
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

DEVELOPING INTEREST MANAGEMENT TECHNIQUES
IN DISTRIBUTED INTERACTIVE SIMULATION USING JAVA

Simon J.E. Taylor
Jon Saville

Rajeev Sudra

Centre for Applied Simulation Modelling
Department of Information System and Computing

Brunel University, Uxbridge
UB8 3PH, UNITED KINGDOM

ABSTRACT

Bandwidth consumption in distributed real-time
simulation, or networked real-time simulation, is a major
problem as the number of participants and the
sophistication of joint simulation exercises grow in size.
This paper briefly reviews distributed real-time simulation
and bandwidth reduction techniques and introduces the
Generic Runtime Infrastructure for Distributed Simulation
(GRIDS) as a research architecture for studying such
problems. GRIDS uses Java abstract classes to promote
distributed services called thin agents, a novel approach to
implementing distributed simulation services, such as user-
defined bandwidth reduction mechanisms, and to
distributing the executable code across the simulation. Thin
agents offer the advantages of traditional agents without
the overhead imposed by mobility or continuous state,
which are unnecessary in this context. We present our
implementation and some predicted results from message-
reduction studies using thin agents.

1 INTRODUCTION

Since the initial success of the distributed military
simulation effort SIMNET (Miller and Thorpe 1995), the
use of distributed real time simulation (sometimes called
networked real time simulation) for the purpose of training
has grown over the past decade. Perhaps one of the most
well known examples of distributed real time simulation is
Distributed Interactive Simulation (DIS) (IEEE 1994).
DIS aims to provide a high performance virtual training
environment by systematically connecting separate
simulators located at geographically distributed sites
(STRICOM 1992). The training environment is virtual in
the sense of real people operating in simulated systems.
The key elements in such a system are the simulators and
the connecting network (usually a mix of LAN and WAN

technology). Page et al. (1997) review the Joint Training
Confederation, one of the largest applications of DIS-like
technology. High Level Architecture (DMSO 1996)
represents the most recent and significant advances in
distributed real-time simulation technologies.

One of the major problems in distributed real-time
simulations is bandwidth consumption. Consider an
illustrative example, a training scenario where command
staff in different locations are engaged in a wargame
(although other applications such as air traffic control,
emergency/evacuation training, traffic control systems, etc.
are possible). Each site has semi-automated force (SAF)
simulators, representing the combatants, and command
port simulators used by the trainees as the interface to the
wargame. The command post simulators will typically
include tactical displays showing the disposition of forces.
A LAN carries state information between simulation
entities at each site, and a WAN carries data (with
attendant time latency) between sites. Each simulation
entity must regularly broadcast state information to ensure
that tactical displays are updated within the hard deadlines
imposed by real time operation. Unfortunately, this
scenario does not scale well. As the number of simulation
entities increases, network bandwidth is quickly consumed
by state information that is irrelevant to the majority of
entities taking part. The situation deteriorates when
manned vehicle simulators are added; these require out-of-
the-window displays with low update latency to preserve
the illusion of reality.

The paper is structured as follows. In section 2 we
review techniques that have been used to reduce the
volume of network traffic between simulators. In section 3
we present the Generic Runtime Infrastructure for
Distributed Simulation (GRIDS), our contribution to the
field of real time simulation, and discuss how these might
be used to reduce network traffic. Section 4 gives a case
study to illustrate distributed services and their

518

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Taylor, Saville, and Sudra

performance. The paper ends with some conclusions in
Section 5.

2 BANDWIDTH REDUCTION TECHNIQUES

We recognize that bandwidth-reduction techniques fall into
two broad categories-data aware and data independent.
The former refers to intelligent marshaling techniques that
direct information to interested parties. The latter,
including packet bundling and data compression, apply
gross techniques to the general data flow, and do not scale
well. Bassiouni et al. (1997) give an excellent review of
some of these bandwidth techniques. Our work focuses on
data-aware techniques, which we briefly review.

Simple approach. The originating entity determines
the set of entities which may be interested in a particular
piece of data, and replicates separate messages to each
target. The infrastructure provides no assistance in
identifying interested parties and merely delivers the
messages.

Dead reckoning. In a simulation employing dead
reckoning, each process maintains a movement model (or
dead reckoning algorithm) for every other process. The
model estimates future movements based on past behavior,
and is updated using infrequent broadcast messages from
the process being modeled.

Network subscription. Targets choose to listen to
network broadcast channels which carry information of
relevance. The TCP/IP suite provides this facility in the
form of IP multicasting. Processes broadcast classes of data
(for example, state information affecting ground-based
vehicles) on the relevant channel.

Group subscription. This model, employed by the
PVM library (Geist et al. 1994), requires each target to join
a group. Messages sent to that group are duplicated by the
infrastructure and dispatched to all members. This model
has been greatly extended by the MF'I standard (MF'IF
1995), which allows group membership to be manipulated
in complex ways.

Relevance filtering. These schemes depend on the
infrastructure to direct state information to interested
parties. Such a scheme is exemplified by the HLA
publishhubscribe model of data distribution, which
provides two mechanisms. Filtering on the basis of an
object's class is performed by the declaration management
services. Filtering based on attribute value is performed by
the data distribution management services, in the form of
routing spaces (Morse and Steinman 1997).

These techniques reduce bandwidth either by
managing the transmission of messages to interested
parties only, or by employing algorithms which reduce the
frequency of state updated. Individually these can be
useful in specific circumstances. For example, network
subscription is a valid approach when the number of
classes of state update is small. Dead reckoning is

appropriate when simulation entities are slow-moving or
network bandwidth is relatively high.

However, the designer of a new simulation must plan
the implementation based on the availability of support
mechanisms in the communication infrastructure, since few
runtime systems support all techniques. The alternative,
creating a bespoke solution, is costly.

We suggest that an infrastructure could support a
variety of bandwidth reduction techniques by providing a
mechanism which allows simple decision-making units to
be distributed and executed in support of those techniques.
We propose a novel code distribution paradigm, called thin
agents, which we believe offers this ability at an
appropriate level of abstraction.

3 THINAGENTS

3.1 Definition

Thin agents are the basis on which distributed simulation
services that we wish to provide are realised. They share
many characteristics with traditional agents (Jennings, Sycara
and Wooldrige 1998, White 1994). In both cases a code
fragment or algorithm is compiled into executable form.
Rather than being permanently located at a single node, thin
and traditional agents can move through the infrastructure.

A traditional agent requires continuous state and the
ability to move between nodes to accomplish its task,
under its own motivation. In contrast, a thin agent is
invoked where needed and thus has minimal housekeeping
.code overhead. We use the term thin to denote minimum
functionality from which larger, more complex agents can
be built (see for example Silva and Delgado 1998).

3.2 Thin Agent Support Requirements

Thin agents require a small set of services from the
infrastructure. It must:

distribute copies of the thin agent to each
simulation node, ready for instantiation. In
this way the functionality provided by the
thin agent will be available at wherever it is
required.
provide an execution context in which to
instantiate the thin agent. The infrastructure
must be able to invoke the functionality
encapsulated by the thin agent in a safe
environment.
allow the thin agent access to the basic
communication services of the infrastructure.
The mechanisms which thin agents
encapsulate may need access to the state of
the simulation in order to perform their
bandwidth reduction role.

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore. Restrictions apply.

Developing Interest Management Techniques in Distributed Interactive Simulation Using Java

Name Data Simulation
Services Services Services

4 IMPLEMENTATION

Agent
Services

We have implemented the thin agent scheme described
and an enabling infrastructure supporting a broad range
of simulation types. Thin agents have been used in a
variety of distributed simulation projects which have
underlined their role in bandwidth reduction. Our
infrastructure is called GRIDS (Generic Runtime
Infrastructure for Distributed Simulation) (Saville and
Taylor 1997).

GRIDS is built using the JavaJanguage (Arnold and
Gosling 1996). Java was chosen since it offers a large
set of features appropriate to distributed system
construction. In particular, Java provides a safe
environment to invoke objects loaded from across the
network, a model directly supporting our thin agent
scheme.

GRIDS consists of a set of communicating servers. An
entity can join an executing simulation by connecting to a
server. GRIDS provides several message facilities and the
ability to publish attributes which can be queried by other
entities (via a metadatabase). Figure 1 shows the GRIDS
protocol architecture and Figure 2 shows the client-server
connectivity that GRIDS supports.

I Network Transport
~~

Figure 1 : GRIDS Protocol Diagram

A thin agent, encapsulating a bandwidth reduction
mechanism, consists of a Java class which is uploaded to
the infrastructure by the publishing simulation entity.
GRIDS replicates the class to every simulation node. When
the mechanism is required by a simulation entity (not
necessarily the publishing entity) the GRIDS server local
to the requester instantiates the thin agent and invokes its
functionality. This mechanism is shown in Figure 3.

GRIDS
Client

Simulation Simulation

GRIDS Server
Object

Client Client

A
I I I 4

GRIDS Server

I I I I

Simulation
Object

Native Process
Figure 2: GRIDS Architecture

520

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore. Restrictions apply.

Taylor, Saville, and Sudra

subclass Java agent is
subclassed -

Agent is
instantiated on

program

Agent is
compiled to

produce

demand to
produce a live

agent

/? - a //
GRIDS sewers

Figure 3: Thin Agent Mechanism

In the context of GRIDS, thin agents perform two
major functions, described below. It should be noted that
thin agents are not limited to these uses; they represent
merely the first application of this approach.

Attributes. A thin agent can be logically attached to an
attribute. When the attribute value is requested by an entity
the thin agent is invoked and queried for an updated value.
A thin agent maintains state at the GRIDS server where it
was invoked, and thus can encapsulate services such as
dead reckoning.

Group multicasting. The second major use of thin
agents in GRIDS is as part of the GRIDS group
multicasting facility. A group is a logical target for
messages, and represents a set of recipients. In contrast to
PVM groups, where recipients have to manually subscribe,
a GRIDS group has dynamic membership. A message
directed to the group causes the local (to the sender)
GRIDS server to instantiate the associated thin agent,
which returns a list of recipients. The thin agent can thus
perform message filtering using the arbitrary user-defined
algorithm it is carrying.

4 CASESTUDY

The case study discussed here focuses on the ability of thin
agents to reduce bandwidth. Specifically, thin agents are
used to reduce the number of message exchanges required
in a simple distributed simulation.

The scenario consists of a variable number of entities
representing tanks. Each tank has a randomly assigned
waypoint, toward which it travels at a constant speed. If a
tank detects another tank within range it pauses to fire a
shell. Tanks that are hit retire from the simulation.

GRIDS Server

instantiate

Live agent

Agent can now
bequeriedor

addressed

The set of objects involved is illustrated in Figure 4.
Each tank updates the value of attribute POSITION every
10 seconds. In order that other entities receive accurate
position values, a thin agent encapsulates a simple dead-
reckoning algorithm which calculates a tank’s likely
position based on its past behavior. Entities access these
estimates by querying the attribute DR POSITION, to
which the thin agent is attached.
* A tank obtains a list of threats (other tanks within
firing range) by directing a message towards the THREAT
REFLECTOR group. When the messages reaches the
GRIDS server the thin agent attached to that group is
invoked. The thin agent queries the DR POSITION
attribute of the remaining tanks and returns a message to
the inquiring object which contains a list of threats.
In this scenario the use of a dead-reckoning algorithm
reduces the number of position update messages required
from each tank by interpolating past behavior. The thin
agent approach offers additional advantage over a
traditional DIS-type dead reckoning scheme. Firstly, rather
than each simulation entity maintaining dead-reckoning
models for every other simulation entity, only one model
for each tank is maintained by the GRIDS servers.
Secondly, the dead-reckoning model can be changed, and
additional entities modeled, without rebuilding every other
simulation object.

Similarly, the thin agent which identifies potential
threats eliminates the requirement for every tank object to
perform this functionality individually.

Figure 5 shows the predicted rate of message exchange
between tank objects, before firing commences. The dotted
line shows results obtained with no bandwidth reduction -

521

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore. Restrictions apply.

Developing Interest Management Techniques in Distributed Interactive Simulation Using Java

t GRIDS Sewer

I I Position

1 DR Position ~ 1

Service TA Service TA

I

Replicated at each server
Replicated at each server

Figure 4: Case Study Example

I I I
~

1

1 5000

i --Thin agent
! 4000 inplemntation 1 - - - -I- -
I

Figure 5: Predicted Results

the number of messages increases geometrically as tank
objects are added to the simulation. The solid line shows
the effects of using thin agents to eliminate unnecessary
message exchanges. The message growth rate is linear with
the number of tanks.

This communication saving is not without cost. The
invocation of each thin agent requires processing resources
at each GRIDS server. An overall benefit is realized since
the savings accrued from reduced communication usually
outweigh the additional processing requirements.

5 CONCLUSIONS

This paper has reviewed several techniques of bandwidth
reduction for distributed interactive simulation. We have
introduced a novel paradigm for implementing bandwidth
reduction mechanisms using mobile objects under the
GRIDS system. This work is presented as a possibly
interesting research architecture that exploits several Java
features in the hope of providing services for distributed
real-time simulation. It is in no way meant to compete
with the High Level Architecture that has been shown to
successfully implement large distributed interactive
simulations. This contribution merely attempts investigate
possible alternatives for smaller server-based systems.
Another note is the runtime execution speed of Java.
Again this work is presented as investigative research
rather than development for a commercial product. It is
our intention to prototype possible architectures. If this
kind of architecture was to meet with success then it is
possible that a high speed implementation could be
implemented in C++ or possibly future versions of Java
(with optimisation). At the moment it is enough that
theory suggests adequate performance.

This work is continuing through further development
of the infrastructure and its applicability to problem
domains other than DIS (web-based simulation and the role
of Java in discrete event simulation (Odhabi, Paul and
Macredie 1998). Examples of the GRIDS implementation
are available from: www.brunel.ac.uWresearch/casm.

REFERENCES

Arnold, K. and J. Gosling. 1996. The Java Programming
Language. Addison-Wesley, USA.

Bassiouni, M.A., M.-H. Chiu, M. Loper, M.Garnsey, and J.
Williams. 1997. Performance and Reliability Analysis
of Relevance Filtering for Scalable Distributed
Interactive Simulation. ACM Transactions on Modeling
and Computer Simulation, 7 (3) (July): 293-331.

DMSO 1996. HLA Rules, Version 1.0, August 15, 1996.
http://www. dmso. mil/projects/ hla.

Geist, A; A. Beguelin; J. Dongarra; W. Jiang; R. Manchek;
and V. Sunderam. 1994, PVM: Parallel Virtual
Machine. MIT Press, USA.

IEEE 1278-1993. 1994. Standard for Information
Technology - Protocols for Distributed Interactive
Simulation Applications IEEE Press, USA.

522

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore. Restrictions apply.

http://www

Taylor, Saville, and Sudra

Jennings, N., K. Sycara and M Wooldridge. 1998. “A
Roadmap of Agent Research and Development.”
Autonomous Agents and Mult-Agent Systems, I :275-
306.

Message Passing Interface Forum (MPIF). 1995. MPI: A
Message Passing Interface Standard, Version 1.1 .,
Web address http://www.ececs.uc.edu/miscdocslmpi-
report- 1. I/mpi-report.htm1

Morse, K. and J. Steinman. 1997, Data Distribution
Management in the HLA: Multidimensional Regions
and Physically Correct Filtering. In Proceedings of the
1997 Spring Sofnyare Interoperability Workshop.
Orlando, FL, USA.

Miller, D. C. and 3. A. Thorpe. 1995. SIMNET: The advent
of simulator networking. Proceedings of the IEEE, 83

Page E.H.; B.S. Canova; and J.A. Tufarolo 1997. A Case
Study of Verification, Validation and Accreditation for
Advanced Distributed Simulation. ACM Transactions
on Modeling and Computer Simulation, 7 (3) (July):

Saville, J. and S.J.E Taylor. 1997. Interest management:
Dynamic group multicasting using mobile Java
policies. in Proceedings of the Fall 1997 Sofhyare
Interoperability Workshop. Orlando, FL, USA.

Silva, A. and J. Delgado. 1998. The Agent Pattern for
Mobile Agent Systems. In Proceedings of the 1998
European Conference on Pattern Languages of
Programming and Computing. Available from
berlin.inesc.pt.pt/alb/publications. htm

STRICOM. 1992. Distributed Interactive Simulation -
Operational Concepts Drafi 2. I . September.

White, J. 1994. Telescript technology: The foundation for
the electronic marketplace. General Magic, Inc.

(8):1114-1123.

393-424.

AUTHOR BIOGRAPHIES

SIMON J.E. TAYLOR is the Chair of the Simulation
Study Group of the UK Operational Research Society. He
is a lecturer in the Department of Information Systems and
Computing and is a member of the Centre for Applied
Simulation Modelling, both at Brunel University, UK. He
was previously part of the Centre for Parallel Computing at
the University of Westminster. He has an undergraduate
degree in Industrial Studies (Sheffield Hallam), a M.Sc. in
Computing Studies (Sheffield Hallam) and a Ph.D. in
Parallel and Distributed Simulation (Leeds Metropolitan).
His main research interests are distributed simulation and
applications of simulation health care. He has also been
known to occasionally tread the boards.

infrastructure. Recently his research has focused on
methods of constructing large distributed systems from
components primitives.

RAJEEV SUDRA is a Ph.D. candidate in the Department
of Information Systems and Computing at Brunel
University, UK. He received his B.Sc. in Computer
Science and Economics also from Brunel University. He
has gained much experience working in industry ranging
from distributed systems software development to
designing and deploying large-scale computer networks.
His research focuses on real-time simulation and agent-
based systems.

JON SAVILLE is a Ph.D. candidate in the Department of
Information Systems and Computing at Brunel University,
UK. He has worked in the telecommunications industry for
many years developing communications software

523

Authorized licensed use limited to: Brunel University. Downloaded on June 15,2010 at 11:07:24 UTC from IEEE Xplore. Restrictions apply.

http://www.ececs.uc.edu/miscdocslmpi

