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Abstract

This paper presents a truncated estimator of the dynamic parameter of a
stable AR(1) process by observations with additive noise. The estimator is
constructed by a sample of a �xed size and it has a known upper bound of the
mean square deviation. Cases of known and unknown variance of observation
noise are considered.
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1 Introduction and problem statement

Development of parameter estimation methods of dynamic systems by samples of
�nite or �xed size is very important in statistical problems such that model construc-
tion and various adaptive problems (prediction, control, �ltration etc.).

One of the possibilities for �nding estimators with the guaranteed quality of infer-
ence using a sample of �xed size is provided by the approach of truncated estimation.
Truncated estimators were constructed in [9] for ratio type multivariate functionals
by a �xed-size sample. They have guaranteed accuracy in the sense of the L2m-norm,
m ≥ 1. This fact allows one to obtain desired non-asymptotic and asymptotic prop-
erties of the estimators. The truncated estimation method was developed in [1] and
others for parameter estimation problems in discrete-time dynamic models. Solutions
of some non-asymptotic parametric and non-parametric problems can be found also
in [4], [8], [5], [6], among others. In particular, [8] established the minimax optimality
of the least-squares estimator of the dynamic parameter in AR(1) model.

In this paper, the truncated estimation method introduced in [9] is applied for
the parameter estimation of AR(1) by additively-noised observations with unknown
noise variance (another applications of this method can be found, e.g., in [2], [3]).

Consider the estimation problem of the parameter λ of the scalar �rst-order au-
toregressive process (xn)n≥0 satisfying the equation

xn = λxn−1 + ξn, n ≥ 1 (1)

by observations

yn = xn + ηn, n ≥ 0. (2)

Process (1) is supposed to be stable, i.e. |λ| < 1. Introduce the notation ζ =
(x0, ξ1, η0.) The processes (ξn), (ηn) and x0 are supposed to be mutually independent;
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noises ξn and ηn form sequences of i.i.d. random variables such that Eζ = 0, E||ζ||4 <
∞. Denote σ2 = Eη2

0. We assume that the variance of ξ1 is known. Then without
loss of generality we put Eξ2

1 = 1.
The main aim of the paper is to construct truncated estimators of λ ∈ (−1, 1)

with guaranteed accuracy in the mean square sense by sample of �xed size. Cases of
both known and unknown values of σ2 will be considered.

A similar problem has been solved in, e.g., [10] on the basis of the sequential
approach (when the sample size is a random value determined by a special stopping
rule) for λ ∈ (−1, 0) ∩ (0, 1)

2 Parameter estimation of AR(1) with known noise

variance

To estimate the parameter λ, we use the correlation method. To this end, we obtain
from the system (1), (2) the recurrent equation for the observed process y = (yn)n≥0 :

yn = λyn−1 + δn, n ≥ 1,
δn = ξn + ηn − ληn−1.

(3)

Due to the dependence of noises δn, the least squares estimator (LSE) of λ obtained
from equation (3) is asymptotically biased, see, e.g., [7], [10]. Equation (3) implies
the following formula for correlations of the process (yn):

Eλynyn−1 = λEλ(y
2
n−1 − σ2), n ≥ 1.

Hence, the consistent correlation estimator λ̂n of λ has the following form (see [7])

λ̂n,σ =

n∑
k=1

ykyk−1

n∑
k=1

(y2
k−1 − σ2)

, n ≥ 1. (4)

It is easy to verify that

lim
n→∞

1

n

n∑
k=1

(y2
k−1 − σ2) =

1

1− λ2
> 1 Pλ − a.s. (5)

Thus, according to the general procedure described in [9], it is reasonable to
construct the truncated estimator λ̃n of λ as follows:

λ̃n = λ̂n · χ(
n∑
k=1

(y2
k−1 − σ2) ≥ hn), n ≥ 1, (6)

where h ∈ (0, 1) and χ(A) is the indicator of the set A.
The following theorem gives the �rst main result of this paper.
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Theorem 1. Assume model (1), (2). Then for every |λ| < 1 and n ≥ 1, estimator
(7) has the property

Eλ(λ̃n − λ)2 ≤ C

n
. (7)

The proofs of theorems and lemmas are given in Section 5.

3 Parameter estimation of AR(1) with unknown noise

variance

To estimate λ ∈ (−1, 1), we use an adaptive modi�cation of estimator (5):

λ∗n =

1
n

n∑
k=1

ykyk−1

1
n

n∑
k=1

y2
k−1 − σ2

n

, n > 1. (8)

Taking into account (6), we construct the estimator σ2
n of σ

2 as follows

σ2
n =

1

n

n∑
k=1

y2
k−1 −

1

1− λ2
n

, n > 1 (9)

where λn is the pilot estimator of λ

λn = proj[−1,1]λ̆n, n > 1, (10)

λ̆n =

n∑
k=2

ykyk−2

n∑
k=2

yk−1yk−2

· χ(|
n∑
k=2

yk−1yk−2| ≥ Hn), n > 1. (11)

Here we put Hn = n(log n)−1. According to the general truncated estimation method
[9], the multiplier (log n)−1 in the de�nition of Hn can be any other slowly-decreasing
function.

It should be noted that the estimator (10) is constructed on the bases of the
correlation (Yule-Walker type) estimator which can not be used if λ = 0 (see Lemma
1 below). Our main aim is to construct an estimator of λ without this restriction.

Taking into account (10), estimator (9) can be written in the form

λ∗n = (1− λ2
n)

1

n

n∑
k=1

ykyk−1, n > 1. (12)
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Lemma 1. Assume that in model (1), (2), E||ζ||8 < ∞. Then estimator (10) for
every λ ∈ (−1, 0) ∪ (0, 1) and n > 1 has the following property

Eλ(λn − λ)2 ≤ C1

n
+ C2

log4 n

n2
.

This lemma makes possible to obtain the main result of the section.

Theorem 2. Assume that in model (1), (2), E||ζ||8 < ∞. Then for every |λ| < 1
and n > 1, estimator (12) satis�es the following condition

Eλ(λ
∗
n − λ)2 ≤ C

n
+ C

log4 n

n2
.

4 Simulation Results and Discussion

We conducted numerical simulation of the proposed estimation algorithm. For every
set of the parameters, the experiment was performed 100 times, the number of ob-
servations is equal to 100, the parameter of the procedure h = 0, 5. Table 1 presents
the results of simulation. Here λ and σ are the parameters of model (1), λ̃n and λ∗n
are the mean estimators of the parameter λ when the noise variance σ2 is supposed
to be known and unknown, correspondingly; d̃n and d∗n are sample standard errors of
the corresponding estimators.

One can see that d̃n < d∗n in all experiments; thus, if the noise variance is unknown
then the standard error increases at least twice (if λ = 0, 5); but d∗n can be fully ten
times larger than d̃n, if λ = 0, 9. Both deviations increase with the grow of σ2, as one
should expect; besides, d̃n decreases and d∗n increases with the increase of λ.

5 Proofs

5.1 Proof of Theorem 1

To investigate the non-asymptotic properties of λ̃n we use the following representation
of the deviation

λ̃n − λ =
fn
gn
· χ(|gn| ≥ h)− λχ(|gn| < h), (13)

where

fn =
1

n

n∑
k=1

[yk−1(ξk + ηk)− λ(yk−1ηk−1 − σ2)],

gn =
1

n

n∑
k=1

(y2
k−1 − σ2).

It can be directly veri�ed that for |λ| < 1

Eλf
2
n ≤

I−1(λ, σ)

n
. (14)
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Table 1: Simulation results

λ σ2 λ̃n d̃n λ∗n d∗n
0,5 0,09 0,477 0,0092 0,452 0,0294
0,5 0,25 0,492 0,0111 0,490 0,0314
0,5 0,49 0,487 0,0150 0,470 0,0488
0,5 0,81 0,475 0,0229 0,418 0,0795
0,5 1 0,473 0,0419 0,424 0,0953
0,8 0,09 0,786 0,0046 0,796 0,0465
0,8 0,25 0,794 0,0054 0,854 0,0793
0,8 0,49 0,786 0,0054 0,789 0,0737
0,8 0,81 0,772 0,0120 0,765 0,1435
0,8 1 0,788 0,0122 0,797 0,1590
0,9 0,09 0,876 0,0038 0,865 0,0772
0,9 0,25 0,889 0,0018 0,913 0,0596
0,9 0,49 0,888 0,0030 0,910 0,1044
0,9 0,81 0,874 0,0044 0,886 0,1822
0,9 1 0,891 0,0028 0,891 0,1780

Introduce the notation g = 1/(1− λ2). Then, using a representation

gn − g =
1

n

n∑
k=1

(x2
k−1 − σ2) +

2

n

n∑
k=1

xk−1ηk−1 +
1

n

n∑
k=1

(η2
k−1 − σ2)

and the following formula (see, e.g., the proof of Theorem 2 in [9])

1

n

n∑
k=1

(x2
k−1 − g) =

g

n
· [x2

0 − x2
n + 2λ

n∑
k=1

xk−1ξk +
n∑
k=1

(ξ2
k − 1)],

it is easy to prove that

Eλ(gn − g)2 ≤ C0

n
, n ≥ 1. (15)

Further, similar to [9] using the Chebyshev inequality we estimate

Pλ(|gn| < h) ≤ Pλ(|gn − g| > g − h) ≤ Eλ(gn − g)2

(g − h)2
≤ C0

(1− h)2n
, n ≥ 1. (16)

Using (13�16), we estimate

Eλ(λ̃− λ)2 ≤ 1

h2
Eλf

2
n + Pλ(|gn| < h) ≤ I−1(λ, σ)

h2n
+
Eλ(gn − g)2

(g − h)2
≤ C

n

and obtain assertion (7).
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5.2 Proof of Lemma 1

The proof of Lemma 1 is similar to the proof of the second assertion of Theorem 1
in [9].

De�nition (10) of λn implies

Eλ(λn − λ)2 ≤ Eλ(λ̆n − λ)2.

Introduce the following notations

fn =
1

n

n∑
k=2

yk−2δk, gn =
1

n

n∑
k=1

yk−1yk−2, g =
λ

1− λ2
, hn = (log n)−1.

By the de�nition of λ̆ in (11), its deviation has the form

λ̆n − λ =
fn
gn
· χ(|gn| ≥ hn)− λ · χ(|gn| < hn) =

fn
g
· χ(|gn| ≥ hn)

+
fn(g − gn)

ggn
· χ(|gn| ≥ hn)− λ · χ(|gn| < hn) = J1 + J2 + J3.

Using the Cauchy-Schwarz-Bunyakovsky and Chebyshev's inequalities, estimate
the second moments of these summands:

EλJ
2
1 ≤ CEλf

2
n, EλJ

2
2 ≤

1

g2h2
n

√
Eλf 4

nEλ(gn − g)4, EλJ
2
3 ≤ h−4

n Eλ(gn − g)4.

In view of the structure of the function fn it is easy to verify that Eλf 4
n ≤ C/n2.

By the de�nition of gn we have

gn − g =
1

n

n∑
k=1

yk−1yk−2 −
λ

1− λ2
=

1

n

n∑
k=1

xk−1xk−2 −
λ

1− λ2

+
1

n

n∑
k=1

xk−1ηk−2 +
1

n

n∑
k=1

ηk−1xk−2 +
1

n

n∑
k=1

ηk−1ηk−2 = λ

(
1

n

n∑
k=1

x2
k−2 −

1

1− λ2

)
+

1

n

n∑
k=1

xk−1ηk−2 +
1

n

n∑
k=1

(ηk−1 + ξk−1)xk−2 +
1

n

n∑
k=1

ηk−1ηk−2.

Using this representation, it is easy to verify similarly the proof of Theorem 1
that

Eλ(gn − g)4 ≤ C

n2
.

Thus we have

EλJ
2
1 ≤ C

1

n
, EλJ

2
2 ≤ C

log2 n

n2
, EλJ

2
3 ≤ C

log4 n

n2
.
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5.3 Proof of Theorem 2

Introduce the following notations

∆n = (λ2 − λ2
n)

λ

1− λ2
+ (1− λ2

n)λ
1

1− λ2

{
1

n
(x2

0 − λ2x2
k−1) +

2λ

n

n∑
k=2

xk−2ξk−1

+
1

n

n∑
k=2

(ξ2
k−1 − 1)− 1

n

}
+ (1− λ2

n)
1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)].

De�nition (12) of the estimator λ∗n and equation (3) imply

λ∗n = (1− λ2
n)

1

n

n∑
k=1

[λy2
k−1 + yk−1(ξk + ηk)− λyk−1ηk−1]

= (1− λ2
n)

{
λ

1

n

n∑
k=1

x2
k−1 +

1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)]

}

= (1− λ2
n)

λ

1− λ2
+ (1− λ2

n)λ

[
1

n

n∑
k=1

x2
k−1 −

1

1− λ2

]
+(1− λ2

n)
1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)] = λ+ (λ2 − λ2
n)

λ

1− λ2

+(1− λ2
n)λ

1

1− λ2

{
1

n
(x2

0 − λ2x2
k−1) +

2λ

n

n∑
k=2

xk−2ξk−1 +
1

n

n∑
k=2

(ξ2
k−1 − 1)− 1

n

}
+(1− λ2

n)
1

n

n∑
k=1

[λxk−1ηk−1 + yk−1(ξk + ηk)] = λ+ ∆n.

Thus the mean square deviation of the estimator λ∗n has the following form

Eλ(λ
∗
n − λ)2 = Eλ∆

2
n · χ(λ = 0) + Eλ∆

2
n · χ(λ 6= 0) =: I1 + I2,

where

I1 = Eλ((1− λ2
n)

1

n

n∑
k=1

[yk−1(ξk + ηk)])
2 · χ(λ = 0)

= Eλ((1− λ2
n)

1

n

n∑
k=1

(ξk−1 + ηk−1)(ξk + ηk))
2 · χ(λ = 0),

I2 = Eλ∆
2
n · χ(λ 6= 0).

From assumptions of Theorem 2 it follows I1 ≤ C/n. In view of Lemma 1 and the
property |λn + λ| ≤ 2, we have

I2 ≤ Eλ

(
2|λn − λ|

1− λ2
χ(λ 6= 0) +

1

1− λ2

{
1

n
(x2

0 + x2
k−1) +

2

n

∣∣∣∣∣
n∑
k=2

xk−2ξk−1

∣∣∣∣∣
+

1

n

∣∣∣∣∣
n∑
k=2

(ξ2
k−1 − 1)

∣∣∣∣∣+
1

n

}
+

1

n

∣∣∣∣∣
n∑
k=1

xk−1ηk−1

∣∣∣∣∣+
1

n

∣∣∣∣∣
n∑
k=1

yk−1(ξk + ηk)

∣∣∣∣∣
)2

≤ CEλ(λn − λ)2χ(λ 6= 0) +
C

n
+
C

n2
≤ C

n
+ C

log4 n

n2
.
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