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ABSTRACT 

Bandwidth consumption in distributed real-time 
simulation, or networked real-time simulation, is a major 
problem as the number of participants and the 
sophistication of joint simulation exercises grow in size. 
This paper briefly reviews distributed real-time simulation 
and bandwidth reduction techniques and introduces the 
Generic Runtime Infrastructure for Distributed Simulation 
(GRIDS) as a research architecture for studying such 
problems. GRIDS uses Java abstract classes to promote 
distributed services called thin agents, a novel approach to 
implementing distributed simulation services, such as user- 
defined bandwidth reduction mechanisms, and to 
distributing the executable code across the simulation. Thin 
agents offer the advantages of traditional agents without 
the overhead imposed by mobility or continuous state, 
which are unnecessary in this context. We present our 
implementation and some predicted results from message- 
reduction studies using thin agents. 

1 INTRODUCTION 

Since the initial success of the distributed military 
simulation effort SIMNET (Miller and Thorpe 1995), the 
use of distributed real time simulation (sometimes called 
networked real time simulation) for the purpose of training 
has grown over the past decade. Perhaps one of the most 
well known examples of distributed real time simulation is 
Distributed Interactive Simulation (DIS) (IEEE 1994). 
DIS aims to provide a high performance virtual training 
environment by systematically connecting separate 
simulators located at geographically distributed sites 
(STRICOM 1992). The training environment is virtual in 
the sense of real people operating in simulated systems. 
The key elements in such a system are the simulators and 
the connecting network (usually a mix of LAN and WAN 

technology). Page et al. (1997) review the Joint Training 
Confederation, one of the largest applications of DIS-like 
technology. High Level Architecture (DMSO 1996) 
represents the most recent and significant advances in 
distributed real-time simulation technologies. 

One of the major problems in distributed real-time 
simulations is bandwidth consumption. Consider an 
illustrative example, a training scenario where command 
staff in different locations are engaged in a wargame 
(although other applications such as air traffic control, 
emergency/evacuation training, traffic control systems, etc. 
are possible). Each site has semi-automated force (SAF) 
simulators, representing the combatants, and command 
port simulators used by the trainees as the interface to the 
wargame. The command post simulators will typically 
include tactical displays showing the disposition of forces. 
A LAN carries state information between simulation 
entities at each site, and a WAN carries data (with 
attendant time latency) between sites. Each simulation 
entity must regularly broadcast state information to ensure 
that tactical displays are updated within the hard deadlines 
imposed by real time operation. Unfortunately, this 
scenario does not scale well. As the number of simulation 
entities increases, network bandwidth is quickly consumed 
by state information that is irrelevant to the majority of 
entities taking part. The situation deteriorates when 
manned vehicle simulators are added; these require out-of- 
the-window displays with low update latency to preserve 
the illusion of reality. 

The paper is structured as follows. In section 2 we 
review techniques that have been used to reduce the 
volume of network traffic between simulators. In section 3 
we present the Generic Runtime Infrastructure for 
Distributed Simulation (GRIDS), our contribution to the 
field of real time simulation, and discuss how these might 
be used to reduce network traffic. Section 4 gives a case 
study to illustrate distributed services and their 
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performance. The paper ends with some conclusions in 
Section 5.  

2 BANDWIDTH REDUCTION TECHNIQUES 

We recognize that bandwidth-reduction techniques fall into 
two broad categories-data aware and data independent. 
The former refers to intelligent marshaling techniques that 
direct information to interested parties. The latter, 
including packet bundling and data compression, apply 
gross techniques to the general data flow, and do not scale 
well. Bassiouni et al. (1997) give an excellent review of 
some of these bandwidth techniques. Our work focuses on 
data-aware techniques, which we briefly review. 

Simple approach. The originating entity determines 
the set of entities which may be interested in a particular 
piece of data, and replicates separate messages to each 
target. The infrastructure provides no assistance in 
identifying interested parties and merely delivers the 
messages. 

Dead reckoning. In a simulation employing dead 
reckoning, each process maintains a movement model (or 
dead reckoning algorithm) for every other process. The 
model estimates future movements based on past behavior, 
and is updated using infrequent broadcast messages from 
the process being modeled. 

Network subscription. Targets choose to listen to 
network broadcast channels which carry information of 
relevance. The TCP/IP suite provides this facility in the 
form of IP multicasting. Processes broadcast classes of data 
(for example, state information affecting ground-based 
vehicles) on the relevant channel. 

Group subscription. This model, employed by the 
PVM library (Geist et al. 1994), requires each target to join 
a group. Messages sent to that group are duplicated by the 
infrastructure and dispatched to all members. This model 
has been greatly extended by the MF'I standard (MF'IF 
1995), which allows group membership to be manipulated 
in complex ways. 

Relevance filtering. These schemes depend on the 
infrastructure to direct state information to interested 
parties. Such a scheme is exemplified by the HLA 
publishhubscribe model of data distribution, which 
provides two mechanisms. Filtering on the basis of an 
object's class is performed by the declaration management 
services. Filtering based on attribute value is performed by 
the data distribution management services, in the form of 
routing spaces (Morse and Steinman 1997). 

These techniques reduce bandwidth either by 
managing the transmission of messages to interested 
parties only, or by employing algorithms which reduce the 
frequency of state updated. Individually these can be 
useful in specific circumstances. For example, network 
subscription is a valid approach when the number of 
classes of state update is small. Dead reckoning is 

appropriate when simulation entities are slow-moving or 
network bandwidth is relatively high. 

However, the designer of a new simulation must plan 
the implementation based on the availability of support 
mechanisms in the communication infrastructure, since few 
runtime systems support all techniques. The alternative, 
creating a bespoke solution, is costly. 

We suggest that an infrastructure could support a 
variety of bandwidth reduction techniques by providing a 
mechanism which allows simple decision-making units to 
be distributed and executed in support of those techniques. 
We propose a novel code distribution paradigm, called thin 
agents, which we believe offers this ability at an 
appropriate level of abstraction. 

3 THINAGENTS 

3.1 Definition 

Thin agents are the basis on which distributed simulation 
services that we wish to provide are realised. They share 
many characteristics with traditional agents (Jennings, Sycara 
and Wooldrige 1998, White 1994). In both cases a code 
fragment or algorithm is compiled into executable form. 
Rather than being permanently located at a single node, thin 
and traditional agents can move through the infrastructure. 

A traditional agent requires continuous state and the 
ability to move between nodes to accomplish its task, 
under its own motivation. In contrast, a thin agent is 
invoked where needed and thus has minimal housekeeping 
.code overhead. We use the term thin to denote minimum 
functionality from which larger, more complex agents can 
be built (see for example Silva and Delgado 1998). 

3.2 Thin Agent Support Requirements 

Thin agents require a small set of services from the 
infrastructure. It must: 

distribute copies of the thin agent to each 
simulation node, ready for instantiation. In 
this way the functionality provided by the 
thin agent will be available at wherever it is 
required. 
provide an execution context in which to 
instantiate the thin agent. The infrastructure 
must be able to invoke the functionality 
encapsulated by the thin agent in a safe 
environment. 
allow the thin agent access to the basic 
communication services of the infrastructure. 
The mechanisms which thin agents 
encapsulate may need access to the state of 
the simulation in order to perform their 
bandwidth reduction role. 
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4 IMPLEMENTATION 

Agent 
Services 

We have implemented the thin agent scheme described 
and an enabling infrastructure supporting a broad range 
of simulation types. Thin agents have been used in a 
variety of distributed simulation projects which have 
underlined their role in bandwidth reduction. Our 
infrastructure is called GRIDS (Generic Runtime 
Infrastructure for Distributed Simulation) (Saville and 
Taylor 1997). 

GRIDS is built using the JavaJanguage (Arnold and 
Gosling 1996). Java was chosen since it offers a large 
set of features appropriate to distributed system 
construction. In particular, Java provides a safe 
environment to invoke objects loaded from across the 
network, a model directly supporting our thin agent 
scheme. 

GRIDS consists of a set of communicating servers. An 
entity can join an executing simulation by connecting to a 
server. GRIDS provides several message facilities and the 
ability to publish attributes which can be queried by other 
entities (via a metadatabase). Figure 1 shows the GRIDS 
protocol architecture and Figure 2 shows the client-server 
connectivity that GRIDS supports. 

I Network Transport 
~~ 

Figure 1 : GRIDS Protocol Diagram 

A thin agent, encapsulating a bandwidth reduction 
mechanism, consists of a Java class which is uploaded to 
the infrastructure by the publishing simulation entity. 
GRIDS replicates the class to every simulation node. When 
the mechanism is required by a simulation entity (not 
necessarily the publishing entity) the GRIDS server local 
to the requester instantiates the thin agent and invokes its 
functionality. This mechanism is shown in Figure 3. 

GRIDS 
Client 

Simulation Simulation 

GRIDS Server 
Object 

Client Client 

A 
I I I 4 

GRIDS Server 

I I I  I 

Simulation 
Object 

Native Process 
Figure 2: GRIDS Architecture 
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Figure 3: Thin Agent Mechanism 

In the context of GRIDS, thin agents perform two 
major functions, described below. It should be noted that 
thin agents are not limited to these uses; they represent 
merely the first application of this approach. 

Attributes. A thin agent can be logically attached to an 
attribute. When the attribute value is requested by an entity 
the thin agent is invoked and queried for an updated value. 
A thin agent maintains state at the GRIDS server where it 
was invoked, and thus can encapsulate services such as 
dead reckoning. 

Group multicasting. The second major use of thin 
agents in GRIDS is as part of the GRIDS group 
multicasting facility. A group is a logical target for 
messages, and represents a set of recipients. In contrast to 
PVM groups, where recipients have to manually subscribe, 
a GRIDS group has dynamic membership. A message 
directed to the group causes the local (to the sender) 
GRIDS server to instantiate the associated thin agent, 
which returns a list of recipients. The thin agent can thus 
perform message filtering using the arbitrary user-defined 
algorithm it is carrying. 

4 CASESTUDY 

The case study discussed here focuses on the ability of thin 
agents to reduce bandwidth. Specifically, thin agents are 
used to reduce the number of message exchanges required 
in a simple distributed simulation. 

The scenario consists of a variable number of entities 
representing tanks. Each tank has a randomly assigned 
waypoint, toward which it travels at a constant speed. If a 
tank detects another tank within range it pauses to fire a 
shell. Tanks that are hit retire from the simulation. 

GRIDS Server 

instantiate 

Live agent 

Agent can now 
bequeriedor 

addressed 

The set of objects involved is illustrated in Figure 4. 
Each tank updates the value of attribute POSITION every 
10 seconds. In order that other entities receive accurate 
position values, a thin agent encapsulates a simple dead- 
reckoning algorithm which calculates a tank’s likely 
position based on its past behavior. Entities access these 
estimates by querying the attribute DR POSITION, to 
which the thin agent is attached. 
* A tank obtains a list of threats (other tanks within 
firing range) by directing a message towards the THREAT 
REFLECTOR group. When the messages reaches the 
GRIDS server the thin agent attached to that group is 
invoked. The thin agent queries the DR POSITION 
attribute of the remaining tanks and returns a message to 
the inquiring object which contains a list of threats. 
In this scenario the use of a dead-reckoning algorithm 
reduces the number of position update messages required 
from each tank by interpolating past behavior. The thin 
agent approach offers additional advantage over a 
traditional DIS-type dead reckoning scheme. Firstly, rather 
than each simulation entity maintaining dead-reckoning 
models for every other simulation entity, only one model 
for each tank is maintained by the GRIDS servers. 
Secondly, the dead-reckoning model can be changed, and 
additional entities modeled, without rebuilding every other 
simulation object. 

Similarly, the thin agent which identifies potential 
threats eliminates the requirement for every tank object to 
perform this functionality individually. 

Figure 5 shows the predicted rate of message exchange 
between tank objects, before firing commences. The dotted 
line shows results obtained with no bandwidth reduction - 
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Figure 4: Case Study Example 
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Figure 5: Predicted Results 

the number of messages increases geometrically as tank 
objects are added to the simulation. The solid line shows 
the effects of using thin agents to eliminate unnecessary 
message exchanges. The message growth rate is linear with 
the number of tanks. 

This communication saving is not without cost. The 
invocation of each thin agent requires processing resources 
at each GRIDS server. An overall benefit is realized since 
the savings accrued from reduced communication usually 
outweigh the additional processing requirements. 

5 CONCLUSIONS 

This paper has reviewed several techniques of bandwidth 
reduction for distributed interactive simulation. We have 
introduced a novel paradigm for implementing bandwidth 
reduction mechanisms using mobile objects under the 
GRIDS system. This work is presented as a possibly 
interesting research architecture that exploits several Java 
features in the hope of providing services for distributed 
real-time simulation. It is in no way meant to compete 
with the High Level Architecture that has been shown to 
successfully implement large distributed interactive 
simulations. This contribution merely attempts investigate 
possible alternatives for smaller server-based systems. 
Another note is the runtime execution speed of Java. 
Again this work is presented as investigative research 
rather than development for a commercial product. It is 
our intention to prototype possible architectures. If this 
kind of architecture was to meet with success then it is 
possible that a high speed implementation could be 
implemented in C++ or possibly future versions of Java 
(with optimisation). At the moment it is enough that 
theory suggests adequate performance. 

This work is continuing through further development 
of the infrastructure and its applicability to problem 
domains other than DIS (web-based simulation and the role 
of Java in discrete event simulation (Odhabi, Paul and 
Macredie 1998). Examples of the GRIDS implementation 
are available from: www.brunel.ac.uWresearch/casm. 

REFERENCES 

Arnold, K. and J. Gosling. 1996. The Java Programming 
Language. Addison-Wesley, USA. 

Bassiouni, M.A., M.-H. Chiu, M. Loper, M.Garnsey, and J. 
Williams. 1997. Performance and Reliability Analysis 
of Relevance Filtering for Scalable Distributed 
Interactive Simulation. ACM Transactions on Modeling 
and Computer Simulation, 7 (3) (July): 293-331. 

DMSO 1996. HLA Rules, Version 1.0, August 15, 1996. 
http://www. dmso. mil/projects/ hla. 

Geist, A; A. Beguelin; J. Dongarra; W. Jiang; R. Manchek; 
and V. Sunderam. 1994, PVM: Parallel Virtual 
Machine. MIT Press, USA. 

IEEE 1278-1993. 1994. Standard for Information 
Technology - Protocols for Distributed Interactive 
Simulation Applications IEEE Press, USA. 

522 

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore.  Restrictions apply. 

http://www


Taylor, Saville, and Sudra 

Jennings, N., K. Sycara and M Wooldridge. 1998. “A 
Roadmap of Agent Research and Development.” 
Autonomous Agents and Mult-Agent Systems, I :275- 
306. 

Message Passing Interface Forum (MPIF). 1995. MPI: A 
Message Passing Interface Standard, Version 1.1 ., 
Web address http://www.ececs.uc.edu/miscdocslmpi- 
report- 1. I/mpi-report.htm1 

Morse, K. and J. Steinman. 1997, Data Distribution 
Management in the HLA: Multidimensional Regions 
and Physically Correct Filtering. In Proceedings of the 
1997 Spring Sofnyare Interoperability Workshop. 
Orlando, FL, USA. 

Miller, D. C. and 3. A. Thorpe. 1995. SIMNET: The advent 
of simulator networking. Proceedings of the IEEE, 83 

Page E.H.; B.S. Canova; and J.A. Tufarolo 1997. A Case 
Study of Verification, Validation and Accreditation for 
Advanced Distributed Simulation. ACM Transactions 
on Modeling and Computer Simulation, 7 ( 3 )  (July): 

Saville, J. and S.J.E Taylor. 1997. Interest management: 
Dynamic group multicasting using mobile Java 
policies. in Proceedings of the Fall 1997 Sofhyare 
Interoperability Workshop. Orlando, FL, USA. 

Silva, A. and J. Delgado. 1998. The Agent Pattern for 
Mobile Agent Systems. In Proceedings of the 1998 
European Conference on Pattern Languages of 
Programming and Computing. Available from 
berlin.inesc.pt.pt/alb/publications. htm 

STRICOM. 1992. Distributed Interactive Simulation - 
Operational Concepts Drafi 2. I .  September. 

White, J. 1994. Telescript technology: The foundation for  
the electronic marketplace. General Magic, Inc. 

(8):1114-1123. 

393-424. 

AUTHOR BIOGRAPHIES 

SIMON J.E. TAYLOR is the Chair of the Simulation 
Study Group of the UK Operational Research Society. He 
is a lecturer in the Department of Information Systems and 
Computing and is a member of the Centre for Applied 
Simulation Modelling, both at Brunel University, UK. He 
was previously part of the Centre for Parallel Computing at 
the University of Westminster. He has an undergraduate 
degree in Industrial Studies (Sheffield Hallam), a M.Sc. in 
Computing Studies (Sheffield Hallam) and a Ph.D. in 
Parallel and Distributed Simulation (Leeds Metropolitan). 
His main research interests are distributed simulation and 
applications of simulation health care. He has also been 
known to occasionally tread the boards. 

infrastructure. Recently his research has focused on 
methods of constructing large distributed systems from 
components primitives. 

RAJEEV SUDRA is a Ph.D. candidate in the Department 
of Information Systems and Computing at Brunel 
University, UK. He received his B.Sc. in Computer 
Science and Economics also from Brunel University. He 
has gained much experience working in industry ranging 
from distributed systems software development to 
designing and deploying large-scale computer networks. 
His research focuses on real-time simulation and agent- 
based systems. 

JON SAVILLE is a Ph.D. candidate in the Department of 
Information Systems and Computing at Brunel University, 
UK. He has worked in the telecommunications industry for 
many years developing communications software 

523 

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore.  Restrictions apply. 

http://www.ececs.uc.edu/miscdocslmpi

