these simulations coil 

iameter and ݀௖௛ ൌ in depth. The total distance between the chamber and ݉ߤ 300

oil surface was assumed to be ݐ௪ ൌ This thickness comprises the thickness .݉ߤ 500

ber walls on the coil side and the thickness of coil bobbin on the cham

 

maximum current density needs to be extracted using thermal analysis. 

5.5.1   Extern

To extract the maximum current density of external coils, a thermal model was 

created using heat-transfer module of COMSOL Multiphysics based on the above 

geometrical details (as shown in Figure 5.13). The simulation was performed using 

two different coil conductor thicknesses (2 mm and 8 mm). The result of thermal 
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5 °C is necessary during 

purification protocol. Therefore, the maximum current 

 coils at the above temperature can be extracted from the 

tS = 2 m2 

e to vo

 
Figure 5.14. Steady-state thermal analysis on external coils for different coil thicknesses. 

surface were assumed to be in direct contact with air at room temperature. As 

mentioned previously, an optimum temperature of Tss = 5

incubation process in the 

densities for two mentioned

graphs of Figure 5.14. 

 mm → J = 1.45 × 107 A/

tS = 8 mm → J = 1.15 × 107 A/m2 

Obviously, these current densities are much less than the current capacity of internal 

coil. This is because the ratio of heat dissipation in internal coil is much higher due to 

the larger coil surfac lume ratio.  

 
Figure 5.13. Schematic diagram of cross-section view of coil arrangement in external coil setup. 
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ሺࡿ࢚ ൌ ૡ ࢓࢓ሻ ؆ ૚. ૛૟࢓ࡲሺࡿ࢚ ൌ ૛ ࢓࢓ሻ 

Which indicates that, the  mm in thickness coil is 

26% stronger than that of a 2 mm

ajectories inside the chamber. Chamber and 

coil dimensions were selected as proposed in Figure 5.13 using the coil with 

conductor thickness of ݐௌ ൌ 2 ݉݉. Two-dimensional plots of some bead trajectories 

are shown in Figure 5.15a in half-chamber (across A-C line, as shown in Figure 

5.13). Coil switching frequency and total activation time were kept similar to that of 

the internal coil simulations, ݂ ൌ   .and 180 second respectively ݖܪ0.05

Beads vertical and horizontal velocities show significant improvement compared to 

internal coils as the magnitude of magnetic force is much stronger here. However, 

the ratio of bead horizontal movement compared to the chamber size seems to be 

lower here. This is because the chamber diameter is four times bigger than the 

chamber used for internal coil arrangement. To collect all the beads in the inner edge 

of the chamber a mixing time of 720 second is necessary, which is four tim  longer 

th

Another simulation was carried out by increasing the thickness of coil to ݐௌ ൌ

8 ݉݉ to investigate the effect of coil thickness in improvement of magnetic bead 

trajectories. The results of this simulation are plotted in Figure 5.15b. The simulation 

was carried out for a period of 180 sec and current density of ܬ ൌ 1.15 ൈ 10଻ ܣ/݉ଶ. 

As discussed in Chapter 4, section 4.7.2, the magnitude of force generated by coil 

with 8 mm in thickness was twice as the magnitude of force generated by square 

cross-section coil. This conclusion was made by the assumption of equal current 

densities passing through the conductors. However, the result of thermal analysis 

indicated that the maximum current capacity of 8 mm thickness coil (ࡿ࢚ ൌ ૡ ࢓࢓) is 

lower by a ratio of 20.7%. Since the strength of magnetic force is proportional to the 

square of electric current (Equation (4.7)), the relationship between the magnetic 

force of two above coils can be calculated as: 

࢓ࡲ

 magnetic force generated by an 8

 in thickness coil.  

5.5.2   Particle Trajectory Using 3µm Diameter Beads 

Based on maximum current density a simulation was carried out using Matlab 

software in order to investigate bead tr

es

an that of the internal coil arrangement.  
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Figure 5.15. Bead trajectory simulations using external coil arrangement side a 300µm deep 
chamber at switching frequency of ݂ ൌ ௌݐ (a .ݖܪ 0.05 ൌ 2 ݉݉ and ܬ ൌ .45 ൈ 10଻. b) ݐௌ ൌ

8 ݉݉ and ܬ ൌ 1.15 ൈ 10଻. 

l and horizontal velocities of the 

magnetic beads are improved significantly using 8 mm in thickness coil. This is the 

 higher value of 

ontal move

f the chamb
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The results of these simulations show that the vertica

result of increase in the strength of magnetic force due to the

Ampers×Turns product. 

Although the overall beads behaviour in these simulations is very similar to the 

internal coil arrangement, the ratios of vertical and horizontal velocities are changed 

significantly. The horiz ment of particles is affected in two different ways. 

The ratio of horizontal velocity in the area covered by the surface of the coil 

conductors is increased significantly. On the other hand, the horizontal velocity of 

magnetic beads in the centre o er is decreased.  

In areas covered by actual coil conductor surface, the region of higher magnetic flux 

density shifts towards the centre of the coil as the result of increase in the thickness 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
x 10-3

-1.5

-1

-0.5

0

0.5

1

1.5

x 10-4

(a) 

(b) 



150 
CHAPTER 5 - BEAD TRAJECTORIES AND OPTIMIZATION 

il at different heights above the coil 

ks decreases quicker e the gradient of horizontal 

force in the central part. Therefore, at the height of h = 650 µm, which is the centre 

of the chamber and the midpoint between two coils, the horizontal gradient is very 

low (as shown by Cyan-line in Figure 5.16). This low horizontal gradient explains 

the lower horizontal bead velocity in this area. However, the magnitude of vertical 

force is almost uniform in the whole surface at central part of the chamber. Another 

interesting information, which can be extracted from graphs of Figure 5.16 is that at 

a specific distance from the surface of the coil (h = 1150 µm), the horizontal gradient 

will be inverted and shifts toward the center of the chamber. In this case, the peak of 

magnetic force is moved to the center and all magnetic beads will be collected at this 

point instead of coil inner edges.   

 

of the coil compared to the thickness of internal coil. This will consequently increase 

the horizontal gradient and therefore, particle horizontal velocity in this section.  

The lower horizontal velocity in the centre of the chamber can be explained 

considering magnetic flux density pattern of coils at different levels. Figure 5.16 

shows magnetic flux density of external co

surface. In the vicinity of coil surface (h = 50 µm), there are two peaks of high flux 

density above the coil inner edges, which gradually decrease toward the centre of the 

chamber. This gradient generates the horizontal factor of vector magnetic force. By 

moving away from the surface of the coil, the magnitude of flux density at these 

pea  than other areas. This will reduc

Figure 5.16. A plot of magnetic flux density of an external coil, at different heights above the coil 
surface. This graphs show the variation of magnetic field gradient against vertical heights (h). 
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l was based on two-phase-flow and one-way-

coupling. In this model, magnitudes of different forces were discussed and it was 

concluded that gravity force of particle’s mass can be ignored in comparison to 

Figure 5.17. Cross-sectional view of bead trajectories for 6030 number of beads in half-chamber for 
period of 3 min. 

5.5.3   Calculation of Surface Coverage Using External Coils  

To calculate the surface coverage ratio with external coil arrangement, a total number 

of 6030 particles were placed uniformly inside one side of the chamber. This particle 

distribution gives a total density of 5 ൈ 10ଵସ݉ିଷ. Whole chamber area was assumed 

to be fully covered by dimensionless target molecules. The bead trajectories are 

shown in Figure 5.17. Blue colour intensity shows the covered areas by bead 

trajectories and white colour intensity denote uncovered areas. The result of surface 

coverage calculation shows that 99% of the surface is covered and target molecules 

will be captured in these areas. This calculation was based on 180 second coil 

activation time, switching frequency of ݂ ൌ  and maximum current density ݖܪ 0.05

of ܬ ൌ 1.15 ൈ 10଻ using 2 mm thickness coils.  

5.6   Summary & Discussion 

The purpose of this chapter was to investigate the magnetic beads trajectories inside 

the proposed DNA Purification chip. This chip consists of at least a microchamber 

sandwiched between two magnetic coils in internal or external arrangements (as 

illustrated in Figure 5.4 and Figure 5.13). In order to investigate the efficiency of 

mixing DNA molecules and magnetic beads, a magneto-hydrodynamic model was 

introduced. This simplified mode



152 
CHAPTER 5 - BEAD TRAJECTORIES AND OPTIMIZATION 

typical magnetic force. Therefore, magnetic force and fluid viscous drag force were 

the most effective force factors on particles. Particle trajectories were simulated 

based on maximum current capacity of coils in two different scenarios, internal and 

external coil arrangements. Current capacities were extracted based on thermal 

analysis. Internal coil represented higher current capacity due to the higher heat 

dissipation ratio from the surface of the coil. The optimal internal coil dimension 

of, ݀௢௨௧ ൌ 2 ݉݉ was selected to perform the beads trajectories study in a chamber 

with depth of,݀௖௛ ൌ  Since the thickness of external coil is not limited, coil .݉ߤ 100

dimension depends on the usage limitations. In this Chapter, typical 8mm in diameter 

coils were used for particle trajectory study. Since the magnitude of magnetic force is 

stronger with external coils, chamber depth was increased to 300 µm. Surface 

co e 

cha et 

molecules that will be captured by magnetic beads during migration from their 

original place toward the chamber centre. Simulation results showed that surface 

coverage of internal and external coil arrangements were 87.55% and 99% 

respectively. While both coil arrangements represent sufficient magnetic force 

pattern to capture high yield of DNA molecules, some advantages and disadvantages 

of both scenarios are summarised as follows: 

Internal coil advantages 

• Small size and can be fully integrated 

• High surface coverage and high DNA capturing ratio 

• Higher current capacity due to the larger surface area 

 The maximum chamber depth is in order of 100 µm, which increases the risk 

verage was introduced as the ability of magnetic particles to cover the whol

mber area. The related simulation result shows the the percentage of targ

• Simple fabrication process using key-type electrodes 

• Can be used for small scale purification process 

Internal coil disadvantages 

• More fabrication complexity in comparison to external chamber design 

•

of bead coagulation and might result in chip blockage 

• Application of large scale purification results in very wide chamber and 

complicates fabrication of electrodes 

• Cannot be used for bigger particles due to the limited chamber depth 
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• Can be use  

 be achieved  

extent. 

chip and coil d

External coil advantages 

d for larger volume chambers 

• Higher magnetic force pattern can

• Beads can be mixed at higher frequencies 

• Simple chamber fabrication process 

• Higher surface coverage and DNA capturing 

• Ability to be used for bigger magnetic particles which results in higher 

frequencies and stronger magnetic forces. This is because of bigger chamber 

depth, which decreases the risk of bead coagulation or clumping 

• Maximum current density can be increased by increasing heat dissipation 

ratio. This can be achieved by designing an appropriate heatsink on coil 

bobbins. 

• While the microfluidic chip must be disposable, external coils can be 

reutilised. 

External coil disadvantages 

• Although external coil generates very high magnetic force, the actual distance 

between coil surface and working chamber compromise this benefit to some 

• Larger imensions, in comparison to internal coil setup. 

Most DNA extraction protocols use higher buffer/blood ratios. The actual volume of 

blood that can be used for extraction is typically between 20%-25% of the chamber 

total volume. Therefore, the maximum blood sample that can be used in internal-coil 

microchamber is limited to a few microliters. In majority of DNA purification 

processes, larger blood sample volumes increase the chance of capturing pathogenic 

DNA molecules. Therefore, external-coil microchamber, which is more flexible on 

the chamber size and volume, is more desirable. However, the application of 

internal-coil microchamber remains limited to some specific areas, which need 

smaller sample volumes and more compact chip sizes. 

 

 

 



 
 
 

CHAPTER 6 

EXPERIMENTAL VALIDATIONS 

 

 

6.1   Introduction 

Design of a magnetic mixer using internal and external coils was performed in 

Chapter 4 and optimised coil and chamber dimensions were extracted using finite 

element numerical simulations in COMSOL Multiphysics. These optimised 

dimensions were used to evaluate the performance of magnetic mixing by means of 

bead trajectory study and subsequent target molecule capturing in Chapter 5. A 

preliminary electro-thermal model was built to estimate the maximum current 

density in both coil-arrangements. It was concluded that external coil arrangement 

exhibits better performance in magnetic mixing, bio-molecule capturing and 

minimises the risk of bead coagulations (clumping). Therefore, external coil 

arrangement was selected in order to perform real biological DNA 

extraction/purification tests. To perform the real-sample experiments, it is necessary 

to validate the accuracy of simulation carried out in previous chapters. This chapter 

is entirely dedicated to pre-experimental validations of simulation studies. Optimal 

conditions as a result of simulations and pre experimental validations will then be 
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ௌ ൌ 2 ݉݉

of, ݀௢௨௧ ൌ 8 ݉݉.  Different coil heights of, ݐௌ ൌ ௌݐ ,݉݉ 2 ൌ 4 ݉݉ and ݐௌ ൌ 6 ݉݉ 

used in the following Chapter 7 in real biological DNA extraction/purification 

experiments. The actual parameters that were selected for validation are listed below: 

• Magnetic Field Strength 

• Coil Temperature 

• Beads Trajectories 

• AC and DC Electric Currents 

• Frequency of Switching 

In addition to above validation experiments, DC magnetic field required for in-

chamber clamping of magnetic beads was also extracted. This is an important step 

during the washing process to hold the DNA-attached beads in the chamber, while 

flushing the cell debris, etc. Finally, a set of microfluidic studies were carried out to 

investigate the limitations of sample feeding into the microfabricated chamber and 

proper washing process.  

6.2   Magnetic Field Measurements 

6.2.1   Experiment Setup 

Since the base for all previous simulations, in COMSOL Multiphysics, is the 

magnetic field strength, the first parameter that needs to be validated is the strength 

of magnetic field. This measurement was performed using a magnetometer. Figure 

6.1 shows a photograph of the DC magnetometer (Alphalab, Inc.) that was used in 

this experiment. This magnetometer has the minimum resolution of 0.01 gauss (1 

µT), which is 1/50 of the earth’s magnetic field. The maximum range of this meter is 

20,000 gauss (2 Tesla). This magnetometer has a universal Hall Effect sensor, which 

has 1.1 mm thickness and 4.3 mm width. A series of different size bobbins were 

made in order to wind external coils. These bobbins are shown in Figure 6.2, and 

their characteristic details are given in Table 6.1. The type of wire used for coil 

winding was copper wire, gauge 42 (SWG #42) with circular cross-section of 

101.6µm. It is possible to use different wire gauges, but the higher the wire gauge is, 

the thicker the wire insulation and the higher the current supply should be. 

Three different types of bobbin were made using PMMA and aluminium. The width 

of winding was kept at, ܹ , which gives an overall outer diameter 
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he same coil o d and used for the tests. Since the coils

 
Figure 6.1. A agnetic flux 

density of external coils. 

 
Figure 6.2. A photograph of different external coils. 

Table 6.1. Characteristic information of different winded coils. 

at t uter diameter were fabricate  

were manually winded, different numbers of turns were achieved in the same bobbin 

dimension. The average number of turns counted on each coil is given in Table 6.1.  

 photograph of the magnetometer used in the experiment to measure the m

Coil Number 2×2 2×4 2×6 

Coil Thickness (ࡿ࢚) 2 mm 4 mm 6 mm 

Coil Outer Diam tee r (࢚࢛࢕ࢊ) 8 mm 8 mm 8 mm 

Winding Width (ࡿࢃ) 2 mm 2 mm 2 mm 

Electric Resistance ࡿࡾ( ) 15.4 Ω 32  .7 Ω 49 Ω 

Bobbin Cheek Thickness (࢑ࢋࢋࢎࢉ࢚) 500 µm 240 µm 250 µm 

Bobbin Material Al/PMMA Al Al 

Average Number of Turns (n) 360 750 1100 
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total condu  cross se  in each bbin 

experimental and simulati

ment 
, a corrected COMSOL magnetic model 

ental me

ted using experiment is the amount of heat 

thermal characteristics of copper, aluminium and PMMA are given in Table 6.2. 

Calculation shows that ctor ction  bo

are 2.83 ݉ߤଶ,  .ଶ in 2×2, 2×4 and 2×6 bobbins respectively݉ߤ ଶ ܽ݊݀ 8.64݉ߤ 5.89

The total conductor cross-section that was used in simulation was 

,ଶ݉ߤ 4  ଶ for the above coil bobbins. The difference between݉ߤ ଶ ܽ݊݀ 12݉ߤ 8

on is the actual dead-space in windings. A part of this 

dead-space arises from the insulation layer of the copper wire. The other part is the 

space between circular wire cross-sections. Consequently, these dead-spaces reduce 

the effective total cross-sections by 29.25%, 26.4% and 28% in 2×2, 2×4 and 2×6 

coils respectively. The thickness of bobbin’s cheek was narrowed down to 500 µm in 

PMMA bobbin and 250 µm in aluminium bobbins. Since the rigidity of PMMA is 

not as good as aluminium, a lower thickness is not suitable to hold the windings and 

might be deformed during winding. 

6.2.2   Magnetic Flux Measure
Based on practical limitation of coil winding

was prepared to simulate magnetic flux densities of coils 2×2 and 2×4. This model 

had exactly equal number of turns compared to winded coils, as given in Table 6.1. 

Since the magnetometer’s Hall Effect sensor is covered by a protection rubber, this 

rubber thickness was accurately measured (ݐ௥ ؆  in order to calculate the (݉ߤ500

actual distance of sensor from the surface of the coil. These distances were ݄ ൌ

1 ݉݉ and ݄ ൌ 0.74 ݉݉ for 2×2 and 2×4 coils respectively. The results of 

simulations and experim asurements using magnetometer are shown in 

Figure 6.3. These graphs show the variation of magnetic flux density against 

variation of electric current passing through copper wire gauge 42 (SWG #42). This 

comparison shows that, beside inter-windings dead spaces, experimental result is in 

very close agreement with the simulation results. 

6.3   Thermal Measurements 
The next parameter that needs to be valida

generated in conductors due to Joule heating. In the previous chapter, steady state 

temperature of coil was calculated with an assumption of direct heat dissipation from 

the conductor surface to the air at room temperature. This assumption is not valid in 

practice, since the actual windings need to be winded on a bobbin. In this section 

aluminium and PMMA bobbins were used for thermal experiments. Physical and 
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Table 6.2. Properties of materials used in thermal simulation. 

Property of Material Copper Aluminum PMMA 

Thermal Conductivity K (W/m.K) 400 160 0.19 

Density ρ (Kg/m ) 3 8700 2700 1190 

Heat Capacity at Constant Pressure Cp (J/Kg.K) 385 900 1420 

Resistivity at Reference Temperature ρ0 (Ω.m) 1. -8 72×10 - - 

Temperature Coefficient α (1/K) 0.0039 - - 

 
Figure 6.3. Result of simulation and experimental measurement of magnetic flux density. 

6.3.1

model was 

s recorded with 

   Steady State Temperature in DC Current Mode 

Based on practical limitation of coil winding, a corrected COMSOL 

created for (2×2) and (2×4) coils and steady-state temperature wa

different currents. This information is shown in Figure 6.4 (solid lines). The winded 

coils were used in order to repeat the same temperature recordings using a type K 

temperature sensor. These graphs are shown in Figure 6.4 for comparison (dashed 

lines). The experimental results are in close agreement with simulation results. In this 

experiment, coil (2×2) had a PMMA bobbin and coil (2×4) had an aluminium bobbin. 

Steady-state temperatures were recorded after 15 minutes activation time and 

between each reading the coil was allowed to cool down to room temperature (Ta = 

20 °C). Based on this corrected model and experimental measurements, the 

maximum DC currents to be used in (2×2) and (2×4) coils are 107 mA and 84 mA 

respectively. These currents generate a steady state temperature of Tss = 56 °C. 



159 
CHAPTER 5 – EXPERIMENTAL VALIDATIONS 

Figure 6.4. Steady state temperature comparison between simulation results and experimental 
measurements in DC current mode for different coils. 

Figure 6.5. Steady state temperature comparison between simulation results and experimental 
measurement in AC (݂ ൌ  .current mode for different coils (ݖܪ 1

6.3.2   Steady-State Tempera

In the above ex  current. Since 

ode, it is 

ൈ 2ሻ and 
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ture in AC Current Mode 

periment, coils were activated using continuous DC

these coils are designed to be used for mixing in AC switching current m

worth looking at steady-state temperature in switching mode. Therefore, an 

experiment was conducted using the same coils under different switching currents 

and steady-state temperature was recorded. The frequency of switching was set 

to ݂ ൌ  during measurements. This result is shown in Figure 6.5 (solid lines) in  ݖܪ1

comparison with the graphs of temperature variations in DC currents mode (dashed 

lines). The maximum switching current increases to 155 mA and 120 mA for coils 

(2 (2 ൈ 4) respectively, to achieve temperature rise of ௦ܶ௦ ൌ 56Ԩ. 
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e winded coils. Based 

um 

switching currents were then extracted in different coils. With reference to earlier 

sed freque

 better on AC current as well as DC current, where it 

seems to be the bottle-neck in clamping the beads inside the chamber. The most 

0 mA (b, d and f) and 140 mA (c, e and g), 

and the results were compared with the normal bobbin type. This simulation shows 

e efficiency of heat dissipation is 

6.3.3   Effect of Additional Heatsink in Steady State Temperature 

So far the steady state temperatures of magnetic coils were numerically calculated 

using simulations and this result was evaluated using handmad

on these results and required incubation temperature of ௦ܶ௦ ൌ 56Ԩ, the maxim

bead trajectory simulation results, these switching currents create enough magnetic 

force to perform desired mixing. In order to improve the efficiency of mixing, it is 

necessary to increase the frequency of mixing. The optimi ncy of mixing is 

a function of magnetic force strength and maximum current density. The maximum 

coil current is restricted by heat dissipation ratio from the surface of the coil. 

Therefore, it is necessary to investigate other options to improve the maximum 

current capacity of the coils. 

In this section, the focus is to design a modified version of bobbin that performs 

more efficiently on dissipation of heat caused by joule heating in coils. This modified 

version of coils then perform

common methods of heat dissipations are through conductive cooling (e.g. 

application of appropriate heatsink) and/or convective cooling using forced fluid/gas 

flow (e.g. using a fan or oil cooling). In this section conductive cooling system was 

employed in order to investigate the efficiency of heat dissipation ratio. To 

investigate this, two modified version of aluminium bobbins were fabricated, which 

consisted of castellated heatsinks. These castellated heatsinks have the total-

depth/teeth-depth ratios of 5 mm/2.5 mm and 6 mm/3.5 mm respectively. These 

heatsinks increase the total surface area by 3.3 and 4 times, larger than that of the 

normal bobbin type (see Figure 6.6a).  

Figure 6.6 (b-g) shows a simulation result of the temperature distribution on different 

heatsink designs using coil (2 ൈ 4) and coil (2 ൈ 5). These simulations were carried 

out for two different DC currents of 10

that application of conductive cooling using embedded heatsink increases the heat 

dissipation ratio significantly. The averag

0.22°C/mA and 0.17.5°C/mA for two heatsink bobbins of (2 ൈ 4) and (2 ൈ 5) 

respectively. 
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Figure 6.6. Simulation results of the temperature distribution on different heatsink coils, compared to 
the normal bobbin. a) A photograph of the fabricated winded heatsink coils. b) Normal bobbin (2 ൈ

ܫ ,(4 ൌ c) Normal bobbin (2 .ܣ݉ 100 ൈ ܫ ,(4 ൌ d) Heatsink bobbin (2 .ܣ݉ 140 ൈ ܫ ,(4 ൌ  (e .ܣ݉ 100
Heatsink bobbin (2 ൈ 4ሻ, ܫ ൌ f) Heatsink bobbin (2 .ܣ݉ 140 ൈ ܫ ,(5 ൌ  g) Heatsink bobbin .ܣ݉ 100

(2 ൈ ܫ ,(5 ൌ   .ܣ݉ 140
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il

tion o  steady-st

in AC and DC modes (solid lines) ficiency of heatsink was compared with the 

 
Fi tsink 

bobbins in AC and DC modes

Table 6.3. Characteristic detail of different heatsink coils. 

Figure 6.7 shows a plot of experimental results carried out on two different heatsink 

co s. Characteristic details of these coils are given in Table 6.3. These graphs 

describe the varia f ate temperature in bobbins caused by Joule heating 

. The ef

normal bobbin shape (dashed lines). This experiment shows that the maximum DC 

current is increased to 105 mA and 100 mA for (2×4) and (2×5) heatsink coils 

respectively. The maximum switching currents are also increased to 155 mA and 145 

mA for the above coils (dotted lines). 

Coil (2x4) – DC 
Coil (2x4) – DC (heatsink) 
Coil (2x4) – AC (heatsink) 
Coil (2x5) – DC 
Coil (2x5) – DC (heatsink) 
Coil (2x5) – AC (heatsink) 

gure 6.7. Experimental result of steady-state temperature me heaasurements on different 
. 

Coil Number 2×4 2×5 

il Thickness (tS) 4 mm 5 mm Co

Coil Outer Diameter (dout) 8 mm 8 mm 

Winding Width (WS) 2 mm 2 mm 

Electric Resistance (RS) 32.7 Ω 29 Ω 

Bobbin Cheek Thickness (tcheek) 2  50 µm 2  50 µm

Bobbin Material Al Al 

Number of Turns (n) 750 920 

Heatsink Total Depth / Teeth Depth 5 mm m  / 2.5 m 5 mm m  / 2.5 m
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aximum coil currents to maint eady-state temperature rise of 56oC. Table 6.4. The values of m ain the st

Coil Number DC Current (mA) AC Current (mA) 

ሺ૛ ࢒࢏࢕࡯ ൈ ૛ሻ 107 155 

ሺ૛ ࢒࢏࢕ࢉ ൈ ૝ሻ 84 120 

࢒࢏࢕࡯ ࢑࢔࢏࢙࢚ࢇࢋࡴ ሺ૛ ൈ ૝ሻ 105 155 

࢒࢏࢕࡯ ࢑࢔࢏࢙࢚ࢇࢋࡴ ሺ૛ ൈ ૞ሻ 100 145 

Since the efficiency of heatsink is a function of total surface area, it is n ited by 

geometrical shape and dimension. Therefore, design of heatsink can be modified to 

fit in the final DNA extractor device. Although the application of heatsink coil is 

desirable in switching mode, its more effective application is in DC current mode, 

which is used for clamping of the magnetic beads during washing process. In 

ൌ  which is necessary for the ,ܥ56°

incubation of blood/lysis buffer during extraction process.  This temperature can be 

 order to evaluate th

study 

• Bead harvesting efficiency using magnetic clamping of beads 

e 

to the geometrical limitations, both top and bottom surfaces of the chamber are 

icrochannel. 

This will give enough access point across the diametric line of the microchannel and 

ot lim

addition, DC current mode can be used to generate quadrupolic and solenoidal field 

patterns to increase the efficiency of the mixing.  

Based on the above thermal measurements, the maximum electric currents were 

extracted for different coils at switching (AC) mode as well as continuous (DC) 

mode. This information is given in Table 6.4. These maximum currents were 

calculated based on the optimum temperature ௦ܶ௦

maintained by controlling the coil current using a thermocouple temperature sensor.  

6.4   Fabrication and Experimental Setup 

An experimental study need to be conducted in e efficiency of the 

magnetic force generated by external coils. This evaluation can divided into two 

different sections based on the application of AC and DC current modes as follows: 

• Efficiency of magnetic mixing using bead trajectory 

 

 In magnetic mixing study, it is necessary to have access inside the microchamber in 

order to capture response of beads to the viscous drag force and magnetic force. Du

covered by magnetic coils. Therefore, to carry out this study, the only option is to 

model a portion of the cross-section of the chamber using a capillary m
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ber and other 

amber size mostly will be reflected in 

chamber diameter rather than the depth. Due to the limitation in magnetic force 

ited between 200 µm – 

coil. Since the magnetic force pattern is identical across concentric circular paths 

from the centre of the chamber and coil, this model gives accurate estimation of 

overall behaviour of the beads. 

The magnetic bead harvesting study needs to be performed in full chamber due to the 

bulk effect of clumped beads and specific fluidic and geometrical influence on 

clamping efficiency. The access point in this study is from the top surface of the 

chamber. This is possible because during clamping process, only the bottom magnet 

is activated and the top magnet is switched off, thus can be removed. 

A capillary test-rig was constructed to carry out preliminary bead trajectory 

experimental studies. An 8mm diameter (15 µl capacity) microfabricated 

microchamber with supplemental device docking station was made to be used for 

clamping experiments. A custom-designed power/control unit was designed and 

made to be used for activation of magnetic coils. The next section describes the 

experimental setup and detail of microfabrication of the cham

supplemental apparatus used in this study. 

6.4.1   Microfluidic Chamber Fabrication 

In order to investigate the magnetic clamping, a microchamber needs to be fabricated 

with appropriate microfluidic tubing and suitable docking station. The overall 

dimension and volume of the extraction chamber need to be designed based on each 

specific application. This variation in ch

penetration rate (field gradient), depth of the chamber is lim

500 µm. Therefore, a small volume chamber was selected in this work to investigate 

the magnetic clamping efficiency. To reduce the dead-space, chamber diameter was 

set to 8 mm to fit in the active area of the same size magnetic coils (used for previous 

experiments and simulations). 

A schematic diagram of the microchamber is depicted in Figure 6.8. The chamber 

was made form PMMA as core material, which possess high mechanical rigidity and 

is well known material used in microfluidic chips. PDMS, which is another well 

known bio-compatible material, was used to fabricate the internal surfaces of the 

microchamber. The chamber comprises three layers structure.  
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 PMMA to provide an 

in a vertical line to create a T-

shape junction.  

d to securely seal the device. Therefore, a thin layer of PMDS was 

laced between two aluminium blocks at 

60 °C temperature for 1½ hour to cure the PDMS. 

icrofabricated microfluidic four-

port chip is shown in Figure 6.9 with attached feed-line tubing.  

The middle part, which is in contact with bio-fluid, was made of PDMS that is 

sandwiched between two PMMA outer layers. PMMA was die-cut to accommodate 

the chamber and port vias.  Since it is important to accommodate the external coils at 

the closest possible distance from the chamber, a 1mm sheet of PMMA was used for 

fabrication of outer layers. A recess was hot-embossed into the

end-wall of approximately 250 µm thickness, and to form a cylindrical wall some 9 

mm in diameter to accommodate the winded coils.  

After embossing the two PMMA layers were micromilled (#73 drill) to create the 

porting. Four ports were initially designed for inlets and outlets. One port was 

designed for air vent, two ports for inlets (reagent and sample) and the last port for 

outlet. Two inlet and outlet port pairs were positioned at 180° angle around the 

circumference and were symmetrically positioned 

A 12 mm diameter pitch circle was used for drilling the ports. A 300 ט  thick ݉ߤ 15

cast sheet of PDMS was then die-cut to fabricate the middle chamber layer. The 

necessary vias were made to link to the outer PMMA layers. It was initially intended 

to pressure-assemble and seal three layers by using two 1.6 mm diameter screws. 

This method faile

coated on PMMA to act as a bonding agent. 

The bonding of PDMS thin layer was made with an elastomer mix of 5:1 base/curing 

agent ratio, rather than usual 10:1 ratio. This new mixture ratio has lower viscosity 

and reduced cure time and most importantly improved bonding to PMMA. This 

PDMS mixture was left at room temperature for 1 hour before assembling the chip. 

After sealing, the sandwiched layers were p

Port-way feeds were made from 6mm length stainless steel tubing set into 

2.4mm×1mm polystyrene collars and drilled (#73) to form ferrules. The ferrules 

were then secured into the PMMA ports using epoxy resin. Finally, 100mm length, 

250µm bore medical-grade PVC tubing was used to provide the microfluidic 

networks at inlets and outlets. A photograph of m

This chip was made at ChargeLabs. 
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Figure 6.8. Schematic diagram of the microfabricated microchamber. a) Cross-sectional view. b) 

Plane view. c) Chamber cut-out and position of vias. 

Figure 6.9. A photograph of microfabricated 15µl chamber with PVC tubing. 
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6.4.2   Microfluidic Chip Docking Station 

In order to facilitate use of the device, a chip carrier station was built. This station 

comprises a heavy wooden base and 20 cm steel column at one end. A bosshead was 

then fitted to this column, into which the chip carrier proper could fit. The other use 

of this bosshead is to adjust the height and allow the chip carrier to rotate if 

necessary during experiment. An 8-port connection block was fitted on the base to 

provide electrical connections for electromagnets and if necessary, temperature 

sensors. The chip carrier plate comprises a PMMA plate with a square slot machined 

through to accommodate the fluidic chip. Two screw-driven pins were place at 

opposite corners of this slot to secure the microfluidic chip in place. Two brass rods 

were mounted on this plate to act as coil retainer by using spring-loaded pads.  

Valve block was built of two brass blocks on each side of carrier plate with two 

 

drilling feed lines on each to accommodate a maximum of four microfluidic tubing. 

These valves can be activated to pinch off the plastic tubing using a knurled finger-

screw. Finally, at one end of carrier plate, four holes were drilled to secure the 

maximum of two piezoelectric micropumps. These micropumps were used to feed 

the washing buffer in microfluidic device with controlled flow rate. A photograph of 

docking station is given in Figure 6.10.  

This device was made at ChargeLabs. 

Figure 6.10. A photograph of chip docking station. 
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6.4.3   Electronic power supply 

In order to operate the microfluidic device, a power supply is required to activate 

magnetic coils with specific switching pattern. This switching pattern cannot be 

created using a standard laboratory power supply, since they produce DC output. The 

application of standard function generator is limited by output power, which is not 

sufficient to activate the magnetic coils designed in this project. Therefore, a custom-

designed power unit was designed and constructed. The core of this power unit is a 

linear voltage-control current-source module.  

This unit comprises two output ports to activate two magnetic coils. The range of this 

current source is limited to 0-999 mA with an accuracy of 1mA. Since the magnets 

need to be activated in switching and clamping mode, an internal frequency 

generator was designed to generate switching frequencies between 0.1-10Hz with the

e individually. An 

alphanumeric LCD was added to the unit to display the frequency and two more 

 

Figure 6.11. A photograph of control/power unit. 

 

ability to switch each output port between AC and DC mod

LCDs were added to display the current in each port. A photograph of the electronic 

control unit is illustrated in Figure 6.11. The circuit diagram of the power/control 

unit is shown in Appendix B. 
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6.4.4   Capillary Test-rig 

A capillary test-rig was designed and made to facilitate the bead trajectory 

experimental study. The core of this test-rig comprises a pair of Martock single axis 

micropositioning stages with micrometers. These stages are assembled in opposite 

directions on a block of PMMA. These micropositioners were used to adjust the 

distance of coils from the capillary with an accuracy of 1 µm.  

Two small PMMA blocks are mounted on micropositioning stage and a central 6 mm 

diameter circular hole was drilled into which a 50 mm long aluminium rod was 

fitted. These aluminium rods were secured with two side-wall screws and were used 

to secure the magnetic coils on central section of the rig next to the capillary.  

A capillary carrier was made using PMMA and a middle canal to secure the capillary 

at the middle of the coils across the central diagonal line. At one corner of the main 

PMMA plate, a four slot electronic connection block was assembled to ease the 

connection of magnetic coils to the main control unit. The position of coils was 

changed to the sides to

re 6.12 show a photograph of capillary test-rig with 

 clear the access point from the top and reduce the effect of 

gravity of magnetic beads. Figu

assembled coils and a glass capillary tube. 

This test-rig was made In ChargeLabs 

 

Figure 6.12. A photograph of capillary test-rig used for bead trajectory study. 



170 
CHAPTER 5 – EXPERIMENTAL VALIDATIONS 

g Capillary Test-rig 

An experimental study was planned to validate the previous simulation study on 

magnetic beads trajectories. As mentioned before, due to physical restrictions, a glass 

capillary test tube was chosen to model a cross-sectional slice of the microchamber. 

This capillary test tube was used to investigate the efficiency of the magnetic mixing 

in normal switching mode and dynamic switching mode by using combined 

quadrupolic and solenoidal field patterns. 

6.5.1   Normal Switching Mode 

In this section, an experiment was conducted to investigate the efficiency of the 

magnetic mixing in normal switching mode. In the normal switching mode, each coil 

was activated individually with no overlap in their activation cycle. Figure 6.13 

shows a photograph of the experiment setup using capillary test-rig and 

power/contr

was used to monitor and capture bead trajectories inside the capillary tube. Different 

ere made to be 

mber of pre-experiments, these conditions 

were short-listed to minimize complexity of the experiment. These short-listed 

Magazorb kit and LGC AGOWA Sbeadex kit. Detail of these magnetic beads is 

given in Table 6.5. 

6.5   Bead Trajectories Usin

ol unit. A solid-state CCD camera, DinoLite USB Digital Microscope, 

bore sizes glass capillary tubes (300 ݉ߤ, w (݉ߤ and 750 ݉ߤ 500

used in this experiment. Different magnetic beads were examined in capillary test 

tube to conclude the effect of bead magnetic permeability and size on mixing 

efficiency and to extract the optimum mixing frequency. 

There are many variables that effectively change the optimised mixing condition. 

These parameters are bead property, coil current, coil dimension, position of the coils 

and switching frequency. After a large nu

variables are as follows: 

• Heatsink Coil, (2 ൈ 4) (8 mm in diameter and 4 mm in thickness) was used 
• Coils were placed at the distance of 0.4 mm from the capillary (0.9 mm from 

actual windings to the capillary centre) 
• Switching frequency ranging between 0.05 Hz - 10 Hz 
• Fixed electric current of 155 mA 
• A 300 ݉ߤ in diameter glass capillary was used in this experiment. 

Different magnetic beads from four different DNA purification kits were used in this 

experiment. These kits are Dynal DNA universal, Dynal SILANE kit, Promega 
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al setup using capillary test-rig. Figure 6.13. The experiment

Table 6.5. The property of different magnetic bead used for preliminary experiments. 

Parameter Sbeadex Magazorb Dynal MyOne Dynal 2.8 
Colour Dark Brown Dark Brown Brown Light Brown 
Size 80% 5-10 µm, >53 1-5 µm 1.05 µm 2.83 µm 

µm 
Shape Irregular Regular Uniform- Uniform-

Spherical Spherical 
Specific Weight 3.0 – 3.5 g / 10 ml 

Dry Particles 
? 1.4 g/cm3 1.7 g/cm3 

Based on short-listed conditions an experiment was carried out to investigate the 

efficiency of the mixing and extract the optimised frequencies for different magnetic 

beads. The response of different types of magnetic beads was examined at different 

switching frequencies to extract the maximum response frequencies for each bead. 

All experiments were carried out at fixed coil position of 0.9 mm from the centre of a 

300 µm capillary test tube. The results of this experiment is summarised in Table 6.6 

for the maximum switching frequencies and the effective migration time. The 

effective migration time explains the collection of 90% of beads at the centre of the

capillary tube.  

Figure ry test 

-shots en for dif es between original position  

o the end of m  all be ected in iddle section of the 

. Due to the la th to er ratio, a bore siz ry 

 

 6.14 shows sequential screen-shots of magnetic beads inside the capilla

tube. These screen  are giv ferent tim s of

beads t ixing, when ads are coll  the m

coils rge capillary leng  diamet  bigger e capilla
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tube (0.75 mm) was used in order to obtain clear image for presentation purpose. 

et  captu n 

ting electric urrent was d to 2 to 

compensate the magnetic force. AGOWA Sbeadex was used in this experiment due 

 be created by increasing the bead 

concentration toward the centre. After 60 second, majority of bead are collected at 

A beads is 

in close agreement with the results of simulations. This response was increased by 

This gave the opportunity to fit the whole coil diam er on the ring scree

without restric visibility. The  c  increase 20 mA 

to their very high magnetic permeability, large sizes and relatively easy to obtain 

clear images using the CCD camera. A supplementary cooling fan was used to avoid 

overheating and keep the temperature bellow 56°C. Magnetic beads were suspended 

in a mixture of water-glycerol to increase the fluid viscosity to ≈2 [cP]. Although 

these pictures are shown for a bigger bore size capillary tube, it was observed that the 

overall behaviour of the above different magnetic beads was very similar. 

As it is clearly shown in this picture, beads start to chain up very quickly and migrate 

toward the capillary tube centre, while performing vertical mixing. During the 

migration time, a clump of beads will

the centre. Almost 99% of beads will be collected at the centre after 3 minutes of 

mixing. If the mixing time increases, the clump of beads will be more compact. It 

was clearly shown that the overall behaviour of magnetic beads is in close agreement 

with the simulation results. Beads tend to chain up and migrate toward the centre of 

the coil. The only different is in the calculation of response-time of magnetic beads 

to magnetic field (switching frequency).  

AGOWA beads have average size of 5-10 µm, which is bigger than the size of beads 

used in simulation (3 µm). Since all types of magnetic beads responded well to 

higher frequencies, the bigger size of AGOWA beads is not the main reason for their 

fast response to the switching field. However, the chain up process in AGOWA 

beads is faster than the other beads because of their bigger sizes.  Before creation of 

beads chins, the frequency of 0.05 Hz and 0.2 Hz was required to agitate Dynal 2.8 

and AGOWA beads respectively. This response of Dynal 2.8 and AGOW

creation of first set of beads chains (see Figure 6.14, ݐ ൌ  and was ,(ܿ݁ݏ 10 & ܿ݁ݏ 5

increased exponentially by creation of multi chains and creation of bulky block of 

beads (see Figure 6.14, ݐ ൌ 20 ܿ݁ݏ &  This effect can be explained by .(ܿ݁ݏ 40

considering the bulky effect of the magnetic force and viscous drag force on the 

clump of magnetic beads.  
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Table 6.6. Summary of different magnetic beads respond time to switching frequency. 

Parameter Sbeadex Magazorb Dynal MyOne Dynal 2.8 

Maximum Frequency 10 Hz 6 Hz 4 Hz 2Hz 

Effective Migration Time  1 min 1.5 min 2 min 3 min 

Coil Current 155 mA 155 mA 155 mA 155 mA 

 
Figure 6.14. Series of screen shots showing the magnetic mixing (AGOWA, Sbeadex) inside a 0.75 

mm in diameter capillary tube for a period of 180sec at frequency of 1Hz. 
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By creation of small bead clumps (multi-chains), magnetic particles will be in 

physical contact and their induced magnetic field overlaps. In this case of mutual 

interaction between magnetic particles, the particle-particle mutual effect can be 

explained in bulk mode.  

The majority of commercial magnetic beads are made by doping nano-size magnetic 

particles inside a polymeric sphere. The resultant magnetic moment of bead is a 

vector sum of magnetic moments of all nanoparticles.  By a similar analogy, the 

bulky effect of clumped magnetic beads can be explained. By creation of physical 

contact between beads, after a transient time, their induced magnetic moment will be 

forced to reorient in the presence of strong external field to create a hybrid magnetic 

moment. The result is a stronger magnetic moment, which is the sum of individual 

magnetic moments of beads. By attaching more beads to each other, the resulting 

magnetic moment will increase relatively. The transient time (൏  for (ݏߤ 1

reorientation of magnetic moment is negligible compared to the switching frequency, 

thus can be ignored. After a specific time, bigger magnetic beads will be created by 

clump of small magnetic beads. Based on Equation (3.27), the magnitude of 

magnetic force is proportional to the volume of the bead, and thus their response is 

faster than each individual bead. 

On the other hand, the magnitude of viscous drag force on a magnetic bead inside the 

clump decreases significantly. This happens because the effective surface of each 

bead decreases by attaching to the other beads. Therefore, the average of viscous 

drag force decreases on the clump of beads, which results in faster response of the 

beads to the external magnetic field.  

6.5.2   Application of Quadrupolic and Solenoidal Force Pattern 

In normal switching mode, the process of magnetic mixing is limited to migration of

b

agitate the c ere will be 

 the majority of released DNAs will not be captured by 

beads during their migration time. Since the natural movement of beads in this 

 

 ead toward the centre. The mixing will be finished and any further switching will

lump of beads in the central part of the chamber. Therefore, th

no mixing action and subsequently no DNA collection in other areas. The situation 

gets worse if the lysis takes place after migration of beads. In most DNA extraction 

kits, the optimum lysis time is typically 10 min. By considering the migration time in 

different magnetic beads,
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magnetic force pattern is towards the centre of the coil, it is important to return the 

beads to the outer section of the coil/chamber and restart the mixing to increase the 

chance of DNA capturing. Fortunately, this action can be done using hybrid 

switching pattern to create quadrupolic force pattern using the same coil 

arrangement. This force pattern was previously investigated by means of simulation 

in section 4.9. In this section the efficiency of quadrupolic force pattern is 

investigated by means of experiment to unpile magnetic beads from the clump. The 

start time for this experiment is from the end of mixing in previous section, where 

the beads were collected at the capillary centre. The result of unpiling the beads is 

shown in Figure 6.15 in a series of screen shot.  

 

Figure 6.15. Series of screen shots showing the application of quadrupolic coil setup on the bulk of 
magnetic beads. A combination of quadrupolic and switching field pattern was applied to move the 

beads out of the centre. 
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 smaller piles and still posses’ 

large magnetic moment. Finally, all beads are divided to two piles at two ends of the 

capillary tube. The process of mixing can be resumed toward the centre using normal 

switching mode. This process can be repeated continuously to achieve sufficient 

mixing inside the microchamber.   

In addition, this experiment shows that the beads exhibit the superparamagnetic 

behaviour very well. This behaviour helps to unpile the beads clump very easily by 

applying inverse quadrupolic force. This behaviour was investigated on other 

magnetic beads as well and the result is summarised as follow: 

• AGOWA beads respond very well to the inverse field and will be separated 

easily 

• Magazorb beads can be separated easily but in larger pieces 

• DynaBeads can be separated but in relatively larger pieces compared to other 

beads 

These different results can be explained by considering physical properties of 

different magnetic beads. AGOWA beads are supplied in different sizes and irregular 

shapes in the range of 5-10 µm. Magazorb bead have regular shape but in different 

sizes. Dynabead are supplied in regular shapes and mono-size. The variation in size 

results in different induced magnetic moment in beads, thus different terminal 

velocities in response to the magnetic field. This effect describes the response of

A  

their induced m

It is clearly shown that the clump of beads easily burst out and will be separated into 

four groups, based on quadrupolic force pattern. Since the beads tend to stick to the 

top and bottom of the tube, a mixture of switching-quadrupolic pattern was applied 

to push them toward the outer section of the coils. The whole process take place in 

less than 15sec. This is because beads are burst out to

 

GOWA and Magzorb beads. Since Dynabeads have regular shapes and mono-size,

agnetic moment and their response is similar to each other. In 

addition, the surface coating of AGOWA beads represents hydrophilic behaviour in 

the fluid while, the surface of other magnetic beads show hydrophobic behaviour in 

fluid. This could be another reason for easy separation of AGOWA beads compared 

to Dynabeads.  

In another experiment, the performance of Solenoidal field pattern was investigated 

inside the capillary test tube. In this experiment the conditions were kept unchanged 
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shots. 

 

Figure 6.16. Series of screen shots showing the application of solenoidal coil pattern on the bulk of 
magnetic beads. 

as the previous experiment. The start time for this test was set to the end of 

application of quadrupolic field pattern. The results of this experiment are shown in 

Figure 6.16 in a sequence of screen 
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By switching to solenoidal mode, the region of higher field strength shifts to the 

central part of the capillary, thus the clump of magnetic beads is dragged toward this 

region. Beads move in clump mode and the migration occurs in a couple of seconds. 

This is because resultant magnetic moment is maxima at clump mode and a lower 

friction force between beads and capillary walls. Finally beads end up in a more 

compact clump in the centre of the capillary. This action in a microchamber can be 

visualised as a toroid, which shrinks toward the centre. The most important 

application of this field pattern is in the clamping mode, due to the stronger and more 

concentrated magnetic field pattern generated in this mode.  

6.6   Clamping Experiments 

The efficiency of bead-based DNA purification process depends on many parameters 

such as efficient lysing of cells, effective mixing and maintaining the bead/DNA 

complex inside the microchamber using DC magnetic force during the washing 

process. This work is not concerned with the efficiency of lysis buffer, since the lysis 

buffer condition needs to be optimised based on the application. The efficiency of 

mixing was investigated in Chapter 5 based on numerical simulations. The focus in 

this section is thus on magnetic clamping efficiency as the last part of DNA 

extraction/purification process. 

A microfabricated microchamber was fabricated based on the process described 
earlier in section 6.5 to be used in clamping experiments. A pair of heatsink coil 
(2 ൈ 4), 8 mm in diameter and 4 mm in thickness, were used on the microchip 
installed on chip docking station. A piezo-actuated diaphragm micropump, Thinxxs 
Microtechnology, was used for chip washing process. The flow rate of this piezo-
driven micropump can be controlled by supplied controller. The flow rate curves 
supplied by pump supplier are based on a typical test condition and may vary in 
different conditions. Therefore, the accurate flow rate was measured at different 
pumping frequencies in this experimental setup. The minimum and maximum flow 
rates of 125 µl/min and 1.25 ml/min were measured at the frequencies of 0.5 Hz and
3  
that the fluid flow has a pulsing pattern. The strokes created by this pulsing pattern 

 
3Hz respectively. Diaphragm-based pumping principle of this micropump indicates

are maximum at the minimum frequency of 0.5Hz. At the maximum possible 
operating frequency of 200 Hz, the measured flow rate was 0.75 ml/min. at this 
operating condition, the pulsing effect was observed to be minimal. Therefore, this 
flow condition was used to perform the washing process. 
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 top coil was removed to 

observe the clamping action. The results obtained for clamping are shown in Figure 

screen-shots show the position of beads at 

s that in this clamping condition 60% of 

beads, flow-rate of 0.75 ml/min and clamping current of 150 mA. (The arrow shows flow direction) 

The experiment was performed using AGOWA Sbeadex beads. In order to investigate 

the clamping at more realistic condition, 3 min magnetic mixing was performed 

using normal switching pattern with heatsink coils (2 ൈ 4) at 155 mA coil current. 

Under these operating conditions, all magnetic beads were collected at the centre of 

the chamber. The bottom coil was used for clamping and the

6.17 in a series of screen shots. These 

different times under continuous fluid flow-rate of 0.75 ml/min (the fluid flow is 

from left to right). Washing process was performed in 3 min until the positions of 

beads were stabled and no beads were lost. 

During the washing process, the clump of beads moves toward the outlet under flow 

pressure. During this migration, small amount of beads will be released from clamp 

and washed away. The rest of beads remain clamped under an equilibrium condition 

between fluid drag force and magnetic clamp force. A manual measurement of 

washed beads at sump collection tube show

beads will be released from the clamp and 40% stay inside the chamber.  

 
Figure 6.17. The efficiency of magnetic bead clamping inside icrochamber using Sbeadex  the m
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ping was very short (3 min) and the 

possible to 

compress the clump of magnetic beads and increase the strength of magnetic 

clamping force. This was tested on the same experimental condition and the result 

shows that the ratio of lost beads was below 10%.  

To improve the efficiency of clamping, clamping current was increased to 200mA 

and the result of clamping is shown in Figure 6.18. Fluid flow rate was kept 

unchanged and the washing process was performed for 3 min. the efficiency of 

clamping was significantly improved and majority of magnetic beads remained 

clamped inside the chamber. The ratio of lost beads was measured as 20% to 80% 

clamped beads. The temperature of clamping coil was monitored using a type k 

thermal sensor. Since the period of clam

continuous fluid flow acts as a cooling system, the coil temperature was kept below 

70°C during clamping. 

Therefore it is possible to successfully clamp majority of magnetic beads inside the 

chamber using 200 mA clamping current under very high flow rate (750 µl/min). 

This high flow rate was used to show the efficiency of clamping under strong fluid 

drag force. In addition, by using solenoidal coil arrangement, it is 

 
Figure 6.18. The efficiency of magnetic bead clamping inside the microchamber using Sbeadex 

beads, flow-rate of 0.75 ml/min and clamping current of 200 mA. (The arrow shows flow direction) 



181 
CHAPTER 5 – EXPERIMENTAL VALIDATIONS 

A similar clamping experiment was performed using Promega Magazorb beads and 

cted with Magazorb beads. 

 

Figure 6.19. Clamping experiment using Magazorb beads. Pictures show the position of beads before 
(a) and after (b) mixing. 

0.75 ml/min. b) The bottom magnet is removed to improve the visibility. 

While longer washing process improves the purity of DNA sample, 3 min continuous 

washing consumes large volume of washing buffer (2.25 ml). This volume is much 

more than recommended volume in commercial kits. This volume was adopted for 

15 µl chamber and the required volume was calculated as 34 µl for two washes based 

on Promega Magazorb purification protocol. 

the results observed are shown in Figure 6.19 and Figure 6.20. The screen shots of 

Figure 6.19 shows the position of beads before (Figure 6.19a) and after (Figure 

6.19b) mixing (both bottom and top magnets are removed to improve the visibility). 

The mixing was performed with switching current of 155 mA for 3 min.  

The screen shots in Figure 6.20 show the position of beads inside the chamber after 

one minute continuous washing under clamping current of 200 mA and flow-rate of 

0.75 ml/min. Similar result as Sbeadex beads was extra

 
Figure 6.20. a) Position of clamped Magazorb beads after 3 min washing process at the flow-rate of 
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result is shown in Figure 6.21. The 

mixing was performed in 3 min using switching current of 155 mA, until all beads 

 to 

In another experiment, validation of quadrupolic separation of beads clump was 

investigated inside the microchamber. This 

were collected at the centre of the chamber (Figure 6.21a). A quadrupolic field 

pattern then was applied for the period of 10 sec (Figure 6.21b). This experiment 

shows the efficiency of unpiling the clump of beads inside the chamber.  

By applying a combination of switching field and quadrupolic field it is possible

move the beads further out of the centre, close to the outer section of the chamber. In 

this experiment, Magazorb bead were used for mixing and a pair of (2 ൈ 4) heatsink 

magnetic coils were used as magnetic force generators.  

 

Figure 6.21. A plan view of effect of quadrupolic force pattern applied to Magazorb beads inside the 
chamber. 

 

Figure 6.22. Effect of air-washing on clamped magnetic beads inside the chamber in a series of 
screen-shots (the fluid flow is from left to right). 
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he chamber 

all volum

shing process to empty the 

chamber from washing buffer and introduce the elution buffer if necessary.  

6.7   Fluidic Experiments 

In this section some microfluidic experiments have been performed to investigate the 

chamber porting and filling issues. A microfabricated 15 µl chamber was installed on 

docking station in horizontal plane and filling was performed using 25 µl Hamilton 

syringes. A syringe pump controller was designed using a DC motor to create very 

smooth and continuous low flow-rate (Figure 6.23) (The controller was made in 

By introducing the fluid to the chamber, it was observed that in some areas air 

pockets were trapped. Figure 6.24 shows different screen shots from different 

unsuccessful filling of the chamber at a flow-rate of 1.0 µl/sec. Since the chamber is 

empty and dried, surface tension is the dominant force and, if a small air pocket traps 

inside the chamber, it will be pinned to that area and fluid bypasses this pocket. On 

average, in 70% of filling attempts, at least one small air pocket was trapped and in 

30% of filling attempts, the size of air pocket was bigger than the volume of fluid 

inside the chamber. 

Figure 6.23. A picture of high-precision syringe pump used in fluidic experiments. 

A different washing experiment was carried out using air-washing. The result of this 

experiment is shown in Figure 6.22. During this washing process, the clamping was 

activated at 200 mA current using bottom coil. Pushing the air into t

increases the surface tension inside the chamber. Magnetic beads remain clamped 

but, since the fluid-magnetic force equilibrium is not present anymore, the clamped 

beads return to their original position at the centre of the chamber. Sm e of 

fluid remains in the centre of the chamber, trapped between clumps of beads. This air 

washing method can be used at the end of normal wa

ChargeLabs). 
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ttern. 

ificantly. This experiment was repeated many 

the chamber was filled successfully.  

To overcome this problem, the chamber was filled in a vertical position. In this 

position, the chamber was filled from the bottom port. The intension was to 

investigate the effect of gravity on filling efficiency of the chamber. The result of 

vertical filling process is given in Figure 6.25 as a series of screen shots. In this 

filling condition, the fluid velocity was set to 1µ/sec. 

As it was expected, the gravity has significantly influenced the filling pa

Naturally, the fluid level tends to be horizontal under gravity force. This force 

cancels the surface tension out sign

times and in 90% of filling attempts, 

 
Figure 6.24. Unsuccessful filling of the chamber in horizontal orientation. 

 
Figure 6.25. Successful filling of the chamber in vertical orientation. (Arrow shows the fluid 

direction) 
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cause the fluid level increases 

ixed with 

at liquid-liquid interface.  

The effect of different port position was investigated as well by placing the inlet at 

the middle of the chamber and outlets at the outer section of the chamber. Surface 

tension was still the dominant force in dried chamber and air-pocket-trapping was 

observed again. Therefore, the most effective methods to fill the chamber remain the 

vertical filling and horizontal filling of pre-filled chamber. 

6.8   Summary 

In this chapter, a series of experiments were carried out to validate the results of 

numerical s eters that 

were used for validation are the strength of magnetic field, temperature rise in 

magnetic coils, beads trajectories study, switching frequency, application of different 

force pattern in manipulation of beads inside the chamber, clamping efficiency and 

finally some fluidic experiments to establish the best chamber filling method.  

The accuracy of simulation was investigated using measuring the strength of 

magnetic flux density of winded coils. It was noticed that in practice, there will be 

some dead spaces between windings using circular cross-section of insulated copper 

wire. The electromagnetic model was modified to take into account the practical 

limitation of winding. The resulting model showed very close agreement with the 

experimental result obtained using a precise commercial magnetometer.  

In the next section, the validity of thermal analysis was investigated using modified 

electro-thermal model of magnetic coils with different bobbin sizes and thickness. 

The steady state tem al 

This experiment was repeated at different fluid flow-rates and the result was 

successful at higher flow-rates up to 10µl/sec. in higher flow-rates, usually small air 

pocket will be trapped close to the outlet. This is be

faster than effect of gravity on the fluid.  

In another sets of experiments, the effect of prefilled chamber was investigated at 

horizontal plane. The result showed that although, introducing the fluid to prefilled 

chamber eliminates the trapped-air-pocket problem; fluids were partially m

imulations performed in Chapter 4 and Chapter 5. The param

perature was experimentally measured using type k therm

sensor and the results obtained were compared with simulation results. The optimum 

coil current was identified for different coil geometries based on maximum 



186 
CHAPTER 5 – EXPERIMENTAL VALIDATIONS 

eatsinks to improve the capacity of heat 

dissipation in the coils. The validity of this modification was investigated by 

ion ratio increases significantly. However, an optimised 

design of heatsink depends on the final design of the extraction device.  

ent with the simulation 

results in predicting their horizontal migration and tendency to form chains. The 

was modified as the result of change in magnetic moment of 

imum current and maximum frequency of mixing were then 

 beads 

manipulation inside the test tube. It was experimentally shown that a combination of 

d for more 

temperature rise of 56°C for two different scenarios of AC and DC current modes. 

The aluminium bobbins were used as h

fabrication of two different bobbin dimensions and their thermal activity was 

compared with the simulation results. It was shown that by design of specific 

heatsinks, the heat dissipat

A capillary test-rig was designed and constructed to investigate the accuracy of 

numerical simulation model and to determine optimum switching current and 

frequencies of mixing for different magnetic beads. The results of this experiment 

show that the behaviour of magnetic beads is in close agreem

frequency of mixing 

bead chains, and min

obtained for different commercial beads. This experiment showed that the chain 

effect of magnetic beads improves the efficiency of mixing by increasing the average 

magnetic moment through formation of beads clump in response to the switching 

magnetic field. 

Application of hybrid field pattern was employed to increase the efficiency of

quadrupolic and normal switching field pattern can be used to unpile the clump of 

beads from the centre of the coil and move it to different positions inside the tube. 

Solenoidal field pattern can be used to collect and compress all beads in the middle 

of the coil. This effect is desired in magnetic beads harvesting at the end of the DNA 

extraction/purification process. Nevertheless, a combination of switching field 

together with solenoidal and quadrupolic filed arrangements can be use

versatile mixing patterns and manipulation of magnetic beads inside the chamber. 

A micromachined microchamber was fabricated to investigate the efficiency of on-

chip clamping of magnetic beads. This function is necessary at the end of DNA 

purification process to separate the DNA-Bead complex from the rest of biological 

debris. Washing is achieved, while magnetic beads remain clamped in the chamber. 

Two different clamping currents were used for two types of magnetic beads. It was 

shown that, to efficiently clamp the beads inside the chamber, a minimum current of 
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ber 

200 mA is necessary. Although, this result was extracted at very high fluid flow-rate 

and long washing process, lower flow-rates and washing time might be sufficient for 

real biological sample extraction process.  

Finally, the efficiency of filling the chamber was investigated using side-wall 

porting. In this experiment, it was concluded that horizontal filling of empty cham

is not always successful. This is because of the surface tension effect; as a 

consequence air pockets are trapped during the filling process. Application of pre-

filled chamber reduces the surface tension and improves the filling efficiency at the 

cost of partial mixing at liquid-liquid interface. Gravity corrected filling was 

investigated by positioning the chamber in a vertical position and feeding from the 

bottom port. This method proved to be very successful in order to fill the empty 

chamber.  



 
 
 

CHAPTER 7 

BIOLOGICAL VALIDATIONS 

 

7.1   Introduction 

A magnetic mixer was introduced and designed in Chapter 4 and optimised 

dimensions were extracted based on numerical simulations. The performance of 

magnetic mixing was further evaluated in Chapter 5 using beads trajectories study. A 

preliminary experimental study was conducted in Chapter 6 to validate the 

simulation results. In this chapter the focus is to conduct an experimental evaluation 

to investigate the performance of designed DNA extraction device using real 

biological samples. To achieve this, different commercial DNA extraction kits were 

selected to evaluate the extraction efficiency using whole blood sample, which is the 

main source of genomic DNA molecules. The extraction performance was further 

evaluated using non-pathogenic bacterial cells, spiked into whole blood sample. This 

process was performed using different bacterial samples, E. coli (Gram negative) and 

B. subtilis (Gram positive). These tests were performed in collaboration with LGC 

(Laboratory of Government Chemists, Teddington). 

A problem with commercially available DNA extraction kits is that majority of them 

are designed for bench-top extraction process, and thus are not suitable for on-chip 

automation. In these kits, the process of extraction mainly involves separate steps 
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such as pre-treatment with Proteinase K, cell lysis step and nucleic acid binding step. 

The volumes of buffers vary in each step in different kits with variable incubation 

times. Implementation of these standard techniques into microfluidic chip is a very 

challenging microfluidic problem. On-chip extraction process needs a very simple 

and fast extraction protocol using minimum processing steps.  

Demands for simple and rapid on-chip DNA extraction process has led to design of 

extraction protocols that are more suitable for on-chip automation. Dynabeads® DNA 

Direct™ Universal and Dynabeads® DNA Direct™ Blood are the examples of 

extraction kits with the potential for automation. The extraction process in these kits 

is very fast (5 minutes total incubation time) in single treatment step using supplied 

pre-mixed lysis/binding/bead buffer. These protocols are very attractive for on-chip 

automation process as the microfluidic problem is minimal. However, the problem 

with this extraction kits is the large volume ratio of extraction buffers to the blood 

sample (1/20). This large volume ratio requires larger volume microchamber, which 

is not demanding. For example, to perform the extraction using 25µl of blood, 500µl 

of lysis/binding buffer is required using these kits. Another problem with this kit is 

the lower magnetic permeability of these magnetic beads (Dynal 2.8) compared to 

other magnetic beads. This comparison can be found in Chapter 6, Table 6.6. 

Therefore, in this work a preliminary experimental study was conducted to 

investigate the efficiency of different volume ratios (Dynabeads buffer to blood) on 

the performance of extraction. This experiment was carried out manually using 

bench-top process as well as automated process using microfabricated microfluidic 

chip. The results were analysed and compared to the standard extraction protocol 

using Nanodrop 1000 Spectrophotometer, Thermo Fisher Scientific.  

Although optimisation of buffer condition is not in the scope of this work, due to the 

lack of suitable protocol for on-chip extraction, different magnetic-bead-based 

extraction kits were short-listed to identify the most suitable kit for on-chip extract 

process. These kits are Magazorb DNA Mini-Prep kit (Promega, Ltd.), Dynabeads 

SILANE genomic DNA kit (Invitrogen Corporation) and AGOWA Sbeadex Blood 

kit (LGC Limited). In addition to the above magnetic bead-based extraction kits, a 

column-based extraction kit (QIAamp DNA Mini Kit, Qiagen) was used for bench-

marking purpose. These kits were selected based on their outstanding efficiency on 

DNA extraction from blood sample and their higher permeability magnetic beads. 
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The optimisation process was aimed at reducing the number of extraction steps and 

total incubation time. To achieve this, the efficiency of these adapted protocols was 

first investigated on bench-top process in larger volumes. These results were 

compared with the manufacturers’ standard protocols as well as the column-based 

extraction protocol. Extracted samples were then analysed using Nanodrop ND-1000 

spectrophotometer. 

Identified extraction kit and adapted protocol was selected to perform on-chip 

extraction process. In this process the efficiency of the designed extraction device 

was evaluated in two different scenarios. The efficiency of DNA binding to the 

surface of the magnetic beads was evaluated using spiked free DNA samples 

(plasmid DNA) into the whole blood. The lysis efficiency was evaluated using a 

panel of Gram-positive (B. subtilis) and Gram-negative (E. coli) bacterial cells cultures 

spiked into the blood sample. The results were analysed using Nanodrop ND-1000 

spectrophotometer, to evaluate the extracted DNA purity. Bacterial DNA extraction 

recovery was determined by developing a quantitative real-time PCR assay. 

7.2   Initial Evaluation of DNA extraction device 

Initial evaluation of DNA extraction device was performed using Dynabeads® DNA 

Direct™ Universal extraction kit. This extraction kit was selected because of its 

simple and rapid extraction protocol, which is more desirable for on-chip automation 

process. This experiment aimed to investigate the impact of reducing the ratio of 

lysis/binding buffer to the blood volume. The standard manufacturers’ protocol is as 

follows: 

1. Adding of 200 µl Dynabeads buffer (including lysis buffer and magnetic 

beads) to the blood sample (the volume of blood sample should not exceed 

10µl). 

2. Five minutes incubation at room temperature. 

3. Magnetic clamping of the beads and removing the supernatant. 

4. Two washing steps using 200 µl of washing buffer. 

5. Resuspension step to elute off the DNA molecules from the beads using 20-

40µl of resuspension buffer. Alternatively, DNA can be eluted off the beads 

by incubation at 65°C for 5 minutes.   
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ൈ 4ሻ

These steps show the simplicity of the standard protocol and its potential to be easily 

automated using designed extraction chip. However, the major drawback is the ratio 

of Dynabeads buffer to the blood volume (200µl to 10µl). To overcome this problem, 

an experiment was conducted to investigate the impact of Dynabeads/blood ratio on 

the extraction efficiency. Two different Dynabeads buffer/blood ratios (3:1 and 1:1) 

were initially investigated. The experiment was carried out using a 16 µl 

microchamber (8 mm in diameter and 300 µm in depth) and two external magnetic 

coils (heatsink coil ሺ2 ).  

7.2.1   Experimental Setup 

Detail of experimental setup is as follows: 

• Total volume of blood/lysis buffer was scaled down to the microchamber 

volume (16µl), 5.3µl blood and 10.6µl Dynabeads lysis buffer. 

• Blood and lysis buffer were introduced to the chamber using 25µl Hamilton 

syringes from two inlets. 

• The mixing time was performed in 3 minutes with coil current of 155 mA. 

• After mixing, DC magnetic field was used to clamp the magnetic beads inside 

the chamber. This process was performed using bottom coil with current of 

180 mA. 

• Chamber content was removed and the magnetic beads-DNA complex was 

clamped and washed using100 µl wash buffer. A Hamilton syringe was used 

for washing process. 

• After washing process, wash buffer was removed and beads were incubated 

with 10µl elution buffer. In this step, AC magnetic mixing was performed in 

1 minute to release the DNA molecules from the beads. 

• DC magnetic field was applied to hold the beads and extract the resuspended 

DNA molecules in elution buffer.  

• Chamber was washed with Microsol 3+ decontamination reagent (detergent 

with anti-microbial and nucleic acid degradation properties) to be reused for 

the next experiments.  
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The experiment was performed in three replicates and additional negative controls 

(water).  DNA resuspension process was investigated using two different techniques, 

using elution buffer and thermal elution using incubation at 65°C. 

7.2.2   Results and Discussion 

The efficiency of extraction was controlled during the incubation step and no 

obvious cellular lysis was observed. Clamping process found to be particularly 

problematic due to the build-up of debris within the chip. The long clamping during 

washing process resulted in temperature rise within the chip, which caused 

denaturation of unlysed sample. Microsol 3+ washing process between individual 

experiments was unable to remove the materials. Therefore, an extensive washing 

protocol was required to clean the chip.  A new harsh chamber wash condition was 

investigated by incubating/washing using a mixture of 1% SDS detergent/0.2M 

NaOH (1 hour plus). This washing process appeared to remove the bound materials 

in the chamber. The result of chip extraction was analysed using Nanodrop 1000 

spectrophotometer. The minimum sample required in this device is 1.2µl and the 

dynamic range is 1-2 ng/µl to 3700 ng/µl. However the output of the 

spectrophotometer is based on 1µl sample input. The measurement was performed in 

three replicates for each extracted sample and the average results are given in Table 

7.1. This table gives the extracted DNA yield in ng/µl and the quality/purity of the 

extracted DNA sample was analysed using A260/A280 and A260/A230. 

As it is shown in this table, the quantity of the extracted DNA is very low and close 

to the sensitivity of the spectrophotometer. Therefore, the quantity of the extracted 

DNA cannot be verified using this method. The quality of the purified sample is also 

very low, which indicates the presence of the proteins and salts in the extracted 

sample. This result is not surprising, as the washing process was not efficient due to 

the presence of bound materials inside the chip after the washing process. 

Table 7.1. Nanodrop data given for extracted DNA sample using Dynabeads DNA universal kit.  

Sample ID A260/A280 A260/A230 DNA Yield (ng/µl) 
Dynabeads elution Buffer 0.02 0.02 0.01 
Blood, Eluted using Elution Buffer 0.69 0.42 1.39 
Blood, Eluted using Incubation at 65°C 0.60 0.44 2.47 
–ve Extraction Control 0.65 0.49 0.89 
–ve Extraction Control (65°C) 0.43 0.42 1.51 
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A more sensitive plate-based PicoGreen dsDNA quantitation technique was used to 

quantify the yield of the extracted DNA. The sensitivity of this technique was 

approximately 0.1 ng/µl detection limit. However, no DNA was detected using this 

enhanced technique, which indicates very poor DNA recovery of the modified 

Dynabeads DNA direct universal protocol. Based on the manufacturer’s guideline, 

20ng – 33ng DNA can be extracted from 1µl of blood sample. The result of this 

experiment shows that the level of extracted DNA is much below the guideline. The 

potential recovery issues could be the sub-optimal lysis buffer conditions or loss of 

DNA-attached beads during the clamping process. Since the result shows very poor 

DNA yield, the potential problem could be the lysis buffer conditions. This problem 

can be investigated by comparing the result of the standard protocol, which is the 

subject of the next section. 

7.3   Optimisation of the Bench-top Extraction Protocol 

Since the results of Dynabeads DNA direct kit was not satisfactory using modified 

protocol, a series of experiments were conducted to identify the most efficient 

extraction protocol. Manufacturer’s standard protocols were used under optimal 

conditions using manual extractions on bench-top. Extraction kits investigated were 

QIAamp Blood Mini kit (column-based), MagaZorb DNA Mini-prep kit (bead-

based), Dynabeads SILANE genomic DNA kit (bead-based) and Dynabeads DNA 

Direct Universal (bead-based). The experiment aimed to compare the extraction 

efficiency of the selected kits in order to be used for further optimisation for chip-

based DNA extraction. 

7.3.1   Experimental Setup 

A summary of the standard manufacturer’s protocols and volumes of different 

buffers are given in Table 7.2 for different extraction kits. This table indicates that 

the ratio of kit reagents to blood sample is lower for QIAamp kit (2.1:1) and very 

high for Dynabeads DNA Direct Universal kit (20:1). This ratio is important for 

chip-based extraction, since larger chamber volumes are necessary for larger ratios.   

In these experiments, both fresh blood and frozen blood samples (sodium citrate 

anticoagulated human whole blood, Sera Laboratories International Ltd., USA) were 

used for extraction. Frozen blood contains pre-lysed cells, and therefore acts as a 
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basic positive extraction control. In addition, the freed DNA molecules inside the 

frozen blood sample can verify the binding efficiency of the bead-based kits. As it is 

shown in the Table 7.2, the volumes of the blood samples are not identical in 

different kits. These ratios were kept as recommended by the manufacturers’ in order 

to compare the efficiency of their extraction at optimal conditions. However, the 

final yield of DNA can be normalised based on the used sample.  

The experiment was carried out in three replicates for each sample (fresh blood, 

frozen blood and negative control) and was repeated two times. Water sample was 

used as the extraction negative control. 

Table 7.2. A summary of the manufacturer’s protocols for the short-listed kits. 

 
QIAamp Blood 

Mini Kit 

MagaZorb 
DNA Mini-

Prep Kit 

Dynabeads 
SILANE DNA Kit 

Dynabeads DNA 
Direct Universal 

Blood Volume 200 µl 200 µl 350 µl 10 µl 

Proteinase K 
Step 

20 µl 20 µl 
50 µl, 2 min 

Incubation at Room 
Temperature 

NA 

Lysis Step 

200 µl Lysis 
Buffer, 10 min 

Incubation + 200 
µl ethanol 

200 µl, 10 min 
Incubation at 

56°C 
NA NA 

Binding Step Centrifuge 

500 µl + 20 µl 
Magnetic beads, 

10 min 
Incubation at 

Room 
Temperature 

NA NA 

Lysis + Binding 
Step 

NA NA 

350 µl, 10 min 
Incubation at 55°C 
+ 50 µl Dynabeads 

+ 400 µl 
Isopropanol, 3 min 
Incubation at Room 

Temperature 

200 µl, 5 min 
Incubation at 

Room 
Temperature 

Washing Step 2 × 500 µl 2 × 1ml 
4 × 950 µl + 5 min 

Drying step 
2 × 200 µl 

Elution Step 
200 µl, 1 min 

Incubation 

200 µl, 10 min 
Incubation at 

Room 
Temperature 

100 µl, 2 min 
Incubation at Room 

Temperature 

100 µl at Room 
Temperature 

Ratios of Kit 
reagents to 

Blood Sample 
2.1:1 3.7:1 2.43:1 20:1 
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7.3.3   Results and Discussion 

Recovered DNA samples were quantitated using Nanodrop 1000 spectrophotometer 

and are given in Table 7.3. The spectrophotometer was blanked for elution buffer and 

the measurements were repeated in three replicates. The results shown in Table 7.3 

are given as the average of three measurements. Since recovered DNA samples were 

eluted in different volumes of the elution buffer, extracted DNA yield is calculated 

for total elution buffer. To compare the efficiency of the extraction, the recovery of 

each extraction kit is normalised based on the extracted DNA yield per microliters 

blood sample.  

As it was expected, the Qiagen QIAamp column-based extraction kit gives the 

highest recovery level at 17 – 21 ng DNA/µl blood. MagaZorb and Dynabeads 

SILANE kit demonstrating very similar levels at 7 – 15 ng DNA /µl blood. However, 

the recovery level of Dynabeads SILANE kit is slightly higher than MagaZorb. The 

quality of DNA samples recovered by these three kits is also very good, as shown by 

high A260/A280 ratios. The poorest DNA recovery was observed with Dynabeads 

Universal kit at 2 – 5 ng DNA/µl blood. Since the volume of the used blood in this 

kit was much less than the volume of recommended elution buffer, a lower elution 

buffer (40 µl) was used to increase the concentration of DNA. However, the low 

levels of the recovered DNA sample with this kit approached the detection limit of 

the UV spectrophotometer. Therefore, this experiment was repeated and recovered 

DNA sample was eluted in 20 µl elution buffer. The quality of DNA sample 

extracted with this kit was measured at very low level. This indicates the inefficiency 

of the lysis process, as it also was observed during the experiment. The yield of 

recovered DNA sample is higher with frozen blood in all of the kits. This is because 

the majority of the cells are lysed in frozen blood.  

The comparison between these results indicates that Dynabeads Universal kit is not 

suitable for automated on-chip extraction process, in spite of its simple and rapid 

extraction protocol. Therefore, MagaZorb and Dynabeads SILANE kits were 

selected to be used for on-chip extraction process. However these kits are designed 

for manual bench-top extraction process and their protocols are not suitable for 

automated extraction process. Therefore, their extraction protocol needs to be 

optimised for chip-based extraction process. 
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Table 7.3. Analyzed recovered DNA samples using Nanodrop 1000 spectrophotometer. 

 A260/A280 A260/A230 Yield 
(ng/µl) 

Standard 
Deviation 

Corrected 
Average 

Total Yield 
(ng) 

Yield Per µl 
Blood (ng/µl) 

Qiagen, EB -0.97 -0.18 0.32 - - - - 

Qiagen, B 1.90 ± 0.02 1.73 ± 0.40 20.16 1.21 17.05 3410.33 17.05 

Qiagen, FB 1.75 ± 0.15 0.99 ± 0.64 23.80 2.75 20.69 4138.67 20.69 

Qiagen, –ve 1.49 ± 0.43 -1.55 ± 3.36 3.11 1.19 0.00 0.00 0.00 

MagaZorb, EB 0.84 0.91 -1.40 - - - - 

MagaZorb, B 2.04 ± 0.11 0.99 ± 0.02 17.82 0.29 7.64 1528.00 7.64 

MagaZorb, FB 1.98 ± 0.08 0.82 ± 0.07 22.96 0.59 12.78 2555.67 12.78 

MagaZorb, –ve 1.98 ± 0.22 0.74 ± 0.05 10.18 0.03 0.00 0.00 0.00 

DS, EB 1.14 -19.65 -0.39 - - - - 

DS, B 1.91 ± 0.06 1.78 ± 0.09 28.95 6.88 28.85 2885.43 8.24 

DS, FB 1.90 ± 0.03 2.15 ± 0.04 51.86 4.23 51.76 5176.17 14.79 

D S, -ve -0.22 ± 0.59 0.09 ± 0.05 0.10 0.07 0.00 0.00 0.00 

DU, EB -1.23 0.79 0.14 - - - - 

DU, B 1.09 ± 0.58 0.30 ± 0.10 0.56 0.17 0.09 3.53 0.35 

DU, FB 1.56 ± 0.45 0.60 ± 0.13 1.79 0.69 1.32 52.93 5.29 

DU, -ve 0.95 ± 0.13 0.33 ± 0.12 0.47 0.03 0.00 0.00 0.00 

DU2, EB 0.81 0.53 0.31 - - - - 

DU2, B 0.89 ± 0.22 0.22 ± 0.15 1.78 0.44 1.20 24.03 2.40 

DU2, -ve 0.50 ± 0.40 0.25 ± 0.17 0.57 0.42 0.00 0.00 .00 

EB: Elution Buffer, B: Blood, FB: Frozen Blood, -ve: Extraction Negative Control 

DS: Dynabeads SILANE Genomic DNA Kit, DU&DU2: Dynabeads DNA Universal Kit 

7.4   Initial Evaluation of Magazorb and Dynabeads SILANE kits 

As discussed in the previous sections, Dynabeads DNA Direct Universal kit 

generated very low DNA recovery at chip-based extraction process using modified 

extraction protocol. Further evaluation of this kit indicated a very low recovery level 

in comparison with other extraction kits, even at optimised conditions using 

manufacturers’ standard protocols. MagaZorb and Dynabeads Universal kits 

generated higher DNA yields, but their protocol is designed for manual bench-top 

extraction process. Therefore, a series of experiments were conducted to investigate 

the impact of different modified standard manufacturers’ extraction protocols to a 

more automation friendly methodology with shorter processing times and higher 

DNA recovery rates.  
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7.4.1   Experimental Setup 

Three different extraction protocols were initially investigated with different 

processing times and steps.  These modified protocols are defined as follows: 

• A – Standard manufacturer’s protocol: This protocol was selected for 
comparison purpose. The standard protocols comprising separate processing 
steps as proteinase K, lysis and binding steps. 

• B – Two step protocol: In this protocol, the proteinase K and lysis steps were 
combined and the processing time was set to 2 minutes. The second step was 
binding step with 5 minutes incubation time.  

• C – Combined protocol: In this protocol, all of the extraction steps were 
combined in one step using single proteinase K/lysis/binding step with 5 
minutes incubation time. 

The washing process and elution step were performed separately as indicated in the 

manufacturer’s protocol. Reagent volumes were scaled relatively for 200 µl blood 

sample in all protocols. Frozen blood sample, which contains unlysed and lysed cells, 

was used for the extraction process to evaluate the efficiency of the lysis and binding 

process. Each experiment was performed with three replicates and two negative 

extraction controls using water sample. The extracted DNA sample was eluted in 200 

µl elution buffer.  

7.4.2   Results and Discussion 

Recovered DNA samples were quantitated using Nanodrop 1000 spectrophotometer 

and the measurements were performed using three replicates from each sample. In 

order to reduce the background noise generated from the elution buffer, the 

spectrometer was blanked for the elution buffer. The results of this experiment are 

shown in Table 7.4 as the average of different measurements and replicates for each 

sample. Both kits produce high quality DNA sample, as shown by A260/A280. Two 

steps protocol seems to produce higher DNA yields in comparison to the standard 

extraction protocol in both extraction kits. However, Dynabeads SILANE kit shows 

higher recovery rate in comparison to MagaZorb kit. A very high peak was observed 

with Dynabeads extraction control, which could be the result of residual Isopropanol 

during washing process. Noticeably higher DNA yield was observed with MagaZorb 

kit with the combined protocol. These results indicate that there is significant room 

for optimisation of the extraction protocol for on-chip automated extraction process. 
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Table 7.4. A comparison result of DNA extraction process using Dynabeads SILANE and MagaZorb 
kits using three different protocols, A: standard manufactures’ protocol, B: two-step protocol and C: 

combined protocol. These results were produced using Nanodrop 1000 spectrophotometer. 

 
Average 

A260/A280 
Average 

A260/A230 
DNA Yield 

(ng/µl) 

Corrected 
Average 

Yield (ng/µl) 

Total 
DNA 

Yield (ng) 
Dynabeads SILANE, 
Elution Buffer 

-0.18 -0.12 0.03 - - 

Dynabeads SILANE, 
Protocol A 

1.74 0.52 39.88 15.74 3148.67 

Dynabeads SILANE, 
Protocol B 

1.79 0.52 42.93 18.79 3758.67 

Dynabeads SILANE, 
Protocol C 

1.78 0.50 36.53 12.40 2479.33 

Dynabeads SILANE, 
Extraction Control 

1.64 0.50 24.14 0.00 0.00 

MagaZorb, 
Elution Buffer 

-0.07 0.41 0.08 - - 

MagaZorb, 
Protocol A 

1.45 0.56 8.45 8.41 1682.67 

MagaZorb, 
Protocol B 

1.54 1.24 10.50 10.47 2093.00 

MagaZorb, 
Protocol C 

1.68 1.05 35.05 35.01 7002.00 

MagaZorb, 
Extraction Control 

0.06 0.38 0.04 0.00 0.00 

7.5   Further Optimisation of the Dynabeads SILANE kit 

As it was shown in the previous section, the modified protocols produced high DNA 

yields in both Dynabeads SILANE and MagaZorb kits. However, the result was 

obtained with frozen blood sample, which contains some pre-lysed cells. In order to 

evaluate the extraction efficiency, further characterisation of these kits is necessary 

using fresh blood sample and bacterial cells. Therefore, Dynabeads SILANE kit was 

selected to investigate the efficiency of the modified extraction protocols on the fresh 

blood sample and bacterial cells. 

7.5.1   Manual Characterisation of Dynabeads SILANE Kit 

7.5.1.1   Experimental Setup 

The efficiency of the adapted extraction protocols was investigated by scaling down 

the total kit reagent/sample volumes to 100 µl. The scaled protocol volumes are 

given in Table 7.5. Manual bench-top extraction was performed using adapted two-
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steps and combined protocols. Two-steps protocol comprised combined proteinase 

K/lysis step (2 minutes incubation at 56°C) and with a 5 minutes DNA binding step. 

Combined protocol comprises a single processing step of proteinase K/lysis/DNA 

binding with a 5 minutes incubation time at 56°C temperature. In addition to the 

blood samples, bacterial cell extraction performance was also investigated using E. 

coli culture sample. The approximate concentration of bacterial cells was calculated, 

which is in the order of 1 . The total weight of the E. coil DNA 

molecules presented in 29.18 µl used sample was calculated to be approximately 147 

ng/µl. In the washing and elution processes, manufacturer’s protocol was followed 

using separate wash and elution steps. Extracted DNA was eluted in 20 µl elution 

buffer.  The extraction process was performed using three replicates for blood and 

cell samples using separate extraction controls in each protocol.  

7.5.1.2   Results and Discussion 

Recovered DNA samples were quantitated using Nanodrop 1000 spectrophotometer 

with 1.2 µl sample volume and replicate measurements. The results of this 

experiment are shown in Table 7.6. Both extraction protocols produced high quality 

DNA samples, as shown by A260/A280 index. Despite the previous results using 

frozen blood sample, Dynabeads SILANE kit produces higher DNA yields with fresh 

blood sample using combined step extraction method (protocol C). Both protocols 

produced excellent extracted DNA yield with E. coli sample. However, two-steps 

protocol (protocol B) seems to be more efficient with bacterial cells. These results 

demonstrate efficient bacterial cells lysis as well as effective DNA binding 

capabilities using adapted protocols. This finding indicates that these adapted 

protocols are suitable for use in subsequent automated on-chip extraction process.  

Table 7.5. The volumes of Dynabeads SILANE kit reagents scaled down for 100 µl total volume. 

Component Standard Protocol Volumes Scaled Protocol Volumes 

Proteinase K 50 µl 4.14 µl 

Blood/sample 350 µl 29.18 µl 

Lysis/binding buffer 350 µl 29.18 µl 

Dynabeads 50 µl 4.17 µl 

Isopropanol 400 µl 33.3 µl 
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Table 7.6. A comparison between Nanodrop results of Dynabeads SILANE kit DNA extraction 
process using two adapted protocols. B: two-step protocol and C: combined protocol. 

 
Average 

A260/A280 
Average 

A260/A230 

Average 
DNA Yield 

(ng/µl) 

Corrected 
Average 

Yield (ng/µl) 

Total 
DNA 

Yield (ng) 

Elution Buffer 0.51 0.82 -0.57   

Protocol B, Blood 2.79 1.49 7.39 6.98 139.50 

Protocol B, E. coli 1.79 1.55 252.92 252.50 5050.07 

Extraction Control -1.33 0.22 0.41 0.00 0.00 

Protocol C, Blood 2.11 1.38 15.59 14.48 289.50 

Protocol C, E. coli 1.76 1.36 147.82 146.71 2934.13 

Extraction Control 2.07 0.27 1.12 0.00 0.00 

7.5.2   On-chip Characterisation of Dynabeads SILANE Kit 

The results of the manual extractions indicated that simplified adapted protocols can 

produce high DNA yields, and thus can be used for on-chip extraction process. 

Combined protocol, with simplified single processing step (combined proteinase 

K/lysis/binding step), is more suitable for automated on-chip extraction process. 

Therefore, an experiment was conducted to investigate the performance of the 

partially optimised Dynabeads SILANE manual protocol on low-volume DNA 

extraction chip. However, to reduce the impact of different variables, clamping, 

washing and elution processes were performed manually on the bench-top. The focus 

was instead given to compare the performance of the on-chip lysis/binding process 

against the manual process. 

7.5.2.1   Experimental Setup 

The experiment was performed in low-volume chip (16µl, 8 mm in diameters and 

300µm chamber depth, see section 6.4.1) and all reagents were scaled down 

relatively. Experiment was carried out in three replicates to reduce the variability and 

parallel bench-top experiments were performed using the same reagents and samples 

for comparison purpose. To investigate the recovery level (using real-time PCR 

assay), B. subtilis bacterial DNA sample was spiked into blood at approximately 

10,000 genomic copy levels. Fresh blood was used as the negative extraction control 

in addition to the standard negative control. The enzymatic incubation step was 
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increased to 10 minutes at 55°C for both on-chip and manual extraction process. At 

the end of chip-based incubation, the sample was extracted from the chip to perform 

the washing and elution process manually. The extracted DNA sample was eluted in 

10 µl elution buffer. On-chip mixing was performed using a pair of external 

magnetic coils (coil 2 ) at switching frequency of ݂  and coil current of 

155 mA. The temperature rise required for incubation process (55°C) was generated 

rapidly using DC current mode and the maintaining the temperature using switching 

approach. In addition to the standard DNA quantitation technique (UV 

spectrophotometer), a quantitative real-time PCR assay was developed to determine 

bacterial DNA extraction recovery level. Standard curves were generated 

using 10  gDNA copies and were used to calculate approximate 

concentration of recovered bacterial DNA within the extracted DNA samples (using 

1µl sample volumes).  

7.5.2.2   Results and Discussion 

Recovered DNA samples were quantitated using Nanodrop 1000 spectrophotometer 

and average values are given in Table 7.7. In comparison to the earlier chip-based 

extraction (section 7.2), no obvious clogging was observed inside the chip. This is 

because of lower volume of blood sample and better buffer conditions by keeping the 

standard ratio of buffers to the blood sample. However, minor material build-up was 

observed on the chip after washing process, which could not be removed using 

Microsol 3+ detergent washes. A minor beads trapping was observed inside the chip, 

which could be due to the coarse surface roughness of the chamber walls (made of 

PDMS). Therefore, a long washing process (1 hour plus) was performed using 0.2 M 

NaOH/1% SDS mixture to remove the built-up materials and trapped beads. Stable 

temperature required for enzymatic incubation step was obtained by magnetic coils 

with 30 sec temperature rise time.  

Chip sealing failed during the experiment and leaking was observed within the chip. 

After incubation process, it was observed that the majority of the sample and buffers 

were forced out of the chip into the tubing. This might be because of the evaporation 

of the Isopropanol (boiling point: 82.4°C) during the incubation step at 55°C 

temperature. Displaced sample was observed gradually returned to the chamber by 

cooling off the chamber. Therefore, a portion of the displaced sample was not lysed 
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efficiently and could be the cause of the minor material built-ups inside the chamber. 

The impact of partially lysed sample could be the result of lower quality of the 

extracted DNA (as shown by A260/A280 in Table 7.7). In addition, low DNA 

recovery levels with chip-based extraction could be the result of partially lysed 

sample due to the evaporation of the Isopropanol. However, DNA was extracted 

from chip-based extraction process. The efficiency of the chip-based can be 

compared to the manual extraction by normalising the yields for used blood samples 

(as shown in Table 7.7). 

To evaluate the recovery level of the spiked B. subtilis bacterial DNA into blood 

sample, a real-time assay was developed against B. subtilis microorganism. Real-

time PCR analysis was performed using Applied Biosystems 7900HT Fast Real-Time 

PCR system using a 96-well plate. The PCR was performed using 3x replicates from 

each extracted sample (blood, spiked blood and negatives) as well as the original 

spiked blood. Figure 7.1 illustrates plots of standard curves and amplification 

extracted for this experiment. Presence of B. subtilis was not observed in the PCR 

results of blood samples and negative controls. Approximate recovery levels for the 

spiked B. subtilis bacterial DNA copy numbers were calculated for chip-based and 

manual extraction process as follows: 

• Manual extraction: 135 copies/µl = 1350/10k total = 13.5% recovery 
• Chip-based extraction: 6 copies/µl = 60/10k copies total = 0.6% recovery 

Table 7.7. A comparison between chip-based and manual extraction protocols (protocol C, combined 
steps) using Dynabeads SILANE kit. The results are shown for fresh blood samples and spiked B. 

subtilis bacterial DNA into the blood. 

 
Average 

A260/A280 
Average 

A260/A230 

Average 
DNA Yield 

(ng/µl) 

Corrected 
Average 

Yield (ng/µl) 

Yield Per 
µl Blood 
(ng/µl) 

Elution Buffer 0.38 0.76 0.28 - - 

Chip DNA/Blood 1.07 0.57 1.91 1.27 2.75 

Manual DNA/Blood 1.77 1.22 3.64 3.44 7.47 

Chip Blood 1.02 0.48 1.11 0.47 1.02 

Manual Blood 1.78 1.29 4.25 4.05 8.79 

Chip Control 1.14 0.22 0.64 0.00 0.00 

Manual Control 0.85 0.05 0.21 0.00 0.00 
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Low level bacterial DNA recovery was observed with both chip-based and manual 

extraction. Although the poor recovery levels calculated for the chip-based extraction 

could be the result of Isopropanol evaporation, the results of the manual extraction 

suggests that the extraction protocol requires more optimisation. In conclusion, low 

level DNA recovery and on-chip evaporation of Isopropanol during the incubation 

step (at 55°C temperature) indicates that Dynabeads SILANE kit is not suitable for 

automated chip-based extraction process. Since AGOWA Sbeadex kit reagents 

contain Isopropanol treatment step, therefore, this kit was also eliminated for further 

processing and optimisation process was further investigated using MagaZorb 

extraction kit. 

 

 
Figure 7.1 Quantitative real-time PCR determination of B. subtilis genomic DNA copy levels within 

extracted DNA samples. a) Standard curve plot. a) Standard amplification plot. 
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7.6   Characterisation of the Magazorb DNA Mini-prep Kit 

The performance of the Dynabeads SILANE kit modified extraction protocol was 

investigated using chip-based and parallel manual extraction process. Combined 

protocol was used due to its simplicity and excellent DNA yield on bench-top 

extraction process. To determine bacterial recovery levels, blood sample was spiked 

with B. subtilis DNA sample and real-time PCR assay was used to calculate the 

recovery levels. It was observed that the evaporation of Isopropanol during 

incubation at 55°C temperature forced the sample out of the chip and caused serious 

damage to the chip sealing and bonding. Therefore, it was decided to stop further 

optimisation process using this kit and the focus was given to optimisation of 

MagaZorb kit. Two different experiments were conducted to evaluate on-chip 

bacterial DNA extraction efficiency of MagaZorb kit using simplified combined 

protocol. The efficiency of DNA binding and collection was investigated using 

spiked bacterial sample to the blood and lysis efficiency was determined using 

spiked bacterial cell sample to the blood. 

7.6.1   On-chip Binding Efficiency of MagaZorb Combined Protocol 

Efficient binding of released DNA from lysed cells is the most important parameter 

in the DNA extraction process. This parameter was investigated using spiked DNA 

sample into the blood. The efficiency of the binding was evaluated by calculation of 

the recovered DNA levels using quantitative real-time PCR. 

7.6.1.1   Experimental Setup 

The experiment was performed using low-volume chip (16µl, 8 mm in diameters and 

300µm chamber depth, see section 6.4.1) and all reagents were scaled down 

relatively (as given in Table 7.8). Experiment was carried out in three replicates to 

reduce the variability and parallel manual bench-top extraction was performed using 

the same reagents and samples for comparison purpose. Chip decontamination 

process was performed using long washing process (1 hour plus) using 0.2 M 

NaOH/1% SDS mixture. Bacterial DNA sample (B. subtilis) was spiked into the 

blood at approximately 10,000 copy levels. Fresh blood was used as the negative 

extraction control in addition to the standard negative control. The enzymatic 
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incubation step was performed in 10 minutes at 56°C for both on-chip and manual 

extraction process. The required temperature was generated and maintained using the 

external magnetic coils and attached temperature sensor. Chip-based washing and 

elution steps were performed manually, outside of the chip, by transferring the 

sample to the eppendorf tubes. The extracted DNA sample was eluted in 10 µl 

elution buffer. On-chip mixing was performed using a pair of external magnetic coils 

(coil 2 ) at switching frequency of ݂  and coil current of 155 mA. All 

chip-based fluid handling process was performed manually using Hamilton syringes 

(25 µl and 100 µl syringes). 

7.6.1.2   Results and Discussion 

In addition to the standard DNA quantitation technique (UV spectrophotometer), a 

quantitative real-time PCR assay was developed to determine bacterial DNA 

extraction recovery levels. Standard curves were generated using 10  gDNA 

copies and were used to calculate approximate concentration of recovered bacterial 

DNA within the extracted DNA samples (using 1µl sample volumes). 

Table 7.9 shows the results of DNA quantitation using Nanodrop 1000 

spectrophotometer for both manual and chip-based extraction process. These results 

were calculated as the average of the multiple measurements. Both chip-based and 

manual extractions produced high quality DNA samples, as shown by A260/A280 

index. As it was expected, chip-based extractions produced higher yields in 

comparison to the manual extractions (average of 13.63 ng/µl to 9.49 ng/µl). This is 

because of higher surface to volume ratio and continuous active mixing process. 

Table 7.8. The volumes of MagaZorb kit reagents scaled down for 16 µl total volume of chip. 

Component Standard Protocol Volumes Scaled Protocol Volumes 

Proteinase K 20 µl 0.34 µl 

Blood/sample 200 µl 3.4 µl 

Lysis Buffer 200 µl 3.4 µl 

Binding Buffer 500 µl 8.5 µl 

MagaZorb Beads 20 µl 0.34 µl 

Wash Buffer 2 × 1 m1 2 × 17 µl 

Elution Buffer 200 µl 10 µl 
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Table 7.9. A comparison between chip-based and manual extraction protocols (protocol C, combined 
steps) using Dynabeads SILANE kit. The results are shown for fresh blood samples and spiked blood 

with B. subtilis bacterial DNA. 

 
Average 

A260/A280 
Average 

A260/A230 

Average 
DNA Yield 

(ng/µl) 

Corrected 
Average 

Yield (ng/µl) 

Yield Per 
µl Blood 
(ng/µl) 

Elution Buffer -0.15 -1.22 -0.05 0.00 0.00 

Chip DNA/Blood 1.53 0.24 12.79 6.30 18.54 

Chip Blood 1.86 0.33 10.28 3.80 11.18 

Average Chip 1.69 0.28 11.12 4.63 13.63 

Chip Control 2.12 0.45 6.48 0.00 0.00 

Manual DNA/Blood 2.48 0.32 6.28 3.09 9.09 

Manual Blood 2.55 0.45 6.55 3.37 9.90 

Average Manual 2.52 0.39 6.41 3.23 9.49 

Manual Control 1.87 0.48 3.19 0.00 0.00 

A real-time PCR assay was developed against B. subtilis microorganism to evaluate 

the recovery level of the spiked B. subtilis bacterial DNA into blood sample. Real-

time PCR analysis was performed using Applied Biosystems 7900HT Fast Real-Time 

PCR system using a 96-well plate. The PCR plate was seeded using 3x replicates of 

each extracted sample, the original spiked blood and the standard DNA samples. 

Figure 7.2 shows plots of standard curves, standard amplification and sample 

amplification, extracted for this experiment. Presence of B. subtilis was not observed 

in non-spiked blood samples and negative controls. Approximate recovery levels for 

the spiked B. subtilis bacterial DNA copy numbers were calculated for chip-based 

and manual extraction process and are given in Table 7.10. A very similar recovery 

levels were obtained with both extractions, 30.19% with chip-based and 38.08% with 

manual extraction process. 

Table 7.10. Quantitative real-time PCR determination of B. subtilis genomic DNA copy levels within 
extracted DNA samples. 

 Average 
Quantity 

Standard 
Deviation 

Total DNA in 
10 µl Vol. % DNA Recovery 

Chip DNA/Blood 301.91 49.69 3019.10 30.19 

Manual DNA/Blood 380.76 23.02 3807.62 38.08 
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Figure 7.2.  Quantitative real-time PCR determination of B. subtilis genomic DNA copy levels within 

extracted DNA samples. a) Standard curve plot. b) Standard amplification plot. c) Sample 
amplification plot. 
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By comparing the above results (Table 7.9 and Table 7.10), higher total DNA yield 

was obtained with chip-based extraction using UV spectrophotometer. While a 

similar result was expected from quantitative real-time PCR, slightly lower yield was 

calculated using real-time PCR evaluation. The difference between DNA yield of the 

chip-based and manual extractions can be explained by two main reasons. The first 

reason is the higher bead-loss ratio in chip-based extraction due to the bead-trapping 

inside the chamber and tubing during sample handling. In addition, the lower sample 

ratio of the chip-based extraction (due to the trapped air-pockets) could be another 

cause of lower DNA recovery. The lower total yield of manual extraction (38%) 

indicates that the binding step might not be efficient in sub-optimal buffer conditions 

of the combined protocol. In addition, the difference between the average number 

and length of blood genomic DNA molecules to the spiked bacterial DNA sample 

could be another reason of lower binding efficiency. The average size of human 

genomic DNA is in the order of 100 M base-pairs, which is 23 times bigger than that 

of a typical B. subtilis bacterial DNA length (4.2 M base-pairs). Since DNA 

molecules are negatively charged, different DNA sizes indicates that inter-molecular 

repulsive forces (Coulomb force) can reduce the binding efficiency of the bacterial 

DNA to the beads.    

7.6.2   On-chip Lysis Efficiency of MagaZorb Combined Protocol 

In addition to the evaluation of the DNA-bead binding, lysis efficiency was 

investigated using spiked bacterial cells into the blood sample. The experimental 

setup was kept similar to the previous experiment (section 7.5.1.1). Approximately 

100,000 copy numbers of B. subtilis bacterial cells culture were spiked into the blood 

sample. On-chip and parallel manual extractions were performed in three replicates 

using blood and negative extraction controls. The ratios of the sample and reagents 

were used as given in Table 7.8. The recovered DNA samples were analysed using 

Nanodrop 1000 spectrophotometer and quantitative real-time PCR techniques and 

the results are shown in Table 7.11 and Table 7.12. 

The results of Nanodrop quantitation (Table 7.11) show excellent DNA yields with 

chip-based extraction and manual extraction. As expected, chip-based extraction 

seems to be more efficient due to the active continuous magnetic mixing. Both 

extractions produced high quality DNA sample, as it is shown by A260/A280 index. 
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Recovered DNA samples were analysed using quantitative real-time PCR and the 

average results are given in Table 7.12.  No trace of bacterial DNA was found in the 

negatives and blood samples. The actual cell concentration was determined by PCR 

as 97,664 cells/µl blood, and the DNA recovery calculations were corrected based on 

this concentration. Plots of standard curves, standard amplifications and sample 

amplifications are shown in Figure 7.2. Manual extraction process shows higher 

bacterial DNA recovery in comparison to the chip-based extraction, which is in 

agreement with the previous experimental results. These results indicate that the 

combined extraction protocol is not optimised for the Gram positive bacterial 

extraction process. Although Gram positive cells are more resistant to the lysis 

buffer, with comparison to DNA binding results (Table 7.10), the main reason for the 

low recovery rates could be the binding efficiency.   

Table 7.11. A comparison between chip-based and manual extraction protocols (protocol C, 
combined steps) using MagaZorb kit. The results are shown for fresh blood samples and spiked blood 

with B. subtilis bacterial cells. 

 
Average 

A260/A280 
Average 

A260/A230 

Average 
DNA Yield 

(ng/µl) 

Corrected 
Average 

Yield (ng/µl) 

Yield Per 
µl Blood 
(ng/µl) 

Elution Buffer -0.87 0.61 0.35 - - 

Manual Blood 1.84 0.54 5.59 3.31 9.74 

Manual Cells/Blood 2.22 0.58 7.44 5.16 15.18 

Average Manual 2.03 0.56 6.52 4.24 12.46 

Manual Control 2.20 0.36 2.28 0.00 0.00 

Chip Blood 1.70 0.39 8.46 6.05 17.79 

Chip Cells/Blood 2.17 0.51 8.71 6.30 18.53 

Average Chip 1.93 0.45 8.58 6.18 18.16 

Chip Control 1.65 0.34 2.41 0.00 0.00 

Table 7.12. Quantitative real-time PCR determination of B. subtilis genomic DNA copy levels within 
extracted DNA samples. 

 Average 
Quantity 

Standard 
Deviation 

Total DNA in 
10 µl Vol. % DNA Recovery 

Manual Cells/Blood 6936.01 1021.45 69360.08 20.89 

Chip Cells/Blood 3267.80 197.56 32677.99 9.84 



210 
CHAPTER 7 – BIOLOGICAL VALIDATIONS 

 

Figure 7.3.  Quantitative real-time PCR determination of B. subtilis genomic DNA copy levels within 
extracted DNA samples. a) Standard curve plot. b) Standard amplification plot. c) Sample 

amplification plot. 
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Figure 7.4. A photograph of the microchamber before and after lysis step indication air-pocket 
trapping issues. The olive green colour indicates blood lysis accomplishment. 

In addition to the above problems (low binding efficiency and sub-optimal buffer 

conditions), the chip-based results were influenced by air-pocket trapping inside the 

chamber. Figure 7.4 shows a photograph of the filled microchamber before and after 

lysis step with small tapped air-pockets. On average, occupied volume of air-pockets 

was measured as large as 10% of the total chamber volume, during the extraction 

process. 

7.7   Optimisation of the Magazorb Kit by On-chip 
Clamping and Elution steps Using Two-step Protocol 

As shown in the above section, combined extraction protocol produced low DNA 

recovery rates using B. subtilis bacterial sample with both chip-based and manual 

extractions. The main reason for such low recovery rates could be the sub-optimal 

conditions of the lysis buffer. Therefore, an experiment was conducted to improve 

the lysis conditions using two-step protocol, which has separate lysis and binding 

steps. In addition, to fully investigate the efficiency of the extraction chip, the whole 

extraction process was performed inside the chip including cell lysis, DNA binding, 

bead clamping/washing and elution steps. The efficiency of lysis step was 

investigated using two different bacterial cell cultures spiked into the blood sample, 
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B. subtilis (Gram-positive) and E.coli (Gram-negative). Binding efficiency was 

investigated using spiked DNA (pSTI plasmid DNA) into the blood sample. 

7.7.1   Experimental Setup 

The experiment was performed using low-volume disposable chips (25µl, 8 mm in 

diameters and 500µm chamber depth, see section 6.4.1) and all reagents were scaled 

down relatively (as shown in Table 7.13). Two different Bacterial cell cultures (B. 

subtilis and E. coli) were spiked into the blood at approximately 100,000 copy levels. 

Prior to the spiking process, a real-time PCR assay was developed in order to 

calculate the approximate concentration of the cell cultures. In addition, a bacterial 

DNA (pSTI plasmid DNA) was also spiked into the blood at approximately 10,000 

copy levels. Fresh blood was used as the negative extraction control in addition to the 

standard negative control (water sample). Spiked blood experiment was carried out 

in five replicates to reduce the variability and a parallel manual bench-top extraction 

was also performed using the same reagents and samples for comparison purpose. 

Two-step protocol was used for extraction and the enzymatic incubation steps were 

performed in two separate steps, 5 minutes lysis step at 56°C and 5 minutes binding 

step at room temperature. However, due to the temperature rise during magnetic 

mixing/binding step, the temperature was kept below 45°C. The required temperature 

was generated and maintained using the external magnetic coils and attached 

temperature sensor. Chip-based washing and elution steps were performed inside the 

chip.  

Table 7.13. The volumes of MagaZorb kit reagents scaled down for 25 µl total volume of chip. 

Component Standard Protocol Volumes Scaled Protocol Volumes 

Proteinase K 20 µl 0.4 µl 

Blood/sample 200 µl 5.4 µl 

Lysis Buffer 200 µl 5.4 µl 

Binding Buffer 500 µl 13.3 µl 

MagaZorb Beads 20 µl 0.5 µl 

Wash Buffer 2 × 1 m1 2 × 100 µl 

Elution Buffer 200 µl 25 µl 
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The whole chip-based extraction process is summarised as follows: 

• Introduction of the spiked blood sample and lysis buffer into the chip using a 

25µl Hamilton syringes. 

• 6 minutes incubation of blood/lysis buffer at 56°C. 

• Introduction of magnetic beads suspended in binding buffer to the lysed 

blood sample inside the chip using a 25µl Hamilton syringes. 

• 4 minutes incubation of the lysed blood/beads/binding buffer with active 

magnetic mixing. The mixing was performed using two external heatsink 

coils (coil 2 ൈ 4) at switching frequency of ݂ ൌ  and coil current of 200 ݖܪ 1

mA. 

• Performing the washing process with on-chip clamping of the magnetic beads 

using the bottom coil. The clamping current was increased to 250 mA and the 

washing buffer was introduced to the chip using a 100µl Hamilton syringe. A 

total of 200µl washing buffer was dispensed in two steps. 

•  Washing buffer was removed using a 25µl Hamilton syringe, while magnetic 

beads remained inside the chip under magnetic clamping force. 

• 25µl elution buffer was introduced into the chip using a 25µl Hamilton 

syringe and switching magnetic field was used to mix the DNA-attached 

beads with the elution buffer. This process was performed in 10 minutes. 

• Elution buffer (contained suspended extracted DNA molecules) was removed 

from the chip using a 25µl Hamilton syringe, while the magnetic beads 

remained clamped inside the chip. 

This experiment was repeated another time on different day with similar extraction 

conditions.  

7.7.2   Results and Discussion 

A very successful chamber filling was obtained during adding sample/lysis buffer 

and beads/binding buffer. However, minor air-pocket trapping was observed during 

adding binding buffer. This is because of the trapped air-pockets inside the tubing 

(although inlet tubing was shortened to the length of approximately 2cm to reduce 
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this problem). A successful temperature control was obtained using the bottom coil, 

which resulted in a very fast and complete lysis process. As a result of efficient 

magnetic mixing, a very homogeneous mixture of the binding buffer and lysed blood 

was also observed. A very efficient chip clamping process was achieved during both 

washing process and removing the sample after elution step. However, a percentage 

of the beads were lost (on average <10%) during the clamping and washing process. 

Figure 7.5 illustrates a series of screen-shots captured from different steps during 

extraction process describing lysis progress, magnetic mixing progress, beads 

clamping/washing process and elution step.  

Figure 7.6 illustrates a series of captured images describing the air-pocket trapping 

inside the chamber after adding the binding buffer (Figure 7.6a, 7.6b) and elution 

buffer (Figure 7.6c). Another problem with chip-based extraction was the trapped 

elution buffer inside the chip (Figure 7.6d). This problem was observed once during 

the experiment, and it is believed that this may be due to microchamber surface 

imperfection. In addition to the above problems, the volume of different 

microchambers was calculated to be approximately between 20µl to 25µl. This 

variation in volume is thought to be due to fabrication process. 

 

Figure 7.5. A series of screen-shots captured from different steps during chip-based extraction 
process (describing: lysis progress, magnetic mixing progress, beads clamping/washing process and 

elution step). 
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Nevertheless, very high DNA yields were obtained using both extraction methods, 

which describe the extraction efficiency using two-step protocol. 

 

Figure 7.6. A series of screen-shots describing the air-pocket trapping inside the chamber after adding 
the binding buffer (a, b) and elution buffer (c) as well as the trapped elution buffer inside the chip. 

7.7.2.1   Quantitation Using UV Spectrophotometer 

Extracted DNA sample was analysed using standard DNA quantitation technique 

(UV spectrophotometer) to evaluate the total DNA yields and purity factors. The 

averaged results of Nanodrop analysis are shown in Table 7.14 for both manual and 

chip-based extractions (data is given for two different extractions). These 

measurements were performed in three replicates for each sample and the device was 

blanked with the elution buffer. Both extractions produced good quality DNA, as 

shown by A260/A280 quality index. However, DNA quality in manual extraction is 

higher than the chip-based extraction. It was observed that the device is highly 

sensitive to the residual washing buffer inside the sample during extraction process. 

This sensitivity can affect the DNA yield measurements significantly (as shown in 

DNA yield of chip extraction control). Therefore the measurements were corrected 

based on the extraction controls. Another problem with this quantitation technique 

was the sensitivity of the device to the presence of magnetic beads inside the sample 

(it can be seen as high DNA yield in chip/blood (1) sample in Table 7.14). 
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 spiked blood with 

 

Table 7.14. A comparison between chip-based and manual extraction protocols (protocol B, Two-
step) using MagaZorb kit. The results are shown for fresh blood samples and

bacterial cell cultures and free DNA sample. 

Average 

A260/A280 
Average 

A260/A230 

Average 
DNA Yield 

(ng/µl) 

Corrected 
Average Yield 

(ng/µl) 

Standard 
Deviation 

Manual Cells/Blood (1) 2.13 0.8 15.63 12.42 6.55 

Manual Blood (1) 1.96 0.64 8.43 5.23 0.10 

Manual Cells/Blood (2) 2.35 0.66 1.23 8.24 5.03 

Manual Blood (2) 2.47 0.59 6.46 3.25 0.12 

Manual Control 2.8 0.59 3.20 0.00 0.00 

Chip Cells/Blood (1) 1.61 0.57 31.14 8.55 6.74 

Chip Blood (1) 1.51 1.09 88.16 65.57 41.43 

Chip Cells/Blood (2) 1.68 0.66 29.27 6.68 6.44 

Chip Blood (2) 2.10 0.44 24.39 1.80 0.44 

Chip Control 1.69 0.90 22.59 0.00 0.00 

7.7.2.2   Quantitation U  Real-ti CR As

In addition to the standard DNA quantitation technique (UV spectrophotometer), 

were developed to determine 

bacterial DNA extraction recovery levels using Applied Biosystems 7900HT Fast 

iginal cell cultures 

(used in the previous qPCR experiments) were replaced with 1:1000 dilution ratios to 

sing me P say 

three different quantitative real-time PCR assay 

Real-Time PCR system. Determination analysis was performed in separate 

experiments using three 384-well plates for three microorganisms, B. subtilis, E. coli 

and pSTI. Standard curves were generated using 10଺ െ 10ଵ gDNA copies and were 

used to calculate approximate concentration of the recovered bacterial DNA within 

the extracted DNA samples (using 2µl sample volumes).  

The PCR plates were setup using 3x replicates of each extracted sample and the 

standard DNA samples. The regular 1:100 dilution ratios of the or

decrease the effect of PCR inhibitors. In addition, replicates of the cell cultures 

(1:1000 dilutions) were increased to 9x and pooled averaged results were used to 

determine the extracted DNA recovery levels of B. subtilis and E. coli 

microorganisms. This process can increase the accuracy of DNA recovery 
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 plots of the standard and the amplification curves extracted for B. 

subtilis microorganism. Presence of B. subtilis was not observed in non-spiked blood 

he approximate genomic equivalent of spiked 

ns, which indicate comparable extraction efficiencies in both 

ood sample using two different approaches, DNA-based and cell-based. 

 
Sample 

Average 
genome 

Genome eq. 
per µl culture Genome eq / 5.4 µl 

blood sample 

calculations. In a different approach, DNA recovery levels were calculated based on 

the extracted DNA samples from the original cell cultures used for spiking 

experiments. The extraction process was performed using the QIAamp DNA mini 

kit. Pooled averaged results of 9x replicates were used to estimate the extracted DNA 

recovery levels. 

B. subtilis Assay Data: 

Figure 7.7 shows

samples and negative controls. T

bacterial cell concentration was calculated using these two above approaches (using 

original cells culture and extracted DNA from cell cultures). These calculations are 

shown in Table 7.15, and are given for two different experiments. Estimated 

recovery levels for the spiked B. subtilis bacterial cells were calculated for chip-

based and manual extraction process based on the above two approaches and are 

given in Table 7.16.  

Excellent DNA recovery levels were obtained with both chip-based and manual 

extraction process. Similar DNA recovery levels were obtained with both manual 

and chip-based extractio

techniques. The calculation of the recovery levels based on the extracted DNA 

approach show higher recovery levels in comparison with the cell-based calculations. 

These results indicate significant improvement in extraction efficiency using two-

step protocol.  

Table 7.15. Quantitative real-time PCR determination of approximate B. subtilis genome equivalent 
within bl

equivalents stock 

Experiment 1 
10ହ Extracted DNA 1 23866.64 2.39 ൈ 10଺ 1.60 ൈ

Cells 1 8940.78 4.47 ൈ 10଺ 2.99 ൈ 10ହ 

Experiment 2 
Extracted DNA 2 12857.71 1.2 ଺ 9 ൈ 10 6.25 ൈ 10ସ 

Cells 2 10561.26 5.28 ൈ 10଺ 2.57 ൈ 10ହ 
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Table 7.16. Quantitativ eterm he recovery levels for the spiked B. subtilis 
into using t approaches, DN -based and cell-bas

To ity % Recovery % Recovery  

e real-time PCR d
 the blood samples 

ination of t
two differengenomic DNA A ed. 

Spiked Blood Sample Average (25 µl stock)  (DNA-based) (Cell-based) 

tal quant

Chip Cells/Blood (1) 1289.36 64467.81 40.34 21.54 

Manual Cells/Blood (1) 1512.26 75613.01 47.31 25.26 

958.04 47902.15 76.66 18.67 Chip Cells/Blood (2) 

Manual Cells/Blood (2) 897.81 44890.40 71.84 17.49 

 

 

 

Figure 7.7.  Quantitative real-time PCR determination of B. subtilis genomic DNA copy levels within 
extracted DNA samples. a) Standard curve plot. b) Amplification plot.  
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E.coli Assay Data: 

Figure 7.8 shows plots of the standard and the amplification curves extracted for E. 

coli microorganism. Low contaminations (<1%) were observed with non-spiked 

blood and negative controls due to reagent related issues. The approximate genomic 

equivalent of spiked bacterial cell concentration was calculated using the above 

approaches, cell-based and DNA-based. These calculations are shown in Table 7.17, 

and are given for two different experiments. Estimated recovery levels for the spiked 

E. coli bacterial cells were calculated for chip-based and manual extraction process, 

and are given in Table 7.18. Calculations show very high DNA recovery levels with 

both chip-based and manual extraction process. Higher DNA recoveries were 

obtained using cell-based approach in comparison with the DNA-based approach.  

extracted DNA samples. a) Standard curve plot. b) Amplification plot. 

 

Figure 7.8. Quantitative real-time PCR determination of E. coli genomic DNA copy levels within 
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Table 7.17. Quantitative real-time PCR determination of approximate E. coli genome equivalent 
within blood sample using two different approaches, DNA-based and cell-based. 

 
Sample 

Average 
genome 

equivalents 

Genome eq. 
per µl culture 

stock 

Genome eq / 5.4 µl 
blood sample 

Experiment 1 
Spiked Blood 1 43187.04 4.32E+06 4.34E+05 

Cells 1 5641.14 2.82E+06 2.83E+05 

Experiment 2 
Spiked Blood 2 45160.76 4.52E+06 1.82E+06 

Cells 2 6279.04 3.14E+06 1.27E+06 

Table 7.18. Quantitative real-time PCR determination of the recovery levels for the spiked E. coli 
genomic DNA into the blood samples using two different approaches, DNA-based and cell-based. 

Spiked Blood Sample Average 
Total 

quantity (25 
µl stock) 

% recovery 
(DNA-based) 

% recovery (Cell-
based) 

Chip Cells/Blood (1) 2583.68624 129184.31 29.78 45.60 

Manual Cells/Blood (1) 5469.4323 273471.62 63.05 96.53 

Chip Cells/Blood (2) 20339.20643 1016960.32 55.75 80.19 

Manual Cells/Blood (2) 14985.8416 749292.08 41.08 59.09 

pSTI Assay Data: 

Figure 7.9 illustrates plots of the standard and the amplification curves extracted for 

p

DNA sample were calculated for chip-based and manual extraction process and are 

gi -

based and m  

anual extractions in son with -based extraction.  

anti R de  of the els for the  
mid DNA lood sam

Spiked Blood Sampl T ity (25 % r

STI Plasmid DNA sample. Estimated recovery levels for the spiked pSTI plasmid 

ven in Table 7.19. Calculations show poor DNA recovery levels with both chip

anual extraction process. Higher DNA recoveries were calculated with

m compari  the chip

Table 7.19. Qu tative real-time PC termination recovery lev  spiked pSTI
plas  into the b ples. 

e Average otal quant µl stock) ecovery 

C 1) 097.11 1hip Cells/Blood ( 21.94 1 0.97 

Manual Cells/Blood (1) 53.80 2689.94 26.90 

Chip Cells/Blood (2) 10.12 505.77 5.06 

Manual Cells/Blood (2) 38.49 1924.52 19.25 



221 
CHAPTER 7 – BIOLOGICAL VALIDATIONS 

titative real-t eterminatio  plasmid DNA copy l  within 
d DNA s. a) Standard c b) Amplification plo

Quantitative results of UV spectrophotometry and real-time PCR assays indicate that 

the efficiency of the DNA extraction process using two-step protocol has increased 

significantly in comparison with the combined extraction protocol. The main reason 

is the optimised buffer conditions of two-step protocol with separate lysis and 

binding steps. In addition, elution buffer was increased to 25µl, which also improved 

the DNA resuspension efficiency. The results of DNA recovery levels using real-

time PCR indicated comparable results between chip-based and manual extraction 

process for two different spiked bacterial cell cultures (B. subtilis, Gram positive and 

E. coli, Gram negative). Lower recovery rates obtained with pSTI plasmid DNA 

 

Figure 7.9. Quan ime PCR d n of pSTI evels
extracte  sample urve plot. t. 
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sample can be explained with respect to its low spiking ratio. A similar low DNA 

recovery level was previously obtained using combined extraction protocol with 

spiked B. subtilis at concentration of 10,000 copy numbers (Table 7.10, section 

7.6.1). This spiking ratio (10,000) is an order of magnitude less than the spiking ratio 

of the B. subtilis and E. coli bacterial cell cultures (>100,000 copy numbers), which 

indicates the less binding probability of the plasmid DNA to the magnetic beads. In 

conclusion, chip-based extraction seems to be more efficient considering the higher 

bead loss and lower sample used (due to the smaller chamber volumes) in 

comparison with the manual extraction process. Therefore, higher efficiency levels 

can be obtained with the chip-based extraction by improving the beads clamping 

process and reducing the air-pocket trapping problem.  

7.8   Summary 

In this chapter, a series of preliminary biological experiments were conducted in 

order to investigate the efficiency of the designed DNA extraction and purification 

device. In order to achieve this, a more automation friendly extraction protocol was 

necessary. An experiment was performed using commercially available magnetic 

bead-based extraction kit (Dynabeads DNA Direct Universal) with simple and rapid 

extraction protocol. This experiment was aimed to investigate the impact of reducing 

the ratio of reagents to the blood sample volume. The results of the experiment 

indicated a very poor DNA yield using modified protocol. Lysis efficiency was very 

low with major chip washing problem due to the build up of the materials inside the

ch

Therefore, a series of experiments were performed using two magnetic bead-based 

 

amber.  

DNA extraction kits (Dynabeads SILANE Genomic DNA kit and MagaZorb DNA 

Mini-prep Kit) in order to adapt a suitable extraction protocol with fewer steps and 

less processing time. Two modified protocols were investigated, two-step protocol 

(with combined proteinase k/lysis step and binding step) and combined protocol 

(with single proteinase k/lysis/binding step). The results of the modified protocols 

were compared with the standard manufacturer’s protocols as well as the result of a 

column-based extraction kit (QIAamp DNA Mini Kit). Both bead-based extraction 

kits produced high DNA yields with combined and two step protocols from whole 

blood samples.  
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Therefore, MagaZorb kit was selected to perform the optimisation process. An 

experiment was conducted to investigate the efficiency of the DNA binding and cell 

extraction protocol. Spiked bacterial DNA sample (B. Subtilis, 

 the blood sample. Free DNA sample (pSTI plasmid DNA) was also 

 

The optimisation process was further investigated using Dynabeads SILANE Kit, 

which had higher blood sample/reagents volume ratio.  Chip-based extraction 

process was performed using combined protocol with fresh blood samples and spiked 

B. subtilis bacterial DNA samples. The washing process and elution step was 

performed outside the chip to reduce the complexity of the extraction. The result of 

this experiment indicated that Dynabeads SILANE kit is not suitable for the chip-

based extraction. The main reason was the evaporation of the Isopropanol (included 

in the binding buffer) during enzymatic incubations at 55°C. The evaporation of the 

Isopropanol forced the sample out of the chip toward the sump and caused serious 

damage to the chip.  

lysis using combined 

10,000 copies) and spiked bacterial cell (B. Subtilis, 100,000 copies) into the blood 

sample were used to investigate the efficiency of the binding and lysis process 

respectively. High DNA recovery levels were obtained from both manual and chip-

based extractions with spiked DNA samples. However, low DNA recovery levels 

were obtained from both extractions with spiked cells samples. However, the lysis 

process was not efficient with Gram positive bacterial cells using combined 

extraction protocol.  

Optimisation process was further investigated using two-step protocol and two 

different bacterial cell cultures (B. subtilis, gram positive and E. coli, gram negative) 

spiked into

spiked into the blood sample to investigate the binding efficiency at lower level 

concentration. In order to fully evaluate the efficiency of the chip-based extraction, 

all extraction steps were performed inside the chip. These steps are: cell lysis, DNA 

binding/magnetic mixing, beads clamping/chip washing process and finally, the 

elution step. The results of this experiment indicated excellent DNA yields and 

recovery with both chip-based and manual extractions from both spiked cell cultures. 

These results indicated that two-step protocol is more suitable for chip-based 

extraction. However, chip-based extraction efficiency can be further improved by 

increasing the efficiency of the magnetic bead clamping, better control of fluidic 

processes and washing process.



 
 
 

CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

8.1   Conclusion 

A DNA extraction and purification chip was designed and developed to be used with 

whole blood. To achieve this, most of the available literature was reviewed and the 

focus was given to the magnetic beads-based mixing method. This method was 

selected based on its outstanding advantages. Magnetic bead-based extraction kits are 

widely used for DNA extractions and are commercially available from different 

suppliers. The surface of these magnetic beads is positively charged to attach the 

negatively charged DNA molecules. Application of non-uniform internal and 

external magnetic field can be used to efficiently mix the bulk of beads inside the 

lysed blood in order to collect the released DNA molecules. The non-magnetic 

property of biological entities indicates that the magnetic force can be applied only 

on the DNA-attached beads. Therefore, magnetic bead/DNA complex can be 

clamped inside the chip in order to perform the washing process (removal of cell 

debris and other blood products).  

Different possible geometries were investigated for design of magnetic field source. 

Among various conductor arrangements, circular spiral coil was shown to produce 

stronger magnetic force pattern. Two different scenarios were investigated in 
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parallel, integrated internal electrode design and external coil design. The Numerical 

simulation techniques were employed to investigate and design using a commercially 

available finite element simulation package, COMSOL Multiphysics. Both internal 

and external magnetic coil arrangements were optimised based on the geometrical 

and physical parameters. It was shown that integrated internal coil arrangement was 

not suitable for large-scale extraction process due to the fabrication limitations. 

Magnetic mixing was further developed by introducing more efficient magnetic bead 

mixing patterns. In this method, solenoidal and quadrupolic field patterns were 

generated by alternating the current direction and changing the state of magnetic 

field from switching mode to static mode. More efficient dynamic mixing patterns 

can be achieved using combined switching, quadrupolic and solenoidal field patterns. 

Developed magnetic model is a generic model and can be used to design microfluidic 

nucleic acid extraction chips, which use switching magnetic field for mixing. 

A preliminary magnetic bead tracking technique was used to investigate the 

efficiency of designed magnetic coils. A Matlab code was developed to generate the 

bead trajectories using COMSOL-Matlab interlink. This generic code can be used to 

perform the bead trajectory study using different chamber configurations in 

combination with suitable corresponding magnetic field generating electrodes. The 

maximum coil currents were calculated based on the electro-thermal equilibrium at 

the maximum coil temperature of 56°C. This temperature is necessary during 

incubation step in majority of DNA extraction kits. A target molecule capturing 

simulation was performed to investigate the efficiency of the designed mixer for 

capturing the DNA molecules inside the microchamber (chip). It was shown that 

theoretically, a maximum efficiency of 99% was achievable using the external 

magnetic coil arrangement. The  

A series of experiments were conducted to validate the accuracy of the simulations 

and extract the optimised parameters. These parameters were the frequency of the 

mixing, coil current, magnetic field strength, coil temperature and the efficiency of 

the bead clamping as well as beads trajectories. Various types of coil bobbins were 

constructed and wound and their magnetic field strength was measured using a 

magnetometer. Optimised coil current was obtained for different coils and at 

different operation modes, switching mode and DC mode. Self heatsink bobbins 

were designed and their performance was tested to increase the heat dissipation ratio. 
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Another advantage of the heatsink coil was the increased current capacity of the coil, 

which subsequently increased the strength of magnetic field. However, the main 

advantage was the increased heat dissipation ratio during bead clamping process 

using DC current mode.  

Bead trajectory study was investigated inside a glass capillary tube using capillary 

test-rig. Various magnetic beads, coil currents and switching frequencies were 

investigated. The result of these experiments indicated that the overall behaviour of 

the beads is in close agreement with the simulation results. However, it was observed 

that magnetic beads tend to chain up that consequently increased the induced 

magnetic field and mixing frequency. Different magnetic field patterns were applied 

and it was shown that application of quadrupolic field pattern can easily unpile the 

clump of magnetic beads toward the coil outer edges.  

A circular microchamber with side-wall porting was fabricated to perform some 

fluidic experiments and investigate the bead clamping efficiency. It was observed 

that air-pocket trapping is the main issue of chamber filling process. This is because 

of dominant capillary forces inside a chamber with large width to depth ratio. 

However, it was shown that vertical filling method can reduce this problem 

significantly. The efficiency of bead clamping was investigated using various 

magnetic beads at different clamping currents and fluid velocities. The results of this 

experiment indicated that relatively high clamping current is necessary to achieve 

efficient clamping process. It was observed that injection of air bubbles into the 

chamber during washing process can disturb the clumped beads and might reduce the 

clamping efficiency significantly. 

A series of biological experiments were conducted to validate the efficiency of the 

designed chip by extracting released DNA molecules from lysed cells. The 

investigation was first carried out using more automation friendly extraction kit 

(Dynabeads DNA Direct Universal, Invitrogen Corporation). The main advantage of 

this extraction kit is the simple and rapid extraction protocol. The main disadvantage 

of this kit is the very high kit reagents to blood sample volume ratio (20:1). 

Therefore, an experiment was conducted to investigate the impact of different 

sample/regents ratios on the extraction efficiency. The experimental results indicated 

very poor DNA recovery level and yield with both modified protocol and 

manufacturer’s standard protocol. Obtained results were analysed using UV 
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spectrophotometer and Picogreen DNA quantitation techniques. Therefore, the 

extraction performance was further investigated using two different magnetic bead-

based extraction kits (MagaZorb DNA Mini-Prep Kit, Promega Ltd. and Dynabeads, 

SILANE Genomic DNA Kit, Invitrogen Corporation). Since these kits were 

designed for manual bench-top extraction process, their protocols were not suitable 

for automated chip-based process. Therefore, optimisation experiments were 

conducted to investigate the impact of different modified protocols on the efficiency 

of the extraction. Two modified protocols were examined and the results were 

compared to the standard manufacturer’s protocol as well as the result of standard 

column-based extraction kit (QIAamp DNA Mini Kit, Qiagen). The preliminary 

optimisation results indicated excellent DNA yields from both modified protocols 

and kits using whole blood sample. The results were analysed using quantitative UV 

spectrophotometry method. Dynabeads SILANE kit was selected for its outstanding 

DNA yields and higher sample to reagents volume ratio. A chip-based DNA 

extraction was performed using spiked bacterial DNA sample into the blood. The 

results indicated very poor DNA recovery from both manual and chip-based 

extractions. It was observed that evaporation of Isopropanol during incubation step at 

55°C forced the sample out of the chip and created serious damage to the chip 

bonding. Nevertheless, manual extraction also showed a very poor bacterial DNA 

recovery rate (13.5%). Therefore, further optimisation was carried out using 

MagaZorb extraction kit. 

A chip-based DNA extraction efficiency was investigated using combined protocol 

of the MagaZorb kit. Binding efficiency was investigated using spiked bacterial 

DNA sample into the blood and lysis efficiency was investigated using spiked 

bacterial cell into the blood. The results of binding experiment showed low bacterial 

DNA recovery levels (30-38%) with both chip-based and manual extractions. Lysis 

efficiency was also calculated very low using spiked bacterial cells (10-20%). The 

low bacterial DNA recovery levels can be explained as follows: 

• Sub-optimal buffer conditions: Lysis and binding buffers were not optimised 

in the combined protocol. In the standard protocol, these steps are separated 

and in different incubation temperatures. However, in the combined protocol 

these steps were performed simultaneously at 56°C. 
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• Gram positive bacterial sample: The bacterial cell culture that was used in 

this experiment (B. subtilis) was gram positive, which has hard cell 

membrane and resist the lysis buffer.  

• Bead-loss: A part of low recovery is related to the loss of beads during 

washing process. However, this ratio was higher in the chip-based extraction 

as some beads stick to the chip surface and tubing.  

• Trapped air-pockets: This problem was observed in the chip-based extraction, 

which reduced the volume of the sample and consequently reduced the 

recovery rates.  

In addition, low recovery rates from spiked DNA samples indicated that there might 

be a competition between small-sized bacterial DNA and large-sized human genomic 

DNA molecules. This might be because of the repelling forces between negatively 

charged DNA molecules.  

Due to the low DNA recovery obtained with both chip-based and manual extractions 

using combined protocol, extraction efficiency was investigated using two-step 

protocol. In this experiment, disposable microchips were used and the whole 

extraction process was performed inside the chip (including cell lysis, DNA binding, 

beads clamping/washing and elution step). Extraction efficiency was investigated 

with two bacterial cell cultures (B. subtilis, Gram positive and E. coli, Gram 

negative) spiked into the blood sample. Extracted DNA samples were analysed using 

quantitative UV spectrophotometer and real-time PCR assays. Excellent DNA yields 

and recovery levels were obtained with both bacterial samples with manual and chip-

based extractions. Therefore, it was concluded that two-step protocol is more suitable 

for extraction of bacterial cell cultures. The efficiency of the chip-based extraction 

can be further enhanced by improving the efficiency of the magnetic clamping. In 

this work a rapid and simple DNA extraction method was designed and developed 

using low cost micromachined microfluidic chip and its performance was 

successfully tested using non-pathogenic bacterial cell cultures spiked into the blood 

sample.  

8.1   Suggestions for Future Work 

This section focuses on making some suggestions to further extend and improve this 

research.  These suggestions are listed as follows: 
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• As discussed in Chapter 5, integrated internal coil arrangements are not 

suitable for large-volume extraction process. However, a combination of 

internal and external coil arrangements can be used to improve the magnetic 

force strength and enhance the mixing efficiency.  

• Magnetic clamping was observed to be very critical step in the chip washing 

process. The temperature rise during this step can release DNA molecules 

from the beads. More efficient cooling system is suggested to overcome this 

problem. Further improvement of heat dissipation ratio can be achieved by 

designing larger heatsinks or using a combination of conductive (heatsink) 

and convective (i.e. air flow fans) cooling system.   

• In this work, a preliminary optimisation process was conducted to modify the 

extraction protocol. This was because of lack of extraction kit suitable for 

automated chip-based extraction. Therefore, more optimisations are necessary 

to obtain a rapid and simple extraction protocol with efficient buffer 

conditions (lower reagents to sample ratio) suitable for chip-based extraction 

process.  

• The low levels recovery rates of spiked bacterial DNA samples indicated that 

there might be binding problem regarding repulsive force between blood 

genomic DNA molecules and small bacterial DNA molecules. More 

experiments are necessary to investigate this problem. However, this problem 

may be solved by increasing the number of magnetic beads or by decreasing 

the repulsive force of the genomic DNA molecules. This might be achieved 

by cutting the genomic DNA molecules using appropriate restriction 

enzymes. Shortened DNA molecules possess smaller electric charges, and 

consequently generate less repulsive forces.  

• One of the most important achievements in this work was the stabilisation of 

the required temperature rise for incubation step using external coils. This 

temperature control can be used to investigate the efficiency of the on-chip 

Isothermal Amplifications. Since this process can be performed in the same 

extraction chamber, it reduces the fluidic problems as well as fabrication 

complexity. In addition, elution step can be eliminated, as amplification 

techniques are not sensitive to the presence of magnetic beads. 
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• One of the problems observed regarding circular microchamber was the 

creation of trapped air-pockets inside the chamber. The main reason for this 

problem is the high chamber diameter to depth ratio. Sudden expansion at the 

interface between inlet tubing and the chamber body was designed to create 

chaotic pattern to increase the mixing efficiency. However this chaotic 

pattern might cause the generation of trapped air-pockets. Therefore, different 

inlet designs needs to be investigated in order to reduce this problem. 

• And finally, more biological validation tests need to be done to assess the 

reliability of the device with different non-pathogenic and pathogenic 

bacterial and viral DNA samples. More tests can be done using different 

DNA concentrations to obtain the sensitivity of the device. However, the 

accuracy of these tests can only be verified using optimised extraction buffer 

conditions. An automated electronic control system is also necessary to 

reduce the variability of the results due to the manual controlling during 

mixing, clamping and washing process. 
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