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Abstract

This paper considers the Ornstein-Uhlenbeck process by observations with
additive noise that also satis�es Ornstein-Uhlenbeck equation. The truncated
parameter estimation problem of non-observable process with guaranteed accu-
racy is solved. On the basis of these estimators adaptive predictors of observable
process are constructed. Asymptotic property of predictors is established. The
presented algorithm works for predictors of any depth.
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Intrduction

One of the important problems of modern applied mathematics is the construction of
mathematical models and development of the identi�cation and prediction algorithms
with guaranteed accuracy for discrete and continuous time stochastic dynamic sys-
tems. Such systems are widely used for the description of databases, for information
processing, as well as for mathematical model construction of random processes in
economics, �nancial mathematics, physics, sociology, biology, medicine etc.

The most frequently used for these purposes continuous-time models are the
di�usion-type models and the Ito processes. The structure of the abovementioned
models implies essential dependence of observations which corresponds to demands
for real stochastic processes.

According to Ljung's concept the prediction is a crucial part in constructing com-
plete probabilistic models of dynamical systems (see [1, 2]). A model is considered
to be useful if it allows to make predictions of high statistical quality.

Models of dynamical systems often have unknown parameters, which requires es-
timation in order to build adaptive predictors. The quality of adaptive prediction
explicitly depends on the chosen estimators of model parameters. Possible estima-
tion methods include the classic stochastic approximation, maximum likelihood, least
squares and sequential estimation methods among others. The �rst three methods
provide estimators with given statistical properties under asymptotic assumptions,
when the duration of observations tends to in�nity (see, e.g., [3, 4]).

The sequential estimation method makes it possible to obtain estimators with
guaranteed accuracy by samples of �nite but random and unbounded size (see, e.g.,
[4]�[11] among others).

Both approaches do not guarantee prescribed estimation accuracy when using
samples of non-random �nite size and lead up to complicated analytical problems in
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adaptive procedures.
However, the more recent truncated sequential estimation method yields estima-

tors with prescribed accuracy by samples of random but bounded size, see [7], [8]
among others.

Then the truncated estimation method was introduced in [12]. Truncated esti-
mators were constructed for ratio type multivariate functionals by samples of �xed
size and have guaranteed accuracy in the sense of the L2m-norm, m ≥ 1 (see also
[11]). The truncated estimation method is simpler in implementation then the trun-
cated sequential estimation one. At the same time, both methods are very e�ective
in problems of parameter estimation of dynamical systems.

The main aim of the paper is the construction and investigation of adaptive pre-
dictors' properties of observable process wich is a sum of two unobservable Ornstein-
Uhlenbeck processes. The presented algorithm based on the usage of truncated
estimators and works for making predictions of any depth. Similar problems for
continuous-time systems were solved in, e.g., [13, 14]. Properties of adaptive optimal
control of continuous-time processes constructed on the basis of sequential parame-
ters were considered in [15]. Adaptive optimal predictors for discre-time multivariate
system were constructed in [16].

1 Problem statement. Guaranteed parameter

estimation of Ornstein-Uhlenbeck process

Consider the estimation problem of the parameter a of the �rst order stable autore-
gressive process

dxt = axtdt+ dwt, t ≥ 0 (1)

with the initial value x0 by oservation of the process yt with the known parameter λ
of the noise θ

yt = xt + θt, θt = λθtdt+ dvt, (2)

where wt and vt are independent standard Wiener processes,θ0 - initional value for θ,
a < 0, λ < 0, λ2 6= a2.

Let's substitute an unobservable process xt in di�erential equation (1) by the
di�erence yt − θt and get the eqation

dyt = aytdt+ dwt + dθt − aθtdt. (3)

Since the parameter λ is known, we have a possibility to exclude the dependent
noise θt from the equation (3). To this end we integrate it from 0 to t and multiply
the result by dt

ytdt = y0dt+ a

∫ t

0

ysdsdt+ wtdt+ dθtdt− a
∫ t

0

θsdsdt.

Multiply the obtained equation by λ and subtract it from the equation (3)

dyt − λytdt = −λy0dt+ a

[
yt − λ

∫ t

0

ysds

]
dt+ dwt + λdθtdt
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−λwtdt− a
[
θt − λ

∫ t

0

θsds

]
dt.

De�ne zt = yt − λ
∫ t

0
ysds and then dzt = dyt − λytdt. From the equation dθt −

λθtdt = dvt it follows, that θt − λ
∫ t

0
θsds = θ0 + vt. Last equation can be written in

a form
dzt = aztdt+ d(wt + vt)− (λwt + avt)dt− (λy0 + aθ0)dt.

Let us de�ne the di�erence operator δhzt = zt − zt−h with a step h, h > 0 and
apply it to the previous equation

dδhzt = aδhztdt+ d(δhwt + δhvt)− (λδhwt + aδhvt)dt. (4)

Note that δhzt is an observable process as well. In view of the fact that δhzt and model
noises are correlated, we construct the correlation (or Yule-Walker) type estimator
with the shift h

âT =

∫ T
2h
δhzt−hdδhzt∫ T

2h
δhzt−hδhztdt

. (5)

We rewrite the deviation of estimator (5), having replaced dδhzt by the right hand
side of (4)

âT − a =
1∫ T

2h
δhzt−hδhztdt

[ ∫ T

2h

δhzt−hd(δhwt + δhvt)

−
∫ T

2h

δhzt−h(λδhwt + aδhvt)dt
]
.

Analogously to [17, 18],

1

T

[∫ T

2h

δhzt−hd(δhwt + δhvt)−
∫ T

2h

δhzt−h(λδhwt + aδhvt)dt

]
→ 0 a.s.

Taking into account the independence δhzt−h from δhwt and δhvt,

E

[∫ T

2h

δhzt−hd(δhwt + δhvt)−
∫ T

2h

δhzt−h(λδhwt + aδhvt)dt

]2

≤ C · E
∫ T

2h

(δhzt−h)
2dt ≤ C (6)

and there exists the limit

σ2
h = lim

T→∞

1

T

∫ T

2h

δhzt−hδhztdt a.s.,

where σ2
h =

(
1− λ2

a2

)
eah−1

2a
6= 0.

It is easy to verify that
lim
n→∞

âT = a a.s.
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and for every T > 0 the following inequality holds

E

[
1

T

∫ T

2h

δhzt−hδhztdt− σ2

]4

≤ C

T 2
. (7)

The truncated estimator ãT of the parameter a can be de�ned similar to [12] for
some T0 > 0 as

ãT =

∫ T
2h
δhzt−hdδhzt∫ T

2h
δhzt−hδhztdt

· χ
(∣∣∣∣∫ T

2h

δhzt−hδhztdt|
∣∣∣∣ ≥ T · log−1 T

)
. (8)

Using (13), (7) and similar to the scheme of the proof for truncated estimators in
[12], we get

E(ãT − a)2 ≤ C

T
, T ≥ T0. (9)

By the condition a < −r, r > 0 the estimator σ2
h has the form

σ2
h =

(
1− λ2

a2

)
eah − 1

2a
,

where a = proj(−∞,−r]ãs and satisfy the condition

E(σ2
h − σ2)2 ≤ C

T
, T ≥ T0.

Without a priory information about a, the truncated estimation method can be
applied for estimation σ2

h .

2 Adaptive prediction

Consider the model (1), (2). The purpose is to construct an adaptive predictor for yt
by observations yt−u = (ys)0≤s≤t−u. Here u > 0 - is a �xed time delay.

Using the solution of the equation (1), we get

xt = µxt−u + ξt,t−u, t ≥ u, (10)

where ξt,t−u =
t∫

t−u
ea(t−s)dws, µ = eau.

De�ne
µs = eâsu, s ≥ 0. (11)

Here
âs = proj(−∞,0]ãs,

âs is a projection of the truncated estimator ãs of the parameter a, de�ned in (7).
It can be shown that

E(µt − µ)2p ≤ C

tp
, p ≥ 1. (12)
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Replacing xt in the formula (9) using (2) we get

yt = µyt−u + ξt−u,t + θt − µθt−u,

Introduce the notation

ηt−u,t =

∫ t

t−u
eλ(t−s)dws, ξt−u,t − eλuξt−2u,t−u, ηt−u,t − eλuξt−2u,t−u.

and
zt = yt − eλuyt−u.

The function zt satis�es the equation

zt = µzt−u + ξt−u,t + ηt−u,t − µηt−2u,t−u. (13)

Applying operator of conditional mathematical expectation E(·|yt−3u) to the last
equation we get

E(zt|yt−3u) = µE(zt−u|yt−3u).

By the de�nition of zt we have

E(zt|yt−3u) = E(yt|yt−3u)− eλuE(yt−u|yt−3u).

Let us de�ne si(t) = E(yt|yt−iu), i = 1, 3.
The equation for optimal predictions si(t), i = 1, 3, has the form

s3(t) = (eau + eλu)s2(t) + e(a+λ)us1(t).

De�ne adaptive predictors ŝi(t), i = 1, 3. The equation for ŝi(t), is constructed
with truncated estimators instead of unknown parameters

ŝ3(t) = (eât−3uu + eλu)ŝ2(t) + e(ât−3u+λ)uŝ1(t).

Prediction errors can be written as

ei(t) = si(t)− ŝi(t), i = 1, 3.

It can be shown that

limt→∞ Ee2
i (t) <∞, i = 1, 3.

In the conclusion we note that obtained property for this model probably can not
be improved in view of complicated structure of noise dependence. At the same time
this property re�ects proximity of adaptive and optimal predictors in L2 - metric,
which is important in analytical investigations and practical applications.
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