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Abstract 
Microarray technology has revolutionized the field of molecular biology by offering an efficient and 

cost effective platform for the simultaneous quantification of thousands of genes or even entire 

genomes in a single experiment. Unlike southern blotting, which is restricted to the measurement of 

one gene at-a-time, microarrays offer biologists with the opportunity to carry out genome-wide 

experiments in order to help them gain a systems level understanding of cell regulation and control. 

The application of bioinformatics in the milieu of gene expression analysis has attracted a great deal 

of attention in the recent past due to specific algorithms and software solutions that attempt to 

illustrate complex multidimensional microarray data in a biologically coherent fashion so that it can 

be understood by the biologist. This has given rise to some exciting prospects for deciphering 

microarray data, by helping us refine our comprehension pertinent to the underlying physiological 

dynamics of disease. 

Although much progress is being made in the development of specialized bioinformatics software 

pipelines with the purpose of decoding large volumes of gene expression data in the context of 

systems biology, several loopholes exist. Perhaps most notable of these loopholes is the fact that there 

is an increasing demand for software solutions that specialize in automating the comparison of 

multiple gene expression profiles, derived from microarray experiments sharing a common biological 

theme. This is no doubt an important challenge, since common genes across different biological 

conditions having similar expression patterns are likely to be involved in the same biological process 

and hence, may share the same regulatory signatures. The potential benefits of this in refining our 

understanding of the physiology of disease are undeniable.  

The research presented in this thesis provides a systematic walkthrough of a series of software 

pipelines developed for the purpose of streamlining gene expression analysis in a systems biology 

context. Firstly, we present BiSAn, a software tool that deciphers expression data from the perspective 

of transcriptional regulation. Following this, we present Genome Interaction Analyzer (GIA), which 

analyzes microarray data in the integrative framework of transcription factor binding sites, protein-

protein interactions and molecular pathways. The final contribution is a software pipeline called 

MicroPath, which analyzes multiple sets of gene expression profiles and attempts to extract common 

regulatory signatures that may be implicating the biological question. 
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Chapter 1 

Introduction 
 

1.1   Overview 

The completion of the Human Genome Project (HGP) in 2003 successfully resulted in 

sequencing the first human genome, which is representative of the complete set of genes 

present in the cell. Initiated by James D. Watson at the National Institutes of Health – USA in 

1990, the goal of the HGP was to determine the precise sequence of base pairs in DNA that 

represented genes within the genome. Furthermore, the focal point of the project was to 

identify an anticipated 25,000 genes pertinent to the human genome from both a physical and 

functional perspective. Although the HGP is now complete from the sequencing standpoint, 

one is left to wonder whether this initiative was just a preparation for a massive biological 

jigsaw puzzle. After all, the resulting sequenced human genome has spawned challenges to 

relate the genomic sequences to specific biological functions in order to better understand 

biological systems and to enhance our comprehension of the underlying dynamics of disease. 

Furthermore, although biological functions have already been allocated to thousands of 

genes, merely knowing their biological roles is not sufficient to warrant an understanding of 

the biological networks that govern cellular behaviour. This is because gene function and 

behaviour is governed by complex molecular interactions and dependencies, which are 

intertwined in a cellular network that determines the overall fate of the cell. For this reason, 

gene function and behaviour needs to be understood in the context of the organism as a single 

1 
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unit, which at the same time, is capable of hosting complex inter-dependent biological 

interactions. 

As means to provide a platform for molecular biologists to further understand the biological 

functions of known genes and discover those of unknown genes, the scientific and research 

communities have embraced a valuable high throughput laboratory based technique called 

microarray technology. Using this technology, molecular biologists can simultaneously 

quantify gene expression levels for thousands of genes or even entire genomes at once for 

any given biological question. Vital to its widespread popularity, microarray technology is 

regarded as a superior technology due to its biological usefulness and high throughput nature. 

Unlike traditional low throughput molecular biology techniques such as southern blotting, 

which are limited to the quantification of gene expression on a gene-by-gene basis, 

microarray technology offers a platform for putative biological discoveries to be made at an 

efficient pace, making it feasible to readily identify the potential involvement of genes in 

several biological processes. Although the benefits of microarray technology cannot be 

denied, it is also undeniable that the technology is not perfect, which is largely due to the 

colossal amounts of data that it generates, attributed to the knowledge Vs data paradox. To 

elaborate, the goal of microarray technology is to speed up the process of quantifying gene 

expression in order to extract meaningful biological knowledge, which paradoxically 

becomes a problem when too much raw data is generated from the use of the technology. 

With vast magnitudes of generated raw biological data, how does one go about mining the 

data to find answers to the original biological question of the experiment? The answer lies in 

bioinformatics. 

Bioinformatics is a fast growing inter-disciplinary science, which applies computer 

technology to biological data in order to manage it. More specifically, it can be defined as a 
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science that integrates informatics, mathematics, computer algorithms and statistics together 

to solve complex biological problems. The application of bioinformatics in the milieu of gene 

expression analysis has attracted a great deal of attention in the recent past due to specific 

algorithms and software solutions that attempt to illustrate complex multidimensional 

microarray data in a biologically coherent fashion so that it can be understood by the 

biologist (Slonim, 2002; Spang, 2003). This has indeed given rise to some exciting prospects 

for deciphering microarray data in order to aid the enhancement of our comprehension 

pertinent to the underlying physiological dynamics of disease.  However, the advent of such 

an approach has also highlighted some important challenges. Perhaps the most notable 

challenge stems from the reality that biological data are disseminated in different 

laboratories, each having different management systems, file formats and methods for 

representing their biological data (Battistella et al, 2005). The heterogeneity of the data poses 

a problem for researchers due to a lack of cohesive vocabulary, which in turn hampers the 

progress of novel biological discoveries. For this reason, the attention is now shifting towards 

biological data integration. 

The premise of this PhD study is based on the design, development and implementation of 

bioinformatics software using a data integration approach, all in the context of systems 

biology. Scrutinizing the relevant scientific literature reveals a soaring need for specialised 

software tools that cater for the high throughput analysis of microarray data in the perspective 

of systems biology. The approach proposed in this study is to integrate data at the DNA 

transcriptional level (transcription factor related data) with protein and molecular pathway 

data under a series of automated pipelines designed to facilitate microarray data analysis 

according to the users’ specific needs. 

1.2   Systems biology 
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The paradigm of systems biology is motivated by the fact that biological sciences is no longer 

a self sufficient discipline because it has become highly reliant on informatics, mathematics, 

computer algorithms, software development and statistics. It is hence no surprise that biology 

has amalgamated with the aforementioned disciplines, giving rise to a new era of 

opportunities for novel biological discoveries. Systems biology is a new research area that 

employs a multidisciplinary approach to look beyond the function of a single gene.  As stated 

by Butcher et al (2004), “The goal of modern systems biology is to understand physiology 

and disease from the level of molecular pathways, regulatory networks, cells, tissues, organs 

and ultimately the whole organism”. It is hence clear that systems biology is a holistic 

approach (Chong and Ray, 2002), which aims to facilitate a systems level understanding of 

biology by integrating knowledge pertaining to various different components that collectively 

determine the overall biology of the organism. This is an effective strategy since it 

encourages a scrutiny of the structure and dynamics of cellular function in the context of the 

organism as a whole rather than examining the characteristics of isolated parts of the cell or 

organism (Kitano, 2002). 

 

With the advent of microarray technology, the focus of biological data interpretation has led 

to a rapid paradigm shift in molecular biology. Because a single microarray experiment 

typically generates several thousands of gene expression data points, it is becoming clear that 

there is great potential for novel biological discoveries provided the data is deciphered in the 

context of systems biology. In order to progress in this endeavour, it is essential to move to 

the systemic picture whilst gaining a deeper understanding at the molecular and biological 

levels (Kitano, 2002). Although systems biology is considered a new research discipline, the 

notion of integrative thinking is not new to molecular biology since the first molecular 

regulatory circuits were mapped out over 40 years ago (Westerhoff, 2004) (Figure 1.1).  
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Figure 1.1 An illustration of how two lines of enquiry led to the birth of present-day systems biology. 

The upper timeline reflects progress in molecular biology over the past years leading to systems 

biology. The lower timeline shows the formal analysis of functional states that arise when several 

molecules interact concurrently. (Taken from Westerhoff, 2004). 

 

The importance of systems biology becomes apparent when we examine the current situation 

with drug discovery. Despite the fact that an astronomical amount of investment has taken 

place over the past 20 years towards screening technologies and genomics, the truth remains 

that the costs associated with new drug discovery continue to rise while approval rates fall. 

This is because the desire to effectively mine the genome has met paths with the realization 

that merely knowing a target is not sufficient to warrant an understanding of what the target 

does, let alone knowing the effects of a chemical inhibitor in diverse disease settings 

(Butcher, 2004). This emphasizes the need for an effective approach to integrate biological 

data in the form of automated pipelines that can be used to facilitate biological predictions in 

the context of high throughput gene expression data analysis.  
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Figure 1.2 The application of systems biology in the pharmaceutical industry. Omics represents a 

bottom-up approach towards the identification of components at the molecular level (molecules and 

pathways). Modelling takes a top-down approach by starting from human physiology and disease. 

(Taken from Butcher, 2004). 

 

The study of Omics plays a central role in systems biology and drug discovery. Omics is a 

specific term used to describe a broad research discipline focusing on the analysis of 

biological interactions that take place within various Omes or biolayers. Omics approaches to 

systems biology have been wholeheartedly accepted by the pharmaceutical industry in order 

to complement traditional approaches to target identification, generate hypotheses and for 

experimental analysis (Butcher, 2004). The strength of Omics lies in its use in generating 

potentially important hypothesis. For instance, it can be used to answer specific biological 

questions pertinent to high throughput experimental studies, which may be conducted in 

order to correlate a given disease state to the expression of specific genes or proteins (Figure 

1.2). This has given rise to some very exciting prospects for treating disease and this is 

precisely the reason why there is a soaring desire for effective computational solutions 
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capable of deciphering colossal amounts of gene expression data in the milieu of systems 

biology.  

 

1.3   Loopholes in existing works and contribution to knowledge 

The current situation is such that there is a great deal of research being conducted in the area 

of systems biology, where several software tools have been generated for the purpose of 

deciphering high throughput gene expression data using a number of different methodologies. 

However, there is much to be desired and several loopholes are yet to be accommodated. The 

intensity of such attempts is motivated by the fact that a paradigm shift has occurred from a 

reductionist approach to an integrative one. As stated by Aggarwal (2003), “The reductionist 

approach to biological research, which has been extremely important to the development of a 

basic understanding of living system, is geared towards identifying the individual components 

(genes, proteins, metabolites etc) responsible for a particular phenomenon in an organism 

(e.g. metabolic activity, response to external stimuli etc). This approach has proven effective 

at elucidating key molecular components of living systems, leading to a variety of important 

applications in agriculture and medicine. It is now clear however, that information at only 

one level (the genome or the proteome, for example) by itself cannot fully explain the 

behaviour of any particular biological system.” In light of this, the field of systems biology is 

facing a great deal of pressure to devise effective integrative strategies to enhance our 

understanding of the physiology of disease states. 

 

In the past, a number of software have been developed for the purpose of automating a 

systems level analysis of microarray data such as Expander (Shamir, 2005), INCLUSive 

(Thijs, 2002), Genesis (Sturn, 2002), CONFAC (Karanam, 2004), and GEPAS (Herrero, 

2003). These pipelines specialise in streamlining the analysis flow by performing specific 
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functions such as K-means clustering, promoter and functional analysis etc. This is no doubt 

an important step towards deciphering high throughput expression data in a systems biology 

context. However, further integrative strategies are required to move forward in this 

endeavour, which should complement a biologically valid understanding of how a cell 

functions as a whole.  

 

It is important to understand that the overall fate of a cell is determined by three principle 

classes of interactions, 1) the binding between genomic DNA and specific DNA-binding 

proteins called transcription factors (TF’s), via regulatory binding sites, 2) participation of 

Protein-protein interactions between two separate protein molecules in the cellular cytoplasm 

and finally, 3) the cascade of molecular and signalling events that dictate the behaviour of a 

given molecular pathway. A detailed explanation of these classes of interactions is provided 

in Chapter 2 of this thesis. There is currently a need for specialised software tools that cater 

for the analysis of microarray data under the integrative framework of the aforementioned 

classes of interactions. This is an important step since the goal of systems biology is to 

understand molecular interactions in the perspective of the organism itself. 

 

Furthermore, because high throughput technologies such as microarrays are rapidly gaining 

popularity at a global scale due to the prospect of efficiently quantifying gene expression in a 

high throughput fashion in order to identify previously unknown transcriptome states, 

expression data related to various different biological questions are being readily generated 

by scientists worldwide. Such data sets are continuously being uploaded to public data 

repositories such as ArrayExpress (Sarkans, 2005) and the Gene Expression Omnibus (GEO) 

(Edgar, 2002), which are subsequently made accessible to the public. This has opened a 

gateway for biologists to utilise these sets of data in an attempt to investigate common 
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regulatory signatures that may be responsible for dictating biological questions sharing a 

similar biological theme. One of the most common methods of comparison is based on the 

assumption that genes across different biological conditions exhibiting similar expression 

patterns are likely to be involved in the same biological process (Barrett, 2006) and may 

therefore, share common regulatory signatures. By using this method of comparison, which is 

one of the most successful methods to date, coupled with the availability of publicly available 

data repositories offering gene expression data, biologists have been granted the opportunity 

to answer complex biological questions with regards to biological phenomena underlying 

various different disease states. When one scrutinizes current literature relevant to automated 

solutions of gene expression analysis, it becomes apparent that there is an increasing demand 

for software applications that offer an efficient pipeline to the analysis of multiple gene 

expression profiles. 

 

In light of this, the research presented in this thesis is based on the following contributions to 

knowledge: 

 Identification of existing loopholes in systems biology from a software development 

perspective 

 Design, development and implementation of a bioinformatics software tool 

specializing in deciphering gene expression data at the transcriptional level, using 

Position Frequency Matrices (PFM’s) 

 Design, development and implementation of a bioinformatics software pipeline to 

facilitate the automation of gene expression analysis in the context of transcription 

factors, protein-protein interactions and molecular pathway analyses 
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 Further development of a novel bioinformatics software pipeline to incorporate the 

analysis of multiple gene expression profiles in order to identify common regulatory 

signatures 

 Proposition of a novel blueprint for future prospects of treating disease 

 

1.4   Roadmap  

In this section, the structure of the thesis is described together with a brief summary of what 

each chapter comprises of. 

 

Chapter 2 is concerned with providing a review of microarray technology covering aspects 

such as laboratory procedures, raw data generation, differential gene analysis etc. Prior to 

this, the three principal classes of molecular interactions are explained, which involves the 

science behind how transcription factors interact with genomic DNA, how proteins interact 

with one another in the cytoplasm and how molecular pathways are regulated in order to 

collectively govern overall cellular behaviour. Finally, current literature pertaining to the 

subject of bioinformatics software for microarray data analysis is scrutinized to act as the 

premise for the subsequent chapters. 

 

Chapter 3 presents a bioinformatics software called BiSAn, which has been specifically 

designed, developed and implemented for high throughput gene expression analysis by using 

Position Frequency Matrices (PFMs) to scan promoter sites for the presence of Transcription 

Factor Binding Motifs (TFBMs). This work represents the first contribution of this PhD 

study. 
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Chapter 4 introduces an integrative strategy to microarray data analysis in the form of a 

software pipeline called Genome Interactions Analyzer (GIA), which deciphers gene 

expression data in the context of transcription factor binding sites, protein-protein interactions 

and molecular pathways.   

 

Chapter 5 highlights an important loophole in the area of systems biology by emphasizing on 

the necessity to analyze biologically related multiple gene expression profiles, which is an 

essential requirement for better understanding the physiology of disease. The contribution 

presented in this chapter takes the form of a novel algorithm and software pipeline, developed 

to facilitate multiple analyses of gene expression data in a user friendly and automated 

manner. Relevant statistical tests are also applied and the pipeline’s faculty to demonstrate 

multiple gene expression analysis from the perspective of pathway analysis is presented. 

 

Chapter 6 concludes this thesis by offering a rationale for effectively treating disease, from 

the perspective of in silico studies to in vivo laboratory experiments. 

 

 

 

 

 

 

 

 

 

 

 

 



  

27 

 

Chapter 2 

Background 
 

2.1 Introduction 

Systems biology is a newly established multi-disciplinary science, which integrates Computer 

Science, Mathematics, Informatics, and Statistics in order to offer a holistic approach to 

facilitate a systems level understanding of biology by understanding physiology and disease 

from the level of molecular pathways, regulatory networks, cells, tissues, organs and 

ultimately the whole organism (Chong and Ray, 2002; Butcher, 2004). The premise of the 

research presented in this thesis is based on the development of specialized bioinformatics 

software in the context of systems biology. As this area is constantly evolving, a single 

definition does not suffice when attempting to specify its objectives in their entirety. Hence, 

the purpose of this chapter is to provide the reader with a systematic walkthrough of specific 

biological principles that form the backbone of systems biology, which are imperative to 

warrant an understanding of the contributions presented in this thesis. Firstly, the reader is 

provided with an explanation of DNA and the paradigm of gene expression. Next, the three 

principle classes of molecular interactions that collectively govern overall cellular behaviour 

is described followed by an overview of microarray technology. Finally, literature pertinent 

to microarray data analysis from the perspective of computational biology and bioinformatics 

is scrutinized to summarize the work that has been carried out till present day. 

 

 

 

 

2 
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2.2 Explanation of biological terms 

2.2.1 DNA 

Deoxyribonucleic Acid or DNA is the genetic blueprint of life that contains precise 

instructions that dictate the structure and functions of cells. Abundantly located in the nucleus 

of the cell, DNA exists as a hereditary code comprising of four specific chemical bases 

namely, Adenine (A), Guanine (G), Thymine (T) and Cytosine (C). In humans, the total DNA 

within the nucleus of the cell consists of approximately 3 million of these bases and it is the 

order or the sequence of these bases that governs the accuracy of the information available 

for cell structure and function. To understand the importance of the precise sequence of DNA 

in controlling cell behaviour, consider a scenario where you are giving someone instructions 

in English to perform any given task. The precise sequence of letters from the English 

alphabet used to construct words will determine the clarity of the instructions. Similarly, the 

sequence of bases in DNA determines the accuracy of the instructions.  

 

Almost every cell of a living organism contains the exact same DNA so why do cells behave 

differently to one another? This is because only a proportion of the overall DNA in a given 

cell is “expressed” (Refer to section 2.2.2 below for a review of gene expression) and the 

precise location and length of the sequence coding for a specific protein (genes) varies from 

cell to cell. Genes that are expressed in skin cells for instance may not all be expressed in 

other cell types although almost all cells contain the exact same DNA. First postulated in 

1958 and subsequently published in 1970 (Crick, 1970) the central dogma of biology 

illustrates how information contained in DNA is used to synthesize polypeptides (primary 

structure of proteins) via the process of transcription and translation (Figure 2.1). 
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Figure 2.1 The central dogma of biology illustrating how information coded within DNA is 

transcribed into RNA via the process of transcription and subsequently translated into protein via 

translation. (Image constructed in Microsoft Word). 

 

The central dogma of biology postulates that “information cannot be transferred back from 

protein to either protein or nucleic acid. For proteins to be synthesized, DNA acts as a 

template for messenger RNA (mRNA) synthesis via the process of transcription. This is 

necessary since DNA is located in the nucleus and is bound there. The newly synthesized 

mRNA then exits the nucleus and travels to the ribosomes located in the cytoplasm of the 

cell, where the information contained within mRNA is used to dictate the assembly of amino 

acids into polypeptides during the process of translation. The production of protein from 

DNA is therefore, an indirect process mediated by mRNA synthesis and the coding 

information cannot be transferred from protein to any other molecule (i.e. protein, RNA, or 

DNA), although the reverse holds true.  

 

 

DNA 

1. Replication 

2.  Transcription 

RNA 

3. Translation 

Protein 
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2.2.2 Gene expression 

Gene expression is a term exclusively used to describe the process by which coding 

information within a gene leads to the production of a protein specific to that gene. Because a 

gene is a specific length of DNA coding for one or more polypeptides, it can be said that the 

gene is “expressed” when it leads to the synthesis of polypeptides that it codes for via the 

processes of transcription and translation. In other words, gene expression is the end result of 

translation and post-translational modifications. The relationship of genes and proteins is 

important in accurately understanding gene expression. Genes exist in the form of DNA 

sequences in the nucleus of the cell, which are programmed to synthesize proteins. Proteins 

on the other hand, are the product of genes and it is proteins that directly implicate cell 

behaviour by regulating various different cellular processes. Gene expression is hence, the 

production of one or more proteins as dictated by a given gene (Figure 2.2). 

 

The fact that the human genome is being successfully sequenced has given birth to the goal of 

identifying all protein coding genes. However, in order to understand their functions in 

different physiological contexts, it is imperative to understand how their expression is 

regulated (Mintseris, 2006). In addition, gene expression is regulated by a number of different 

factors such as genes themselves, their products and even the products product (Stryer et al., 

2006). To aid in this, several high throughput techniques are available to efficiently facilitate 

the quantification of gene expression, most notable being Microarray technology (Schena et 

al., 1996). This is discussed in more detail in section 2.3 of this thesis. 
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Figure 2.2 The complete process of gene expression involving transcription of DNA into mRNA, 

transport of mRNA into cytoplasm where it interacts with ribosomes to facilitate translation, and 

participation of tRNA (transfer RNA) in the synthesis of amino acid chains (proteins). Image taken 

from http://www.genome.gov 

 

2.2.3 Transcription Factors 

 

Transcription Factors (sometimes called sequence-specific DNA binding factors) are 

specialized proteins that bind to specific DNA sequences (called transcription factor binding 

sites) thereby regulating transcription (Latchman, 1997). These DNA-binding proteins can act 

alone or they can form a complex with other protein molecules and they control transcription 

by activating or suppressing the recruitment of RNA polymerase. Since RNA polymerase is 
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an enzyme that controls transcription of DNA to mRNA in the nucleus of the cell, it is not 

surprising that transcription factors are able to impact gene expression to such a level. A 

prominent characteristic of transcription factors is that they contain one or more binding 

domains, which attach to their respective transcription factor binding sites adjacent to the 

genes that they regulate (Mitchell, 1989., Ptashne, 1997) and the binding occurs on either the 

promoter or enhancer sites of the genome. It has been estimated that there are approximately 

2600 proteins that contain DNA binding domains in the human genome and a majority of 

these proteins are assumed to function as transcription factors (Babu, 2004).  

 

The faculty of transcription factors to interact with DNA sequences in the genome to control 

transcription and ultimately the amount of gene expression has spawned a great deal of 

interest among researchers. This has motivated them to carefully examine promoter regions 

of genes to identify the involvement of certain transcription factors in the regulation of the 

genes (Kel, 2006). In the context of high throughput gene expression analysis such as 

microarrays, it is becoming common practice to employ this methodology to help answer 

complex biological questions since such technology allows biologists to efficiently quantify 

mRNA transcript levels for thousands of genes or even entire genomes concurrently. The 

application of promoter analysis to identify putative transcription factor binding sites in the 

perspective of whole genome analysis has hence, gained widespread popularity. 

   

2.2.4 Protein-protein interactions 

Once proteins have been synthesized by DNA via transcription and translation, they 

participate in regulating cellular behaviour in several different ways. An important trait of 

proteins is their ability to interact with other proteins to regulate many biological functions. 

For instance, protein-protein interactions play a fundamental role in signal transduction by 
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mediating signals from the exterior of the cell to the inside of the cell. Sometimes a protein 

may form a complex with another protein in order to carry the protein it binds to from the 

cytoplasm to the nucleus and vice versa. Others may participate in protein-protein 

interactions to modify the structure of a protein, which may in turn alter the function of that 

protein. In any event, these interactive capabilities of proteins are vital to many biological 

processes that occur within the cell and it is crucial to gain a better understanding of them in 

order to enhance our comprehension of the underlying dynamics of disease. For example, 

signal transduction plays a major role in many diseases including Cancer and since proteins 

mediate signal transduction via protein-protein interactions, it becomes of utmost priority to 

study them in more detail.  

 

There are a number of laboratory based methods commonly used to detect protein-protein 

interactions, such as Bimolecular Fluorescence Complementation (BiFC) (Lu et al., 2008), 

Co-Immunoprecipitation and Fluorescence Resonance Energy Transfer (FRET) to name a 

few. 

 

2.2.5 Molecular Pathways 

In order to maintain the biological processes of life, cells must have a well orchestrated 

cascade of events that allow them to function properly. Molecular pathways form the cellular 

machinery that precisely regulates cell function by organizing proteins and inorganic 

molecules so that they can participate in various mechanisms central to the sustenance of the 

cell. Proteins together with their substrates are typically involved in highly complex 

interconnected chain of events and collectively, they constitute what is known as a molecular 

pathway. Because a cell hosts a vast number of biological processes and mechanisms, there 

are generally several active molecular pathways for a given cell. These pathways tend to 
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work together to ensure that the organism continuously responds to changes in the internal 

and external stimuli. 

 

However, sometimes the normal behaviour of pathways is affected as a result of mutations, 

leading to the production of oncogenes. For instance, the cell cycle pathway is vital to the 

normal functioning of a cell because it controls cell proliferation (Figure 2.3). On the other 

hand, cancer is a disease which results from uncontrolled cell proliferation and hence, the 

relationship between cell cycle and cancer is undeniable. The proliferative capability of 

cancer cells leads to an excess of cell number, which is a consequence of a reduction in 

sensitivity to signals that normally tell a cell to adhere, differentiate or die (Collins, 1997). 

Because cell proliferation is expected in a healthy cell, it becomes problematic to identify the 

exact causality of uncontrolled proliferation attributed to cancer. Similarly, the 

overproduction of a specific signalling protein called Epidermal Growth Factor receptor 

(EGF) has been implicated in many breast cancers because this overproduction has been 

known to cause uncontrolled cell division, leading to the development of tumours (Weinstein 

et al., 1997).  

 

From a systems biology point of view, the study of molecular pathways is vital if we are to 

improve our understanding of various different states of disease due to the fact that when a 

disease occurs, several key molecular pathways may be affected negatively. Gene expression 

studies from the use of microarrays has made it possible for us to correlate gene expression in 

a given disease phenotype to the affected area of several key pathways, hence providing us 

with the opportunity to decipher gene expression in a systems biology context. It is therefore, 

not surprising that a common challenge faced by all researchers is to translate gene 
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expression data points into a better understanding of the underlying biological phenomena by 

putting this in the context of the whole organism as a complex system (Dragichi et al., 2007). 

A study of biochemical pathways in particular is an important focal point in drug discovery 

and it is widely accepted as an important strategy by many biopharmaceutical and genomic 

companies (Dhillon et al., 2007). 

 

Figure 2.3 The cell cycle pathway illustrating how the complexity of molecular interactions and 

collaboration with other pathways results in controlled cell proliferation. Image taken from 

http://www.genome.jp 
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2.3 Microarray Technology 

The history of microarray technology dates back to the 1980’s, when it evolved from a well 

established laboratory technique called southing blotting (Southern et al., 1999)  used to 

attach a fragmented DNA to a substrate followed by probing it with a known target gene. It 

was not until 1987 when a collection of DNA sequences were used in arrays for the purpose 

of expression profiling (Kulesh et al., 1987).  

 

Microarray technology has revolutionized the field of molecular biology by offering an 

efficient and cost effective platform for the simultaneous quantification of thousands of genes 

or even entire genomes in a single experiment. Unlike southern blotting, which is restricted to 

the measurement of one gene at-a-time, microarrays offer biologists with the opportunity to 

carry out genome-wide experiments in order to help them gain a systems level understanding 

of cell regulation and control. Central to the technology, microarrays are a major 

breakthrough due to the use of a DNA chip (made of glass, plastic or silicon biochip) on 

which specific sequences of DNA (or entire genomes) are robotically printed using a 

microarrayer. Labelled DNA or RNA samples are then applied to the chip in order to detect 

complementary sequences.  A typical gene expression profiling experiment is motivated by a 

specific biological question asked by the investigator. Expression levels of thousands of 

genes are then simultaneously monitored in order to study the effects of certain biological 

conditions, disease types and treatments on gene expression (Adomas et al., 2008). 

 

2.3.1 The Microarray Procedure 

The high throughput nature of microarray technology makes it a fundamental asset to the 

field of molecular biology because it circumvents the restrictions set by one-gene-by-one-

experiments (i.e. Southern blotting) as before (Schena et al., 1995; 1996). With the advent of 
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this technological breakthrough, several thousands of genes can be scrutinized concurrently 

in a single experiment (Spellman et al., 1998), making it possible to observe a global 

snapshot of the entire cell in a specific time point and/or following a particular treatment.  

 

DNA microarrays are constructed by attaching fragments of DNA (each representing a 

specific gene at its known position) such as library clones or PCR (Polymerase Chain 

Reaction) products to a solid substrate (Schena et al., 1995). A robotic microarrayer is used to 

print the fragments on to the substrate, which can typically spot more than 20,000 fragments 

per substrate. RNA is then extracted from the untreated cell sample (control) and treated 

sample (test), which are then each reverse transcribed into cDNA. During reverse 

transcription, as each cDNA sample is being synthesized from the RNA template by the 

enzyme Reverse Transcriptase (RT), they are each labelled with a specific fluorescent dye 

(Cy3 and Cy5 for the control and test samples respectively), which becomes incorporated into 

the newly synthesized cDNA. Following the synthesis of labelled cDNA, equal amounts of 

each cDNA sample (test and control) are combined and subsequently hybridized on to the 

microarray chip (containing DNA fragments of known genes). By labelling both samples 

with different fluorescent dyes (Cy3 and Cy5), relative abundance of mRNA transcript levels 

can be measured by determining the fluorescence ratio for each spot on the substrate when 

scanned. Figure 2.4 illustrates the complete microarray process. 
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Figure 2.4 DNA microarrays. DNA fragments are spotted on to a glass slide (top right). RNA is then 

extracted from the two samples to be compared and then fluorescently labelled cDNA is prepared by 

reverse transcription, leading to the incorporation of Cy3 dye (green) in the control cDNA sample and 

Cy5 dye (red) in the test cDNA sample (top left). Both labelled cDNA samples are then mixed and 

hybridized on to the microarray and the slide is scanned to generate the image. In the image, green 

spots reflect down-regulated (under expressed) genes, red represent up-regulated (over expressed) 

genes and yellow show an equal expression of both red and green. Special image analysis software is 

used to determine signal intensities for each dye at each array position and logarithm of the ratio of 
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Cy5 intensity to Cy3 is calculated to determine the strength of expression. Once intensity ratios are 

calculated for each array position, positive Cy5/Cy3 ratios indicate over expressed genes and negative 

Cy5/Cy3 ratios indicate under expressed genes. The datasets can then be analyzed by cluster analysis 

(bottom). (Image taken from Cummings & Relman, 2000). 

 

2.3.2 Pre-processing microarray data & differential expression analysis 

Underlying every microarray experiment is a specific biological question being addressed 

and in order to effectively answer the biological question, intensity ratios of all genes on the 

microarray chip must be carefully examined to accurately identify those genes that exhibit a 

significant difference of expression between the test and control samples. By narrowing down 

the genes of interest, the focus of data interpretation becomes concentrated on these 

potentially meaningful genes, hence providing the biologist with clues as to where the answer 

to the biological question may lie. Furthermore, because microarray experiments typically 

generate colossal amounts of raw biological data, inconsistencies may arise in the gene 

expression measurements due to sources of non-experimental variations. Preprocessing 

microarray data, including image analysis, normalization and data transformation is an active 

research area and how to suitably quantify spots on microarrays remains a topic of great 

enquiry (Allison et al., 2006). 

 

Because gene expression measurements are derived from the microarray image itself (when 

the microarray chip is scanned and subsequently generated on screen by specialized analysis 

software tools), a great deal of attention is dedicated to effectively process microarray images 

and many image processing approaches have been developed in the past to cater for this need 

(Chen et al., 1997; Schadt, et al., 2001; Ekstrom et al., 2004; Yang et al., 2001; Steinfath et 

al., 2001). An important preprocessing step is normalization, which allows comparisons to be 

made between microarray experiments by controlling extraneous variation among 
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experimental datasets (Allison et al., 2006). Normalization is carried out by applying 

statistical methods to the entire experimental datasets (Lee et al., 2000) so that gene 

expression comparisons can be made in a manner that minimizes systematic bias. Gene 

expression measurements are derived from measuring the distribution of pixels in each spot 

on the microarray image and the intensity of pixilation of each spot can be used to assess the 

degree of similarity of the distribution in relation to the normal distribution. Researchers can 

also manually flag groups of spots or individual spots as good, bad or absent in order to help 

them differentiate between valid and invalid measurements of expression. Other statistical 

methods such as Standard Deviation (SD) can also be used to observe the spread of the entire 

data. The purpose of these statistics is to act as an aid for researchers by allowing them to 

estimate which spots are statistically usable so that they can be incorporated into the final 

dataset (Dudoit et al., 2002).  

 

Pre-processing and normalizing microarray data with the purpose of minimizing the effects of 

systematic error while retaining full biological variation are critically important goals that 

need to be given consideration if valid results are to be obtained from the experiment 

(Zahurak et al., 2007). During the normalization process, the dual dye measurements of each 

spot are used as a basis to estimate the relative abundance of expression for each gene by 

comparing the colour intensity of the test dye (Cy5) relative to the control (Cy3) at each spot 

on the array. The measurements are Log transformed (Logarithm to the base of 2) and from 

the resulting values over and under expressed genes can be readily identified, since positive 

values represent genes that are over expressed in the first condition compared to the second 

and negative values represent genes that are under expressed in the first condition compared 

to the second (Dudoit et al., 2002). Fold change is one of the most widely used approaches 

employed for the purpose of comparing the expression levels of genes across different 
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biological conditions. Consider two biological conditions, X and Y, where each expression 

value of each gene has been log transformed. Fold change is calculated simply by subtracting 

each gene expression value of the biological condition exhibiting a lower expression 

measurement from the condition exhibiting a higher gene expression value. In other words, if 

X > Y, then X – Y, else Y – X.  The result of this is that positive fold change values will 

indicate genes that are over expressed in biological condition X in comparison to Y, while 

negative values will indicate under expressed genes in condition X compared to Y. A fold 

change threshold is used to define the extent of biological variation that is considered to be 

significant by the researcher performing the experiment, which generates a narrowed down 

set of genes considered to be highly significant in answering the biological question. These 

genes of interest are referred to as differentially expressed genes. 

 

The fold change approach was the first method used to assess whether genes are differentially 

expressed by adequately measuring effect size and its popularity predominantly stems from 

its simplicity (Allison et al., 2006). However, fold change calculations should not be used as 

a sole basis to measure biological variation primarily because it is widely considered to be an 

inadequate test statistic (Hsiao et al., 2004; Miller et al., 2001). This is because it does not 

offer an associated level of confidence and hence, it fails to incorporate variance (Hsiao et al., 

2004; Budhraja et al., 2003). This is not to say that the fold change approach should not be 

used because it is conceptually useful due to the fact that it assumes a constant variance 

across transcripts (Allison et al., 2006). Nevertheless, if valid biological inferences are to be 

made, its use should be coupled with other test statistics such as the T test statistic.  
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2.3.3 Clustering gene expression data 

High throughput experiments such as microarrays no doubt generate vast amounts of 

biological data, which is not surprising considering the fact that they are designed to 

simultaneously quantify thousands of genes. In other words, the voluminous nature of the 

output is directly proportional to the volume of genes on the microarray chip (the input). For 

this reason, making valid biological inferences from the generated data can be a daunting task 

for the common biologist. An important objective of a microarray experiment is to identify 

groups of genes that exhibit similar behaviour of expression, since this is indicative that they 

may share common regulatory signatures and may ultimately be involved in the same 

biological processes (Barrett et al., 2006). This objective is fundamentally important because 

it has the potential to help answer the specific biological question motivating the microarray 

experiment. One of the most common methods of analyzing expression data in this context is 

clustering (Hand & Heard, 2005).   

 

Clustering is a very effective technique to extract interesting patterns of gene expression 

across different biological conditions, whilst circumventing the problematic nature of 

expression data attributable to the complexity of biological networks that lie hidden within 

the data. The simplest explanation of clustering is based on the paradigm of grouping subsets 

of genes (into clusters) that show similar expression measurements so that interesting 

biological patterns can be easily visualized. However, in order to take maximum benefit from 

the use of clustering, care must be taken to ensure that trivial subsets of genes are not 

included in the clustering analysis while employing the more interesting ones. When 

performing any sort of clustering, the distance metric is used to define the measure of 

similarity, which is a function that uses two points in a dimensional space where symmetry 

lies (Shay, 2003). There is not a single clustering solution universally applicable to all 
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biological problems and several different clustering algorithms have been developed, each 

suitable for specific needs (Everitt, 1980). Some examples include Hierarchical clustering 

(Eisen et al., 1998; Heyer et al., 1999; Qin et al., 2003), Self Organizing Maps (SOMS) 

(Ressom et al., 2003; Kohonen, 1995), K-means clustering (Tavazoie et al., 1999), and 

Principal Component Analysis (PCA). Since Hierarchical clustering and K-means clustering 

are most widely applicable to the analysis of gene expression data, they ought to be discussed 

here in some detail. 

 

2.3.3.1 Hierarchical Clustering 

Hierarchical clustering (Eisen et al., 1998) is usually the first clustering method of choice 

when analyzing gene expression data. The method itself is based on a single layered neural 

network and when performed, it hierarchically groups genes located near each other and with 

similar expression patterns together across a series of samples. The algorithm computes 

distance relationships between genes and experiments in a pair-wise manner and joins pairs 

of expression values that are most similar in expression to form what is called, a node. Upon 

each iteration, clusters of genes with similar expression patterns are then merged together into 

a single cluster until the desired number of clusters is obtained (Figure 2.5). The hierarchical 

arrangement of clusters takes the form of a dendrogram, which is a classical tree structure 

that appears when the clusters are graphically represented (Hand & Heard, 2005). The 

dendrogram illustrates the relationship between the clusters, making it easy to visualize 

different segments of similarly expressed genes.  

 

Although Hierarchical clustering is one of the most common clustering approaches used 

widely for the analysis of gene expression data, there are some limitations of its use. Firstly, 
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it fails to yield meaningful results as the number and size of datasets to compare grow. It is 

also notorious for not being very robust.  

 

 

 

Figure 2.5 Hierarchical clustering. The dendrogram on the top represents the relationships between 

clusters of genes and the dendrogram on the left illustrates the relationships between the experimental 

conditions. Clusters of similarly expressed genes are grouped together, where red represents over-

expressed genes, green represents under-expressed genes and black represents no change in 

expression. Image taken from Auman et al., 2007. 
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2.3.3.2 K-means Clustering 

K-means (Tavazoie et al., 1999) is a straight forward and efficient clustering method that 

arbitrarily divides the entire dataset into k number of disjoint subsets (Figure 2.6). The 

criterion used to define the number of clusters to divide the data into is user-defined and so as 

soon as the user inputs the number of clusters that they intend the data to be divided into (k), 

k-means efficiently segregates the dataset into k number of partitions, the centre of each 

partition or cluster being called a centroid. The k-means algorithm groups data in an optimal 

manner by calculating the distance between each gene and the centroid of each cluster. This 

ensures that each gene is assigned to the centroid (and subsequently grouped into that cluster) 

with the closest Euclidean distance whilst ensuring maximal distance between genes 

belonging to different clusters.  

 

The main drawback of k-means clustering is its arbitrary nature of clustering data, which 

generates different results each time it is performed. This is because the algorithm assumes 

no knowledge of the number of clusters in a given gene expression dataset, resulting in an 

alteration of results after each successive run.  
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Figure 2.6 A graphical representation of results generated from a typical K-means clustering analysis. 

In this example, the entire expression dataset is divided into 12 clusters, each consisting of genes 

grouped together showing their expression levels across different time points. The magenta line 

represents the mean expression level of each cluster. Image taken from Kulterer et al., 2007. 
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2.4 Analyzing microarray data in a systems biology context 

With the advent of bioinformatics, a whole new generation of opportunities to decipher 

complex biological data have come into existence. This is especially true in the case of 

microarrays. Since the use of this valuable high throughput technology compels biologists to 

be faced with vast magnitudes of raw complex biological data, bioinformatics has opened up 

a gateway for exciting opportunities in the context of systems biology. We are no longer 

living in an era where the field of biological sciences is self sufficient. Testament to this is the 

fact that the field of biology has become heavily reliant on informatics, mathematics, 

computer algorithms, software development and statistics in order to solve biological 

problems. In the midst of this interdisciplinary matrix, a realization has been born from 

which, the field of systems biology has emerged. It is becoming abundantly apparent that a 

scrutiny of characteristics of isolated parts of the cell or organism is not sufficient to warrant 

a global understanding of how a given organism functions as a whole unit (Kitano, 2002). 

The motivation of systems biology is hence, to understand physiology and disease from the 

integrative perspective of molecular pathways, regulatory networks, cells, tissues, organs, and 

ultimately the whole organism (Butcher et al., 2004). 

 

The marriage of systems biology with microarrays is undeniable. On one hand we have a 

high throughput technology offering a platform to measure mRNA transcript levels for entire 

genomes simultaneously in a cost effective and efficient fashion, and on the other hand, we 

have a interdisciplinary science specializing in the application of mathematics, computer 

science and biology with the fundamental purpose of unravelling the underlying functional 

dynamics of the cell in the perspective of the entire organism. In theory, the possibilities are 

endless. In practice, systems biology is still at its infancy and consequently, there is much to 

be desired. 
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Nevertheless, research in the area of systems biology is intense. There are generally three 

main areas that are progressing steadily. The first is the analysis of high throughput data such 

as microarrays using statistical algorithms and compiling reference databases encompassing 

information pertaining to genes, proteins, enzymes, and entire genomes (Moore, 2007). The 

second is the development of specialized bioinformatics software pipelines to automate gene 

expression analysis in the context of systems biology, and the third is the implementation of 

computational approaches to help answer biological questions. For instance, artificial 

intelligence in the form of neural networks is constantly being applied for pattern recognition 

purposes (Statnikov et al., 2005). Although the intensity of such efforts is undeniable, the 

truth remains that biologists are generally reluctant to employ bioinformatics 

applications/tools, especially if they are not able to comprehend how the analysis is carried 

out (Kulyk & Wassink, 2006). This is acting as a rate limiting factor and with time it is 

becoming more apparent that in order for novel biological discoveries to be made, true 

collaboration must exist between biologists and bioinformaticians. It is also becoming 

apparent that bioinformatics software programs need to be developed in a way in which 

biologists can use them without having problems understanding how the underlying analysis 

is carried out. This is an important step required to reinforce this necessary collaboration. 

 

The current predicament is such that there is a variety of biological data scattered 

everywhere. Several databases are available, each storing crucial biological knowledge. 

Furthermore, much work is being conducted in the field of systems biology by developing 

software applications to facilitate high throughput analysis. The aforementioned situation 

shall be considered in the sections that follow. 
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2.4.1 Transcription Factor databases 

The faculty of transcription factors to interact with DNA sequences in the genome to control 

transcription and ultimately the amount of gene expression has spawned a great deal of 

interest among researchers. This has motivated them to carefully examine promoter regions 

of genes to identify the involvement of certain transcription factors in the regulation of the 

genes (Kel, 2006). Because these regulatory DNA sequences bind to transcription factors in 

order to control transcription and ultimately gene expression, a great deal of effort is being 

placed on understanding these sequences. Attention is now shifting towards representing 

these sequences (called transcription factor binding motifs or TFBMs) in the form of Position 

Frequency Matrices (PFMs) and Position Weight Matrices (PWMs). A detailed explanation 

of these terminologies is explained in the subsequent chapter of this thesis. 

 

Currently, there are publicly available transcription factor databases, such as JASPAR 

(Sandelin, et al., 2004) and TRANSFAC (Matys et al., 2003). JASPAR catalogues matrix-

based transcription factor binding profiles for the purpose of warehousing non redundant 

representations of high quality transcription factor binding site (TFBS) profiles (Sandelin, et 

al., 2004) (Figure 2.7).  The profiles are derived as a result of collecting experimentally 

verified TFBMs (for multicellular eukaryotes) from published data, where some of the 

binding sites were determined by SELEX experiments (Pollock et al., 1990). Such databases 

have given rise to opportunities to analyze these crucial regulatory sequences against 

promoter regions of genes in a high throughput context. 
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Figure 2.7 The User Interface of the JASPAR database, showing the results from a typical query. 

Taken from Sandelin, et al., 2004 

 

2.4.2 Molecular pathway databases 

There are a number of publicly available databases that store information relevant to 

biological pathways and genes. The most prominent pathway database is the KEGG database 

(Kanehisa & Ogata et al., 1999) since it contains a comprehensive collection of known 

biochemical pathways, providing information pertinent to genes and their relationships in the 

pathway networks (Figure 2.8). Furthermore, each pathway is represented as a seemingly 

static pathway map where each member or genes in a given pathway are hyperlinked to the 

underlying comprehensive gene database. Biocarta (http://www.biocarta.com) is another 

http://www.biocarta.com/
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online database, containing a collection of biological pathways. MetaCyc (Karp et al., 2002) 

is a more specialized and specific pathway database, which primarily focuses on the 

dissemination of metabolic pathways. The advantage of MetaCyc is that unlike KEGG, which 

does not allow users to carry out pathway engineering due to a lack of interactive functions, 

MetaCyc facilitates the use of metabolic engineering by offering the capability to interact 

with the pathways in order to add, remove or replace genes. Both KEGG and MetaCyc have 

an active Application Programming Interface (API), giving rise to the opportunity to 

dynamically interact with them by writing code for specific needs.  
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Figure 2.8 The Metabolic Atlas of KEGG, displaying proteins in the form of nodes, and associations 

as lines. Each coloured box represents a separate metabolic pathway and the atlas shows how 

pathways and proteins are interconnected. Taken from http://www.genome.jp/kegg/atlas 

 

http://www.genome.jp/kegg/atlas
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2.4.3 Available software 

In an attempt to decipher gene expression data in a systems biology context, several 

bioinformatics software tools have been developed. Some examples of such software include 

Expander (Shamir et al., 2005), INCLUSive (Thijs et al., 2002), Genesis (Sturn et al., 2002), 

CONFAC (Karanam et al., 2004) and GEPAS (Herrero et al., 2003). Most of these software 

focus on streamlining the analysis flow of microarray data analysis by implementing specific 

functions such as k-means clustering, bi-clustering, promoter analysis to identify transcription 

factor binding sites and functional analysis. In addition, there are various software 

applications that attempt to extract a systems level understanding by facilitating data analysis 

from the perspective of molecular pathways. Pathfinder (Goesmann et al., 2002) is one of 

such tools, which facilitates pathway engineering from annotated data. GenMAPP 

(Salomonis et al., 2007) is another software relevant to pathway analysis, which is more 

specific for the analysis of microarray data. From the perspective of transcription factor 

analysis, several programs such as MATCH (Kel et al., 2003) and P-MATCH (Chekmenev et 

al., 2005) from TRANSFAC (Matys et al., 2006), PRODORIC (Muench et al., 2003), and 

PoSSuMsearch (Beckstette et al., 2006) are available that can scan upstream sequences of 

putative target genes to identify TFBMs. All of these software and others alike are no doubt 

important in the milieu of systems biology. However, there are several loopholes that are yet 

to be accommodated, some of which are addressed in the subsequent chapters of this thesis. 

 

2.5 Conclusion 

The purpose of this chapter was to provide the reader with a systematic walkthrough of the 

main principles that collectively form the backbone of systems biology. Because the 

relationship between systems biology and microarray technology is a fundamentally 
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important one, an overview of microarray technology was given from the microarray 

paradigm itself to the need for clustering solutions to solve biological problems. Finally, 

current works in the area of systems biology was summarized in order to give an idea of how 

much progress has been made in the field and the array of opportunities available for the 

future. The subsequent chapters of this thesis will now present contributions made during the 

course of pursuing this PhD. 
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Chapter 3 

BiSAn: A software for efficient computation 

of transcription factor binding motifs for high 

throughput gene expression analysis 
 

3.1 Introduction 

DNA-binding transcription factors (TF’s) are important determinants of transcriptional 

regulation and control that bind to specific recognition sites of operator sequences of target 

genes to activate or suppress transcription. Environmental factors coupled with the internal 

conditions of the organism determine the proportion of the complete set of transcription 

factors that are active at a given point in time, making it possible to observe specific states of 

the transcriptome. Although each cell of an organism contains an exact copy of its genome, 

the expression of genes can vary due to different biological conditions, giving rise to different 

transcriptome states. Furthermore, some transcription factors may only dictate the expression 

of a single gene, whereas others may organize the activation or suppression of several genes 

at once (Teichmann et al., 2004). It is this precise molecular ability of TFs to interact with 

specific recognition sites called transcription factor binding motifs (TFBMs) that makes it 

possible for cells to control reproduction, growth and death. It is hence no surprise that a lot 

of attention has shifted towards better understanding these powerful DNA-binding proteins 

together with their target TFBMs. These binding motifs are usually represented as matrices 

and are referred to as position weight matrices (PWMs), position frequency matrices (PFMs) 

or alignment matrices in the scientific literature. 

 

3 
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Position frequency matrices (PFMs) represent the most widely employed model for TFBMs 

and have been catalogued in web-based databases such as JASPAR (Sandelin, et al., 2004), 

where each matrix consists of nucleotide counts per position for a given TF (Stormo et al., 

1982). Given a set of TFBMs, regulatory networks can be predicted through in silico methods 

by using cognate binding sequences to construct models. Using a given PFM pertinent to a 

given collection of TFBMs, consensus binding sites specific to a particular TF can be readily 

derived that represent evolutionarily conserved regions. Scanning such putative binding sites 

in promoter regions of genes has been recognised as an important step in determining the 

potential binding affinity of a transcription factor to its respective binding site(s) and several 

programs such as MATCH (Kel et al., 2003) and P-MATCH (Chekmenev et al., 2005) from 

TRANSFAC (Matys et al., 2006), PRODORIC (Muench et al., 2003), and PoSSuMsearch 

(Beckstette et al., 2006) are available that can scan upstream sequences of putative target 

genes to identify TFBMs. However, careful scrutiny of current literature reveals a growing 

demand for automating this search strategy for the analysis of high throughput expression 

data such as microarrays. Although the aforementioned programs can be used to automate 

high throughput search, it is apparent that there is a lack of available pipelines specifically 

designed for the common biologist who may wish to put a set of differentially expressed 

genes into an automated pipeline in order to scan promoter sequences pertinent to these genes 

for the presence of TFBMs (using PFMs) at the click of a button. 

 

This chapter introduces BiSAn, a software pipeline specifically designed for microarray data 

analysis that uses PFMs to scan promoter sites for the presence of TFBMs enriched in the 

user’s set of data. Regardless of the biological question, a microarray experiment usually 

results in one or more sets of differentially expressed genes, which represent genes that have 

significant difference in expression ratios between the control and test samples. An important 
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challenge is to decipher these expression data points in the context of transcriptional 

regulation to better understand the biological phenomenon under investigation. Once a set of 

differentially expressed genes has been imported by the biologist, BiSAn automatically 

fetches their promoter sequences and subsequently scans them for TFBMs in an efficient and 

high throughput fashion. It then carries out TFBM enrichment analysis to detect binding sites 

that are enriched within the user’s set of genes. 

 

The subsequent sections of this chapter will focus on the following. Firstly, the concept of 

Position Frequency Matrices and the required terminology is explained. Next in the Methods, 

the implementation of the algorithm and software is described for high throughput TFBM 

detection. The efficiency and biological usefulness of BiSAn is then described by subjecting 

it to microarray data generated from our in-house studies. 

 

3.2 Terminology 

Position frequency matrices (PFMs) represent the most widely employed model for TFBMs 

where each PFM, F = (fσj) consists of a set of TFBMs of length m over an alphabet Σ = 

{A,T,C,G}. A PFM is hence defined as a |Σ| × m matrix, where fσj is the frequency of symbol 

σ at position j 

The information content, Ij (1) and mean information content, I(F) (2) for column j of a 

position frequency matrix, F can be defined as follows: 
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When measuring the quality of a given PFM, the mean information content is used. 

 

3.3 High Throughput scanning of PFMs for promoter analysis 

For a given set of differentially expressed genes, PFMs for x number of TFs can be used to 

scan promoter sequences pertaining to these interesting genes. Because each PFM, F = (fσj), 

the frequency of symbol σ for each nucleotide base A, T, G or C at position j over the length 

of the entire matrix can be used to determine all possible consensus binding sites that have 

the potential to bind to the transcription factors which they belong to. Each consensus can 

then be given a score based on 1) the frequency of each base A, T, G or C at position j of the 

matrix and 2) the total frequency of all bases at position j of the matrix. The subsequent 

scores of each consensus site can then be used to reflect the putative binding affinities of 

these sites to their respective TF, which can facilitate in silico biological predictions. 

The purpose of BiSAn is to provide a simple yet effective medium for biologists to efficiently 

identify putative TFBMs from promoter sites belonging to their genes of interest at the click 

of a button.   

3.4 Methods 

This section describes how the TF data was collected and organized followed by a description 

of the algorithm used to scan promoter sites for the presence of consensus TFBMs. 

[3.1] 

[3.2] 
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3.4.1 Data collection and storage 

The following sets of data were downloaded from the specified sources: 

TF Binding site data: A total of 23 mus musculus PFMs were obtained from the JASPAR 

database (Sandelin et al., 2004). Because each PFM consists of frequencies of each symbol σ 

at position j of the matrix, we derived a consensus TFBM for each matrix as follows. For 

each position j of the matrix, the highest frequency of the symbol σ (A, T, G or C) was taken 

as the first nucleotide base at position j of the consensus. The next most frequent symbol 

from the remaining 3 was then added to the same position of the consensus (separating each 

symbol at that position of the consensus with the / delimiter) until the least frequent symbol 

was added. Symbols with a frequency count of 0 were not added to the consensus. Once 

consensus binding sites were derived from all 23 PFMs, they were stored in an excel file 

together with the PFMs, names, classes, species and accession identifiers of the matrices. 

Promoter data: The complete set of 22,549 mouse promoter sequences were obtained from 

PromoSer (http://biowulf.bu.edu/zlab/PromoSer/), where each promoter sequence consisted 

of a length of 2000 bases upstream and 100 bases downstream of the Transcription Start 

Signal (TSS). MatchMiner (http://discover.nci.nih.gov/matchminer) and the gene Id converter 

(http://idconverter.bioinfo.cnio.es/) tools were used to convert their locus id’s into genbank 

accession Id’s where necessary. The promoter sequences and their corresponding identifiers 

were then stored in an excel file as two separate columns. 

3.4.2 The Scan and Score algorithm 

We have developed an algorithm to scan promoter sequences in search for each consensus 

site representing a PFM of a specific TF. Before the algorithm is executed, the user must 

provide the system with a set of differentially expressed genes as a text file and in the format 

http://biowulf.bu.edu/zlab/PromoSer/
http://discover.nci.nih.gov/matchminer
http://idconverter.bioinfo.cnio.es/
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“Genbank ID”, “Gene name/description” and “Fold Change/Expression value”, each 

separated by a tab delimiter. Following this, BiSAn fetches the promoter sequences using the 

genbank Ids of the input genes at which point the algorithm is executed as shown below. 

 

Calculating similarity scores, S 

Similarity scores are calculated conditional upon a match found between a consensus binding 

site and the region of a given promoter site that contains the consensus. Once a match is 

found, the similarity score S, is calculated by taking the first base of the consensus, retrieving 

it’s score from the matrix and dividing it by the total frequency count of all bases at that 

specific position of the matrix. This calculation is repeated for each and every subsequent 

base of the consensus and once all scores have been calculated, the overall value is derived 

by adding each resulting score followed by dividing the sum by the total length of the matrix 

and then multiplying by 100 to generate a percentage similarity score. 
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3.4.3 Transcription Factor Binding Motif Enrichment Analysis 

Following the identification of specific TFBMs within promoter regions belonging to the 

user’s genes of interest, the next important step is to statistically determine which binding 

motifs are not occurring by chance alone. Therefore, BiSAn was developed to carry out 

Transcription Factor Binding Motif Enrichment Analysis (TFBMEA), which compares the 

number of differentially expressed genes that share a given consensus binding site, with the 

number of genes expected to share that binding site by chance alone. The difference in the 

observed and expected numbers can then be used to generate contingency tables, which can 

in turn be used as a basis to report P values for each binding site by using a hypergeometric 

statistical model. This work is motivated by CORNA, which is a package written in R to 

allow users to test their gene lists for enrichment of microRNA targets in the context of 

KEGG pathways and GO terms (Wu and Watson, 2009). There are also other software tools 

such as FatiGO (Al-Shahrour et al, 2004), GOStats (Falcon and Gentleman, 2007), GSEA 

(Subramanian et al, 2005), and MappFinder (Doniger et al, 2003) that use a hypergeometric 

distribution or a probability distribution to generate P values in the milieu of functional 

annotation.   
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BiSAn firstly generates a 2 x 2 contingency table for each of the 23 consensus binding sites, 

and then it uses the Fisher’s exact test (hypergeometric model) to derive P values from them. 

In order to generate the contingency tables, each consensus binding site is scanned in the 

entire mouse genome (collection of 22,549 promoter sites) and their number of occurrences is 

calculated. Likewise, each consensus binding site is scanned in the promoter regions of the 

user’s set of differentially expressed genes and subsequently counted for their number of 

occurrences. A contingency table for each consensus binding site is then derived as follows: 

 

 

Chosen Not Chosen  Total 

  TFBM  a  b       a + b 

  Absent  c  d       c + d 

  Totals  a + c  b + d        n 

Where: a = No of genes in user’s gene list that contain the binding site 

(chosen from gene list) 

b = No of genes in the genome that contain the binding site minus a (Not 

chosen from gene list) 

c = No of genes in user’s gene list that do not contain the binding site 

(chosen from gene list) 

d = 22,549 (Total no of genes in genome) – (a + b + c) 

n = Sum of each total (Grand total) 

 

 

These contingency tables reflect the degree of enrichment of a given binding site in the user’s 

set of differentially expressed genes (gene list) relative to the entire genome. Once 

contingency tables have been generated for all consensus binding sites, BiSAn then applies 
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the Fisher’s exact test to compute P values for each binding site from their contingency tables 

using the following hypergeometric distribution: 

  

Where  = binomial coefficient and ! = factorial operator 

 

The fundamental motivation behind the development of BiSAn is as follows. Although there 

are software available that specialize in promoter analysis for TFBM detection, complications 

arise for the common biologist who may wish to efficiently analyze their microarray data. 

The most noteworthy problem is related to a lack of consensus for the use of gene identifiers 

when representing genomic data. Because of this, the biologist is faced with the problem of 

ensuring that their microarray data representation complies with the type(s) of identifiers 

required by these software. BiSAn has been specifically designed to accept Genbank 

accession identifiers, which is by far the most commonly used to represent microarray data. 

Furthermore, TFBM detection is usually complicated by a low level of conservation; hence 

matrices are rapidly becoming the chosen methodology for TFBM representation. The goal of 

this work is to take advantage of this methodology for high throughput analysis specific for 

microarray data by providing a simple yet effective pipeline for biologists to detect TFBMs 

that may be implicating the biological phenomenon under investigation. 

 

3.5 Results and Discussion 

BiSAn was written in Perl. Visual Basic.Net was used to construct the Graphical User 

Interface for the output to be displayed to the user. The software and associated data files are 
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freely available and can be downloaded from the project website 

(http://www.1066technologies.co.uk/bisan). BiSAn requires users to provide their data as a 

text file, where the first column contains the genbank accession identifier, the second column 

contains the gene name or description, and the third column contains the expression value or 

fold change (each column separated by a tab delimiter). Once imported, the underlying 

algorithm of BiSAn (section 3.4.2) is executed and the gene identifiers from the input data 

are used to fetch their corresponding promoter sequences. These sequences are then fully  

 

Figure 3.1 The Graphical User Interface (GUI) of BiSAn. The left panel displays the users imported 

gene expression profile and the right panel displays the output from the analysis, including web links, 

which when clicked display the profiles of the relevant Transcription Factor in JASPAR. 

http://www.1066technologies.co.uk/bisan
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3.5.1 Application of BiSAn 

To demonstrate the benefits that can be derived from analysing microarray data using BiSAn, 

we utilized data generated from our in-house microarray studies to evaluate how well our 

pipeline could be used to predict new outcomes. The biological question pertinent to this 

study was to unravel the underlying molecular mechanisms dictating immune tolerance by 

analysing the role of Egr-2 in implicating T cell tolerance. Recently characterised as a 

candidate tolerance-inducing transcription factor, the Early Growth Response gene (Egr-2) is 

known to interact with specific genes to implicate the state of tolerance in T cells (Safford et 

al., 2005; Warner et al., 1999). The aim of this microarray experiment was to generate 

differentially expressed genes by comparing tolerant Vs activated CD4+ T cells taken from 

mice, using an oligonucleotide chip consisting of approximately10, 000 known mouse genes 

(the accession number of the array data is e-mexp-283, accessible via the ArrayExpress 

website (http://www.ebi.ac.uk/arrayexpress/)). From this microarray experiment, 70 

differentially expressed genes were identified (fold change >= 1.5) from which 8 genes were 

specifically confirmed to be highly upregulated by Reverse Transcriptase PCR (Table 3.1).  

Table 3.1 8/70 differentially expressed genes confirmed to be highly up-regulated in T cell tolerance 

by Reverse Transcriptase PCR (RT-PCR) 

http://www.ebi.ac.uk/arrayexpress/
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We inputted these 70 differentially expressed genes into BiSAn in order to assess its ability to 

carry out TFBM detection under high throughput conditions, whilst determining how well it 

could be used to better understand the molecular mechanisms underlying immune tolerance. 

From the input, 47 genes were found by BiSAn that contained known mouse TFBMs in their 

promoter sequences. A total of 23 TF PFMs were scanned against these promoter sites by the 

algorithm with an overall runtime of less than 7 minutes (Table 3.2). 

 

Table 3.2 Some statistics to show the efficiency of BiSAn when scanning promoter sites for high 

throughput TFBM detection 

 

For each promoter site scanned, BiSAn detected TFBMs pertaining to several different TFs 

(such as GATA1, Klf4, Nobox, Pax4, Pax5, ELF5 and Myb) and where a consensus site was 
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found in the promoter, it efficiently computed the similarity score of the consensus to its 

PFM. Because 8/70 genes from our tolerance dataset were confirmed to be highly regulated, 

we decided to place special emphasis on understanding the results generated for these 

putatively interesting genes. Among several other TFs, BiSAn detected TFBMs for the 

GATA1 Transcription factor in promoter regions of these 8 tolerance-related genes with their 

binding affinities ranging from 47.17% to 32.08% (Table 3.3). Similarly, scores calculated 

for the Klf4 transcription factor ranged from 33.26% to 13.91% (Table 3.3).  

 

 

 

 

 

Gene ID TFBMs Binding 

affinity (%) 
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Table 3.3 Promoter analysis of 8/70 genes tolerance genes (confirmed by RT-PCR) for TFBM 

detection together with scores calculated for each consensus site found in their promoter regions. 

NM_007457 

NM_009168 

NM_009298 

NM_009510 

NM_010548 

NM_013532 

NM_019507 

NM_021396 

 

Transcription Factor = Pax5 

 

 

0 

46.25 

37.50 

33.75 

35.83 

29.58 

31.25 

29.58 

NM_007457 

NM_009168 

NM_009298 

NM_009510 

NM_010548 

NM_013532 

NM_019507 

NM_021396 

 

Transcription Factor = GATA1 

 

 

0 

32.08 

32.70 

42.77 

43.71 

42.77 

0 

47.17 

NM_007457 

NM_009168 

NM_009298 

NM_009510 

NM_010548 

NM_013532 

NM_019507 

NM_021396 

 

Transcription Factor = Klf4 

 

0 

26.09 

33.26 

22.48 

13.91 

N/A 

0 

15.43 
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The GATA binding protein (GATA1) TF is known to differentially suppress the expression 

of CCR5 (a major HIV-1 co-receptor and critical determinant of HIV-1 infection) in stem cell 

derived dendritic cells and primary human T-cell subsets (Sundrud et al., 2005). This is 

indicative that GATA1 plays a role in the induction of immune tolerance. Klf4 has also been 

attributed to suppressing the immune response due to its ability to suppress B cell 

proliferation (Yusuf et al., 2008). Results generated from BiSAn show that these 

aforementioned TFs have the potential to bind to promoter sequences of our 8 genes 

confirmed to be over-expressed in immune tolerance. TFs do not necessarily bind to promoter 

sequences with a 100% binding efficiency in the cell. Hence, scores in the range of 30-50% 

may be significant and may reflect the putative ability of these genes to bind to these 2 TFs.  

 

Once putative binding efficiencies of the motifs have been successfully calculated, the next 

logical step in the analysis is to identify consensus binding motifs that are enriched in the 

user’s gene expression datasets in relation to the entire genome. Hence, BiSAn was 

developed to cater for this function. Solely relying on binding efficiencies of consensus 

sequences can pose a problem at the statistical level because such an approach lacks the 

ability to discern consensus binding sites that are not occurring in the user’s gene list by 

chance alone. In light of this BiSAn implements the TFBM Enrichment Analysis function, 

which generates a 2 x 2 contingency table for each consensus binding site and subsequently 

applies the Fisher’s Exact test to generate a P value for each site (refer to section 3.4.3 for a 

detailed description of the implementation of TFBM Enrichment Analysis). Results generated 

from this enrichment analysis showed that a very few consensus sites were enriched in our 

tolerance dataset since P values generated for most of the sites were quite high (Table 3.4). 

The most noteworthy consensus site belonged to the transcription factor T, with a P value of 



  

70 

 

0.065, which indicates a statistically significant degree of enrichment (Table 3.4). The T 

transcription factor is known to act as an activator of transcription, which binds to its target 

DNA as a homodimer. It is biologically interesting that the consensus binding site for a 

transcriptional regulator was found to be enriched in our immune tolerance dataset because 

there is a possibility that the transcription factor T may be hampered from interacting with 

these genes via the consensus site in order to induce the state of T cell tolerance. However, 

this is something that needs to be confirmed through wet lab experimentations.  
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Table 3.4 Promoter analysis of 8/70 genes tolerance genes (confirmed by RT-PCR) for TFBM 

detection together with scores calculated for each consensus site found in their promoter regions. 

 

JASPAR 

ID 

Transcription 

Factor Name 

Consensus binding site P 

Value 

MA0004 Arnt 

 

0.900 

MA0006 Arnt-Ahr 

 

0.994 

MA0009 T 

 

0.065 

MA0014 Pax5 

 

0.984 

MA0027 En1 

 

0.997 

MA0029 Evi1 

 

0.754 

MA0035 Gata1 

 

1.000 
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MA0039 Klf4 

 

1.000 

 

3.6 Concluding remarks 

In this chapter, we have shown that utilizing PFMs for the purpose of scanning promoter sites 

for high throughput TFBM detection works well for deciphering microarray data. We have 

demonstrated this by developing BiSAn, which is a simple yet effective pipeline for the 

common biologist who may wish to input their gene expression data into a easy-to-use 

software to facilitate efficient TFBM detection. The algorithm underlying BiSAn is 

computationally fast and results generated from it can be used to make valid in silico 

predictions to aid the biologist in answering their research question. 
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Chapter 4 

Genome Interactions Analyzer: a 

systems biology approach for the global 

analysis of transcriptional networks in 

microarray data 
 

4.1 Introduction 

Cis- regulatory sequences are frequently present in the genome, acting as recognition sites for 

the binding between DNA and RNA polymerase. Such regulatory sequences are recognised 

by and subsequently bind to specific transcription factors, which governs the increase or 

decrease of binding between RNA polymerase and genomic DNA. Consequently, the 

strength of the latter binding determines the expression of the specific gene being observed. 

Identifying the potential interactions between transcription factors and genes via these 

regulatory binding sequences is crucial towards enhancing our understanding of molecular 

mechanisms, such as cell differentiation and proliferation because these interactions directly 

implicate gene expression. However, to gain a systems level understanding of cellular 

function, it is equally imperative to identify protein-protein interactions that occur within the 

cell, which may be indirectly affecting transcription (i.e. by a specific protein carrying the 

transcription factor from the cytoplasm to the nucleus). Also, to complete the cellular picture, 

the aforementioned classes of interactions need to be placed in the context of molecular 

pathways to identify the involvement of other biological molecules and signalling cascades 

that may be playing important roles in the molecular mechanism under observation (For a 

review of these classes of interactions, refer to Chapter 2 of this thesis).  

4 
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Although the technological breakthrough of DNA microarrays has revolutionised the field of 

molecular biology by providing a platform for biologists to quantify the mRNA expression 

levels of entire genomes concurrently in a single experiment, such high-throughput 

experiments tend to generate vast amounts of raw data making it problematic for the 

researcher to extract meaningful biological insight. It is at this stage where the use of 

appropriate computational tools becomes necessary for the purpose of mining the raw data to 

yield specific biologically significant data as per the biologist’s needs. The need for data 

mining however, arises not only due to data overload but also more importantly because the 

raw data itself does not provide a complete picture in the context of systems biology due to its 

lack of integration with external sources of knowledge. Hence the use of relevant 

computational tools/software become necessary if the biologist is to gain meaningful 

deductions about their data generated from in-house microarray studies.   

Currently, data pertaining to transcription factor binding sites are stored in database 

applications such as TRANSFAC (Wingender et al., 1996), Jaspar (Sandelin, et al., 2004) 

and the Object-Oriented Transcription Factor Database (TFD) (Ghosh, 1998). In addition, 

there are software available such as Expander (Shamir et al., 2005), INCLUSive (Thijs et al., 

2002), Genesis (Sturn et al., 2002), CONFAC (Karanam et al., 2004) and GEPAS (Herrero et 

al., 2003), that specialise in carrying out promoter analysis of genes from microarray data to 

identify common transcription factor binding sites. Although these applications focus on 

streamlining the analysis flow of microarray data analysis by performing specific functions 

such as k-means clustering, promoter analysis and functional analysis, they do not offer a 

complete systems level approach to analysing gene expression data. This is because they lack 

the faculty to map gene expression data to biological pathways, ultimately providing an 

incomplete biological representation of the user’s data. The lack of such ability impedes the 
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process of obtaining a complete representation because biological pathways can provide vital 

information about how biological systems are organised (Chung et al., 2004). Currently, a 

number of databases exist, which store data related to transcription factor binding sites, 

protein-protein interactions, molecular complexes and pathways. Examples of such databases 

include BIND (Bader et al., 2001), PANTHER (Thomas et al., 2003) and ABS (Blanco et al., 

2006). Whereas the focus of ABS is inclined towards manually curating experimentally 

identified transcription factor binding sites identified in promoters of orthologous vertebrate 

genes and storing this data in the form of a web-based database, its purpose is not to act as an 

interactive software tool that can be used in an automated or semi-automated fashion by its 

users. Hence ABS acts more like a repository of transcription factor binding site information 

rather than a user interactive software. PANTHER (Thomas et al., 2003) and BIND (Bader et 

al., 2001) focus on the storage of high throughput protein sequences, molecular complexes 

and pathways but share the same problem as ABS (Blanco et al., 2006) in terms of acting as 

static databases lacking user-interactive capabilities. Currently, the pathway database of 

KEGG (Kanehisa et al., 2004) forms a central repository of biological pathways. However, 

its pathway diagrams are static in nature and KEGG itself cannot be directly used for the 

purpose of mapping gene expression data to biological pathways. Although users can connect 

to KEGG via a SOAP interface in order to analyse their microarray data, doing so would be 

problematic for biologists who lack the necessary computational skills required to write 

programs. BioCarta (http://www.biocarta.com); another application dedicated to biological 

pathways, allows users to map gene names to biological pathways but on a gene-by-gene 

basis only. 

 The current situation is such that there are no programs available to identify Cis-regulatory 

sequences in genomic promoter sites and protein-protein interactions, from differentially 
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expressed genes coupled with mapping these genes/proteins to an up-to-date repository of 

molecular pathways, all in a single software package. Making such software available is 

essential for biologists, especially for those actively involved in conducting microarray 

experiments to unravel previously unknown molecular mechanisms. This is predominantly 

because gene expression measurements alone are not sufficient to answer complex biological 

questions since they represent the amount of gene expression without explaining the 

molecular causalities that lead to the expression. In light of this, a global approach to 

analysing microarray data is required, where users are able to integrate their gene expression 

data in the context of transcription factor binding sites, protein-protein interactions and 

molecular pathway analysis, all at the same time. Only then will users be able to extract a 

global visualisation of cellular activities, which implicate the molecular mechanism being 

investigated by them.   

In this chapter, a bioinformatics software package called Genome Interactions Analyser 

(GIA) is described, which focuses on the interpretation of data generated from gene 

expression microarray experiments and deciphers it in the context of promoter analysis to 

identify transcription factor binding sites, protein-protein interactions and molecular 

pathways for both mouse and human species all at the same time. GIA specifically aims to 

act as a microarray data analysis system and has been designed to efficiently extract global-

level biological meaning from gene expression data in order to aid in the exploitation of 

molecular mechanisms investigated by biologists. Because GIA is a systems-biology 

software, it forms an attractive medium for biologists to meaningfully analyse their high 

throughput data.    

 

 



  

77 

 

4.2 Methodology 

GIA was programmed in Visual Basic.NET and Perl and MySQL was used to construct its 

underlying databases, built for the purpose of generating the hierarchical tree-view structures. 

Before GIA is executed, users are required to provide a tab-delimited text file containing 

gene expression data (in the format: Genbank Accession ID, Fold Change/Expression Value, 

and + or – sign to differentiate up and down regulated genes), which they wish to process. 

Following this the user is required to connect to the MySQL database containing all the 

underlying data used by GIA. Once connected, the user will be able to begin their analysis. 

Refer to Figure 4.1 for a complete illustration of the functions. 
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Figure 4.1 Functional layers of GIA. Once user’s data is queried against GIA’s database, processed 

data is displayed in the relevant panel on the interface, after which the user can obtain a local 

summary of their results (specific to the function of GIA they have executed). Following live 

connection with KEGG, user’s genes are queried against KEGG’s pathway database. Results 

(including the links for each pathway) are then displayed on GIA’s sub-interface. 

 

4.2.1 Gene-Protein Interaction Function 

The first function of the software (called “Gene-Protein Interaction”) is used to generate the 

hierarchical tree-view structure representing the associations of transcription factors, Cis 
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regulatory binding sites and genes containing those binding sites within their promoter 

regions. The associations are organised in the form of grandparent, parent and child nodes 

respectively and each node is built as a result of querying GIA’s database (Figure 4.1 and 

4.2). When this tree-view is queried against the user’s data, genes found within the tree-view 

structure are highlighted in red (for up-regulated genes) and green (for down-regulated 

genes). The colour codes are based on the thresholds that users set for their input data. When 

users import their expression data into GIA, they will be prompted with an option to set their 

thresholds for both up and down-regulated genes. If for example, they choose >+1.5 (for up-

regulated) and <-1.5 (for down-regulated) as their thresholds, genes from their dataset 

(meeting these thresholds) found within the tree-view will be highlighted as red and green 

respectively. Also because the user’s data may also contain transcription factors, these will 

also be highlighted in the tree-view if found. Following this, users can then use this function 

to generate a statistical profile for each cluster of transcription factors, comprising of the 

number of genes, Cis regulatory binding sites and mean fold change expression belonging to 

each cluster. These statistics serve the purpose of identifying clusters of genes from the user’s 

data that are enriched with specific transcription factor binding sites. The purpose of these 

features is for users to identify genes from their gene expression datasets that contain 

regulatory binding motifs for specific transcription factors which can then be correlated to the 

vital information of whether they have been up or down-regulated in their particular 

microarray experiment. Our motivation for designing and implementing this aspect of our 

software revolves around the belief that transcription factor binding sites found within 

promoter sites of genes can play integral roles in governing unknown gene function and 

having additional gene expression information (i.e. Up or down-regulated signals) can aid in 

making predictive inferences about the data at the DNA-Protein interaction level.  
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4.2.2 Protein-protein Interaction Function 

The second panel (called “Protein-protein interactions”) is used to generate a hierarchical 

tree-view structure specific to protein-protein interactions and GIA’s database is queried in 

order to build the tree-view (Figure 4.1 and 4.2). Genbank accession numbers for protein “A” 

are represented as parent nodes while accession numbers for their interacting proteins 

(Protein “B”) are represented as child nodes. Once the protein-protein interaction tree-view is 

queried against the users gene expression data, those genes found within the tree-view are 

highlighted accordingly (Figure 4.2). Because gene expression datasets typically consist of 

accession numbers pertaining to both genes and proteins, having such functionality would 

give biologists the opportunity to identify proteins within their datasets that interact with 

other proteins not necessarily found within their data. At any point in the analysis stage, the 

user can export a local summary of their results, delineating the associations of genes (within 

their dataset) with transcriptions factors to which they have been assigned to (for Gene-

Protein Interaction) or alternatively associations between proteins found within their dataset 

with other interacting proteins (for Protein-Protein interactions). In the case of both types of 

analyses, the exported data also provides names for molecular pathways in which each 

gene/protein is found to play a role in. 

 

4.2.3 Molecular Pathway Analysis 

To gain a systems level understanding of gene expression data, it is essential for the analysis 

to encompass an understanding of what roles user’s genes of interest play in currently known 

molecular pathways. This is important since molecular pathways represent knowledge-base 

and can be used to validate predictive findings. This function of GIA (Pathway Maps 

function) is divided into two specific sub-functions. The first allows users to map their 
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expression data to eight core pathways that are known to be pertinent to a broad range of 

molecular processes (such as immunology and cancer) and the second sub-function allows 

users to map their data to all molecular pathways known to date. The eight core pathways 

were developed specifically for immunologists and cancer researchers interested in efficiently 

analysing their immunology-specific or cancer-specific gene expression data. 

For the first sub-function, the co-ordinates for both the nodes (biological entity) and 

associations (relationships) comprising each pathway are stored in appropriate data 

structures. When the user’s data is queried against the nodes for the biological entities of each 

pathway, a count is provided on GIA’s interface for the number of genes from the user’s data 

that are found in each of the pathways (Figure 4.2). Knowing which pathways are worthy of 

exploration, the user then has the option to select a pathway of their choice. When selected, 

the pathway map is constructed on the sub interface (independent interface) of GIA. 

Concurrently, the fold changes for each gene entry present in the user’s gene expression data 

are searched to establish whether the fold changes are + or – and subsequently, the genes 

from the users data found within the pathway are highlighted accordingly in order to indicate 

to the user the genes that have been up or down-regulated in their particular microarray 

experiment. At this point in the analysis stage, users can export a summary of their pathway 

analysis findings.   
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Figure 4.2 Main Graphical User Interface of GIA. The first panel displays the user’s interesting 

genes, where +/- Signs are used to indicate up or down-regulated genes. The second panel called 

“TFA” is used to display the hierarchical structure representing the associations between transcription 

factors, binding sites and genes. Those genes found within the user’s data are highlighted accordingly. 

The third panel called “protein-protein interaction tree-view” is used to generate the hierarchical 

structure representing the protein-protein interactions. Finally, for each local pathway, a count is 

provided which reflects the number of genes from the user’s data found within the pathways. Clicking 

on either organism type (mus musculus or homo sapiens) generates the pathway maps. Also, clicking 

on the “connect to KEGG live” button takes the users to the sub-interface, where they can map their 

expression data to live KEGG pathways at the click of a button. 

 

For the second sub-function, GIA has been designed to automatically connect to KEGG 

(Kanehisa et al., 2004) in a live fashion in order to map user’s gene expression data to all 

molecular pathways known to date. Once GIA has searched for the user’s genes in all KEGG 
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pathways, the pathway links are displayed on the second sub-interface of GIA (Figure 4.3). 

Clicking on each of these links will generate the specific KEGG pathway in html and the 

user’s genes will be highlighted in red or green depending on whether the genes are up or 

down regulated (Figure 4.4). In order for GIA to establish a live connection with KEGG’s 

pathway database, the KEGG API is accessed in Perl. Also, Perl script was written for GIA to 

specifically 1) search for user’s genes in all of KEGG pathways, 2) return the results of the 

search (including pathway links) to GIA’s sub-interface for users to scrutinise and 3) 

highlight user’s genes as red or green on KEGG pathways once each pathway link is clicked. 

GIA has been designed to connect to the KEGG API via Soap-Lite, after which the algorithm 

is executed (Figure 4.5). 
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Figure 4.3 Sub-Interface of GIA. User’s genes are searched in KEGG’s pathway database and results 

are sent back to GIA’s sub-interface for scrutiny. Clicking on each url generates the pathway image 

with user’s genes highlighted in them. Users’ can select from a number of gene identifiers, such as 

Genbank, Entrez, Unigene and NCBI id’s to perform the search. 

 

4.2.4 Constructing the databases for GIA 

 

4.2.4.1 Gene-Protein Interaction Database 

The Gene-Protein Interaction database was constructed in three steps. At first, data from the 

Object-Oriented Transcription Factor Database (oo-TFD) (Ghosh, 1998) was manipulated, 

which contains a list of 1617 unique eukaryotic transcription factors associated with their 

respective binding sites, all verified according to relevant wet-lab experiments. Then, we 

obtained the complete set of human and mouse promoters, using EXPANDER (Shamir et al, 

2005) and Promoser’s (Halees et al., 2003) underlying databases respectively. The set of 

collected human promoter data comprised of 12,981 putative promoter regions for known 

genes, each with a length of 1200 bp (1200 bp upstream of the TSS). For the mouse data, 

each promoter sequence contains 2000 bases upstream and 100 bases downstream of the TSS. 

Having obtained all the necessary data, we then created a parallel pattern finding algorithm to 

search for the transcription factor binding sites within the entire human and mouse promoter 

sites. Since there are vast numbers of promoters within the human and mouse genomes, the 

algorithm needed to be of a distributed type in order to improve processing efficiency. Once 

binding sites of the 1617 transcription factors were found within the complete sets of human 

and mouse promoter sites, the genes to which the promoter sites belonged to were assigned to 

the transcription factors. A total of 320,000 genes for human (including multiple occurances) 

and 300,000 for mouse (including multiple occurances) were assigned to 1617 transcription 

factors by the pattern-matching algorithm. Where necessary, Matchminer (Bussey et al., 
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2003) was used to convert gene identifiers from one type to another. For example, when the 

human promoter data was collected, each gene identifier was originally presented as “locus 

id”. In this case, Matchminer was used to convert these identifiers to Genbank accession ID. 

 

4.2.4.2 Protein-Protein Interaction Database  

The Protein-Protein Interaction database was constructed using human interaction data from 

the Human Protein Reference Database (Peri et al., 2003) and mouse interaction data from 

the Riken Database for mouse (Suzuki et al., 2001). A total of 8000 known human protein-

protein interactions were stored together with approximately 145 mouse protein-protein 

interactions where proteins within both sets of interaction data were represented as Genbank 

accession ID’s.  

 

4.2.4.3 Pathway maps Data   

 The pathway data for the eight core pathways comprises of co-ordinates belonging to the 

nodes (biological entities) and associations (arrows and lines). These co-ordinates were 

obtained from KEGG (Kanehisa et al, 2004) and subsequently stored in data structures. By 

having co-ordinates for all biological entities and associations, each pathway map was then, 

designed to be generated automatically. For the live KEGG function of GIA, constructing a 

database was not required since this function was programmed to be executed via the KEGG 

API using Soap-Lite. 

The underlying driving force behind the development of GIA is straightforward. Regardless 

of the nature of the biological question, every microarray experiment will lead to the 

generation of a set of differentially expressed genes. Such set of genes then need to be mined 
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in the appropriate biological context in order to better understand the molecular mechanism 

under investigation. The challenge however, is to carry this out in the perspective of systems 

biology, by not losing the bigger picture of the organism as a whole. GIA was developed  

 

 

Figure 4.4 KEGG pathway, displaying the T-Cell receptor signalling pathway. User’s gene 

expression dataset is searched through all of KEGG’s pathway maps and genes that are found on the 

pathways are highlighted. CD4/8 was upregulated in our tolerance dataset and was found in the T cell 

receptor signalling pathway (highlighted in red).  

whilst considering this in mind, and as a result, the implemented functions were designed to 

streamline high throughput analysis in the context of three principal layers; A) The promoter 

level – Identifying Cis regulatory binding sites in promoter sites of genes that have the 

potential to bind to specific transcription factors, B) The cytoplasmic level – Identifying 

proteins that can interact with other proteins in the cellular cytoplasm, and C) The pathway 

level – Mapping molecular interactions and signalling cascades that occur in molecular 
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pathways within the cell. The potential benefits that could be derived from analysing high 

throughput data within this framework motivated us to develop GIA. The Graphical User 

Interface of GIA coherently reflects the faculty to analyse expression data at these functional 

layers and it has been ensured that the software is easy to use, and that results are processed 

intuitively. 

 

Figure 4.5 Algorithm for GIA’s Live KEGG function. GIA is firstly required to establish a 

connection to KEGG’s API via Soap-Lite. Once connected, the gene ids within the user’s expression 

data are converted into KEGG ids. Following this, the KEGG ids are used to fetch all pathway ids 

(which contain each specific KEGG id within the pathway maps) from the KEGG pathway database. 

The KEGG ids are then mapped to their respective pathway maps and colour coded appropriately and 



  

88 

 

finally, the urls for all of the mapped pathways are sent back to GIA’s sub-interface. Clicking on each 

url generates the pathway map in html with the highlighted genes.  

 

4.3 Results 

For the purpose of demonstrating our software’s functionalities, we used data generated from 

our in-house microarray experiment. The biological purpose of this in-house study centred on 

the exploitation of the underlying molecular mechanisms concerning immune tolerance and 

hence, this forms our basis for further investigation. Microarray datasets were utilised to 

extract interesting biological knowledge from our software via three approaches.  The first 

through the simultaneous identification of DNA-binding transcription factors that have the 

potential to bind to genes within a given microarray dataset, the second via protein-protein 

interactions and the third through a dynamic graphical approach allowing the visualisation of 

genes and proteins within the context of biological pathways (Figure 4.2). 

4.3.1 Analysing the molecular mechanism underlying immune tolerance using GIA’s 

Gene-Protein Interaction function 

Gene-Protein Interaction allows valid inferences to be made about microarray data because it 

combines knowledge of transcription factors, Cis regulatory binding sites and genomic 

promoter sites with the crucial information of whether the genes being analysed have been up 

or down-regulated in the user’s microarray experiment. We chose to use ~ 7000 regulatory 

binding sites from TFD to construct the Gene-Protein Interaction database because these 

binding sites are evolutionarily conserved in eukaryotic genomes and have been verified by 

wet lab experimentations. As part of the Gene-Protein Interaction function, genes found to 

contain evolutionarily conserved binding sites for their respective transcription factors are 

also searched in the pathway database of KEGG in order to integrate the user’s regulatory 

binding site data with molecular pathway information.  
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Because we are interested in the molecular mechanisms underlying T-cell anergy and 

tolerance, we exploited this particular function of our software by utilising differentially 

expressed genes associated with T-cell tolerance. Querying Gene-Protein Interaction against 

our immune tolerance dataset revealed several transcription factors that could potentially bind 

to the genes involved in immune tolerance (Table 4.1). Amongst the differentially expressed 

genes within our tolerance dataset, AXIN1 was found to contain Cis regulatory binding sites 

within its promoter region for the EGR-2 transcription factor. Furthermore IL-10 was found 

to contain Cis binding sites for AP1 and STAT factors, while Ifnar contained binding sites for 

AP1 and STAT 3. When integrated with molecular pathway data, these genes were identified 

to be involved in the Jak-Stat, Cytokine-cytokine and T-cell receptor signalling pathways 

(Table 4.1).   
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Table 4.1 Some differentially expressed genes from the tolerance dataset assigned to their respective 

Transcription factors by GIA 

Transcription 

Factor (TF)  

Accession 

ID of 

gene(s) (*) 

HUGO ID of 

gene (s) 

(**) 

Differential 

Expression 

(***) 

Pathway 

Involved 

(****) 

 

 

Citation 

(*****) 

STAT 3 NM_010508 Ifnar1 +3.521 JAK-STAT Pfeffer et 

al., 1997 

STAT 3 NM_018731 Atp4a +4.058 JAK-STAT ~ 

STAT Factors NM_010548 Il10 +1.796 JAK-STAT Benkhart et 

al., 2000, 

2003 

EGR-2 NM_013866 Zfp385 +1.664 Unknown ~ 

EGR-2 AF009011 Axin1 +2.571 Cell cycle ~ 

EGR-2 NM_007669 P21cip1 +4.512 Cell cycle ~ 

EGR-2 NM_009875 p27kip1 +4.254 Cell cycle ~ 

E-BOX Factors NM_013488 Cd4 +4.905 T-Cell 

receptor 

signalling 

~ 

 

E-BOX Factors 

 

NM_013652 

 

Ccl4 

 

+3.51 

Cytokine-

cytokine 

Interaction 

~ 

E-BOX Factors NM_008420 Kcnb1 +4.825 Unknown ~ 

 

AP-1 

 

NM_013652 

 

Ccl4 

 

+3.51 

Cytokine-

cytokine 

Interaction 

~ 

 

AP-1 

 

NM_019568 

 

Cxcl14 

 

+4.334 

Cytokine-

cytokine 

Interaction 

[20] 

AP-1 NM_010508 Ifnar1 +4.058 JAK-STAT ~ 
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AP-1 NM_010548 Il   10 +3.521 JAK-STAT [21] 

 

(*) Accession Id’s of some of the genes from the tolerance dataset that contain binding sites in their 

promoters for the transcription factors shown in the first column. (**) Corresponding Hugo Id’s of 

each gene. (***) Differential expression of genes (+ indicates genes that are up-regulated). (****) 

Pathways in which the corresponding genes are found in. (*****) Citations for interactions between 

TF and gene (Interactions found by GIA that are not confirmed by published works are denoted by 

“~”). The complete table of differentially expressed genes can be found in the supplementary 

information. 

 

The significance of integrating interaction data between transcription factors and genes with 

molecular pathways is to allow users of our software to 1) identify key transcription factors 

that may be playing important roles in the underlying molecular mechanisms being 

investigated in the microarray experiment and 2) identify other potentially important 

molecules within known biological pathways that may be directly or indirectly implicating 

the molecular mechanism under observation. The gene expression/fold change measurements 

can then be used to assess the likelihood of binding between the gene and transcription factor. 

 

4.3.2 Mining gene expression data specific to Immune tolerance using Protein-Protein 

Interaction function 

Besides  carrying  out  promoter  analysis  to  identify  transcription  factors  that  can 

potentially bind to genes within gene expression datasets, the focus of GIA is also to identify 

gene-encoding proteins within expression data, which participate  in Protein-protein  

interactions  (PPI).  Having  a  functionality  to  analyse  such  interactions  is important in a 

software package that specialises in microarray data analysis since the regulation  of  
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molecular  mechanisms  tend  to  be  dependent  on  gene-specific transcription  factor  

binding  as well  as  interactions  at  the  protein-protein  level. The PPI  function  of  GIA  

has  been  developed  to  naturally  ensure  the  identification  of protein-encoding  genes  

from  user’s  gene  expression  data, which  interact with  other genes within the same dataset. 

However, certain proteins not present within the gene expression dataset may also participate 

in interactions with genes within the user’s data. GIA  is  also  able  to  identify  these  

interactions  that  are  external  to  the  user’s dataset,  leading  to  the  generation  of  

meaningful  information  for  the  users.  Each identified  protein  is  highlighted  either  red  

or  green  within  the  Protein-protein hierarchical structure  (Figure 4.2). Following this, 

proteins are then mapped to known biological pathways to identify their interactions with 

other genes/proteins (Table 4.2).   

 

Table 4.2 Protein-Protein Interactions found for some of the genes within the tolerance dataset, by 

GIA’s Protein-Protein interaction function 

Protein A 

(*) 

Differential 

Expression 

(**) 

 

HUGO 

ID’s for 

Protein A 

(***) 

Protein B 

(****) 

HUGO 

ID’s for 

Protein B 

(*****) 

Pathways 

Involved 

(******) 

Citation 

(*******) 

NM_013787 +2.067 Skp2 NM_007633  Ccne1 Cell Cycle [22] 

NM_013787 +2.067 Skp2 NM_009875  Cdkn1b Cell Cycle [23] 

NM_009987 +1.625 Cx3cr1 NM_009142  Cx3cl1 

Cytokine-

Cytokine 

Interaction 

[24] 

NM_013822 +1.696 Jag1 NM_010928  Notch2  [25] 

NM_008783 +1.829 Pbx1 NM_008714  Notch1  [26] 

NM_009875 +2.227 Cdkn1b NM_009870  Cdk4 Cell cycle, 

T-Cell 

[27] 
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receptor 

signalling 

NM_009875 +2.227 Cdkn1b NM_009873  Cdk6 Cell Cycle [27] 

NM_009875 +2.227 Cdkn1b NM_016714  Nup50 Cell Cycle [28] 

NM_007560 +1.566 Bmpr1b NM_007553  Bmp2 

Cytokine-

Cytokine 

Interaction 

[29] 

NM_007560 +1.566 Bmpr1b NM_007554  Bmp4 

Cytokine-

Cytokine 

Interaction 

[30] 

NM_011529 +2.228 Tank NM_019777  Ikbke  [31] 

NM_011850 +1.587 Nr0b2 NM_030676  Nr5a2  [32] 

 

(*) Accession id’s of some of the protein-encoding genes (Protein A) from the tolerance dataset that 

were found to participate in PPI’s by GIA. (**) Fold Change value of Protein A. (***) HUGO id’s of 

Protein A. (****) Accession id’s of interacting proteins (Protein B). (*****) HUGO id’s of Protein B. 

(******) Pathways in which the interactions are found in. (*******) Citation(s) for each PPI between 

Protein A and B. The proteins highlighted in bold belong to the tolerance dataset, whereas the un-bold 

ones are external proteins not found within the user data.  

 

Querying the Protein-Protein interaction function of GIA against our tolerance-related dataset 

revealed 10 specific protein-encoding genes within the dataset (comprising of ~2000 genes  

in  total), which  collectively  participate  in  a  total  of  15 Protein-protein interactions  with  

proteins  external  to  the  tolerance  dataset  and  2  interactions  with proteins within the 

same tolerance dataset (Table 4.2). Amongst the 15 interactions, the Cdkn1b protein-

encoding gene from  the  tolerance dataset was found  to interact with Cdk4, Cdk6  and 

Nup50  and  from  the  2  internal  interactions, Cdkn1b was  found  to interact with Skp2. 

Also Jag1 and Pbx1 were found to interact with the Notch2 and Notch1 proteins respectively.  
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Pathway analysis  revealed  the  involvement  of  these proteins  in  processes  such  as  cell  

cycle,  T-cell  receptor  signalling  and  Cytokine-cytokine interaction (Table 4.2).  

 

4.3.3 Biological  Pathway  analysis  of  genes  involved  in  T-cell  tolerance  using  GIA’s 

Pathway maps function   

GIA’s pathway maps function is based on 1) the construction of 8 core widely used 

biological  pathways  for  known  cellular  and  molecular  mechanisms  and  2) the 

software’s  ability  to  connect  to  KEGG  in  a  live  fashion  in  order  to  map  users 

expression data to all biological pathways known to date (Figure 4.3 and 4.4). Executing both 

of  these  functions against our  tolerance dataset, we  identified  specific  genes mainly 

involved  in  the  cell  adhesion,  T-cell  receptor  signalling,  Cytokine-Cytokine interaction,  

Jak-Stat,  and  MAP  Kinase  pathways  (Refer  to  Table  4.3  for  complete results). Our 

tolerance gene expression dataset comprised of 70 upregulated genes, 27 of which were 

mapped on to a total of 63 KEGG biological pathways at the click of a button (Table 4.3).   
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Table 4.3 Number and identities of each KEGG pathways mapped for 27/70 genes from our tolerance 

dataset. 

Gene ID (*) KEGG Pathway 

Ids (**) 

Total number of 

pathways (***) 

Gene ID 

(*) 

KEGG 

Pathway 

Ids (**) 

Total number of 

pathways (***) 

 

 

NM_007381 

mmu00071, mmu00280, 

mmu00410, mmu00640, 

mmu03320 

 

 

5 

NM_013542 mmu04650 

mmu04940 

2 

NM_007581 mmu04010 1 NM_010548 mmu04060 

mmu04630 

mmu04660 

3 

NM_007664 mmu04514 1 NM_013652 mmu04060 

mmu04620 

2 

 

NM_008008 

mmu04010, mmu04810, 

mmu05218 

 

3 

NM_009510 mmu04670 

mmu04810 

2 

NM_013488 mmu04514 

mmu04612 

mmu04640 

mmu04660 

4 NM_008205 mmu04514 

mmu04612 

mmu04940 

3 

NM_008420 mmu04742 1 NM_013814 mmu00512 

mmu01030 

2 

NM_011696 mmu04020 1 NM_013521 mmu04080 1 

NM_011125 mmu03320 1 NM_008601 mmu05218 1 

NM_019568 mmu04060 

mmu04670 

2 NM_019777 mmu04010 

mmu04620  

2 

NM_016772 mmu00350 

mmu00362  

mmu00628 

3 NM_010102 mmu04080 1 
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NM_010508 mmu04060 

mmu04620 

mmu04630 

mmu04650 

4 AF303831 mmu00051 

mmu00052 

mmu00120 

mmu00260 

mmu00310 

mmu00363 

mmu00591 

mmu00625 

mmu00650 

9 

NM_021396 mmu04514 1 AF009011 mmu04310 

mmu05210 

mmu05213 

mmu05217 

4 

NM_013490 mmu00260 

mmu00564 

2 AF288381 mmu04650 1 

 
(*) Genebank accession Ids for genes from our tolerance dataset, (**) Ids for KEGG pathways in 

which tolerance-related genes were found in, (***) total number of pathways found for each gene. 

These molecular interactions are all based on known literature and details of these interactions can be 

seen in the specified KEGG pathways 

 

4.4 Discussion 

The motivation behind  the  development  of Genome  Interaction Analyser  (GIA) is  to  

focus  on  streamlining  the  process  of  gene  expression  data  analysis with a special 

emphasis towards systems biology. Since the completion of the human genome project in the 

year 2000, vast amounts of data ranging from promoter sites of various  organisms  to  

identification  of  transcription  factor  binding  sites,  protein-protein interactions  and  

pathway  data  have  been  generated.  However, there is currently a lack of integration of 

these data in the form of user-interactive software. 
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The  focus  of  our  software was  to  give  priority  to motif  prediction  for transcription 

factor binding followed by exploring biological pathways to validate predictions made by 

GIA. The same holds true for our software’s Protein-protein interaction capability in which 

the protein interactions found are mapped to biological pathways to verify the interactions.  

Making  such  software  available  is a  necessity  especially  for biologists  conducting  

microarray  experiments  because  whilst  gene  expression measurements represent the 

quantity of mRNA expression, they cannot solely be used to determine  the molecular 

causality of gene expression. Consequently, GIA aims to extract biological meaning from 

gene expression data by exploiting it in the context of gene-transcription factor binding, 

Protein-protein interactions and molecular pathways. 

By putting our software to use, we were able to explore mechanisms underlying T-cell 

specific tolerance. The process of immune tolerance is highly complex and may involve the 

concerted action of several key  transcription factors, which interact with specific  genes  at  

the  protein-DNA  level  as  well  as  at  the  protein-protein  level  to induce  the  state  of 

tolerance  in  B  and  T  cells.  The Early Growth Response gene (EGR-2) is one of such 

transcription factors that has recently been characterised and although it has been extensively 

studied in the context of the nervous system, its exact role in the immune system has not been 

clearly described. However, recent studies have shown that EGR-2 is a likely candidate to 

play a role in the induction of T-cell anergy/immune tolerance (Safford et al., 2005; Warner 

et al., 1999) and has been found to be up-regulated in tolerised T-cells.  Further  studies  have  

shown  the  over-expression  of  EGR-2  in  microarray experiments  investigating 

mechanisms  underlying T-cell  anergy,  hence  indicating  a negative  regulatory  effect  of  

EGR-2  towards  T-cell  activation  (Anderson et al., 2006).  Interestingly following  

promoter  analysis,  our  software  identified  the  p21cip1  and  p27kip1  gene promoters to 



  

98 

 

contain conserved binding site regions for Egr-2. More specifically, the promoter regions of 

both of these genes were found to contain the GAGGGGGCG and GGGGAGGCG binding 

sites respectively.  Both p21cip1 and p27kip1 were highly up regulated in our microarray 

tolerance dataset (Table 4.1). Furthermore, results from gene  shift analysis have  specifically 

confirmed  these  interactions,  suggesting a possible  mechanism  via  which  Egr-2  

regulates  immune  tolerance  (manuscript  in preparation).   

Zfp385 (a zinc finger protein) and AXIN1 (also highly upregulated  in our  tolerance data  

(Table  4.1))  were  both  found  to  contain  the CCGCCCCCGC  binding  site  for EGR-2 

within their promoter regions. The role of AXIN1 is known to be involved in the negative 

regulation of the Wnt signalling pathway, and has also been attributed to the induction of 

apoptosis (Satoh et al., 2000). Pathway analysis from GIA revealed the identification of 

AXIN1 in the cell cycle. This leads to the inference that EGR-2 may interact with AXIN1’s 

promoter region to induce tolerance since both molecules are known to act as negative 

regulators of T-cell proliferation. However, studies are yet to confirm this interaction.   

STAT3,  another  transcription  factor,  plays  a  critical  role  in  the  induction  of T-cell 

tolerance  in  CD4+  T-cells  and  antigen  presenting  cells  (APC’s)  devoid  of  this 

transcription factor have known to effectively break antigen specific T-cell anergy in vivo, 

implicating its role as a negative regulator of T-cell activation (Cheng et al., 2003). Studies 

have closely  analysed  the  promoter  site  for  interleukin-10,  a  cytokine  known  to  

downregulate the  immune  response,  and  identified  a  module  consisting  of  an  IFN 

regulatory  factor 1  (Irf-1)  binding  site and a Stat3  binding  site  (Ziegler-Heitbrock et al., 

2003). Based on these studies,  it  has  been  identified  that  the  interleukin-10  gene  binds  

to  the  Stat3 transcription  factor  and  is  consequently  up-regulated  by  Stat3,  ultimately  

playing  a role in tolerance (Cheng et al., 2003; Ziegler-Heitbrock et al., 2003). From the 
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imported tolerance data, GIA identified the Ifnar1 interferon  (alpha  and  beta)  receptor  1  

gene,  which  was  highly  expressed  in  our tolerance data and  showed  that  it contains  the 

TTCCGGAA  binding  site  for  the Stat3 transcription  factor,  which  has  been  confirmed  

by  Pfeffer’s  research  group (Pfeffer et al., 1997), reporting  that  Stat3  is  able  to  bind  to  

this  receptor. Pathway analysis from GIA revealed the identification of Ifnar1 in the Jak-Stat 

pathway. This suggests a potential target  for  further  investigation  since  Stat3  signalling  

has  been  reported  to  play  a critical role in immune tolerance (Benkhart et al., 2000).   

There  are  several  bioinformatics  software  packages  that  specialise  in  the  high 

throughput  analysis  of  gene  expression  data,  such  as Expander  (Shamir et al., 2005), 

INCLUSive (Thijs et al., 2002), Genesis (Sturn et al., 2002), CONFAC (Karanam et al., 

2004), GeneACT (Cheung et al., 2006) and GEPAS (Herrero et al, 2003), which we tested 

with our in-house  immune  tolerance  gene  expression  data.  However, GIA has some 

advantages over such tools. Conceptually, there is presently no software available that 

integrates 1) the discovery of transcription factor specific Cis regulatory binding sites within 

promoter regions of genes, 2) the identification of protein-protein interactions and 3) 

mapping/overlaying of genes/protein to an up-to-date repository of molecular pathways  all  

at  once  for  high  throughput  data  analysis  (Table  4.4).  In  addition, the binding  sites  

underlying  the  Gene-Protein  interaction  function  of  GIA  represent evolutionarily  

conserved  genomic  regions,  which  are  used  by  our  software  to highlight  potential  

interactions  between  transcription  factors  and  genes  from  the user’s expression data 

without the use of clustering algorithms, which tend to generate arbitrary  clusters  of  genes  

prior  to  carrying  out  functional/promoter  analysis. Furthermore, GIA’s pathway maps 

function is based on an efficient algorithm, which was  programmed  to  connect  to  the API  

interface  of KEGG  in  a  live  fashion. This algorithm  has  been  designed  to  map  several  
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different  gene  identifiers  to  KEGG pathways  (GenBank, Entrez, UniGene and NCBI), 

hence maximising the  output  for pathway analysis.   

 

Table 4.4 A comparison of GIA with other software tools 

Function 

 

 

GIA 

 

 

EXPANDER 

 

INCLUSIVE 

 

Pathway 

Studio 

 

MAPPFinder 

 

BIND 

 

MicroCore 

 

KEGG 

 

BioCarta 

 

 

 

GeneACT 

 

Suitable for 

high 

throughput 

data analysis 

 

YES 

 

YES 

 

YES 

 

YES 

 

YES 

 

NO 

 

YES 

 

NO 

 

NO 

 

YES 

Carries out 

Promoter 

Analysis/TF 

Assignment 

 

YES 

 

YES 

 

YES 

 

NO 

 

NO 

 

NO 

 

NO 

 

NO 

 

NO 

 

YES 

Searches for 

transcription 

factors in 

users data 

 

 

YES 

 

 

NO 

 

 

NO 

 

 

NO 

 

 

NO 

 

 

NO 

 

 

NO 

 

 

NO 

 

 

NO 

 

NO 

Protein-

Protein 

Interaction 

analysis 

 

YES 

 

NO 

 

NO 

 

YES 

 

YES 

 

YES 

 

YES 

 

NO 

 

NO 

 

NO 

Construction 

of pathway 

maps 

 

YES 

 

NO 

 

NO 

 

YES 

 

YES 

 

NO 

 

YES 

 

YES 

 

YES 

 

NO 

Reveals 

transcription 

factor 

binding sites  

 

YES 

 

NO 

 

NO 

 

NO 

 

 

NO 

 

NO 

 

NO 

 

NO 

 

NO 

 

YES 

Mapping 

gene 

expression 

data to 

pathway 

maps 

 

YES 

 

NO 

 

NO 

 

YES 

 

 

YES 

 

NO 

 

NO 

 

 

NO 

 

NO 

 

 

NO 

Basis for Motif Gene Gene  Functional     Motif 
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(*) This criterion is used to identify software tools that have the capability to integrate transcription 

factor, protein-protein and pathway analysis all in a single package. 

 

4.5 Conclusion 

GIA  is  a  powerful  systems  biology  software  package  for microarray  data analysis, 

which offers specific functions to its users such as simultaneous promoter analysis of genes 

within expression data in order to assign genes to specific transcription factors, identification 

of protein-protein interactions and finally, mapping of several hundreds or  thousands  of 

genes  to all KEGG  biological pathways known  to date. We believe that  such  an overall  

package  is  extremely  useful  for  biologists  in  general,  but more specifically  for  

microarray  data  analysts  who  are  in  need  of  quick  computational solutions to complex 

biological problems.  

4.6 Future Work 

Chapter 3 addressed the importance of using a hypergeometric model such as the Fisher’s 

exact test to generate P values in order to discern transcription factor binding sites that do not 

occur in the user’s gene list by chance alone. Through the implementation of this 

transcription factor binding motif enrichment analysis method in BiSAn, we were able to 

demonstrate the importance of computing a P value for each binding motif. The very same 

Prediction Discovery Expression 

Clustering 

Expression 

Clustering 
N/A Enrichment 

using GO 

N/A N/A N/A N/A Discovery 

User 

interactive 

software (S) 

or Database 

(D) 

 

S 

 

S 

 

 

S 

 

S 

 

S 

 

D 

 

S 

 

S 

 

S 

 

S 

Integrative 

capability (*) 

YES NO NO NO NO NO NO NO NO NO 
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approach can be implemented in GIA, and this is something that will be addressed as a future 

work. The methodology will entail generating a 2 x 2 contingency table for each of the 7000 

unique transcription factor binding sites that belong to 1617 unique transcription factors, 

followed by implementing the Fishers exact test to generate a P value for each binding site. 

This will provide a medium for biologists to carry out binding site enrichment analysis for 

their gene expression datasets, which will narrow down their focus to include those binding 

sites that generate statistically significant P values.  
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Chapter 5 

MicroPath: A software pipeline for the 

comparison of multiple gene expression 

studies to identify cellular transcriptional 

states 

 

5.1 Introduction 

The fundamental virtue of microarray technology lies in its ability to provide a global 

snapshot of the cellular state in the context of any given biological condition. This has 

spawned opportunities for biologists to simultaneously quantify mRNA transcript levels of 

entire genomes concurrently in order to observe specific transcriptome states. Although each 

cell of an organism contains an exact copy of its genome, the expression patterns of genes 

can vary due to different biological conditions, giving rise to different transcriptome states. 

However, the immensity of raw biological data generated from microarray experiments in the 

form of thousands of gene expression data points poses a challenge for biologists to extract 

such biological meaning from these overwhelming volumes of data. Furthermore, even if 

such data is statistically analysed to yield a set of differentially expressed genes, there will 

still be a need to integrate these sets of genes with external knowledge banks in order to make 

valid biological inferences. These challenges become increasingly difficult when considering 

the cross comparisons of multiple biologically related gene expression datasets.  

Because high throughput technologies such as microarrays have rapidly gained popularity at 

a global scale due to the prospect of quantifying gene expression in a high throughput fashion 

and subsequently identifying previously unknown transcriptome states, gene expression data 

5 
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pertaining to various different biological questions are being rapidly generated by scientists 

worldwide. Such data sets are now readily accessible through public repositories such as 

ArrayExpress (Sarkans et al., 2005) and the Gene Expression Omnibus (GEO) (Barrett et al., 

2006). This has motivated biologists to utilise these sets of data in an attempt to investigate 

common regulatory signatures that can be potentially found across multiple experiments 

sharing a similar biological theme. One of the most common methods of comparison is based 

on the assumption that genes across different biological conditions having similar expression 

patterns are likely to be involved in the same biological process (Rhodes et al., 2004) and 

hence, may share the same regulatory signatures. Using this method of comparison, which is 

one of the most successful methods to date, coupled with the availability of publicly 

accessible gene expression data repositories, biologists now have the opportunity to answer 

complex biological questions pertaining to biological phenomena underlying various 

different disease states. However, there is currently a lack of software tools that have the 

potential to maximise the benefits that can be derived from the cross comparison of multiple 

gene expression datasets. 

 Because signals pertinent to transcriptome states tend to be diluted over entire datasets, it is 

imperative that specialised software tools are developed that cater for the need of extracting 

such information buried within masses of gene expression data points. There are currently 

few applications such as MiCoViTo (Lelandais et al., 2004) that specialise in the analysis of 

transcriptome states from expression datasets by using a gene-centric approach. However, 

this is only relevant to the yeast genome and hence, cannot be applied to data generated from 

the use of other organisms. Furthermore, there are several interfaces and applications such as 

KEGG (Kanehisa et al., 2004), GenMapp (Salomonis et al., 2007), Reactome (Vastrik et al., 

2007) and Ingenuity Pathway Analysis (www.ingenuity.com), which allow biologists to 
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analyse their expression data at the cellular level. In addition, data relevant to transcription 

factor binding sites are stored in database applications such as TRANSFAC (Wingender et 

al., 1996), Jaspar (Sandelin, et al., 2004) and the Object-Oriented Transcription Factor 

Database (TFD) (Ghosh, 1998). With so much wealth of data available, it would be highly 

fruitful to integrate these external sources of knowledge in the milieu of multiple gene 

expression data analysis. 

In this chapter we introduce a novel bioinformatics software pipeline called MicroPath, 

which specializes in the cross comparison of multiple gene expression datasets and attempts 

to identify common regulatory signatures from the standpoint of molecular pathway analysis. 

When one scrutinizes current literature relevant to automated solutions of gene expression 

analysis, it becomes apparent that there is an increasing demand for software applications that 

offer an efficient pipeline to the analysis of multiple gene expression profiles. Although 

current meta-analyses studies have been conducted with the purpose of employing statistical 

techniques to compare cDNA and affymetrix gene expression profiles (Ghosh et al., 2003; 

Rhodes et al., 2002, 2004; Wang et al., 2004), it cannot be denied that there is a mounting 

need for this process to be automated. Nevertheless, various approaches/algorithms of 

statistical nature have already been implemented with the purpose of identifying the most 

relevant pathways in a given experiment (Draghici et al., 2007; Stelling et al., 2004; Joshi-

Tope et al., 2005) together with methods such as Gene Set Enrichment Analysis (GSEA), 

which ranks genes based on the correlations between their expressions and observed 

phenotypes in the context of biological pathway discoveries (Subramanian et al., 2005). 

There are also tools available that functionally annotate gene expression data (Khalid et al., 

2006a, 2006b). Albeit, it remains infeasible for biologists to cross compare several expression 

profiles without an automated solution, and hence they are faced with the labour-intensive 



  

106 

 

task of employing manual methods to carry out their comparisons. MicroPath uses the meta-

analytic standard and has been specifically developed to: compare several significantly 

expressed sets of genes in order to find the intersection of common genes using both number 

crunching methods as well as the classical permutation and combination principle, extract 

putative regulatory signatures using statistical and graph-based approaches and finally, 

mapping these sub-sets of co-expressed genes to molecular pathways all in the form of a high 

throughput pipeline. 

 

5.2 Implementation 

The front-end of MicroPath was developed in Visual Basic.Net and Perl, and the database 

back-end was developed in MySQL. Upon analysing the users input files (gene expression 

profiles), processed data is displayed intuitively on the graphical user interface, which is 

equipped with various interactive objects such as charting facilities, buttons, drop-down 

menus and user input/output dialogues. The interface is also equipped with a function to 

export processed data into Microsoft excel for further scrutiny and use. 

 

5.2.1 System Architecture 

MicroPath carries out meta-profiling of multiple gene expression datasets using two different 

approaches. Firstly, the intersection of common genes is identified across n number of 

expression profiles, which is then plotted graphically using a simple number crunching 

exercise. The second approach applies to a situation where an attempt to identify common 

genes across n number of expression profiles using the aforementioned approach fails due to 

the absence of common genes across all datasets (this situation is especially common when a 



  

107 

 

large number of expression profiles are compared, which reduces the probability of finding a 

common gene amongst them). Consequently, MicroPath applies the permutations and 

combinations mathematical principle to solve this problem (refer to implementation of meta-

analysis strategy below for details). Once the intersection of a set of common genes has been 

identified and subsequently displayed on the interface (using either of the above methods), 

the next stage in the analysis is to extract patterns from the intersection in order to identify 

common genes that are being expressed in accordance with the biological question. 

MicroPath offers a semi-automated graph-based approach to achieve this as well as classical 

statistics to identify the overall correlation of gene expression. Finally, co-expressed genes 

(common genes that are expressed in accordance to the relevant biological question) are 

mapped to all molecular pathways known to date in order to reveal their molecular 

dependencies (refer to Figure 5.1 for the complete system architecture). 

 

5.2.2 Implementation of Meta-analysis Strategy 

In theory, an intersection of a sub-set of common genes across multiple gene expression 

profiles should be easily attainable using simple number crunching methods of comparison. 

In practice, this is not always the case since the likelihood of identifying genes sharing 

common accession identifiers decreases as the number of profiles to compare increases. This 

inverse relationship makes sense both mathematically and biologically. From a biological 

perspective, regulatory signatures tend to be diluted over entire datasets and as a result, only a 

proportion of the total number of profiles to compare may actually share common genes. In 

such a scenario, using a simple method of comparison would break down at some point and 

no common genes would be reported to the user, although common genes may be present 

within n – 1 expression profiles. 
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Figure 5.1 Functions of MicroPath. Users are prompted to import up to 10 gene expression profiles, 

which are then compared using a direct comparison method. If this method yields zero common 

genes, MicroPath automatically attempts to identify an intersection of common genes by reducing the 
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search space to n – 1 datasets using permutations and combinations. This process is continued until at 

least 1 common gene is reported. Following this, users are provided with a function to search for 

expression patterns graphically and gene expression correlations are calculated statistically using the 

pearson’s correlation coefficient algorithm. Finally, co-expressed genes are mapped to all molecular 

pathways of KEGG in a high throughput fashion by automatically accessing its API via SOAP-Lite. 

 

To prevent potentially interesting biological findings to be hampered at this point in the 

analysis, we have applied the principle of mathematical combinations to the comparison of 

multiple gene expression profiles. All possible combinations of comparing n number of 

datasets with each other are firstly computed using the combination equation:  

 

This generates the total number of permutations of comparing datasets (Cr) for given values 

of n  (total number of datasets imported by user) and r (number of intended datasets used to 

search for common genes when zero common genes are reported across n datasets) (Table 

5.1). 
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Table 5.1 Multiple gene expression profile search strategy generated from applying the principle of 

permutations and combinations. 

Total number of 
expression datasets (n) 

Number of intended 
expression datasets to 
compare when 
comparing n datasets 
yields no results  (r) 

 
n - r 

Total number of 
combinations of r (Cr) 

10 9 1 10 

10 8 2 45 

10 7 3 120 

10 6 4 210 

10 5 5 252 

10 4 6 210 

10 3 7 120 

10 2 8 45 

9 8 1 9 

9 7 2 36 

9 6 3 84 

9 5 4 126 

9 4 5 126 

9 3 6 84 

9 2 7 36 

8 7 1 8 

8 6 2 28 

8 5 3 56 

8 4 4 70 

8 3 5 56 

8 2 6 28 

7 6 1 7 

7 5 2 21 

7 4 3 35 

7 3 4 35 

7 2 5 21 

6 5 1 6 

6 4 2 15 

6 3 3 20 

6 2 4 15 

5 4 1 5 

5 3 2 10 

5 2 3 10 

4 3 1 4 

4 2 2 6 

3 2 1 3 

 

Table 1: Multiple gene expression profile search strategy generated from applying the principle of 

permutations and combinations. The first column represents the total number of expression datasets, 

n, that users may import, which represents the search space. The second column represents r, the 

number of expression datasets to compare if zero common genes are reported to be matched across 

n datasets. The final column represents the total number of mathematical combinations possible for 

each given value of n and r. 

 

The first column represents the total number of expression datasets, n, that users may import (this is 

the search space). The second column represents, r, the number of expression datasets to compare if 

zero common genes are reported to be matched across n datasets. The final column represents the total 

number of mathematical combinations possible for each given value of n and r. 
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These combinations of datasets (Cr) are then used as a criterion to search for common genes 

across r number of gene expression profiles when comparing n number of datasets fail to 

yield any common genes. However in this scenario, n number of datasets is still used as the 

search space from which all possible combinations (Cr) of r datasets are compared to each 

other in order to increase the probability of finding a common gene. Once common genes 

have been identified using this method, MicroPath will report the results to the interface. 

 

5.2.3 Raw data analysis 

This function was specifically developed to facilitate the cross comparison of multiple gene 

expression profiles containing repeated genes. We implemented the Student’s t-test in order 

to firstly identify common genes across two datasets sharing an identical accession number. 

The subsequent step was designed to take each common gene (existing in both datasets) and 

use its repeated gene expression data points to compute the actual difference between their 

means in relation to the standard deviation. This pair-wise method of comparison was 

implemented to handle all possible comparisons for a maximum of 10 datasets and t-values 

for each common gene were calculated as follows: 

 

            Where             

  

Where s
2 

is the unbias estimator of the sample variance, n = number of replicates, 1 = sample 

data one and 2 = sample data two. Based on the recorded t-values, the degrees of freedom 

were computed using the Welch-Satterthwaite equation, which were in turn used to obtain p-

values: 
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5.2.4 Extracting Gene Expression Patterns Graphically and Statistically 

Following the identification of common genes across n datasets using either of the methods 

described earlier, the next stage in the analysis is to generate a graphical representation of this 

expression data from which biologically meaningful patterns can be extracted. Because 

signals pertaining to transcriptome states tend to be diluted over entire profiles, a specific 

criterion is required to narrow down the common genes of interest to include only those 

genes that are consistently regulated according to the biological question. The assumption we 

have made is that any given common gene across n datasets can exhibit one of three specific 

behaviours. It can either be consistently upregulated across all datasets, downregulated across 

all datasets and up or downregulated across all datasets. Based on the nature of the specific 

biological question, users can select the appropriate pattern from the options, which will 

result in a graphical display of those genes which satisfy the search criteria. Together with 

this faculty to graphically extract patterns for individual gene expression data points, 

MicroPath also implements the pearsons correlation coefficient statistical test in order to 

extract a global gene expression pattern existing between common genes relevant to two 

individual expression profiles. The correlations are calculated in a pair-wise manner until 

each expression data has been statistically compared to all other datasets within n, according 

to the pearsons correlation coefficient equation: 
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Each pair-wise score is then finally averaged in order to provide a global measure of 

correlation existing between n expression profiles. Scores are reported from -1 (perfect 

negative correlation) to +1 (perfect positive correlation). 

 

5.2.5 High Throughput Molecular Pathway Analysis 

To decipher molecular mechanisms fundamental to the researcher’s biological question, it is 

necessary to map common gene expression profiles of co-expressed genes to molecular 

pathways. This is because biological pathways reveal molecular dependencies that exist 

between genes by illustrating how they collaborate with one another when they participate in 

specific biological functions. Furthermore, pathways reveal various signalling cascades that 

play imperative roles in dictating these gene associations. In light of this, we have 

implemented Micropath to access the Application Programming Interface (API) of the 

molecular pathway database belonging to KEGG (Kanehisa et al., 2004) using SOAP-Lite in 

order to dynamically interact with the static pathway maps. Perl scripts were written for 

MicroPath to specifically 1) search for user’s co-expressed genes in all biological pathways, 

2) highlight genes on to pathways, and 3) return the results of the search to Micropath’s 

interface (i.e. URL’s of colour coded pathway maps) (Figure 5.2). Once MicroPath has 

searched for all of the user’s co-expressed genes in all of the molecular pathways, the URL of 

each pathway is displayed on the sub-interface. Clicking on these links will generate the 

specific KEGG pathway in HTML on which users co-expressed genes will be highlighted.  

In order to avoid redundancy issues, the URL for each pathway will highlight all co-

expressed genes that participate in a given pathway. Also, to help users identify biologically 

meaningful pathways relevant to their specific biological question, MicroPath will calculate 



  

114 

 

the number of genes identified in a given pathway and 1) express this as a percentage in 

relation to the total number of common genes from the intersection and 2) express this as a 

percentage in relation to the total number of genes belonging to that pathway. 

 

 

Figure 5.2: Flow diagram of how MicroPath carries out high throughput molecular pathway analysis 

by connecting to the API of KEGG.  
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5.2.6 Generating and Processing Gene Expression Datasets 

Gene expression datasets used for the purpose of this work were generated from our in-house 

microarray experiments as well as published datasets, where the fold change approach was 

used to select a set of differentially expressed genes from pre-processed data. Matchminer 

(Bussey et al., 2003) and the Synergizer (Berriz et al., 2008) tools were used to convert gene 

Hugo identifiers and long names into Genbank accession Id’s in order to ensure that the gene 

identifiers were of the same type across all datasets prior to comparison. Raw expression data 

was generated, filtered and normalised using GenePix pro 4.1 (www.axon.com) and Acuity 

4.0 (www.moleculardevices.com) software. Although we used cDNA microarray data for the 

purpose of demonstrating MicroPath’s capabilities, other data types generated from different 

platforms such as affymetrix can also be analysed provided Genbank accession identifiers are 

used to represent the genes.  

 

5.3 Results and Discussion 

Regardless of the biological question, a typical microarray experiment almost always results 

in the generation of a set of differentially expressed genes, which represents genes of most 

importance to the biologist. Therefore, by carrying out several biologically related microarray 

experiments, several sets of differentially expressed genes would be generated, which would 

need to be compared and mined efficiently in order to help answer the biological questions 

asked by the investigators from different research laboratories around the world. Employing 

manual methods of comparison in this situation would be very inefficient and infeasible. In 

light of this, to demonstrate the benefits that can be derived from analysing multiple gene 

expression profiles using MicroPath, we employed datasets generated from our in-house 
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microarray experiments as well as published data. The biological question related to these 

studies focussed on unravelling the underlying molecular mechanisms dictating immune 

tolerance by analysing the role of Egr-2 in implicating T-cell tolerance. Although the Early 

Growth Response gene (Egr-2) has been recently characterised as a candidate tolerance-

inducing transcription factor, which interacts with specific genes in order to induce the state 

of T-cell tolerance (Safford et al., 2005; Warner et al., 1999), the possibility of further 

putative unknown target genes exists that may be vital to the mechanism of tolerance. Hence, 

the biological purpose of our experiments was to attempt to identify such potentially 

important genes via the comparison of biologically related expression datasets using 

MicroPath.  

Data consisting of a set of differentially expressed genes generated from the comparison of 

tolerance Vs activated mice CD4+ T cells was obtained from the ArrayExpress website 

(accession number: e-mexp-283). The first in-house experiment aimed to generate 

differentially expressed genes from the comparison of an un-stimulated T cell line from 

which the Egr-2 gene had been knocked out and a wild type un-stimulated cell line. The 

second in-house experiment focussed on the comparison between an Egr-2 knock-out T cell 

line activated with CD3/CD28 for 6 hours and a wild type cell line also activated with 

CD3/CD28 for 6 hours. Results generated from these experiments were then compared with 

the aforementioned published tolerance data using MicroPath in order to understand the 

molecular mechanisms controlling immune tolerance. 

5.3.1 Comparison of Gene Expression Profiles related to Immune Tolerance 

The first step in the analysis was to subject the above-mentioned expression profiles to 

MicroPath in order to identify genes amongst them that had the same accession identifiers. 

Having done this, MicroPath identified 31 differentially expressed genes that were common 
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to all three expression datasets and generated a graph to delineate their expression values 

(Table 5.2, Figure 5.3). A simple number crunching exercise was used to perform this task 

since its use generated a reasonable number of common genes, which did not warrant the use 

of permutations and combinations to perform the search. The next step was to use these 31 

differentially expressed genes as a search space to determine those genes that have the 

potential to be co-expressed. In order to do this, we employed MicroPath’s graphical utility to 

extract gene expression patterns, which led to the identification of 6/31 genes that were found 

to be upregulated in tolerance Vs activated CD4+ T-cells and downregulated in both p-KOA0 

Vs WTA0 and p-KOA6 Vs WTA6 datasets (Table 5.2). The remaining 25 common 

differentially expressed genes were found to be highly and lowly expressed in tolerance and 

knock-out datasets respectively. Statistical analysis revealed an overall pearson’s correlation 

score of 0.109 from the pair-wise comparison of tolerance data with p-KOA0 Vs WTA0 and 

a score of -0.123 from the comparison of tolerance with p-KOA6 Vs WTA6. Furthermore, 

Reverse Transcriptase PCR experiments confirmed that 15 genes from our tolerance Vs 

activated data were found to be highly expressed in immune tolerance and from these 15 

genes, 8 were found to be common amongst all three expression profiles (Table 5.2).  

Because Egr-2 has been previously characterised and found to be highly upregulated in 

immune tolerance, these results generated from MicroPath are biologically significant 

because as expected, those genes that were highly expressed in our tolerance Vs activated 

datasets were found to be insignificantly expressed in our p-KOA6 Vs WTA6 and p-KOA0 

Vs WTA0 datasets (from which the Egr-2 gene was knocked out of the cell lines). Amongst 

these genes, Ap1s1, Shd, Surf6, Vil2, Lilrb4, Tbx21 and Pdcd1lg2 (Table 5.2) have been 

confirmed to be upregulated in the process of immune tolerance (Anderson et al., 2006), all 

of which were found to exhibit low expression values in our knock-out expression datasets. 
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This consistent gene expression pattern can be seen graphically in Figure 5.3. However, from 

the 31 interesting common genes, 16 were not confirmed to be involved in tolerance by RT-

PCR yet some of them also exhibited a coherent pattern of gene expression. For example, 

Ptma, Scd2, Hdac6, Pltp and Chka were all highly expressed in tolerance and conversely 

downregulated in both knock out datasets. There is a possibility that these genes may also be 

insignificantly expressed due to the absence of Egr-2. However, conducting RT-PCR for 

these specific genes would be required in order to confirm that their over-expression results 

in T-cell tolerance.  
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Table 5.2: Tabulated overview of gene accession ids, Hugo ids and fold change values belonging to 

31 common genes identified from the comparison of tolerant Vs activated CD4+ T cells, p-KOA0 Vs 

WTA0 and p-KOA6 Vs WTA6 expression datasets. 

Gene ID HUGO ID Fold Change (p-
KOA0 Vs WTA0) 

Fold Change (p-
KOA6 Vs WTA6) 

Fold Change 
(Tolerance Vs 
activated) 

NM_007381 Acadl 0.371336 0.624525 6.373 

NM_007457 Ap1s1 * 0.542474 0.31525 4.965 

NM_007664 Cdh2 0.243646 -0.7999 1.658 

NM_008205 H2-M9 -0.08048 0.116434 2.857 

NM_008972 Ptma -1.31334 -0.46688 5.42 

NM_009128 Scd2 -0.18816 -0.39366 4.552 

NM_009168 Shd * -0.17495 -0.53582 2.838 

NM_009298 Surf6 * 0.272072 0.126301 4.365 

NM_009465 Axl 0.149539 1.475806 3.836 

NM_009510 Vil2 * -0.49824 0.319645 3.151 

NM_010102 Edg6 0.313489 0.132689 1.573 

NM_010413 Hdac6 -0.90335 -0.8226 4.745 

NM_010548 Il10 * 3.083863 1.660739 3.521 

NM_010638 Bteb1 0.024803 -0.42533 1.613 

NM_011125 Pltp -0.5354 -0.71558 4.363 

NM_011620 Tnnt3 -0.61646 0.035844 1.665 

NM_011696 Vdac3 -0.98084 0.191964 4.701 

NM_011705 Vrk1 0.466922 -0.34601 2.032 

NM_013488 Cd4 0.584494 0.420277 4.905 

NM_013490 Chka -2.13728 -0.69458 5.677 

NM_013532 Lilrb4 * 0.792335 1.110898 2.111 

NM_013615 Odf2 2.776384 3.004449 4.809 

NM_013814 Galnt1 -0.47752 0.500297 2.246 

NM_013866 Zfp385 0.118995 0.428591 1.664 

NM_016772 Ech1 -0.0666 0.053081 4.284 

NM_019507 Tbx21 * 0.124767 -0.32731 1.595 

NM_019561 Ensa 0.778767 -0.44703 1.718 

NM_019777 Ikbke 0.291602 -0.00772 1.609 

NM_020027 Bat2 0.291219 -0.23966 5.091 

NM_021396 Pdcd1lg2 * 1.140087 0.079182 3.921 

NM_021538 Cope 0.154049 0.264541 2.035 

 

Table 2: Tabulated overview of Gene accession ids, Hugo ids and fold change values belonging to 31 

common genes identified from the comparison of tolerant Vs activated CD4+ T cells, p-KOA0 Vs 

WTA0 and p-KOA6 Vs WTA6 expression datasets. Entries highlighted in bold represent genes that 

were found to be up-regulated in tolerance Vs activated CD4+ T cells and down-regulated in both p-

KOA0 Vs WTA0 and p-KOA6 Vs WTA6 datasets. Entries with * represent genes that have been 

confirmed to be highly expressed in tolerance by RT-PCR. 

 

Entries highlighted in bold represent genes that were found to be up-regulated in tolerance Vs 

activated CD4+ T cells and down-regulated in both p-KOA0 Vs WTA0 and p-KOA6 Vs WTA6 

datasets. Entries with * represent genes that have been confirmed to be highly expressed in tolerance 

by RT-PCR. 
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Figure 5.3: A preliminary graphical overview of common interesting genes generated from the 

comparison of tolerant Vs activated CD4+ T cells (green), p-KOA0 Vs WTA0 (red) and p-KOA6 Vs 

WTA6 (blue) expression datasets. It can be seen that genes that are highly expressed in tolerance 

appear to be expressed poorly in the knock-out datasets. This pattern is consistent throughout the 31 

gene expression data points.  

 

5.3.2 Deciphering gene regulatory networks of co-expressed genes via high throughput 

molecular pathway analysis 

The final stage of the analysis entails using MicroPath’s function to connect to the 

Application Programming Interface (API) of KEGG via SOAP-Lite in order to carry out high 

throughput molecular pathway analysis. Therefore, for this stage in the analysis, we used 

MicroPath to map 31 of our co-expressed interesting genes to KEGG pathways and from 

these 31 genes, 14/31 were identified in a total of 31 molecular pathways (Table 5.3). 

Interestingly, several of these pathways were related to the study of immunology and 

illustrated biological networks such as MapKinase, Jak-Stat, T-cell receptor signalling and 

Cytokine-cytokine interactions. More specifically, the Pdcd1lg2 gene (accession id: 

NM_021396) was identified in the Cell Adhesion Molecules (CAM) pathway (Table 5.3) and 
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studies have confirmed that the over-expression of Pdcd1lg2 has resulted in consistently low 

levels of Interleukin-2 (IL-2) in naive CD4(+) T-cells (Kuipers et al., 2006). Further studies 

have correlated the over-expression of this gene to the negative regulation of T-cell 

activation. In one particular study, PDL2 (Pdcd1lg2) deficient mice were created in order to 

characterise the function of this gene in T-cell activation and tolerance, and results generated 

from this study suggested that Antigen-presenting cells from PDL2-deficient mice were 

found to be more potent in activating T-cells in vitro when compared to the wild-type 

counterparts (Zhang et al., 2006). These findings are conclusive and correlate well with the 

results generated from our in-house microarray experiments because using MicroPath to 

compare all three of our datasets followed by extracting gene expression patterns from them 

resulted in an important finding that Pdcd1lg2 was not only found to be over-expressed in 

tolerance (fold change of 3.921), but it was also under-expressed in our KOA0 Vs WTA0 and 

KOA6 Vs WTA6 knock-out datasets (with a fold change of 1.140 and 0.079 respectively) 

(Table 5.2). This particular finding is in agreement with the aforementioned studies, 

concluding that Pdcd1lg2 has a negative inhibitory role towards the process of T-cell 

activation. In addition, molecular pathway analysis of the Interleukin-10 (IL-10) gene using 

MicroPath identified its role in the Cytokine-cytokine interaction, Jak-STAT and T-cell 

receptor signalling pathways; all three of which are important immunological pathways. IL-

10 is a well known cytokine, which has previously been shown to successfully induce 

immune tolerance in Dendritic Cells (Li et al., 2007). Results generated from MicroPath 

revealed that IL-10 was highly expressed in our tolerance data with a fold change of 3.521, 

which was found to be expressed lower in our KOA0 Vs WTA0 profile (fold change: 3.084). 

Interestingly, following activated with CD3/CD28 for 6 hours, its expression dropped 

significantly to 1.66, perhaps attributable to the absence of Egr-2. Likewise, other genes from 

the 31 co-expressed interesting genes show similar patterns of expression and perhaps may be 
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candidate genes for Egr-2 mediated T-cell tolerance. However, this is yet to be confirmed by 

publications. Finally, the pathway analysis function of MicroPath was used to calculate the 

percentage of genes identified in each pathway in relation to 1) the intersection of common 

genes and 2) the total number of genes comprising each pathway. From the results, the Cell 

Adhesion Molecules (CAM) pathway was particularly significant since 12.91% of the overall 

pathway was affected by 6.84% of genes common to all 3 expression profiles (Table 5.4).  

 

Table 5.3: Tabulated data generated from high throughput molecular pathway analysis of co-

regulated genes. 14/31 common interesting genes were identified in a total of 31 molecular pathway 

maps of KEGG. 

 

GenBank 
Accession 
ID 

HUGO 
ID 

Pathway 
ID 

Total No 
of 
pathways 

GenBank 
Accession 
ID 

HUGO ID Pathway 
ID 

Total No 
of 
pathways 
 
 
 

NM_007381  
 

Acadl mmu00071  
mmu00280  
mmu00410 
mmu00640  
mmu03320  
 

5 

 

NM_009510   
 

Vil2 mmu04670 
mmu04810  
 

2 

 

NM_007664   Cdh2 mmu04514   1 

 

NM_008205   H2-M9 mmu04514 
mmu04612 
mmu04940  
 

3 

 

NM_013488   Cd4 mmu04514 
mmu04612 
mmu04640 
mmu04660 

 

4 

 

NM_013814   Galnt1 mmu00512 
mmu01030  
 

2 

 

NM_011696   Vdac3 mmu04020 1 NM_019777   Ikbke mmu04010 
mmu04620 

2 

 
NM_011125   Pltp   mmu03320   1 

 

NM_010102   Edg6 mmu04080   1 

 

NM_016772   Ech1 mmu00350 

mmu00362 
mmu00628  
 

3 

 

NM_021396 Pdcd1lg2 mmu04514 1 

 

NM_010548   Il10 mmu04060 
mmu04630 
mmu04660  
 

3 

 

NM_013652   Ccl4 mmu04060 
mmu04620  
 

2 
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Table 5.4: Results generated from pathway analysis showing the extent to which each pathway is 

affected by common genes from the intersection. The percentages reflect the proportion of common 

genes that contribute towards controlling the proportion of each pathway.  

 

Pathway ID Pathway Name GenBank 

Accession ID 
Result from Analysis 

 

mmu00071 

Fatty Acid 

Metabolism 

NM_007381  

 

3.26% of genes contribute 8.45% role in 

pathway 

mmu00280 Valine, leucine 

and isoleucine 

degradation 

NM_007381  

 

3.26% of genes contribute 2.73% role in 

pathway 

mmu00410 

 

Beta Alanine 

Metabolism 

NM_007381  

 

3.26% of genes contribute 7.14% role in 

pathway 

mmu00640 Propanoate 

Metabolism 

NM_007381  

 

3.26% of genes contribute 5.88% role in 

pathway 

mmu03320 PPAR Signalling 

Pathway 

NM_007381 3.26% of genes contribute 1.92% role in 

pathway 

mmu04514 Cell Adhesion 

Molecules 

NM_007664   

NM_008205   

NM_013488  

NM_021396 

12.91% of genes contribute 6.84 % role in 

pathway 

mmu04612 Antigen Processing 

& Presentation 

NM_013488 3.26% of genes contribute 2.44% role in 

pathway 

mmu04640 Hematopoietic Cell 

Lineage 

NM_013488   3.26% of genes contribute 0.76 % role in 

pathway 

mmu04660 

 

T Cell Receptor 

Signalling Pathway 

NM_013488   

NM_010548   
 

6.45 % of genes contribute 3.33 % role in 

pathway 

mmu04020 Calcium Signalling 

Pathway 

NM_011696 3.26% of genes contribute 2.33 % role in 

pathway 

mmu00350 

 

Tyrosine 

Metabolism 

NM_016772 

 

3.26% of genes contribute 2.17 % role in 

pathway 

mmu04060 

 

Cytokine-cytokine 

receptor interaction 

NM_010548 

NM_013652     

6.45 % of genes contribute 0.73 % role in 

pathway 

mmu04630 

 

JAK-STAT 

Signalling Pathway 

NM_010548 

 

3.26% of genes contribute 3.85 % role in 

pathway 

mmu04670 

 

Leukocyte 

Transendothelial 

Migration 

NM_009510   

 

3.26% of genes contribute 1.25 % role in 

pathway 

mmu04810 Regulation of Actin 

Cytoskeleton 

NM_009510   

 

3.26% of genes contribute 1.47 % role in 

pathway 

mmu04940 Type I Diabetes 

Mellitus 

NM_008205   3.26% of genes contribute 4.35 % role in 

pathway 

mmu00512 

 

O-Glycan 

Biosynthesis 

NM_013814   3.26% of genes contribute 10 % role in 

pathway 

mmu04010 

 

MAPK Signalling 

Pathway 

NM_019777   3.26% of genes contribute 0.83 % role in 

pathway 

mmu04620 Toll-Like Receptor 
Signalling Pathway 

NM_019777  
NM_013652    

6.45% of genes contribute 1.32 % role in 
pathway 

mmu04080 Neuroactive 

Ligand-Receptor 

Interaction 

NM_010102   3.26% of genes contribute 1.15 % role in 

pathway 

 

http://www.genome.jp/dbget-bin/get_pathway?org_name=mmu&mapno=00280
http://www.genome.jp/dbget-bin/get_pathway?org_name=mmu&mapno=00280
http://www.genome.jp/dbget-bin/get_pathway?org_name=mmu&mapno=00280
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The fundamental strength of MicroPath stems from the implementation of a novel search 

strategy for the comparison of multiple gene expression profiles. Although there are a few 

software that cater for multiple gene expression comparison, there is currently no software 

that searches for common genes beyond simple number crunching methods of comparison 

(Table 5.5). Just because a direct comparison of a given number of datasets may not yield any 

common genes, it does not mean that the analysis should end here since there is a potential to 

identify common genes across n – 1 profiles. MicroPath ensures that such genes are 

identified, which current software would overlook. When coupled with other important 

functions such as pattern extraction and pathway analysis, it becomes apparent that 

MicroPath would offer valuable assistance to biologists wanting to decipher their high 

throughput data. 
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Table 5.5: Functional comparison of MicroPath to similar software packages and applications. 

 
Function 

 

 

MicroPath 

 

 

EXPANDER 

 

INCLUSIVE 

 

Pathway 

Studio 

 

KEGG 

 

BioCarta 

 

 

 

MaXlab 

 

Suitable for high 

throughput data 

analysis 

 

YES 

 

YES 

 

YES 

 

YES 

 

NO 

 

NO 

 

YES 

Suitable for 

comparing multiple 

gene expression 

profiles 

YES YES NO YES NO NO YES 

Implementation of 

efficient algorithm to 

search for common 

genes from n – 1 

datasets 

YES NO NO NO NO NO NO 

Graphical 

representation of gene  

expression values 

from multiple datasets 

YES NO NO NO NO NO YES 

Pattern extraction 

from Graph data 

YES NO NO NO NO NO NO 

Construction of 

pathway maps 

 

YES 

 

NO 

 

NO 

 

YES 

 

YES 

 

YES 

 

NO 

Mapping gene 

expression data to 

pathway maps 

 

YES 

 

NO 

 

NO 

 

YES 

 

 

NO 

 

NO 

 

NO 

User interactive 

software (S) or 

Database (D) 

 

S 

 

S 

 

 

S 

 

S 

 

D 

 

D 

 

S 
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5.4 Conclusion 

In this chapter, we have illustrated the potential benefits that can be derived from using 

MicroPath for the analysis of multiple gene expression profiles. Each function of the software 

has been developed to streamline the overall analysis pipeline, providing users with a 

walkthrough of how their data is biologically deciphered. Here, we have applied to our 

software, microarray datasets generated from different laboratories pertaining to the 

molecular mechanisms underlying immune tolerance. However, MicroPath is capable of 

analysing data for any given biological question, whether the datasets are taken from public 

repositories such as ArrayExpress or generated from in-house microarray experiments. We 

believe that its faculty to use both number crunching and permutations and combinations as 

the search strategy to identify the intersection of common genes, coupled with its function to 

extract gene expression patterns graphically and statistically makes this a attractive software 

for biologists to use. Finally, its ability to carry out live streaming of mapping genes to 

biological pathways makes it a useful tool for the automation of multiple gene expression 

analysis. 

5.5 Future Work 

Chapters 3 and 4 discussed the application of generating contingency tables and subsequently 

using them for the Fisher’s exact test in order to generate P values in the context of 

transcription factor binding motif enrichment analysis. However, this approach can also be 

employed for the purpose of identifying molecular pathways that are enriched with genes 

from the user’s expression data. The principle is the same as TFBM enrichment analysis, 

except that for MicroPath, a contingency table will be generated for each KEGG pathway that 

contains common genes from the user’s datasets. Following this, the Fishers exact test will be 

applied to generate a P value for each pathway to discern KEGG pathways that are 
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significantly enriched with common genes from the user’s datasets in relation to the entire 

genome.  

 

For this future work, a contingency table for each KEGG pathway will first need to be 

derived as follows: 

 

 

Chosen Not Chosen  Total 

  TFBM  a  b       a + b 

  Absent  c  d       c + d 

  Totals  a + c  b + d        n 

Where: a = No of common genes in user’s gene lists found in KEGG 

pathway (chosen from gene list) 

b = No of genes in the genome found in KEGG pathway minus a (Not 

chosen from gene list) 

c = No of common genes in user’s gene lists not found in KEGG pathway 

(chosen from gene list) 

d = Total no of genes in genome – (a + b + c) 

n = Sum of each total (Grand total) 

 

 

These contingency tables will reflect the degree of enrichment of a given KEGG pathway in 

the user’s sets of differentially expressed genes (common genes) relative to the entire 

genome. Once contingency tables have been generated for all consensus binding sites, 

Micropath will then apply the Fisher’s exact test to compute P values for each KEGG 

pathway from their contingency tables using the following hypergeometric distribution: 
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Where  = binomial coefficient and ! = factorial operator 
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Chapter 6 

Conclusions and Future Work 

 

6.1 Introduction 

The reductionist approach to biological research has proven to be imperative in developing 

our basic but necessary understanding of living systems. Studying and subsequently 

identifying the individual components (such as genes, proteins and metabolites) that regulate 

specific physiological phenomenon (for instance, metabolic activity, response to external 

stimuli etc) has no doubt proven to be an effective strategy in elucidating key molecular 

components of living systems, leading to a variety of important applications in agriculture 

and medicine (Aggarwal & Lee, 2003). However, it has become clear now that in order to 

fully understand the behaviour of biological systems, we have to look beyond isolated parts 

of an organism. In other words, scrutinizing the genome or the proteome autonomously does 

not warrant a complete understanding of the biological system until and unless they are 

examined in the context of the organism as a whole unit. This is the point where systems 

biology becomes an extremely important consideration. 

It is precisely the aforementioned reasons that have motivated systems biology, which has 

resulted in a paradigm shift from a reductionist approach to an integrative one. This is indeed 

an effective strategy since it encourages a scrutiny of the structure and dynamics of cellular 

function in the context of the organism as a whole rather than examining the characteristics of 

isolated parts of the cell or organism (Kitano, 2002). The importance of systems biology 

becomes apparent when we examine the current situation with drug discovery. Despite the 

fact that an astronomical amount of investment has taken place over the past 20 years towards 

6 
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screening technologies and genomics, the truth remains that the costs associated with new 

drug discovery continue to rise while approval rates fall. This is largely attributable to the fact 

that merely knowing a target is not sufficient to warrant an understanding of what the target 

does, let alone knowing the effects of a chemical inhibitor in diverse disease settings 

(Butcher, 2004). It is hence not surprising that approval rates are continuously falling in the 

milieu of drug development programs. After all, before we can truly understand the 

physiological implications of a particular drug, we must be in a position to understand how 

the target biological system functions as a synchronized unit. This is why bioinformatics is 

becoming a necessity in the study of biological sciences due to the fact that the latter has 

become highly reliant on informatics, mathematics, computer algorithms, software 

development and statistics. This especially holds true when we consider the marriage 

between high throughput technologies such as microarrays with systems biology. 

On one hand we have a high throughput technology offering a platform to measure mRNA 

transcript levels for entire genomes simultaneously in a cost effective and efficient fashion, 

and on the other hand, we have a interdisciplinary science specializing in the application of 

mathematics, computer science and biology with the fundamental purpose of unravelling the 

underlying functional dynamics of the cell in the perspective of the entire organism. The 

potential strength of this collaboration is based on a common goal; to understand cellular and 

molecular function in the context of the organism as a whole. In theory, the possibilities are 

endless. In practice however, systems biology is still at its infancy and consequently, there is 

much to be desired. 
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It is this exact need to better apply systems biology to solve biological problems that 

motivated the research presented in this thesis. We began systematically by firstly developing 

BiSAn (Chapter 3), which when applied to a set of microarray data proved to show an 

important capability to compute binding affinities of several Transcription Factors in relation 

to promoter regions belonging to the genes of interest. The second step was to move towards 

an integrative approach, which motivated the development of Genome Interactions Analyzer 

(GIA) (Chapter 4). By integrating the analysis of transcription factors, Protein-protein 

interactions and molecular pathways in an attempt to decipher gene expression data in a 

systems biology context, we were able to demonstrate that such an approach can be effective 

in helping biologists to elucidate molecular mechanisms underlying a given biological 

question. The most notable contribution however was the development of MicroPath 

(Chapter 5), which emphasized on the need to analyze multiple biologically related gene 

expression datasets in a systems biology context. The result of this is that a novel rationale 

has emerged, which could have putative benefits in treating disease. Before this rationale is 

explained, some of the weaknesses of this research need to be addressed. 

 

6.2 Weaknesses 

The fundamental weakness of the research presented in this thesis is based on its potential to 

be scalable. The first challenge is directly related to the limitation of MicroPath. Although the 

Permutation and Combination algorithm underlying MicroPath is important in the sense that 

it increases the probability of finding a common gene across multiple gene expression 

datasets, in its current state it is only able to cater for the comparison of 10 gene expression 

datasets. In light of this, the algorithm needs to be optimized so that it can handle the cross 

comparison of a much larger number of datasets. 
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The second limitation of this research is that the several different functions developed, 

namely transcription factor binding site analysis and molecular pathway analysis, need to be 

more tightly integrated. Currently, the software tools developed during the course of this 

research exist as autonomous pipelines. Because each of our software have different 

functionalities, it is imperative for these key functions to be more tightly integrated together 

in a scalable fashion to generate an overall pipeline that would apply a true systems biology 

method to the analysis of gene expression profiles.  

 

What this effectively means is that MicroPath needs to be scaled so that it can handle a much 

larger number of expression dataset comparisons coupled with a need to integrate it with 

TFBM analysis from BiSAn. Furthermore, although the current state of Micropath allows it 

to map 10 expression profiles to all molecular pathways known to date, this function needs to 

be optimized to cater for a much larger number of datasets. Recognizing these limitations and 

weaknesses, a rationale is proposed in the following section of this chapter  

 

6.3 A rationale for treating disease - Future Work 

It cannot be denied that high throughput technologies such as microarrays have rapidly 

gained popularity at a global scale due to the prospect of quantifying gene expression in a 

high throughput fashion and subsequently identifying previously unknown transcriptome 

states. For this reason, gene expression data pertaining to various different biological 

questions are being rapidly generated by scientists worldwide and such datasets are now 

readily accessible through public repositories such as ArrayExpress (Sarkans et al., 2005) and 

the Gene Expression Omnibus (GEO) (Barrett et al., 2006). This has motivated biologists to 

utilise these sets of data in an attempt to investigate common regulatory signatures that can be 

potentially found across multiple experiments sharing a similar biological theme. One of the 
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most common methods of comparison is based on the assumption that genes across different 

biological conditions having similar expression patterns are likely to be involved in the same 

biological process (Rhodes et al., 2004) and hence, may share the same regulatory signatures. 

Using this method of comparison, which is one of the most successful methods to date, 

coupled with the availability of publicly accessible gene expression data repositories, 

biologists now have the opportunity to answer complex biological questions pertaining to 

biological phenomena underlying various different disease states. Chapter 5 demonstrated the 

works of Khan et al., (In Press) illustrating a novel algorithm that applied the principle of 

Permutations and Combinations to increase the probability of identifying common genes 

across multiple expression profiles. The need for optimizing this algorithm has been 

explained above and now, the importance of this optimization will be discussed. 

 

Gene Expression Omnibus (GEO) and ArrayExpress contain hundreds and thousands of 

expression profiles relevant to a variety of different biological questions underlying many 

diseases such as Cancer. A common complaint is that because such data repositories hold 

vast volumes of microarray data in different file formats, it becomes problematic to facilitate 

their comparisons due to heterogeneity. The second problem is that if hundreds or thousands 

of datasets are compared, chances of finding a common gene identifier across all datasets 

would be very low. The first problem can be tackled by segregating expression profiles 

according to the format they subscribe to. This would create sets of homogeneous profiles, 

which can be compared with ease. The solution to the second problem lies in the optimization 

of MicroPath due to its ability to search for common gene identifiers across n – 1 profiles, 

when a simple number crunching method of comparison fails to yield any results. Coupled 

with the algorithm underlying BiSAn, and optimization of the High Throughput pathway 

analysis function, it becomes apparent that this rationale could lead to some important 
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biological findings at the disease level. For instance if common genes identified across 

hundreds of different expression profiles pertinent to a certain type of Cancer exhibit similar 

expression patterns, it may constitute important in silico findings because there may be 

candidate genes present within the intersection. Such genes could then be investigated at the 

in vivo level, where certain candidate oncogenes for example could be silenced in 

tumerogenic mice to see the observed effects. 

 

We are faced with a situation where we have vast amounts of biological data available to 

decipher, but not enough focus is being shifted to it. The answer to several biological 

questions lies in the data itself but sophisticated algorithms and automated software pipelines 

are required to effectively mine them in a true systems biology context. 
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Appendix 
 

 

 

 

  

 

 

The magnitude of code written for developing the software presented in this thesis is too vast 

to document. Therefore, only specific key sections of the code will be shown here, mainly 

relevant to some of the algorithms developed for the purpose of this research. 

 

 

 

The following code was written in Perl to facilitate high throughput Transcription Factor 

Binding Motif (TFBM) detection for microarray data. This code pertains to the underlying 

algorithm explained in Chapter 3 of this thesis. 

 

#!/usr/bin/perl 

use strict; 

use Win32::OLE qw(in with); 

use Win32::OLE::Const 'Microsoft Excel'; 

 

open(INFILE, "<C:/Perl/eg/userdata.txt") or die ("couldn't open the file 

userdata.txt: $!\n"); 

my @udata = <INFILE>; 

close(INFILE); 

 

my $promoter; 

my @temp=(); 

my @tempp=(); 

 

my $count; 

my $coun; 

my $cou; 

 

my $jasparid; 

my $tfname; 

my $class; 

my $species; 

my $sysgroup; 

my $length; 

A. 

Code 

A1. High throughput TFBM Detection 
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my $max; 

 

my @digit=(); 

my $digit; 

my $marks; 

my $coll; 

my @scorearray=(); 

my $scorearray; 

my $percent; 

my $totpercent; 

my @percentarray=(); 

my $percentarray; 

my $kount; 

my @result=(); 

my $result; 

 

my %final=(); 

my $final; 

foreach my $udata(@udata) 

{ 

chomp($udata); 

$count=0; 

$cou=0; 

my @array1=split(/\s+/, $udata); 

my $array1; 

my $geneid=$array1[0]; 

my $genename=$array1[1]; 

 

print("--------------------------------------------------------------------

------------\n"); 

print("    $geneid\t$genename\n\n"); 

print("--------------------------------------------------------------------

------------\n\n"); 

 

 

open(INFILE, "<C:/promoterid.txt") or die("couldn't open the file 

promoterid.txt: $!\n"); 

my @promoterids=<INFILE>; 

close(INFILE); 

 

 

my $promoterids; 

my $promoterseqs; 

 

for my $i(0..$#promoterids) 

{ 

chomp($promoterids[$i]); 

 

if($geneid =~ m/$promoterids[$i]/i) 

{ 

 

 

$cou++; 

 

$Win32::OLE::Warn = 3; 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 

 

my $Book = $Excel->Workbooks->Open("C:/promoterseqs.xls"); 

my $Sheet = $Book->Worksheets(1); 
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$promoter=$Sheet->Cells($i+1, 1)->{'Value'}; 

} 

} 

if($cou==0) 

{ 

print("The gene was not found in the promoters database.\n\n"); 

print("--------------------------------------------------------------------

-----------\n"); 

print("--------------------------------------------------------------------

-----------\n\n"); 

 

goto end; 

} 

 

 

$Win32::OLE::Warn = 3; 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 

 

my $Book = $Excel->Workbooks->Open("C:/mouse.xls"); 

my $Sheet = $Book->Worksheets(1); 

 

for(my $row=1;$row<114;$row+=5) 

 { 

 

$kount=0; 

$coun=0; 

 my $pattern = $Sheet->Cells($row, 2)->{'Value'}; 

 

 

if($promoter =~ m/$pattern/gi) 

  { 

$coun++; 

$count++; 

my $endpos = pos($promoter); 

 

 

$jasparid=$Sheet->Cells($row, 1)->{'Value'}; 

$tfname=$Sheet->Cells($row, 3)->{'Value'}; 

$class=$Sheet->Cells($row, 4)->{'Value'}; 

$species=$Sheet->Cells($row, 5)->{'Value'}; 

$sysgroup=$Sheet->Cells($row, 6)->{'Value'}; 

$length=$Sheet->Cells($row, 7)->{'Value'}; 

$max=$Sheet->Cells($row, 8)->{'Value'}; 

 

 

my $startpos=($endpos+1)-$length; 

my $lastpos=$endpos; 

 

my $consensus = substr($promoter, ($startpos-1), $length); 

 

push(@temp, $consensus, $startpos, $lastpos); 

 

} 

if($coun==0) 

{ 

goto nex; 

} 

push(@tempp, $tfname, $class, $species, $sysgroup, $jasparid); 
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my $temp; 

my $tempp; 

 

print("------------------------------------\n"); 

print("Transcription Factor Name:\t$tempp[0]\n\n"); 

print("Transcription Factor Class:\t$tempp[1]\n\n"); 

print("Species:\t\t$tempp[2]\n\n"); 

print("Sysgroup:\t\t$tempp[3]\n\n"); 

my $size=@temp; 

for (my $k=0;$k<=$size-1;$k+=3) 

{ 

$coll=10; 

$kount++; 

print("Transcription Factor binding site Sequence :$temp[$k]\t"); 

@digit = split(//, $temp[$k]); 

foreach $digit (@digit) 

{ 

if($digit =~ m/A/) 

{ 

$marks = $Sheet->Cells($row, $coll)->{'Value'}; 

push(@scorearray, $marks); 

} 

if($digit =~ m/C/) 

{ 

$marks = $Sheet->Cells($row+1, $coll)->{'Value'}; 

push(@scorearray, $marks); 

} 

if($digit =~ m/G/) 

{ 

$marks = $Sheet->Cells($row+2, $coll)->{'Value'}; 

push(@scorearray, $marks); 

} 

if($digit =~ m/T/) 

{ 

$marks = $Sheet->Cells($row+3, $coll)->{'Value'}; 

push(@scorearray, $marks); 

} 

$coll++; 

} 

@digit=(); 

my $tem=0; 

foreach $scorearray(@scorearray) 

{ 

$tem = $tem+$scorearray; 

} 

@scorearray = (); 

$percent = ($tem/($length*$max))*100; 

$totpercent = ($tem/(10.09*29.35))*100; 

push(@percentarray, $totpercent); 

print("Start position in promoter: \"$temp[$k+1]\"\t"); 

print("End position : \"$temp[$k+2]\"\n\n\n"); 

my $fpercent = sprintf("%.2f", $percent); 

print("Possibility of binding of the Transcription Factor $tempp[0] at the 

above positions of promoter site of the gene $genename ($geneid) is : 

$fpercent\%\n\n\n"); 

 

} 

 

my $url= "http://jaspar.genereg.net/cgi-bin/jaspar_db.pl?ID=" . $tempp[4] . 

"\&rm=present\&db=0"; 
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print("The URL to the JASPAR database for this Transcription Factor:\n\n 

$url\n"); 

print("\n\n\n"); 

my $whole=0; 

foreach $percentarray(@percentarray) 

{ 

$whole = $whole+$percentarray; 

} 

@percentarray = (); 

my $overall = ($whole/($kount*100))*100; 

my $strin = ($tempp[0]."\t".$kount."\t".$url); 

push(@result, $strin, $overall); 

 

@temp=(); 

@tempp=(); 

  next: 

} 

if($count>0) 

{ 

for (my $l=0;$l<=$#result;$l+=2) 

 { 

my $fresult = sprintf("%.2f", $result[$l+1]); 

$final{$result[$l]} = $fresult; 

} 

print("--------------------------------------------------------------------

-----------\n\n"); 

print("Order of Transcription factors based on their possible binding 

affinity to this gene.\n\n"); 

print("--------------------------------------------------------------------

-----------\n\n"); 

print("TFname\tNo.of binding sites\tJASPAR link\tBinding affinity 

percentage\n\n"); 

print("--------------------------------------------------------------------

-----------\n\n"); 

foreach my $value (sort {$final{$b} cmp $final{$a} } 

 keys %final) 

{ 

    print "$value\t $final{$value}\%\n\n"; 

} 

%final=(); 

print("--------------------------------------------------------------------

-----------\n"); 

print("--------------------------------------------------------------------

-----------\n"); 

print("\n\n"); 

goto end; 

} 

print("No Transcription Factor was found for this gene.\n\n\n"); 

print("--------------------------------------------------------------------

------------\n"); 

print("--------------------------------------------------------------------

------------\n\n\n"); 

end: 

} 
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The following code was written to carry out TFBM enrichment analysis as a part of BiSAn: 

 

#!/usr/bin/perl 

 

use strict; 

use Win32::OLE qw(in with); 

use Win32::OLE::Const 'Microsoft Excel'; 

use Text::NSP::Measures::2D::Fisher2::right; 

 

 

my @promoterseqs = (); 

my @consensusseqs = (); 

 

 

my @geneids = (); 

my @genenames = (); 

 

my @userproms = (); 

 

my $count; 

my $kount; 

my $cou=1; 

 

my $promoterseqs; 

my $userproms; 

 

my $consensusid; 

my $consensusname; 

 

my $rightpvalue; 

my $errorCode; 

 

my $absenusers; 

 

my $check; 

my $checktwo; 

 

my $kou=0; 

 

my @array; 

my $array; 

 

my $size; 

my $notfound; 

 

 

open(INFILE, "<C:/userdata.txt") or die ("couldn't open the file 

userdata.txt: $!\n"); 

my @udata = <INFILE>; 

close(INFILE); 

 

foreach my $udata(@udata) 

{ 

 chomp($udata); 

 

A1.1 TFBM Enrichment Analysis 
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  @array = split(/\s+/, $udata); 

 

 

 

 chomp($array[0]); 

 

 chomp($array[1]); 

 

 push(@geneids, $array[0]); 

 

 push(@genenames, $array[1]); 

 

 

} 

 

 

open(INFILE, "<C:/promoterid.txt") or die("couldn't open the file 

promoterid.txt: $!\n"); 

 

my @promoterids = <INFILE>; 

 

close(INFILE); 

 

 

 foreach my $geneids(@geneids) 

 { 

  chomp($geneids); 

 

  for my $k(0..$#promoterids) 

  { 

   chomp($promoterids[$k]); 

 

   if($promoterids[$k] =~ m/$geneids/i) 

   { 

    $kou++; 

 

 

    $Win32::OLE::Warn = 3; 

 

    my $Excel = Win32::OLE->new('Excel.Application', 

'Quit'); 

 

    my $Book = $Excel->workbooks-

>open("C:/promoterseqs.xls"); 

 

    my $Sheet = $Book->worksheets(1); 

 

    my $prom = $Sheet->Cells($k+1, 1)->{'Value'}; 

 

    push(@userproms, $prom); 

 

    goto next; 

 

   } 

 

  } 

 

 

 next: 
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 } 

 

  print("\n\nPromoter sequences found from user's data = $kou\n\n"); 

 

  $size = @geneids; 

 

 $notfound = ($size-$kou); 

 

  print("Promoter sequences not found from user's data = 

$notfound\n\n"); 

 

 

 

$Win32::OLE::Warn = 3; 

 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 

 

 

my $Book = $Excel->Workbooks->open("C:/promoterseqs.xls"); 

 

my $Sheet = $Book->Worksheets(1); 

 

 

for my $i(1..18073) 

{ 

 

 my $promoter = $Sheet->Cells($i, 1)->{'Value'}; 

 

 push(@promoterseqs, $promoter); 

 

 

} 

 

 

$win32::OLE::Warn = 3; 

 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 

 

 

my $Book = $Excel->Workbooks->open("C:/mouse.xls"); 

 

my $Sheet = $Book->Worksheets(1); 

 

 

for(my $j=1;$j<114;$j+=5) 

{ 

 

 my $consensus = $Sheet->Cells($j, 2)->{'Value'}; 

 

 

 push(@consensusseqs, $consensus); 

 

 

} 
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foreach my $consensusseqs(@consensusseqs) 

{ 

 chomp($consensusseqs); 

 

 

 $count = 0; 

 

 

 

 

 foreach $promoterseqs(@promoterseqs) 

 { 

 

 

  chomp($promoterseqs); 

 

 if($promoterseqs =~ m/$consensusseqs/i) 

    { 

 

 

  $count++; 

 

 

    } 

 

 

 

 } 

 

 

 

  print("The consensus binding site $consensusseqs occurs $count times 

in the genome.\n\n"); 

 

 

 $kount = 0; 

 

 

 foreach $userproms(@userproms) 

 { 

 

 

  chomp($userproms); 

 

  if($userproms =~ m/$consensusseqs/i) 

  { 

 

   $kount++; 

 

 

  } 

 

 } 

 

 

 

 $win32::OLE::Warn = 3; 

 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 
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my $Book = $Excel->Workbooks->open("C:/mouse.xls"); 

 

my $Sheet = $Book->Worksheets(1); 

 

 

 $consensusid = $Sheet->Cells($cou, 1)->{'Value'}; 

 

 $consensusname = $Sheet->Cells($cou, 3)->{'Value'}; 

 

 

 $cou+=5; 

 

 

 print("This consensus binding site is found $kount times in the 

user's data.\n\n"); 

 

 

 $absenusers = ($kou-$kount); 

 

 my $second = ($count-$kount); 

 

 my $fourth = (18073-($kount+$absenusers+$second)); 

 

 

 

 my $npp = ($kount+$absenusers+$second+$fourth); 

 my $n1p = ($kount+$second); 

  my $np1 = ($kount+$absenusers); 

   my $n11 = $kount; 

 

  $rightpvalue = calculateStatistic( n11=>$n11, 

                                      n1p=>$n1p, 

                                      np1=>$np1, 

                                      npp=>$npp); 

 

 

 

 print ("$consensusid-($consensusname)-$consensusseqs\n\n 

 

  p-value = $rightpvalue\n\n 

  --------------------------------------------\n\n"); 

 

 

 

 

} 
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The following code was written in Perl to facilitate high throughput molecular pathway 

analysis of microarray data by connecting to the Application Programming Interface (API) of 

KEGG in a live fashion. This code is specific to Genbank Accession ID’s so the code picks 

up these ID’s from the users input file and searches for them in all of KEGG’s pathways. 

Where found, genes are highlighted on the pathways automatically. A detailed explanation of 

this function is explained in Chapter 4 of this thesis in the section pertaining to high 

throughput molecular pathway analysis. 

 

#!/usr/bin/perl -w 

open(FILE, "C:/mousekegg.txt"); 

my @array = <FILE>; 

print "\n\n"; 

print "                                  THE RESULTS    

 \n"; 

print "--------------------------------------------------------------------

---------------------------------------------------------------------------

-----------------"; 

my $count = 1; 

foreach my $array (@array) 

{print "\n\n\n$count ) the gene $count from the user's data:\n\n\n"; 

 $count++; 

 

chomp ($array); 

  my @temp = split (/\s+/, $array); 

  for(my $j=1;$j<=1;$j++) 

{ 

   my $key = $temp[0]; 

   print "\t$key\n"; 

   my $val = $temp[1]; 

 

  my $exprr = $temp[2]; 

print("HUGO name of the gene: $temp[1]\n\n"); 

 print("mean expression of the gene: $exprr\n\n"); 

 my @aaaa=split(//, $exprr); 

 my $express=$aaaa[0]; 

 

   if ($express eq "+") 

     { 

  print "upregulated\n\n"; 

 

     } 

    elsif ($express eq "-") 

  { print "downregulated\n\n"; 

A2. High throughput Molecular pathway analysis 

A2.1 Analyzing Genbank Accession Identifiers in KEGG pathways 
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  } 

use Data::Dumper; 

use SOAP::Lite +trace => [qw(debug)]; 

 

 

my $serv = SOAP::Lite ->service("http://soap.genome.jp/KEGG.wsdl"); 

my $result = $serv ->bconv("genbank:$key"); 

my $length = length($result); 

unless($length==0) 

{ 

 

my @tem = split(/\s+/, $result); 

 for(my $k=1;$k<=1;$k++) 

{ 

 my $id = $tem[1]; 

 

my $keggid = [$id]; 

 

  my $arrayRef = $serv ->get_pathways_by_genes([$id]); 

 

 

my $final = Dumper $arrayRef; 

 

 

my @hifi = split(/'/, $final); 

my $size = @hifi; 

 for(my $i=1;$i<$size;$i=$i+2) 

 

 { 

 my $keggpath = $hifi[$i]; 

 

 

 

 if ($express eq "+") 

 { 

 

 print "kegg pathway id is : $keggpath\n\n"; 

 

 

 

 

      my $fg_list= ['green']; 

   my $bg_list=['red']; 

my $extreme = $serv->get_html_of_colored_pathway_by_objects($keggpath, 

$keggid, $fg_list, $bg_list); 

 

print $extreme, "\n\n"; 

} 

elsif ($express eq "-") 

{ print "kegg pathway id is : $keggpath \n\n"; 

 

 $fg_list= ['red']; 

 $bg_list=['green']; 

 

 $extreme = $serv->get_html_of_colored_pathway_by_objects($keggpath, 

$keggid, $fg_list, $bg_list); 

 

print $extreme, "\n\n"; 

 

} 
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}goto outside; 

} 

} 

 

use Win32::OLE qw(in with); 

use Win32::OLE::Const 'Microsoft Excel'; 

 

$Win32::OLE::Warn = 3; 

 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 

 

 

my $Book = $Excel->Workbooks->Open("C:/MMU.xls"); 

 

 

my $Sheet = $Book->Worksheets(1); 

 

foreach my $row (1..4829) 

{ 

for (my $col=3;$col<=3;$col++) 

 { 

 

  next unless defined $Sheet->Cells($row,$col)->{'Value'}; 

  my $id = $Sheet->Cells($row, $col)->{'Value'}; 

 

  while ($id =~ m/$key/) 

      { 

 

    my $mainid=$id; 

    my $entrez = $Sheet->Cells($row,2)->{'Value'}; 

my $gene = $Sheet->Cells($row,1)->{'Value'}; 

 my $pathid = $Sheet->Cells($row,4)->{'Value'}; 

 my @pathway = split(/ /, $pathid); 

 

 

my $size = @pathway; 

 

for (my $i=0; $i<$size; $i++) 

{use SOAP::Lite +trace => [qw(debug)]; 

 

 

my $serv = SOAP::Lite ->service("http://soap.genome.jp/KEGG.wsdl"); 

if ($express eq "+") 

{ 

print "kegg pathway id is : $pathway[$i] \n\n"; 

my $keggid=["mmu:".$entrez]; 

my $keggpath = ("path:".$pathway[$i]); 

my $fg_list= ['green']; 

my $bg_list=['red']; 

my $result = $serv->get_html_of_colored_pathway_by_objects($keggpath, 

$keggid, $fg_list, $bg_list); 

print $result, "\n\n"; 

} 

elsif ($express eq "-") 

 { print "kegg pathway id is : $pathway[$i] \n\n"; 

 my $keggid=["mmu:".$entrez]; 

 my $keggpath = ("path:".$pathway[$i]); 

 my $fg_list= ['red']; 

 my $bg_list=['green']; 
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my $result = $serv->get_html_of_colored_pathway_by_objects($keggpath, 

$keggid, $fg_list, $bg_list); 

 

 print $result, "\n\n"; 

 } 

} 

  goto outside; 

 } 

  } 

 } print "the gene is not found \n\n\n"; 

print "try by converting this gene id into entrez id and use the entrez 

button to get the perfect results\n\n\n"; 

goto outside; 

} 

outside: 

} 

 

sub SOAP::Serializer::as_ArrayOfstring{ 

  my ($self, $value, $name, $type, $attr) = @_; 

  return [$name, {'xsi:type' => 'array', %$attr}, $value]; 

} 

sub SOAP::Serializer::as_ArrayOfint{ 

  my ($self, $value, $name, $type, $attr) = @_; 

  return [$name, {'xsi:type' => 'array', %$attr}, $value]; 

} 
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Sometimes Genbank Accession Identifiers are not found in KEGG pathways and 

consequently, these genes will not be highlighted on pathways although they may be present 

under a different identifier. To deal with this problem, code was written in Perl to search for 

entrez ID’s in all of KEGG’s pathways in the event of the Genbank analysis yielding no 

results.  

#!/usr/bin/perl -w 

open(FILE, "C:/mousekegg.txt"); 

my @array = <FILE>; 

print "                                  THE RESULTS    

 \n"; 

print "--------------------------------------------------------------------

------------\n\n\n"; 

my $count = 1; 

foreach my $array (@array) 

{print "\n$count ) the gene $count from the users data:\n\n\n"; 

 $count++; 

 print ("$array\n"); 

chomp ($array); 

  my @temp = split (/\s+/, $array); 

  for(my $j=1;$j<=1;$j++) 

 { 

   my $key = $temp[0]; 

print "\nusers input gene id is: $key\n\n"; 

 my $exprr = $temp[2]; 

 

print("HUGO name of the gene: $temp[1]\n\n"); 

print("mean expression of the gene: $exprr\n\n"); 

my @aaaa=split(//, $exprr); 

my $express=$aaaa[0]; 

 

 print "expression of the gene in users experiment : $express\n\n"; 

 if ($express eq "+") 

{ 

print "the gene is upregulated.\n\n"; 

} 

  elsif ($express eq "-") 

{ print "the gene is downregulated.\n\n"; 

} 

use Data::Dumper; 

use SOAP::Lite +trace => [qw(debug)]; 

 

 

my $serv = SOAP::Lite ->service("http://soap.genome.jp/KEGG.wsdl"); 

my $keggid=["mmu:".$key]; 

my $id = "mmu:".$key; 

my $arrayRef = $serv ->get_pathways_by_genes([$id]); 

my $final = Dumper $arrayRef; 

my @hifi = split(/'/, $final); 

A2.2 Analyzing Entrez Identifiers in KEGG pathways 
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my $size = @hifi; 

unless ($size == 0) 

{ 

for(my $i=1;$i<$size;$i=$i+2) 

 { 

my $keggpath = $hifi[$i]; 

print $keggpath, "\n\n"; 

if ($express eq "+") 

{ 

print "kegg pathway id is : $keggpath\n\n"; 

 

my $fg_list= ['green']; 

my $bg_list=['red']; 

my $extreme = $serv->get_html_of_colored_pathway_by_objects($keggpath, 

$keggid, $fg_list, $bg_list); 

print $extreme, "\n\n"; 

} 

elsif ($express eq "-") 

{ print "kegg pathway id is : $keggpath \n\n"; 

 

 $fg_list= ['red']; 

 $bg_list=['green']; 

 $extreme = $serv->get_html_of_colored_pathway_by_objects($keggpath, 

$keggid, $fg_list, $bg_list); 

print $extreme, "\n\n"; 

} 

}goto outside; 

} 

 print "\n\nthe gene is not found in KEGG pathways\n\n\n\n"; 

} 

outside: 

} 

 

sub SOAP::Serializer::as_ArrayOfstring{ 

 my ($self, $value, $name, $type, $attr) = @_; 

 return [$name, {'xsi:type' => 'array', %$attr}, $value]; 

} 

 

sub SOAP::Serializer::as_ArrayOfint{ 

  my ($self, $value, $name, $type, $attr) = @_; 

  return [$name, {'xsi:type' => 'array', %$attr}, $value]; 

} 
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MicroPath calculates the number of genes identified in a given pathway and 1) expresses this 

as a percentage in relation to the total number of common genes from the intersection and 2) 

expresses this as a percentage in relation to the total number of genes belonging to that 

pathway. The following code was written specifically for this function. 

 

#!/usr/bin/perl 

open(FILE, "C:/Perl/eg/userdata.txt"); 

my @inp = <FILE>; 

print "\n\n"; 

print "                                  THE RESULTS    

 \n"; 

print "--------------------------------------------------------------------

---------------------------------------------------------------------------

-----------------"; 

my $count = 1; 

$no = 1; 

@ array = (); 

@notfound = (); 

foreach my $inp (@inp) 

{ 

chomp ($inp); 

  @temp = split (/\s+/, $inp); 

  for(my $j=1;$j<=1;$j++) 

{ 

 $gene = $temp[0]; 

$val = $temp[1]; 

 

  $express = $temp[2]; 

use Data::Dumper; 

use SOAP::Lite +trace => [qw(debug)]; 

 

my $serv = SOAP::Lite ->service("http://soap.genome.jp/KEGG.wsdl"); 

my $rresult = $serv ->bconv("genbank:$gene"); 

my $length = length($rresult); 

unless($length==0) 

{ 

my @tem = split(/\s+/, $rresult); 

 for(my $k=1;$k<=1;$k++) 

{ 

my $iid = $tem[1]; 

 

  my $arrayRef = $serv ->get_pathways_by_genes([$iid]); 

 

my $final = Dumper $arrayRef; 

 my @hifi = split(/'/, $final); 

my $size = @hifi; 

 for(my $i=1;$i<$size;$i=$i+2) 

 { 

A2.3 Calculating percentage of genes from input that participate in X% of genes in 

a pathway 
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$keggpath = $hifi[$i]; 

 

  if($no>0) 

{ 

$strin = ($keggpath . "£" . $gene . "£" . $express . "£" . $iid); 

push(@array, $strin); 

} 

else { $si = @array; 

for($a=0;$a<$si;$a++) 

{ 

@pat = split(/£/, $array[$a]); 

while($pat[0]=~m/$keggpath/) 

{ 

$string = ($array[$a] . "£" . $gene . "£" . $express . "£" . $iid); 

splice(@array, $a, 1); 

push(@array, $string); 

goto side; 

} 

} $yd = ($keggpath . "£" . $gene . "£" . $express . "£" . $iid); 

push(@array, $yd); 

side: 

} 

 

 }goto outside; 

} 

} 

 

use Win32::OLE qw(in with); 

use Win32::OLE::Const 'Microsoft Excel'; 

$Win32::OLE::Warn = 3; 

 

my $Excel = Win32::OLE->new('Excel.Application', 'Quit'); 

 

my $Book = $Excel->Workbooks->Open("C:/Perl/eg/MMU.xls"); 

 

 

my $Sheet = $Book->Worksheets(1); 

foreach my $row (1..4829) 

{ 

for (my $col=3;$col<=3;$col++) 

 { 

 

  next unless defined $Sheet->Cells($row,$col)->{'Value'}; 

  my $id = $Sheet->Cells($row, $col)->{'Value'}; 

 

while ($id =~ m/$gene/) 

 { 

my $pathid = $Sheet->Cells($row,4)->{'Value'}; 

my $entrez = $Sheet->Cells($row,2)->{'Value'}; 

 my @pathway = split(/ /, $pathid); 

my $cize = @pathway; 

for (my $x=0; $x<$cize; $x++) 

{ 

$keggiid = ("mmu:".$entrez); 

$keggp = ("path:".$pathway[$x]); 

if($no>0) 

{ 

$strinn = ($keggp . "£" . $gene . "£" . $express . "£" . $keggiid); 

 

push(@array, $strinn); 
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} 

else { $si=@array; 

for($b=0;$b<$si;$b++) 

{ 

@patt = split(/£/, $array[$b]); 

while($patt[0]=~m/$keggp/) 

{ 

$stringg = ($array[$b] . "£" . $gene . "£" . $express . "£" . $keggiid); 

splice(@array, $b, 1); 

push(@array, $stringg); 

goto side; 

} 

} $yyd = ($keggp . "£" . $gene . "£" . $express . "£" . $keggiid); 

push(@array, $yyd); 

side: 

} 

} 

goto outside; 

  } 

 } 

} push(@notfound, $gene); 

outside: 

} 

$no=0; 

} 

use SOAP::Lite +trace => [qw(debug)]; 

my $serv = SOAP::Lite ->service("http://soap.genome.jp/KEGG.wsdl"); 

@jean=(); 

@obb=(); 

@blist = (); 

@flist = (); 

@expre=(); 

$num = 1; 

foreach $array (@array) 

{ 

@all = split(/£/, $array); 

$ize = @all; 

my $kepath = ($all[0]); 

for($n=3;$n<$ize;$n+=3) 

{ $ob = $all[$n]; 

push(@obb, $ob); 

$e = ($n-1); 

$je = ($n-2); 

$ex = $all[$e]; 

$ex = substr($ex, 0, 1); 

$jea = $all[$je]; 

if($ex eq "+") 

{ 

$fj ='green'; 

push(@flist, $fj); 

$bj = 'red'; 

push(@blist, $bj); 

push(@expre, 'upregulated'); 

push(@jean, $jea); 

} 

elsif($ex eq "-") 

{ 

$fj ='red'; 

push(@flist, $fz); 

$bj= 'yellow'; 
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push(@blist, $bz); 

push(@expre, 'downregulated'); 

push(@jean, $jea); 

} 

 

} 

$ci = @jean; 

$sy = @obb; 

if($sy==1) 

{ 

 $obj_list=[$obb[0]]; 

 $fg_list=[$flist[0]]; 

$bg_list=[$blist[0]]; 

  $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==2) 

{ 

 $obj_list=[$obb[0],$obb[1]]; 

 $fg_list=[$flist[0],$flist[1]]; 

 $bg_list=[$blist[0],$blist[1]]; 

  $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==3) 

{ 

 $obj_list=[$obb[0],$obb[1],$obb[2]]; 

 $fg_list=[$flist[0],$flist[1],$flist[2]]; 

$bg_list=[$blist[0],$blist[1],$blist[2]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==4) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==5) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==6) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==7) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis
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t[6]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

elsif($sy==8) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7]]

; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==9) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==11) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==12) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 
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elsif($sy==13) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==14) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$ 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

elsif($sy==15) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==16) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==17) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16]]; 
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$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

elsif($sy==18) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17]]; 

 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==20) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

elsif($sy==22) 
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{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

elsif($sy==23) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==24) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

elsif($sy==25) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23],$obb[24]

]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23],$flist[24]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23],$blist[24]]; 
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 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==26) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23],$obb[24]

,$obb[25]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23],$flist[24],$flist[25]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23],$blist[24],$blist[25]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==27) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23],$obb[24]

,$obb[25],$obb[26]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23],$flist[24],$flist[25],$flist[26]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23],$blist[24],$blist[25],$blist[26]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==28) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23],$obb[24]

,$obb[25],$obb[26],$obb[27]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23],$flist[24],$flist[25],$flist[26],$fl

ist[27]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23],$blist[24],$blist[25],$blist[26],$bl

ist[27]]; 

 $result = $serv->get_html_of_colored_pathway_by_objects($kepath, 

$obj_list, $fg_list, $bg_list); 

} 

elsif($sy==29) 

{ 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[
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16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23],$obb[24]

,$obb[25],$obb[26],$obb[27],$obb[28]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23],$flist[24],$flist[25],$flist[26],$fl

ist[27],$flist[28]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23],$blist[24],$blist[25],$blist[26],$bl

ist[27],$blist[28]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

$obj_list=[$obb[0],$obb[1],$obb[2],$obb[3],$obb[4],$obb[5],$obb[6],$obb[7],

$obb[8],$obb[9],$obb[10],$obb[11],$obb[12],$obb[13],$obb[14],$obb[15],$obb[

16],$obb[17],$obb[18],$obb[19],$obb[20],$obb[21],$obb[22],$obb[23],$obb[24]

,$obb[25],$obb[26],$obb[27],$obb[28],$obb[29]]; 

$fg_list=[$flist[0],$flist[1],$flist[2],$flist[3],$flist[4],$flist[5],$flis

t[6],$flist[7],$flist[8],$flist[9],$flist[10],$flist[11],$flist[12],$flist[

13],$flist[14],$flist[15],$flist[16],$flist[17],$flist[18],$flist[19],$flis

t[20],$flist[21],$flist[22],$flist[23],$flist[24],$flist[25],$flist[26],$fl

ist[27],$flist[28],$flist[29]]; 

$bg_list=[$blist[0],$blist[1],$blist[2],$blist[3],$blist[4],$blist[5],$blis

t[6],$blist[7],$blist[8],$blist[9],$blist[10],$blist[11],$blist[12],$blist[

13],$blist[14],$blist[15],$blist[16],$blist[17],$blist[18],$blist[19],$blis

t[20],$blist[21],$blist[22],$blist[23],$blist[24],$blist[25],$blist[26],$bl

ist[27],$blist[28],$blist[29]]; 

$result = $serv->get_html_of_colored_pathway_by_objects($kepath, $obj_list, 

$fg_list, $bg_list); 

} 

 

 

my @super; 

push(@super, "The genes involved in this pathway from user's input data : 

"); 

for($z=0;$z<$ci;$z++) 

{ 

 

push(@super, "user's input id : $jean[$z]\n\nkegg gene id : $obb[$z] "); 

   "; 

push(@super, "The pathway id is : $kepath "); 

 

push(@super, "The URL for the pathway is : "); 

push(@super, "$result "); 

my $totalgenes = $serv->get_genes_by_pathway($kepath); 

my $totnogenes = Dumper $totalgenes; 

my @totarray = split(/'/, $totnogenes); 

my $totarray; 

my @empty=(); 

for (my $new=1;$new<=$#totarray;$new+=2) 

{ 

push(@empty, $totarray[$new]); 

} 

my $totno = @empty; 

my $totinp = @inp; 

my $inpperc = ($ci/$totinp)*100; 

my $finpperc = sprintf("%.2f", $inpperc); 

 

push(@super, "The percentage of genes from the user's data involving in 
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this pathway is : $finpperc\% "); 

my $pathperc = ($ci/$totno)*100; 

my $fpathperc = sprintf("%.2f", $pathperc); 

 

push(@super, "$finpperc\% of genes from the user's data are contributing 

$fpathperc\% of role in this pathway. "); 

my $superr = join('£', @super); 

@super = (); 

$superfinal{$superr} = $fpathperc; 

$num = $num+1; 

@jean = (); 

@obb = (); 

@blist = (); 

@flist = (); 

@expre = (); 

} 

foreach my $value (sort {$superfinal{$b} cmp $final{$a} } 

keys %superfinal) 

{ 

my @superarray = split(/£/, $value); 

foreach my $superarray (@superarray) 

{ 

print("$superarray\n\n"); 

} 

print("\n------------------------------------------------------------------

--------------\n"); 

print("--------------------------------------------------------------------

------------\n\n\n"); 

} 

$saize = @notfound; 

if($saize>0) 

{ 

print "\nPathways were not found for the below genes\n\n"; 

foreach $notfound (@notfound) 

{ 

print $notfound, "\n\n"; 

} 

print "--------------------------------------------------------------------

------------\n"; 

print "Try by converting the above gene ids into entrez ids and use the 

entrez button from the interface to get the results\n\n"; 

print "--------------------------------------------------------------------

------------\n" 

} 

 

sub SOAP::Serializer::as_ArrayOfstring{ 

 my ($self, $value, $name, $type, $attr) = @_; 

 return [$name, {'xsi:type' => 'array', %$attr}, $value]; 

} 

sub SOAP::Serializer::as_ArrayOfint{ 

 my ($self, $value, $name, $type, $attr) = @_; 

return [$name, {'xsi:type' => 'array', %$attr}, $value]; 

} 
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