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Abstract 

A dynamic finite element (FE) model of a small piezoelectric plate actuator with cantilever 

boundary conditions is validated experimentally using operating modes, as the scale of the device 

prevents conventional modal excitation. A general methodology is presented for assembly of 3D 

modal response of the plate surface from single-point laser vibrometer data, which is an 

economical alternative to the automated process provided by scanning vibrometers. 1D blocked 

force and 2D beam assumptions prove insufficient for validation due to modes both in the length 

and width of the device in operation. The model is validated in the audible frequency range 

encompassing 12 experimental operating modes. It is shown that when conducting validation 

using operating modes, the experimental results, simulated frequency response and FE eigenmodes 

must all be compared. Discrepancies between FE and experiment are identified and attributed to 

manufacturing imperfections above modelling errors.  
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1. Introduction 

There is a scarcity of literature addressing modal validation of finite element (FE) 
models of devices too small for well-established experimental techniques and too 
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complex to be validated against 2D structural assumptions. In this paper, a method 
is demonstrated for the validation of a multi-modal piezoelectric actuator over its 
operating frequency range. The method is configured to provide modal actuation and 
results that fully characterise behaviour and provide sufficient data to accept or reject the 
model as validated. Using operating conditions and pointwise measurement, the reader is 
shown a methodology and results for fully establishing the operating modal response. 
Comprehensive 3D analysis is required for this cantilever-plate-based device before 
validation is established.  
 
Piezoelectric materials are increasingly used as sensors and actuators due to their efficient 
coupling of energy in the electrical and mechanical domains. As such they have been 
used in a cantilever configuration as actuators [1, 2], control devices [3, 4] and as modally 
controlled sensors [5] incorporating micro-scale [6] and macro-scale components [7]. For 
the actuator presented here it is economical to investigate changes in response through 
numerical modelling prior to physical prototyping. However, optimization of 
performance through numerical parameter adjustment can only be implemented once the 
model has been fully validated dynamically. Highly modal microscale devices are too 
small and operate at frequency ranges unsupported by conventional excitation devices. 
This prevents application of conventional modal analysis techniques and must be 
overcome. Discrepancies must be identified and either used to modify the FE model or 
rationalized as independent of the fidelity of the model.  
 
Among analytical methods used to model the dynamic behavior of piezoelectric materials 
and devices, Tiersten’s work [8] is one of the earliest applied to piezoelectric plates. 
Chen, Xu and Ding [9] consider a 3D state-space formulation for simply supported 
piezoelectric plates and compare this with a 2D approach. An exact solution in 3D for the 
eigenmodes of rectangular simply-supported piezoelectric plates is presented in [10] 
drawing attention to the large amount of electromechanical coupling that can exist. 
Benjeddou and Deü [11] have developed a method for analyzing the out-of-plane modes 
as well as the thickness modes of a piezoelectric sandwich plate. These studies reveal 
much about piezoelectric materials and their behaviour. However the structures and 
boundary conditions in many applications, including the device investigated here, are 
more complex and must be characterised before simplification. Analytical approaches to 
identifying the modes of plates subjected to a variety of boundary conditions have been 
presented by Gorman [12] and Leisa [13]. Blevins [14] approximates modal frequencies 
and profiles to those derived using individual beams along the two axes in the plane of 
the plate. Friswell [15] notes the absence of an exact theoretical solution for the modes of 
a cantilever plate and identifies FE as an appropriate modelling tool for this purpose. 
 
An early example of FE that takes into account electro-mechanical interactions is 
provided by Allik and Hughes [16]. In [17] FE models are refined in a process to 
optimize performance characteristics for a sensitivity analysis. Optimisation is also 
performed through FE for a single mode of vibration in [18] but without demonstration of 
a validation process. In [19] FE optimisation and validation of a bimorph actuator is 
based on frequency response of just a single mode. A FE model of an omnidirectional 
piezo-actuator is shown in [20] with 3D validation of a single mode despite simulation of 
multiple resonances. Multiphysics-type FE software is able to address many of the issues 
raised in [21] such as dynamic modeling using modal coordinates and efficiently linking 
multi-energy domains with both conservative and dissipative components. An FE model 
of the piezoelectric device is constructed here but analyses show discrepancies with 
reduced-dimension experimental observations. 
 
In [22] a macro-scale piezoelectric device is measured modally using conventional 
hammer testing. A limited number of modes in 3D are identified in [23] and the 
significance of the excitation method used in revealing certain modes is illustrated. Ewins 
[24] presents many of the useful techniques used in modal analysis and dynamic 
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validation. 3D Microscale modal identification has been undertaken successfully for a 
limited number of modes by Schnitzer [25] and Chu et al. [26] but without reference to a 
numerical model of any kind. In [27] and [28] successful microscale modal analysis is 
carried out on structures where the range of modes of interest can be sufficiently 
established in 2D. Lai and Fang [29] demonstrate global excitation on a 2D microscale 
device provided by an acoustic hammer. Ozdoganlar, Hansche and Carne [30] outline 
more fully a methodology for the modal analysis of microscale cantilever beams. The 
number of modes used to identify beam loss factors are insufficient for modes across the 
beam’s width to be displayed.  
 
Where 3D measurements have been made no comparison exists with a corresponding 
representative model. Alternatively where models are developed, the devices and 
significant operating modes require no measurements beyond 2D. In the device validated 
here the operating frequency range includes modality across the entire plate surface and 
introduces additional geometric considerations. Experimental hammer tests and data 
collection using device-mounted accelerometers are not suitable at the bimorph’s scale. 
MEMS devices often have resonant frequencies of interest extending beyond the 
capabilities of conventional shakers. In [31] 3D microscale analysis is successfully 
implemented for limited modes using piezoelectric base excitation. Here calibrated 
excitation using the device itself is demonstrated, eliminating the need for specialist 
equipment capable of high frequency actuation. 
 
There are many complicating factors for an analytical prediction of the modes of a 
piezoelectric plate actuator: The plate is multilayered, coupling exists between the PZT 
material, applied voltage and mechanical behavior [32] and the influence of non-ideal 
boundary conditions are undetermined. The bimorph’s scale makes it susceptible to 
production inaccuracies that would be within acceptable tolerances in a macro-scale 
device. Identifying and characterising these inaccuracies is critical to achieving 
validation, and illustrates the limitations of relying on FE or experimental results alone. 
 
The work presented here develops an experimental methodology based on approaches in 
[24] and [30] necessary for 3D microscale modal analysis. This method is required for 
validation of a 3D FE model following results indicating significant modes in both the 
plate’s length and width coupled with discrepancies between the model and 1D and 2D 
experimental results. Results are obtained without recourse to scanning vibrometer 
technology. 
 

2. Device under Investigation 

The device under investigation, known as a Single Layer Distributed Mode Actuator 
(SLDMA) (figure 1), is used to create an audible response in an acoustic panel – 
approximated to between 20 Hz and 20 kHz – from an electric potential input.  

 



    
 

Fig. 1 The SLDMA device attached to an aluminum base for testing. Viewed from an out-of-plane 

direction 

 

An active layer is attached on each side of a brass shim using an epoxy adhesive. The 
active layers consist of a layer of PZT5H material between two silver electrodes. This 9-
layer ‘active plate’ is held in a stub made from ABS plastic. The stub is attached by its 
base to transfer the vibrations of the plate to the acoustic panel. The depths of each layer 
are given in table 1. 
 

Table 1 Components making up the plate of the SLDMA 

Layers in sequence  Nominal depth (μm) 

Silver electrode 5 

PZT-5H 100 

Silver electrode 5 

Epoxy adhesive 12 

Brass shim 100 

Epoxy adhesive 12 

Silver electrode 5 

PZT-5H 100 

Silver electrode 5 

 

The brass shim has a nominal length and breadth of 34 mm and 8 mm respectively. The 
plate, consisting of active layers, epoxy and brass shim, is positioned by hand in the stub 
at a nominal offset of 1 mm from its midpoint. 
 
Figure 2 shows the applied voltage conditions at the electrodes. By poling the PZT5H 
normal to the plane of the plate one PZT5H layer expands while the other contracts 
causing bending of the plate. Dynamic bending of the plate results in an inertial force that 
is transferred through the base of the stub. 
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Fig. 2 Cross section of the SLDMA showing layering of materials and applied electrical boundary 

conditions 

 
A 3D FE model that incorporates the structural dynamics and electro-mechanical 
interactions of the device is presented. The model is built and run using the commercially 
available Comsol Multiphysics software. 18 eigenmodes are extracted in the audible 
range and frequency response simulations under operating conditions are performed. The 
need to represent the SLDMA in 3D is illustrated by significant deformations in the 
dimension of the plate’s width that cannot be represented adequately using a 2D beam 
assumption.  
 
Correlation is achieved between FE and experimental frequency response tests using both 
blocked force and velocity as measured outputs. Neither 1D blocked force measurements 
nor a 2D beam assumption can explain the discrepancies existing between the model and 
experiment. A 3D surface profile alone is capable of identifying torsional modes in the 
experimental SLDMA. These torsional modes are caused by the sensitivity of the 
SLDMA to production errors and must be separated from the experimental response in 
order to validate the FE model. 
 

3. Experimental configuration and parameters 

An experiment was set up to measure the frequency response of five SLDMA devices. In 
operation the stub is assumed to be rigidly fixed to a stationary surface. 
 
For all experiments the SLDMA is attached to an aluminum mount using cyanocrylate 
adhesive with the mount in turn tightly screwed into a force transducer (Endevco Model 
2312). To isolate the signal from the SLDMA the force transducer is rigidly fixed onto a 
relatively massive block (figure 3). This configuration allows a frequency response of 
blocked force to be collected for the validation process. In a blocked force configuration 
the stub is provisionally assumed to provide a cantilever constraint with negligible 
gradient and deflection at the stub. 
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Fig. 3 The SLDMA mounted on an aluminum plate that is screwed rigidly into a force transducer 

 

A swept sine input voltage from 20 Hz to 22.4 kHz is applied to a pair of the SLDMA 
electrodes in a configuration shown in figure 2. The remaining pair of electrodes are 
grounded. 
 
An overview of the experimental setup is shown in figure 4. To coordinate the input and 
output signals to the SLDMA and from the force transducer a ClioQC system (Model 4 
power amplifier & switching box with PC controlled signal conditioner) is used. 
Although the frequency response of the SLDMA is not flat with regard to frequency the 
input is automatically controlled via the ClioQC equipment to generate a voltage of 1V 
root-mean-squared (RMS), with negligible variation at all frequencies. This is monitored 
using an oscilloscope (Kenwood 20 MHz Oscilloscope). 

 

 
 

Fig. 4 Schematic of the experimental setup illustrating the configurations for both the force 

transducer and laser vibrometer 

 
The input signal is taken to be the voltage supplied to the electrodes. This reflects the 
approach used in [30] and also the difficulty of maintaining a constant input force in a 
device that is modal in the frequency range investigated. Phase shifts are calculated in the 
ClioQC system by comparing the input signal and the blocked force output of the 
SLDMA. Output from the force transducer is converted into a measured voltage after 
passing through a signal conditioner (ENDEVCO Model I33). The resolution of the 
frequency response measurement is 537 logarithmically spaced readings.  
 
In later experiments velocity measurements are required. A non-contact laser vibrometer 
(Polytec CLV700) replacing the signal from the force transducer shown in figures 3 & 4. 
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The output from the vibrometer is routed through an additional integral signal 
conditioner.  
 

4. Experimental blocked force frequency response 

Figure 5 shows the frequency response from a collection of 5 SLDMAs. Over the tested 
range there is a variation in resonant frequencies but the overall shape of the frequency 
response shows good consistency. This indicates that discrepancies are due to small 
variations in material properties and physical construction. 
 
The overall response can be characterised as having a resonance in the following 
frequency ranges: 0.5-0.6 kHz, 3-4 kHz, 10-11 kHz and 13-14 kHz. For SLDMA-1 and 
SLDMA-5 these first two resonances display a pair of modes instead of a single peak 
because they are assumed to behave as two cantilevered plates clamped at the stub. 
Increasing offset would increase the difference between resonant frequencies of the pair 
of assumed cantilever plates. 
 

With only 1D blocked force measurements it is not possible to state whether modes are 
paired or approximate to cantilever plate vibrations. The blocked force measurements can 
only present a portion of the information required to fully characterise the SLDMAs for 
validation. With many modes in the relevant frequency range traditional 1D impedance 
measurements offer similar limitations. 
 

 
 

Fig. 5 Experimental blocked force magnitude frequency response for the sample of 5 SLDMAs. 

The variability between devices is superimposed on an underlying consistency in frequency 

response characteristic 
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5. Formulation of the FE SLDMA model 

The FE SLDMA model (figure 6) uses dimensions of the 5 SLDMAs tested 
experimentally. Geometric parameters are mean values from measurement of the set of 
devices. As the SLDMA plate is only available fully assembled the thickness of each 
layer is assumed to be that nominally specified by the manufacturer. 
 
The material parameters listed in table 2 are specified by the manufacturer in the case of 
the ABS stub, or estimated from a range of values given in [33]. PZT5H material 
parameters are specified in the stress-charge form shown below [34] with default 
parameters for PZT5H specified in Comsol Multiphysics. 
 

EeScT t
E −=  (1) 

 

EeSD Sε+=  (2) 

 

Where T=stress N/m2, cE=Elastic stiffness constant N/m2, S=Strain, et=Piezoelectric stress 

coefficient C/m2, E=Electric field V/m, D=Electric displacement C/m2, εS=Electric 

permittivity F/m.  

 

Table 2 Material parameters used for the FE model of the SLDMA 

Material Density kg/m3 Young’s Modulus N/m2 Poisson’s Ratio 

Brass 8450 140x109 0.3 

Epoxy 1200 3.8x109 0.3 

ABS 1600 2.1x109 0.3 

PZT5H 7500 - - 

 

A mesh resolution is used that gives convergent results and satisfactory aspect ratios in 
the epoxy layer. The thinnest silver layers are omitted from the model to ease processing 
requirements and to compensate for the loss of material the PZT layers are thickened by 
10 microns. Damping in the SLDMA is assumed to result primarily from the epoxy layers 
and due to their volume is considered negligible. It is removed from the model to ease 
computational cost and increase definition of resonant response. In lightly damped 
structures, only small changes to the resonant frequencies of the model result. 
Acknowledging that mode shapes are less sensitive to changes in material parameters 
than modal frequencies [5], the essential character of the model remains acceptably 
maintained.  
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Fig. 6 FE model constructed using mean sample measurements and with a 1mm stub offset. The 

mesh is refined to give an acceptably converged solution 

 
In order to match the experimental conditions a voltage of 1 V RMS is applied to the 
outer faces of the PZT layers with the inner faces grounded. An Encastré constraint is 
applied to the bottom surface of the stub element to replicate the blocked force 
configuration. 
 

6. Simulated blocked force response results 

The FE blocked force frequency response allows initial comparison with the experimental 
data. Frequency was varied from 200 Hz to 20 kHz to cover the significant range of the 
experimental results. Results from the FE test are shown in figure 7. 
 
Key features associated with the experimental blocked force frequency response are 
visible in the simulation plot. There appear to be two clearly defined pairs of peaks below 
5 kHz with another pair close to 10 kHz. Resonances at higher frequencies, like those in 
the experiments, are closely bunched making it uncertain which higher frequency peaks 
form a pair.  
 
The variability between the test samples (shown in figure 5) would make an exact match 
an anomaly and result in failure to match remaining experimental samples. More than 
general agreement is unlikely as the material parameters used in the FE model are 
approximations and can vary significantly between samples under test.  
 
A similar envelope, but existing at higher frequencies, suggests that the FE model is 
generally stiffer than its experimental counterpart. This may be due to the inaccuracy of 
the material stiffness parameters used in the model. Joints are also a common cause of 
loss of stiffness in experiments and in the SLDMA there is potential for this between the 
stub and the plate.  
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Fig. 7 A comparison of the blocked force frequency response of an experimental SLDMA and the 

FE simulation. Experimental peaks appear to precede equivalent resonances in the modelled 

device 

 
Figure 7 demonstrates that making a reliable comparison between experimental and FE 
results is impossible, and although the envelopes of the frequency response show some 
correlation the resonant frequencies do not agree. The blocked force frequency responses 
provide an initial indication that the FE model can offer agreement with the physical 
device under operating conditions. 1D results are not sufficient to reveal the nature of 
SLDMA behaviour and hence to allow validation.  
 

7. FE eigenmode analysis 

Despite variability between physical samples consistent trends have been identified with 
the FE response. Further information is required to correlate the FE model with 
experimental findings. 
 

An FE eigenmode analysis is vital to understanding the character and sequence of 
operating modes. The eigenmode analysis presented here efficiently confirms that the 
SLDMA actuator behaves like a pair of cantilevered plates. This can be calculated two 
orders of magnitude quicker than a FE frequency response over the same frequency 
range. 
 
Figure 8 shows the eigenmodes up to 20 kHz for the SLDMA model. There are 18 
eigenmodes, considerably more than the number of resonant peaks of either the 
experimental or FE blocked force response. 
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Fig. 8 All 18 eigenmodes that exist in the audible frequency range of the FE SLDMA model 

 

The eigenmode analysis confirms pairing of plate modes on each side of the stub. The 
analysis also shows resonant frequencies in the FE model corresponding directly to 
eigenmodes with bending deflections. Torsional characteristics are present after only two 
preceding eigenmodes. The analysis also shows that above 18 kHz deformation across the 
width of the plate becomes significant. Consequently the 2D modelling and results of 
[28], [22], [23] and [30] using a beam assumption would not be sufficient to characterise 
the SLDMA in its operating frequency range. 
 
The in-plane eigenmodes (4350 Hz and 11390 Hz) will not be excited in operation as the 
PZT5H patches only actuate out of plane bending motion. Gorman [35] indicates that 
while torsional modes may be theoretically possible they will not be excited without a 
bias caused by a lack of symmetry under operating conditions. In some instances this is 
referred to as zero ‘coupling’ between the relevant eigenmodes and boundary conditions. 
However in operation this is not the same as zero output at the particular frequency. 
There will still be a response attributable to the small residual effects of the modes that 
are actuated. This ‘coupling’ should also not be confused with the critical 
electromechanical coupling in a bimorph described in [32]. 
 
 In the idealized FE model symmetry is adhered to but it cannot be guaranteed in the 
physical SLDMA. 
 
Should torsional modes be excited the net simulated and experimental blocked force 
would be negligible. Over one half of the stub there will be a positive force and on the 
other half this will be negative. The net transfer of inertia is very small so the modes may 
be present but not registered when using this measurement. 
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8. Experimental velocity profile of the plate surface 

Torsional modes can be visualized as rotations about an axis of symmetry along the 
length of the plate. Measurements taken at any point on the axis will not register this type 
of mode. In [31] the importance of excitation configuration is illustrated for identifying 
all relevant modes. Here similar care is required when selecting the method of measuring 
output. 
 
Taking kinematic measurements at a corner of the plate makes all out-of-plane modes 
observable. In subsequent experiments and simulations, resonances are identified using 
this method. Preliminary tests (figure 9) indicate additional modes to those observed 
using blocked force are present. Even after identification these modes cannot be 
characterised for validation using just a single measurement. 

 

 
 

Fig. 9 Additional modes demonstrated when measuring corner velocity, compared to those 

identifiable from the blocked force frequency response of SLDMA-3 

 

9. Method for combination of mobility frequency 
response measurements 

Comparison of velocity profiles allows a comprehensive validation of the computational 
model with the experimental component. A composite of multiple point-wise velocity 
measurements is required in order to generate a 3-Dimensional (3D) representation of the 
frequency response of the SLDMA. These measurements are mapped over the plate in a 
regular grid with a spacing of 1mm in both axes. The whole of the laser vibrometer’s 
measuring spot must be focused on the measured surface and so the grid of points used is 
33 mm by 7 mm. The laser vibrometer is mounted on, and positioned with, two linear 

12 



translation stages (Newport model 443-4) to ±10 μm. The data collected is converted to a 
grid of 231 velocity magnitudes and phases at a single frequency. Using a method 
outlined in [24] the operating velocity profile of the plate at each frequency is established.  
 
For the method of approximating operating velocity profiles to be valid it is assumed that 
complex modes are not present. Even with non-proportional damping, caused by the 
epoxy layer and the joint between plate and stub, the resulting complexity can be assumed 
small. Other contributory factors would be modes located too closely and repeated roots. 
Using a ‘peak-picking’ method modal damping for the closest modes is of the order of 
less than 5%. The separation of the modes with this level of damping is 15-20%, 
sufficient to rule out complex modes. The FE stub offset and eigenmode analysis rule out 
any roots sharing a common frequency. 
 
The absolute phase angle (ϕa), between the input voltage and output velocity, varied 
across the measured frequency range. At each frequency the phase angle (ϕr) is measured 
relative to the absolute phase at one of the corner of the measurement grid (ϕc) (3). 
 

acr ϕϕϕ −=   (3) 

 

The relative phase angle for a given frequency is consistently close to 0° or 180°. The 
only exceptions to this occur close to the stub and where velocities are small and merge 
with signal noise. Using the signum function of cos(ϕr) a positive or negative sign is 
applied to the velocity amplitudes (vA m/s) for each measurement (4). 
 

( )( )rAm vv ϕcossgn=   (4) 

 

Mode shapes are generated by plotting the modal velocity (vm) at each point on the grid of 
measurements for a given frequency. Linear interpolation is used between neighbouring 
points.  
 

10. 3D frequency response of the plate surface 

To effectively validate the FE model it is necessary to compare the frequency response of 
the experimental SLDMA and confirm good agreement between them. The key 
characteristics to be matched are the resonant frequencies and operating velocity profiles 
at resonance. Only by characterising velocity profiles in 3D can resonances in the 
experimental environment be confidently compared with equivalent resonances in the FE 
model. 
 
The development of operating mode shapes shown in figure 10 is comparable with the FE 
eigenmode analysis and the assumption of behavior analogous to cantilevered plates. The 
first pair has a similar profile to the static deflection of a cantilever under a uniformly 
distributed load. Between these there is a rocking mode at 494 Hz that illustrates a 
resonant peak in velocity contributing negligible blocked force. 
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Fig. 10 Profiles of the 12 identified resonances of SLDMA-5 showing modal progression, 

presence of torsional modes and the development of bending across the plate’s width 

 
As the frequency increases, resonances show an incremental addition of half sine waves 
on each side of the stub. The first half waves occur between 3-3.7 kHz, then between 8.7-
9.9 kHz and 18.5-19.7 kHz. The side of the stub that is not resonating also has a larger 
amplitude than shown in the eigenmode analysis. 
 
The velocity frequency response at the corner of the plate shows the presence of two 
further modes without a peak in the blocked force response (2.6 kHz and 8.2 kHz). Both 
modes show a torsional vibration superimposed on the prevalent velocity profile along 
the plate length. This further confirms FE eigenmodes in the physical SLDMA. The 
appearance of the torsional modes is attributable to small asymmetries in the positioning 
of the piezoelectric layers on the brass plate across its width. In [2] the influence of PZT 
orientation is highlighted and although the manufacturing error is small in the SLDMA it 
is significant enough to actuate these modes.  
 
The mode occurring at 15 kHz across the plate width is not suggested by the eigenmode 
analysis until higher frequencies. The presence of torsional modes and significant 
deformation in the width illustrates the importance of measuring and characterising 
response as a 3D plate rather than a 2D beam. 
 

11. Comparison of experimental and FE velocity 
profiles 

A frequency response analysis using the velocity profile of the whole surface was carried 
out on the FE model for comparison with experimental results. Figures 10 & 11 provide 
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this comparison. The simulation results are more clearly defined than the experimental 
results due to its more refined mesh, higher order interpolation algorithms and idealised 
construction. 
 
The FE velocity profiles match all important characteristics of the experiment at 
resonances identified at the corner of the plate. Good agreement is found in the shape and 
pairing of the modes. As frequency increases the FE simulation also shows the addition of 
sinusoidal half-waves to the profile first on the long side then on the short side of the 
stub. 
 
The point in the sequence of modes where a half-wave profile is introduced into the width 
of the plate agrees with experiment. This takes place between operating modes with 1 and 
1.5 sine waves along the plate lengths. Again this phenomenon is observable at a lower 
frequency than the eigenmodes of figure 8 suggest. The rocking mode highlighted at 
494Hz experimentally is also not a feature indicated by the eigenmode analysis. However 
the FE frequency response does demonstrate a similar profile between the first two 
bending modes. 
 

 
 

Fig. 11 3D velocity profiles obtained at corner resonances from the simulated SLDMA. Idealized 

symmetry prevents torsional modes from being excited. Results allow equivalent modes in the 

experimental device to be correlated 

 
The area where there is lack of agreement with the physical experiment is the presence of 
torsional modes. These are not excited in the simulation. This is due to the idealized 
symmetry in the width of the FE device rather than a failure in the modeling process. 
Evidence for this is the torsional eigenmodes that are present in the FE model. 
 
With the level of confirmation provided by surface velocity profiles it is possible to 
identify the frequencies and sequence of equivalent operating modes necessary for 
validating the FE model. The FE response is shown to be consistent with experiment. The 
exceptions are at the highest two frequencies due to imperfect joints in the experimental 
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component, a lack of clarity caused by residual effects of other modes in the physical 
experiment and material parameter approximations in the FE model. The latter would be 
improved in a full model updating procedure. 
 
The merits of an updating exercise using MAC for example are limited in this case. A 
fully updated model would only correlate ideally with a single SLDMA in a set that 
shows significant variability and some uncertainty in model parameters. The aim of this 
investigation to validate the ability of FE software to model the current SLDMA devices 
and others of a similar type with limited variation in parameters has been achieved.  
 

12. Conclusions 

A general method for validation of a device too small for conventional modal 
analysis excitation has been demonstrated without the need for a scanning 
vibrometer. Initial discrepancies existing between the number of visible simulated 
FE and experimental modes are overcome. Operating blocked force in 1D and 2D 
velocity measurements are shown insufficient to characterise the SLDMA. 
Eigenmode analysis indicates the source of discrepancies and highlights the multi-
dimensional response. Geometry of the device coupled with the self-actuation 
method requires validation to be carried out in 3D. Only then is the model 
considered validated and suitable for subsequent FE experimentation on minor 
modifications to material and geometric properties. These lessons learned will be 
universally applicable to the modelling of piezoelectric devices. 
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