(ознакомительный фрагмент)

ISSN 0001-4346, Mathematical Notes, 2019, Vol. 105, No. 2, pp. 204–215. © Pleiades Publishing, Ltd., 2019. Russian Text © N. T. Vorob'ev, T. B. Karaulova, 2019, published in Matematicheskie Zametki, 2019, Vol. 105, No. 2, pp. 214–227.

Hartley Sets and Injectors of a Finite Group

N. T. Vorob'ev^{1*} and T. B. Karaulova^{1**}

¹ Vitebsk State University, Vitebsk, 210038 Belarus Received October 26, 2018; in final form, March 6, 2018; accepted April 4, 2018

Abstract—By a Fitting set of a group *G* one means a nonempty set of subgroups \mathscr{F} of a finite group *G* which is closed under taking normal subgroups, their products, and conjugations of subgroups. In the present paper, the existence and conjugacy of \mathscr{F} -injectors of a partially π -solvable group *G* is proved and the structure of \mathscr{F} -injectors is described for the case in which \mathscr{F} is a Hartley set of *G*.

DOI: 10.1134/S0001434619010231

Keywords: finite group, Fitting set, π -solvable group, injector.

1. INTRODUCTION

In this paper, we consider only finite groups. We use the notation of [1]–[3].

A fundamental result in the theory of classes of finite solvable groups is a generalization of the fundamental theorems of Sylow and Hall which was obtained by Gaschütz, Fischer, and Hartley in [4], where it was established that, for any Fitting class \mathfrak{F} , every solvable group *G* admits \mathfrak{F} -injectors, and any two of them are conjugate in *G*.

Let G be a group, and let \mathfrak{F} be a class of groups. If H is a subgroup of G and $H \in \mathfrak{F}$, then H is called an \mathfrak{F} -subgroup.

Recall that by a *Fitting class* one means a class \mathfrak{F} of groups which is closed under taking normal subgroups and products of normal \mathfrak{F} -subgroups. It follows from the definition that, for any nonempty Fitting class \mathfrak{F} , every group *G* has a unique maximal normal \mathfrak{F} -subgroup, which is called the \mathfrak{F} -radical of *G* and denoted by $G_{\mathfrak{F}}$.

If \mathfrak{F} is a nonempty class of groups, then a subgroup V of a group G is said to be

- (a) \mathfrak{F} -maximal if $V \in \mathfrak{F}$ and U=V provided that $V \leq U \leq G$ and $U \in \mathfrak{F}$;
- (b) an \mathfrak{F} -injector if $V \cap N$ is an \mathfrak{F} -maximal subgroup N for every subnormal subgroup N of G.

Localizing the notion of a Fitting class, Shemetkov [5] (and, in the solvable case, Anderson [6]) introduced the notion of a Fitting set of a group *G*. By a *Fitting set* of *G* one means a nonempty set of subgroups of *G* which is closed under taking normal subgroups, their products, and conjugations of subgroups. The definition of an \mathscr{F} -injector of a group *G* for its Fitting set is similar to the corresponding definition for a Fitting class.

Developing and generalizing the result of Fischer, Gaschütz, and Hartley [4], Shemetkov proved that if \mathscr{F} is a Fitting set of a group G, π is the set of all prime divisors of all \mathscr{F} -subgroups of G, and the group G is π -solvable, then G has a unique class of conjugate \mathscr{F} -injectors.

Note that to every nonempty Fitting class \mathfrak{F} there corresponds a Fitting set

$$\operatorname{Tr}_{\mathfrak{F}}(G) = \{ H \le G : H \in \mathfrak{F} \}$$

in the group G, the so-called *trace* of the Fitting class \mathfrak{F} in the group G, although the converse fails to hold in the general case (see [1, Example VIII.2.2(c)]).

^{*}E-mail: vorobyovnt@tut.by

^{**}E-mail: tatyana.vasilevich.1992@mail.ru

If $\mathscr{F} = \operatorname{Tr}_{\mathfrak{F}}(G)$, then the sets of \mathfrak{F} -injectors and \mathscr{F} -injectors of the group G coincide, and the Fischer–Gaschütz–Hartley theorem mentioned above is a consequence of Shemetkov's theorem [5].

Let \mathbb{P} be the set of all primes, and let $\pi \subseteq \mathbb{P}$. We denote the complement to π in the set \mathbb{P} by π' ; thus, $\pi' = \mathbb{P} \setminus \pi$. For the case in which $\pi = \{p\}$, we denote the set $\{p\}'$ by p'. If $\emptyset \neq \pi \subseteq \mathbb{P}$, then a Fitting set \mathscr{F} of a group G is said to be π -saturated if $\mathscr{F} = \{H \leq G : H/H_{\mathscr{F}} \in \mathfrak{E}_{\pi'}\}$.

Vorob'ev and Semenov [7] proved that, in every π -solvable group G, there are \mathscr{F} -injectors for any π -saturated Fitting set \mathscr{F} of G, and every two of these \mathscr{F} -injectors are conjugate in G.

The problem of describing the structure of injectors for local Fitting classes was first considered by Hartley [8] and D'Arcy [9]. In the present paper, we develop a local method for studying the Fitting sets \mathscr{F} of a group *G* (nonsolvable in the general case) and use this method to describe the structure of \mathscr{F} -injectors of *G*.

Recall that by the product of Fitting classes 3 and 5 one means the class of groups

$$\mathfrak{F} \diamond \mathfrak{H} = (G : G/G_{\mathfrak{F}} \in \mathfrak{H}).$$

As is well known, the product of any two Fitting classes is also a Fitting class, and the multiplication operation for Fitting classes is associative (see [1, Theorem IX.(1.12)(a),(c)]). Note that if \mathfrak{F} and \mathfrak{H} are Fitting classes, then $\mathfrak{F} \diamond \mathfrak{H} \subseteq \mathfrak{F}\mathfrak{H}$, where

$$\mathfrak{F}\mathfrak{H} = (G : \exists K \leq G, K \in \mathfrak{F} \text{ and } G/K \in \mathfrak{H}).$$

If \mathfrak{H} is a homomorph, i.e., if it is closed under homomorphic images, then $\mathfrak{F} \diamond \mathfrak{H} = \mathfrak{F}\mathfrak{H}$ (see [1, Remark II.1.11]). Therefore, we denote the product $\mathfrak{F} \diamond \mathfrak{H}$ of Fitting classes \mathfrak{F} and \mathfrak{H} by the symbol $\mathfrak{F}\mathfrak{H}$ for the case in which \mathfrak{H} is a homomorph.

We use the following customary notation for classes of groups:

- E is the class of all groups;
- \mathfrak{N} is the class of all nilpotent groups;
- \mathfrak{E}_{π} is the class of all π -groups;
- \mathfrak{S}_{π} is the class of all solvable π -groups;
- \mathfrak{N}_{π} is the class of all nilpotent π -groups;
- \mathfrak{S}^{π} is the class of all π -solvable groups;
- \mathfrak{N}^{π} is the class of all π -nilpotent groups.

Hartley [8] described the injectors for the local Fitting class \mathfrak{XN} in a solvable group G in terms of radicals, and, later, Guo and Vorob'ev [10] described the \mathfrak{H} -injectors G for every local Fitting class \mathfrak{H} of the form $\bigcap_{p \in \mathbb{P}} h(p) \mathfrak{E}_{p'} \mathfrak{N}_p$ (Hartley class), where h is a mapping $h \colon \mathbb{P} \to {Fitting classes}$.

Following [10], we refer to a mapping

 $h: \mathbb{P} \to \{ \text{Fitting sets of a group } G \}$

as a *Hartley function* (or, briefly, an *H*-function) of the group *G*. The product of a Fitting set \mathscr{F} of a group *G* and a Fitting class \mathfrak{X} (see [11, Definition 2.2]) is defined as the set $\{H \leq G : H/H_{\mathscr{F}} \in \mathfrak{X}\}$ of subgroups, which we denote by $\mathscr{F} \diamond \mathfrak{X}$, following [1, Definition IX.(1.10)].

Let \mathscr{H} be a nonempty set of subgroups of a group G. For \mathscr{H} and a nonempty class \mathfrak{F} of groups, we refer to the set $\{H \leq G : L \trianglelefteq H$, where $L \in \mathscr{H}, H/L \in \mathfrak{F}\}$ of subgroups of G as the *product of the set* \mathscr{H} *and the class* \mathfrak{F} *of groups* and denote this set by $\mathscr{H}\mathfrak{F}$, by analogy with the definition of the product of classes of groups (see [1, Definition II.(1.3)]).

Remark 1.1. If \mathscr{H} is a Fitting set of a group G and \mathfrak{F} is a Fitting class, then, clearly, $\mathscr{H} \diamond \mathfrak{F} \subseteq \mathscr{H}\mathfrak{F}$. Suppose that the Fitting class \mathfrak{F} is a homomorph. In this case, if $H \leq G$ and $H \in \mathscr{H}\mathfrak{F}$, then $H/L \in \mathfrak{F}$ for some normal \mathscr{H} -subgroup L of H. Since $L \leq H_{\mathscr{H}}$ and $H/L/H_{\mathscr{H}}/L \cong H/H_{\mathscr{H}}$, it follows that $H \in \mathscr{H} \diamond \mathfrak{F}$. Therefore, $\mathscr{H} \diamond \mathfrak{F} = \mathscr{H}\mathfrak{F}$ in this case, and we denote $\mathscr{H} \diamond \mathfrak{F}$ by $\mathscr{H}\mathfrak{F}$.

MATHEMATICAL NOTES Vol. 105 No. 2 2019

(ознакомительный фрагмент)

VOROB'EV, KARAULOVA

Let $\emptyset \neq \pi \subseteq \mathbb{P}$, and let *h* be a Hartley function of *G*. We set $HS(h) = \bigcap_{p \in \pi} h(p)(\mathfrak{E}_{p'}\mathfrak{N}_p)$. A Fitting set \mathscr{H} of *G* is called a *Hartley set of G* if $\mathscr{H} = HS(h)$ for some *H*-function *h*.

Let us classify the H-functions of a group G.

Let $\emptyset \neq \pi \subseteq \mathbb{P}$, and let *h* be an *H*-function of a Hartley set \mathscr{H} of the group *G*. Then *h* is said to be

(1) *integrated* if $h(p) \subseteq \mathscr{H}$ for all $p \in \pi$;

- (2) *stable* if $h(p) \subseteq h(q) \mathfrak{E}_{q'}$ for all distinct $p, q \in \pi$;
- (3) *stable integrated* if *h* is simultaneously stable and integrated;
- (4) *invariable* if h(p) = h(q) for all distinct $p, q \in \pi$.

By analogy with [10, Lemma 2.2], we shall show that every Hartley set of a group G is defined by a stable integrated H-function G.

Note that every Hartley set of a group *G* can be defined by using an integrated *H*-function (see Lemma 3.2 below). It can readily be noticed that an invariable *H*-function is stable integrated. Indeed, since h(p) = h(q) for all distinct $p, q \in \pi$, we have $h(p) \subseteq h(p)\mathfrak{E}_{q'} = h(q)\mathfrak{E}_{q'}$ and, therefore,

$$h(p) \subseteq \bigcap_{q \in \pi} h(q)(\mathfrak{E}_{q'}\mathfrak{N}_q) = \mathscr{H}.$$

Note that Theorem 7.1.3 in [3] implies the existence of Fitting sets of nonsolvable groups G that are not Hartley sets of G and contain no \mathscr{F} -injectors. For example, if $S = A_7$ is the symmetric group of degree 7, T = PSL(2, 11), the Fitting class is $\mathfrak{F} = D_0(S, T, 1)$, and the group G is defined as in [3, Theorem 7.1.3], then the group G has no \mathscr{F} -injectors in the Fitting set $\mathscr{F} = \operatorname{Tr}_{\mathfrak{F}}(G)$. Moreover, there are known examples of sets π of primes and non-Abelian groups G such that G has a Hall π -subgroup and the Hall π -subgroups are not conjugate (see [12, Theorem 1.1]). Recall that a group G is called an E_{π} -group if G has a Hall π -subgroup. As is known, the Hall π -subgroups of an E_{π} -group G are \mathfrak{E}_{π} -injectors of G (see [3, p. 328]). Thus, there are E_{π} -groups whose \mathfrak{E}_{π} -injectors are not conjugate.

In this connection, the following questions arise.

Question 1. For what (generally nonsolvable) groups *G* and Hartley sets \mathscr{H} of *G* does there exist a unique class of conjugate \mathscr{H} -injectors in *G*?

Question 2. What is the structure of \mathcal{H} -injectors for G, provided that they exist?

In the present paper, we give positive answers to the above questions for a partially π -solvable group *G* and a Hartley set defined by an invariable *H*-function.

The main result of the paper is the following theorem.

Theorem 1.2. Let \mathscr{X} be a nonempty Fitting set of a group G, let $\varnothing \neq \pi \subseteq \mathbb{P}$, and let $\mathscr{H} = HS(h)$ be a Hartley set of G defined by an H-function h such that $h(p) = \mathscr{X}$ for every $p \in \pi$. If $G \in \mathscr{X}\mathfrak{S}^{\pi}$, then the following assertions hold:

- 1) G has an \mathcal{H} -injector, and every two \mathcal{H} -injectors are conjugate;
- 2) every \mathscr{H} -injector V of G is a subgroup of the form $G_{\mathscr{X}\mathfrak{E}_{\pi'}}L$, where L is a subgroup of G such that $L/G_{\mathscr{X}}$ is an \mathfrak{N}_{π} -injector of some Hall π -subgroup $G/G_{\mathscr{X}}$.

206