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Abstract

The article studies the asymptotic properties of an adaptive model selection
procedure for estimation an unknown drift coe�cient in di�usion processes. It
is shown that the procedure is asymptotically e�cient, i.e. it is established
that the asymptotic quadratic risk of the procedure coincides with the Pinsker
constant, which provides an exact lower bound of the quadratic risk for all
possible estimates.
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Introduction

Consider the problem of asymptotically e�cient estimation of the unknown drift coef-
�cient in di�usion process, described by the following stochastic di�erential equation:

dyt = S(yt) dt+ dwt , 0 ≤ t ≤ T , (1)

where (wt)t≥0 is a scalar standard Wiener process, the initial value y0 is some given
constant, and S(·) is an unknown function. Note that such models are widely used
in �nancial markets, radio-physics, etc. [1]. The problem is to estimate the function
S(x), x ∈ [a, b], from the observations (yt)0≤t≤T . The main goal of this paper to
prove the asymptotic e�ciency property of the improved model selection procedure
proposed in [2] for estimating the function S in (1). The concept of asymptotic
e�ciency is associated with the optimal rate of convergence of the minimax risk, i.e.
An important issue in the optimality results is the study of the exact asymptotic
of the minimax risk. The problem of asymptotic non-parametric estimation in the
model of heteroscedastic regression was studied by Efroimovich [3] and Pinsker [4].
To prove the asymptotic e�ciency of the procedure, it is necessary to show that
its asymptotic quadratic risk coincides with the lower bound de�ned by the Pinsker
constant [5, 6]. In this paper, the problem is solved using an approach based on the
model selection methods and sharp oracle inequalities. Recall that the model selection
method appeared in the pioneering works of Akaike [7] and Mallows [8], in which
proposed to introduce a penalization term in the criteria of maximum likelihood.
Further, Barron, Birgé and Massart [9], Massart [10] and Kneip [11] developed this
method to obtain non-asymptotic oracle inequalities in non-parametric regression
models with Gaussian noise in discrete time. Unfortunately, this method cannot be
applied in our case to prove an asymptotic e�ciency property, since the coe�cient
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in main term of the resulting oracle inequalities is greater then one. For this reason,
in this paper we will use the method proposed in [12]. This paper deals with the
estimating the unknown function S(x), a ≤ x ≤ b, in the sense of the mean square
risk

R(ŜT , S) = ES‖ŜT − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx , (2)

where ŜT is some estimate of S by observations (yt)0≤t≤T , a < b are some real
numbers. Here ES is the expectation with respect to the distribution PS of the
random process (yt)0≤t≤T given the drift function S. To obtain a reliable estimator
of function S, it is necessary that the process (1) has the ergodicity property. For
this we suppose that unknown function S belongs to the following functional class:

ΣL,N = {S ∈ LipL(R) : |S(N)| ≤ L ; ∀|x| ≥ N, ∃ Ṡ(x) ∈ C(R)

such that− L ≤ inf
|x|≥N

Ṡ(x) ≤ sup
|x|≥N

Ṡ(x) ≤ −1/L} , (3)

where L > 1, N > |a| + |b|, Ṡ(x)− derivative S(x). For estimating the drift S
in (1) Galtchouk and Pergamenshchikov [13] have proposed to apply the sequential
approach. First step is a passage to a discrete time regression model by making use
of the truncated sequential procedure introduced in [5]. To this end, at any point
xk of an equidistant partition of the interval [a, b], we de�ne a sequential procedure
(τk, S

∗
k
) with a stopping rule τk and an estimators S∗

k
. For Yk = S∗

k
with 1 ≤ k ≤ n,

we come to the regression equation on some set Γ ⊆ Ω (sup
S∈ΣL,N

PS(Γc) ≤ ΠT ,

where limT→∞ Tm ΠT = 0 for any m > 0):

Yk = S(xk) + ζk . (4)

Here, in contrast with the classical regression model, the noise sequence (ζk)1≤k≤n
has a complicated structure, namely,

ζk = σk ξk + δk , (5)

where (σk)1≤k≤n is a sequence of some observed random variables, (δk)1≤k≤n is a
sequence of bounded random variables and (ξk)1≤k≤n is a sequence of i.i.d. random
variables N (0, 1) which are independent of (σk)1≤k≤n.

In order to estimate the function S in model (4) we make use of the model selection
method based on improved weighted least squares estimates proposed [18]. Improved
estimation method in nonparametric regression models has been developed in [15, 16,
17].

1 Oracle inequalities

To estimate the unknown function in model (4), we use improved weighted least
squares estimates, de�ned in [2],

S∗
λ
(xl) =

n∑
j=1

λ(j) θ∗
j,n
φj(xl) 1Γ , 1 ≤ l ≤ n , (6)
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where (φj)j≤1 is an orthonormal functions system, the vector of weight coe�cients
λ = (λ1, ..., λn) belongs some �nite set Λ from [0, 1]n,

θ∗
j,n

=

(
1− c(d)

‖θ̃n‖
1{1≤j≤d}

)
θ̂j,n, ‖θ̃n‖2 =

d∑
j=1

θ̂2
j,n
, θ̂j,n =

b− a
n

n∑
l=1

Ylφj(xl) .

Here the coe�cient d ≈ nε/ lnn, 0 < ε < 1, c(d) ≈ d/n. Now we de�ne the estimate
for S in (1). We set for any a ≤ x ≤ b

S∗
λ
(x) = S∗

λ
(x1)1{a≤x≤x1} +

n∑
l=2

S∗
λ
(xl)1{xl−1<x≤xl} . (7)

In order to obtain a good estimator, we have to write a rule to choose a weight vector
λ ∈ Λ in (7). It is obvious, that the best way is to minimize the empirical squared
error with respect to λ:

Errn(λ) = ‖S∗
λ
− S‖2

n
→ min .

Making use of (7) and the Fourier transformation of S imply

Errn(λ) =
n∑
j=1

λ2(j)θ∗2
j,n
− 2

n∑
j=1

λ(j)θ∗
j,n
θj,n +

n∑
j=1

θ2
j,n
.

Since the coe�cient θj,n is unknown, we need to replace the term θ∗
j,n
θj,n by some its

estimator which we choose as

ϑ̃j,n = θ̂j,nθ
∗
j,n
− b− a

n
sj,n with sj,n =

b− a
n

n∑
l=1

σ2
l
φ2
j
(xl) .

One has to pay a penalty for this substitution in the empirical squared error. Finally,
we de�ne the cost function of the form

Jn(λ) =
n∑
j=1

λ2(j)θ∗2
j,n
− 2

n∑
j=1

λ(j) ϑ̃j,n + ρPn(λ) ,

where the penalty term is de�ned as

Pn(λ) =
b− a
n

n∑
j=1

λ2(j)sj,n

and 0 < ρ < 1 is some positive constant which will be chosen later. We set

λ̂ = argmin
λ∈Λ

Jn(λ)

and de�ne an estimator of S of the form (7):

S∗(x) = S∗
λ̂
(x) for a ≤ x ≤ b . (8)

Now we obtain the non asymptotic upper bound for the quadratical risk of the esti-
mator (8).
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Theorem 1. Let Λ ⊂ [0, 1]n be any �nite set such that the �rst d ≤ n components
of the weight vector λ are equal to 1. Then, for any n ≥ 3 and 0 < ρ < 1/6, the
estimator (8) satis�es the following oracle inequality

ES‖S∗ − S‖2
n
≤ 1 + 6ρ

1− 6ρ
min
λ∈Λ

ES‖Ŝλ − S‖2
n

+
Ψn(ρ)

n
,

where limn→∞Ψn(ρ)/n = 0.

Now we consider the estimation problem (1) via model (4). We apply the estimat-
ing procedure (8) with special weight set introduced in [5] to the regression scheme
(4). Denoting S∗

α
= S∗

λα
we set

S∗ = S∗
α̂

with α̂ = argmin
α∈Aε

Jn(λα) .

Theorem 2. Assume that S ∈ ΣL,N and the number of the points n = n(T ) in the
model (4) . Then the procedure S∗ satis�es, for any T ≥ 32, the following inequality

R(S∗, S) ≤ (1 + ρ)2(1 + 6ρ)

1− 6ρ
min
α∈Aε

R(S∗
α
, S) +

BT (ρ)

n
,

where limT→∞ BT (ρ)/n(T ) = 0.

2 Asymptotic e�ciency

In order to study the asymptotic e�ciency we de�ne the following functional Sobolev
ball

W 0
k,r

= {f ∈ Ck
0
([a, b]) :

k∑
j=0

‖f (j)‖2 ≤ r} , (9)

where r > 0 and k ≥ 1 are some unknown parameters, Ck
0
([a, b]) is the space of k

times di�erentiable functions f : R→ R such that

f (i)(x) = 0 , for 0 ≤ i ≤ k − 1 and x /∈ [a, b] .

We will call such functions periodic on the interval [a, b]. Let S0 be a �xed k+1 times
continuously di�erentiable function from ΣL,N . We set

Θk,r = {S = S0 + f , f ∈ W 0
k,r
} . (10)

In order to formulate our asymptotic results we de�ne the following normalizing
coe�cient

γ(S) = ((1 + 2k)r)1/(2k+1)

(
J(S)k

π(k + 1)

)2k/(2k+1)

(11)

with

J(S) =

∫ b

a

1

qS(x)
dx , qS(x) =

exp{2
∫ x

0
S(z)dz}∫ +∞

−∞ exp{2
∫ y

0
S(z)dz}dy

.
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It is well known that for any S ∈ Θk,r the optimal rate of convergence is T
−2k/(2k+1)

(see, for example, [18]). On the basis of the model selection procedure (8) in the next
section we construct the adaptive procedure S∗ for which we obtain the following
asymptotic upper bound for the quadratic risk.

Theorem 3. The quadratic risk (2) for the estimating procedure S∗ has the following
asymptotic upper bound

lim sup
T→∞

T 2k/(2k+1) sup
S∈Θk,r

R(S∗, S)

γ(S)
≤ 1 . (12)

Moreover, we show that this upper bound is sharp in the following sense.

Theorem 4. For any estimator Ŝ of S measurable with respect to FyT ,

lim inf
T→∞

inf
Ŝ
T 2k/(2k+1) sup

S∈Θk,r

R(Ŝ, S)

γ(S)
≥ 1 , (13)

where FyT is a σ−�eld generated by observations (yt)0≤t≤T .

Remark 1. It should be noted that the choice of the functional class Θk,r in the form
of (10) is related to the ergodicity of the process (1). This property is provided when
the drift derivative is negative on the outside of a �nite interval. The last excludes
the choice of periodic functions as a class of admissible drifts. For this reason, we
use the Sobolev ball of periodic functions with a non periodic center S0 as a class of
admissible drift functions.

Remark 2. Note that the inequalities (14) and (13) imply that the function (11) is
the Pinsker constant in this case (cf. [4]).

Corollary 1. From Theorems 2 and 3 it follows that the procedure for choosing a
model S∗, de�ned in (8), is asymptotically e�cient, i.e.

lim
T→∞

T 2k/(2k+1) sup
S∈Θk,r

R(S∗, S)

γ(S)
= 1 . (14)

3 Numerical simulations

We suppose that in the model (1)

S(x) = x2 sin(2πx) + x2(1− x) cos(4πx).

For weight coe�cients we choose n = T ,

k∗ = 100 +
√

lnn, ε =
1

lnn
, m = ln2 n, ωα = 100 + (Aβtn)

1
2β+1 .

The empirical risk:

R(S∗, S) =
1

1000

1000∑
m=1

‖S∗m − S‖2
n.

Table 1 shows the results of the behavior of empirical mean-square risks for the
proposed estimation procedure (8).
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Table 1: Empirical quadratic asymptotic risks

n 501 1001 2001 10001
T 2k/(2k+1)R(S∗,S)

γ(S)
) 4.7257 2.0856 1.0072 0.9012

From Table 1 it is clear that with an increase in the number of observations n,
the normalized empirical mean-square risks tend to unity, which con�rm numerically
the Corollary 1.

The �gures show the behavior of observation processes (yt)0≤t≤1, function S (red
line), and improved estimate S∗ (green line):

Figure 1: n=501

Figure 2: n=1001
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Figure 3: n=10001
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