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The computation of the order of Frobenius action on the ^-torsion is a part of Schoof — 
Elkies — Atkin algorithm for point counting on an elliptic curve E over a finite field Fq. 
The idea of Schoof's algorithm is to compute the trace of Frobenius t modulo primes I 
and restore it by the Chinese remainder theorem. Atkin's improvement consists of 
computing the order r of the Frobenius action on E[£] and of restricting the number 
t (mod F) to enumerate by using the formula t2 = q(Z + Z-1)2 (mod £). Here Z is 
a primitive r-th root of unity. In this paper, we generalize Atkin's formula to the 
general case of abelian variety of dimension g. Classically, finding of the order r 
involves expensive computation of modular polynomials. We study the distribution of 
the Frobenius orders in case of abelian surfaces and q = 1 (mod F) in order to replace 
these expensive computations by probabilistic algorithms.
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1. Introduction
The computation of the Frobenius order and its usage for counting points on elliptic 

curves is a part of Atkin's contribution to Schoof — Elkies — Atkin (SEA) algorithm [1; 
2, §17.2.2].

An elliptic curve E over a finite field Fq of characteristic p = 2, 3 is a non-singular curve 
defined by equation

y 2 = x3 + ax + b

where a, b Е Fq. For background on arithmetic of elliptic curves, we refer the reader 
to [2, §13; 3]. Here, we briefly summarize the most important facts and notations. We denote 
by E(K) = {(x,y) G K x K : y2 = x3 + ax + b} U {O} a set of points on the curve E 
having coordinates in an extension K of Fq together with a point at infinity O. It is a 
well-known fact that the set of all points on the elliptic curve has a group structure. 
Let £ = p be a prime number. A point P on the curve E is called an £-torsion point if 
the order of P divides £. The set of £-torsion points on the curve E with coordinates in 
algebraic closure of the field Fq forms a group denoted by E[£] = {P G E(Fq) : £P = O}. 
The Frobenius endomorphism is an endomorphism of E given by (x,y) (xq,yq). Since 
it is known [3, p. 86] that E[£] ~ F/ x F^, the endomorphism acts on E[£] as a linear 
operator on a two-dimensional vector space. Thus, the Frobenius endomorphism on E[£] 
can be represented as an element of PGL2(F^), a projective general linear group of matrices. 
In this representation the order r of the Frobenius endomorphism is the order of the 
corresponding element in PGL2(F^). With this definition of the order r, the trace of the 
Frobenius endomorphism t of the elliptic curve satisfies Atkin's formula [1, Prop. 6.2]:

t2 = q(Z + Z-1)2 (mod £), (1) 
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where Z is a primitive r-th root of unity. So to determine t (mod £) in the SEA-algorithm, 
we only need to enumerate primitive roots Z instead of enumerating all £ possible variants. 
The computation of r itself in SEA-algorithm is done by using the factorization of modular 
polynomials.

Further in the paper we consider abelian varieties that are by definition projective 
varieties equipped with a group law. The elliptic curve E defined above is an abelian variety 
of dimension 1. Another example of abelian variety is the Jacobian of a hyperelliptic curve. 
This motivates us not to focus just on elliptic curves. The formula (1) can be generalized 
to abelian varieties of dimension g greater than 1. The order r in this case is defined as the 
order of Frobenius endomorphism as an element of PGL2g(F^) (see Section2). If A is an 
abelian surface (g = 2) over a finite field Fq and a1, a2 are coefficients of the characteristic 
polynomial of Frobenius endomorphism on A, that is

XA,q(T) = t4 + aiT3 + a2T 2 + aiqT + q2,

then
(a2 — 2q)2 = ninyq2 (mod £) (2)

and
a2 = (7П1 ± Vn2)2q (mod £), (3)

where n1 = Z1 + Z1-1 + 2, n2 = Z2 + Z2-1 + 2, and Z1, Z2 are r-th roots of unity. This formula 
appears in [4] in a slightly different form and with additional restrictions implying that 
Z1, Z2 are primitive. In [5, Prop. 3.14] there is a more restrictive formula for vanilla abelian 
surfaces with real multiplication. In our work, we give explicit formulae for any abelian 
variety of dimension g with relaxed restrictions on r-th roots to make it suitable for general 
case. We also provide simplified versions of our formulae for dimensions 2, 3.

Therefore, if we know the order r, we can reduce the number of coefficients of 
characteristic polynomial (mod £) to enumerate in the genus 2 generalization of Schoof's 
algorithm [6]. However, modular polynomials [7, 8] for the case of dimension g 2 are too 
big to be precomputed and the effective tools for computing them modulo p in general case 
are currently missing. In this work, we develop a probabilistic approach to point counting 
and study the distribution of order r in the case of abelian surfaces and q = 1 (mod £).

Our contribution. We give a generalization of Atkin's formula to abelian varieties of any 
dimension. Our formulae are explicit and can be efficiently computed. These new formulae 
allows us to limit the number of possibilities for xA,q (T) (mod £) in case when the order 
of the Frobenius on A[£] is known. Our second contribution concerns the distribution of 
orders of matrices in the symplectic group Sp4(F^) as elements of PSp4(F^), a projective 
symplectic group. We obtained closed form expressions for the expected value and variance. 
Furthermore, we calculated the distribution for first primes £ < 3571. We applied these 
results to obtain a distribution of the Frobenius orders of abelian surfaces over finite field 
of size q = 1 (mod £).

The rest of the paper is organized as follows. In Section2 we briefly give the definition 
and properties for the matrices of the Frobenius action on A[£]. Section 3 contains a 
generalization of Atkin's formulae to any dimension. In Section4 we give explicit formulae 
for the orders (up to a scalar) of conjugate classes in Sp4(F^). In Section5, using the 
assumption that the Frobenius elements are equidistributed in Sp4(F^), we obtain properties 
of the Frobenius action distribution: expected order, variance and most common values 
(modes). In cryptographic applications we need Jacobians of genus g = 2 curves with group 
size at least 256 bit. Point counting on such curves using generalization of the Schoof's 
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algorithm requires computations modulo all primes t С (9g + 3) log q [9]. So in this section, 
we computed the distribution for t = 3,..., 3571 as required for applications. Section 6 
contains experimental results.

A preliminary version of this paper was presented by the authors at SibeCrypt'19 [10].

2. Frobenius action on A[t]
In this section and further in the paper we will use the following notations:

— A general linear group GLn(Ff) is a group of non-degenerate nx n matrices with elements 
in Ff.

— A symplectic group Sp2g(Ff) = {M € F2gx2g : MПМт = Q}, where Q is a fixed 2g x 2g 
nonsingular skew-symmetric matrix.

— A general symplectic group GSp2g(Ff) = {M € F2gx2g : MQM^r = c • Q}, for some 
c € Ff.

— A projective symplectic group PSp2g(Ff) is a group Sp2g(Ff) modulo scalar matrices.
Let A be an abelian variety of dimension g over a finite field Fq of characteristic p and 

t = p is a prime. From [11], we have

EndFq (A) ® Zf ~ EndGal(Fq /Fq

where Tf (A) is the Tate module of A and Zf is a ring of t-adic integers. Since Tf(A) ~ (Zf)2g, 
the Frobenius endomorphism on A can be represented by the matrix F € GL2g (Zf). Using 
Weil pairing, it can be shown [12, p. 358] that F has the following properties:

1) A'' MF = q • M;
2) the matrix M is skew-symmetric;
3) det(M) is a unit in Zf.
In other words, F belongs to GSp2g(Zf). The matrix of the action of Frobenius on A[t] is 

defined as Ff = F (mod t). In the case of q = 1 (mod t) this matrix belongs to symplectic 
group Sp2g(Ff). The orders of groups Sp2g(Ff) and PSp2g(Ff) are known [13, § 1.6.

#Sp2g (Ff) = tg2f[ (t2i — 1),
i=1

2

#PSp2g (Ff) = tg

П (t2i — 1)
i=1

gcd(2,t — 1)
(4)

In this paper, we study the orders of matrices Ff as elements of PSp2g(Ff). From 
the introduction we know that in dimension 2 case these orders satisfy Eqs. (2) and (3). 
In next section we give equations for any dimension. So this information can be used for 
generalization of SEA-algorithm to higher dimension.

3. Generalization of Atkin's formula
Now, we derive explicit formulae that relates the order r of the Frobenius action on A[t] 

and the characteristic polynomial XA,q (T) (mod t) of the Frobenius endomorphism on 
abelian variety A of dimension g. These formulae are direct generalization of Atkin's formula 
for the dimension 1 case [1, Proposition6.2] which is used in SEA-algorithm. Our formulae 
can be used for point counting in higher dimension case.

Let be the Frobenius endomorphism on A and let

XA.q (T) = T2g + a1T2g-1 + ... + ag Tg + ag_xqT + ... + a1qg-1T + qg 



On the distribution of orders of Frobenius action 25

J qib2(k-i) (5)

g— 2(k— i) — 1 qib .
I i I q b2(k-i)+1. (6)

be the characteristic polynomial of ^. It is known that we can arrange the roots Аг of this 
polynomial in such way that ХгХг+д = q for i from 1 to g. So we can write

XA,q (T) = П (T — A,)( T —

We can associate [14, §4] the real Weil polynomial hA,q(T) to the characteristic polynomial 
XA,q(T). This polynomial hA,q (T) has the properties:

XA,q(T) = Tgh.4,q (t + T)

and
h-(T ) = Й(T — (Ai+Й).

Let h4,q(T) = Tg + b1Tg-1 + . . . + bg-1T + bg. We can write [14, p. 4, Th. 9]:

= b + fg — 2(k — i)a2k = b2k + X 
i=1 i

and
к 

a2k+1 = b2k+1 + X
i=1

So if we know hA,q (T) then we can easily find xA,q (T). There are also recurrent formulae [2, 
§17.1.2] for the coefficients ak in terms of powers of roots which can be obtained via 
Newton — Girard formulae:

kak = Sk + Sk-1a1 + Sk-2a2 + ... + S1ak-n

2g
where Sk = X Ak. Similarly, we have for coefficients bk: i=1 i

kbk = Sk + Sk-1b1 + Sk-2b2 + ... + S1 bk-n (7)

where S'k = X ( A + y
i=1 Ai

Now let us consider the situation modulo prime £ and the restriction of the Frobenius 
endomophism on A[£].

Proposition 1. Let А be an abelian variety of dimension g over a finite field Fq of 
g

characteristic p, let hA,q (T) X bkTk be the real Weil polynomial of the characteristic
к=0

polynomial of the Frobenius endomorphism on A. If £ = p is a prime, r is the order of 
on A[£], and gcd(r, £) = 1, then

kbk = Sk + Sk-1b1 + Sk-2b2 + ... + S1 bk-1 (mod £),

where S2k = — X(niq)k, S2k+1 = — X(±(niq)k+1/2). Here, n = Ci + Zi + 2 for i = 1... ,g 
i=1 i=1 _

and Z1,..., Zg are some r-th roots of unity in F such that lcm(ord(Z1),..., ord(Zg)) = r if r 
is odd and lcm(ord(Z1),..., ord(Zg)) = r or r/2 if r is even.
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Proof. Let F be a matrix representing action of on A[t]. So r is the order of F^, i.e. a 
minimal integer r such that FJ = al for some a. Let P, G A[t] be such that ^(P,) = [Ai]Pi 

and P, be the corresponding vector from (Z/tZ)2g ~ A[t]. On the one hand, we have FJ/'2 = 
= ar since 'p is represented by the matrix FJ = al for a constant a. On the other hand we 
have FJP, = ArP,. So АГ = A2 = ... = A2g. Since AiAi+g = q, we obtain АГXi+g = A2r = qr. 
This implies the relation A2 = Q,q for some r-th roots of unity Q, and, since r is minimal, 
we can derive additional restrictions on the r-th roots. Let n = lcm(ord(Qi),..., ord(Zg)) 
then A12n = . . . = Ag2n = q2n. From this in case of 2n < r we have a contradiction to the 
minimality of r. Hence 2n r and, since n C r and n is a divisor of r, we have n = r or 
n=r/2.

Let n = Z, + — + 2 as in the g =1 case. Since A, + q —)£ = ±yniq, the
Qi Ai Ai

coefficients bk of hA,q(T) are elementary symmetric polynomials in variables ±Уп5. Using 
the relation A2 = Q,q, we can write S2k and S2k+1 from Eq. (7) as

S2k = -52 Мк and S2k+i = -52 (niq)k (n, - 2)A, = - 
i=1 i=1

The Proposition is proved. ■

In case of gcd(t, r) = 1 the Eq. (4) implies that we can write 
and t \ r0. In this case we can take r = r0 in Proposition 1.

Finally, we apply Proposition 1 to obtain relations modulo t:

E(±(n,q)k+i/2).
i=1

r as r = tkr0 where k|g2

b1 =

2b2 =

3b3 =

(±^Tq), 
i=1

-52 (n,q) + bt 
i=1

-52 ±(n,q)3/2 + (2b2 - bDbi + bib2, 
i=1 (8)

(2k)b2k = ~52(n,q)k + f2k(bi,..., b2k-i),
,=1

(2k + 1)b2k+i = ~52(±(n,q)k+2) + f2k+i(bi,... ,b2k),
,=i

where f2k and f2k+i are polynomials obtained by substituting the previously computed 
values of S, to the Eq. (7).

Thus, the coefficients ak can be written in terms of for k = 1,... ,g by Eqs. (5) 
and (6). In the following we also use squaring and the fact that b, are elementary symmetric 
polynomials in ±yniq to get rid of signs and to make formulae (8) simpler. For example, 
we can write bg = gi • ... • ng qg for the coefficient bg.

Note that for g = 1 these formulae give us the formulae from [1, Proposition 6.2]. For 
the cases g = 2 and g = 3, we obtain the following propositions.

Proposition 2. Let A be an abelian surface over a finite field Fq and XA,q(T) = T4 + 
+ aiT3 + a2T2 + aIqT+q2 be the characteristic polynomial of the Frobenius endomorphism 
on A, let r be the order of on A[t] for t = p, and let gcd(t, r) = 1. Then

a2 = (УПГ ± yn2)2q (mod t) and (a2 — 2q)2 = nin2q2 (mod t), 
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where n1 = Z1 + Z1-1 + 2, n2 = Z2+ Z2-1 + 2 and Z1, Z2 are some r-th roots of unity such that 
lcm(ord(Z1), ord(Z2)) = r in case r is odd and lcm(ord(Z1), ord(Z2)) = r or r/2 in case r is 
even.

Proof. By Eq. (6), we have a1 = b1 = (±/nT±/П2)/q. Therefore, a| = (/nT±/П2)2q. 
Since b2 = ^^q, we have b2 = nTn2q2• From Eq. (5), we can write a2 = b2 + 2q and
therefore (a2 — 2q)2 = nTn2q2. ■

If gcd(£, r) = 1, then, as in the general case, we can take the integer r0 such that 
r = £kr0, I \ r0 and apply the Proposition 2 for r = r0.

The formulae in Proposition 2 appears in [4] with additional restrictions on abelian 
variety A. Our version is fully general with weakened conditions on roots of unity.

Proposition 3. Let A be an abelian variety of dimension 3 over a finite field Fq and 
XA,q(T) = T6 + aTT5 + a2T4 + a3T3 + a2qT2 + aTq2T + q3 be the characteristic polynomial 
of the Frobenius endomorphism on A, let r be the order of on A[£] for £ = p, and let 
gcd(£, r) = 1. Then

ai = ( 1 /П i ± ±
2a2 = a21 + 6q — (n1 + n2 + n3),

(a3 — 2aiq)2 = nin2n3q3

1 + 2, П2 = Z2 + 1 + 2, Пз = Z3 + 1 + 2 for some r-th roots of 
Zi Z2 Z3

modulo £, where nT = Ci +

unity Zi, Z2, Z3 such that lcm(ord(Zi), ord(Z2), ord(Z3)) = r in case r is odd and in case r is 
even, lcm(ord(Ci),ord(Z2),ord(Z3)) = r or 2.

Proof.

1) First relation follows from the fact that aT = bT = (±/nT ± //П2 ± /Пз) /q.
2) Since a2 = b2 + 3q by Eq. (5), we have 2a2 — 6q = 2b2 = —(ni + n2 + n3) + ai2.
3) We have b23 = nin2n3q3. Equations (6) and (5) imply a3 = b3 + 2qbi = b3 + 2qai. 

Then (a3 — 2qai)2 = nin2n3q3.

The Proposition is proved. ■

4. Conjugacy classes and the orders of elements in Sp4(F^)
In general case the orders of matrices over a finite field were considered in [15 -19]. In this 

Section we study the distribution of orders of matrices in Sp4(F^) as elements of projective 
symplectic group PSp4(F^). We define the order of a matrix M G Sp4(F^) to be the minimal 
number r such that Mr = AI for some scalar A G F^. We need such specific definition 
to derive the properties of Frobenius orders in the next section. All similar matrices have 
the same order, so it is enough to find the orders of conjugacy classes. A description of 
conjugate classes in Sp4(F^) with explicit representatives is given in [20, p. 489-491]. Using 
the same notation we denote the conjugacy classes in Sp4(F^) by A,,B,(*),C.(•),D, with 
representative elements A, B,(*), C, (•), /.\ respectively. For each class we calculate orders 
r = ord(M) of matrices by using the explicit representatives. Since the number of matrices 
in a class is also known, we can calculate the probability of a random matrix M G Sp4(F^) 
to fall in a given class. We give the orders for classes with their respective probabilities in 
Table 1.
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Ta b l e 1 
Orders of matrices in Sp4(Fe) as elements of PSp4(Fe) and their probabilities

Classes in Sp4(F^) Order of matrices (projective) Probability
[M G Sp4(Fe) & M G class]

A1, A'i 1 1/(£4(£2 - 1)(£4 - 1))
A21, A'21,A22,A'22 £ 1/(2£4(£2 - 1))

A31, A'31 £ 1/(2£3(£ - 1))
A32, A'32 £ 1/(2£3(£ +1))

A41, A'41, A42, A'42 £ 1/(2£2)
Bi(i) (£2 + 1)/(2s), s = gcd(i, (£2 + 1)/2) 1/(£2 + 1)
B2(i) (£2 - 1)/(2s), s = gcd(i, (£2 - 1)/2) 1/(£2 - 1)

B3(i,j) (£ - 1)/gcd(£ - 1,i + j, |i - j |) 1/(£ - 1)2

B4(i,j) (£ + 1)/gcd(£ + 1,i + j, |i - j |) 1/(£ + 1)2

B5(i,j) (£2 - 1)/gcd(£2 - 1, i(£ - 1)+ j(£ + 1), 2i(£ - 1)) 1/(£2 - 1)
Вб(*) (£ + 1)/(2s), s = gcd(i, (£ + 1)/2) 1/(£(£ + 1)(£2 - 1))
B7(i) £(£ + 1)/(2s), s = gcd(i, £(£ + 1)/2) 1/(£(£ + 1))
B8(i) (£ - 1)/(2s), s = gcd(i, (£ - 1)/2) 1/(£(£ - 1)(£2 - 1))
’Bg(i) £(£ - 1)/(2s), s = gcd(i,£(£ - 1)/2) 1/(£(£ - 1))
C 1(i) (£ + 1)/s, s = gcd(i,£ + 1) 1/(£(£ + 1)(£2 - 1))

C 1(i)
(2s, if 2 \ s,
(s/2, if 2 | s and 4 ] s,

(s, if 4 | s,
where s = (£ + 1)/gcd(i, £ +1)

1/(£(£ + 1)(£2 - 1))

C 21(i),C 22(i) £(£ + 1)/s, s = gcd(i,£(£ + 1)) 1/(2£(£ +1))

C?21(i),C722 (i)
(2s, if 2 \ s,
( s/2, if 2 | s and 4 / s,

Ц if 4 | s,
where s = £(£ + 1)/gcd(i, £(£ + 1))

1/(2£(£ +1))

C 3(i) (£ - 1)/gcd(i, £ - 1) 1/£(£ - 1)(£2 - 1)

C7 3(i)
(2s, if 2 / s,
(s/2, if 2 | s and 4 / s, 

if 4 | s,
where s = (£ - 1)/gcd(i, £ - 1)

1/£(£ - 1)(£2 - 1)

C 41(i),C 42(i) £(£ - 1)/gcd(i,£(£ - 1)) 1/(2£(£ - 1))

C741(i),C742(i)
(2s, if 2 / s,
( s/2, if 2 | s and 4 / s,
[ s, if 4 | s,

where s = £(£ - 1)/gcd(i, £(£ - 1))

1/(2£(£ - 1))

D1 2 1/(£2(£2 - 1)2)
D21, D22, D23, D24 2£ 1/(2£2(£2 - 1))
D31, D32, D33, D34 2£ 1/(4£2)

Having explicit information on orders of matrices in classes, we can now derive 
numerical characteristics of the distribution of orders. Let £ be a random variable that 
takes values in {ord(M) : M G Sp4(F^)}. Our next goal is to find an expected value 
and variance of the random variable £. Define the expected order of a matrix in Sp4(F^) 

as //4 = ————— V ord(M), where the order is defined for M as an element of
#Sp4(F^) M€Sp4(F€)

PSp4(F,).
Since all matrices in a conjugacy class have the same order, we can split the sum // 4 into 

parts which correspond to the conjugacy classes. For a conjugacy class M the corresponding
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term in the sum //4 is given by the formula

ll(M) = ord(M) # = ord(M) p[< = ord(M)].
#SP4 (F^)

For classes A, D the order is fixed. For classes of types Bk(i, j), Bk(i), Ck(i), C'k(i) the order 
depends on parameters i, j and we assume that parameters i, j are distributed uniformly 
among their value sets as t ж>. So, we can use the following approximation [21] for
gcd(i, x):

6
E(x) = —- log(x) + O(1).

П2

The expected orders of symplectic matrices in |J Bk(i,j), |J Bk(i), |J Ck(i), U C'k(i) are 
i,j i i i

presented in Table 2.

Ta b l e 2 
Expected orders of symplectic matrices Sp4(Fe) 

as elements of PSp4(Fe)

Classes Quantity of i, j Expected order

Bi(i) 1 ■ -1) 1E 1 ( ¥ )

B2(i) 1 1 e ■(';■)

B3(i,7) 8(€ - 3)(€ - 5) 1
f  1 E--( - 1)

B4(i, j) 8(€ - 1)(€ - 3)
+ 1E-1(f +1)

B5(i, j) |(€ - 1)(€ - 3) E-1(€2 - 1)

B6(i) > - 1) M- 1)E-1 (( Г)

B7(i) ' - 1)
Bs(i) |(^ - 3) 1 E-1(1 -1)

2€(€2 - 1) \ ) )

Bg(i) > - 3) 1E-■ ( f(f - 1) )
C1 (i),C i(i) (l - 1)

M2 -1)E !+ 1)
C 2i(i),C '2i(i),
C 22(i),C '22(i) 2(l - 1) 2 E-1(l +1)

C 3 (i),C7 3(i) (l - 3)
M2 -1)E ! 1)

C41(i) C/41(i)>
C 42 WM42(i)

2(l - 3) 1 E-1(t - 1)

Now, we obtain the expected order and the variance of the symplectic matrix applying 
the well-known formulae to the data from this table.

Proposition 4. Let M be a matrix from Sp4(F^). Define the order of M to be the 
order of M in the group PSp4(F). Then

1) The expected order of matrix M is equal to

n
48t(t2 - 1)

(2t5 + 15t4 - 47t3 + t2 + 65t - 40) log-1(t).
2

/' I =
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2) The variance of the order's distribution is equal to

64 4^24£(£2 - 10 " '

where

(£) = 6£10 - 27'£9 + 420£8 -1443£7 + 828£6 + 3375£5 - 3804£4 - 825£3 + 2550£2 -1080€.

5. Distribution of orders of the Frobenius action on A[£]
Let A be an abelian surface defined over a finite field Fq of odd characteristic p. From 

Section 2 we know that the action of the Frobenius endomorphism on £-torsion subgroup 
in case q = 1 (mod £) is represented by a symplectic matrix from Sp4(F^). To find the 
distribution of the Frobenius orders, we use a heuristic assumption that the elements 
of Frobenius are equidistributed in Sp4(F«). The assumption was already used in [22] in 
the context of counting the number of isogeny classes of abelian varieties. Thus, from 
Proposition 4 we obtain our results for expected order and variance of the Frobenius order.

Theorem 1. Let A be an abelian surface defined over a finite field Fq of
characteristic p. If £ = p is a prime number and q £, then the expected order of the
Frobenius action on A[£] is equal to ^4.

Theorem 2. Let A be an abelian surface defined over a finite field Fq of
characteristic p. If £ = p is a prime number, q £, then the variance of order distribution 
of the Frobenius action on A[£] is equal to 64.

Theorem 3 (Heuristic). The modes of the random variable £ are (£2 + 1)/2 and 
(£2 - 1)/2.

In point counting algorithms, we have to enumerate all primes £ C (9g + 3) log q. For 
cryptography on genus 2 curves we work with fields of size 160 bit. In this case the size 
of the group will be equal to O(q2) by the Hasse —Weil bound, i.e. 320 bit. So we have to 
find the characteristic polynomial xA,q (T) (mod £) for all primes £ C 3360 to restore the 
coefficients of xA,q(T) by CRT.

Using the data from Table 1, we calculated the distribution of the Frobenius orders for 
the first 500 primes £ = 3,..., 3571. Since the order of any matrix depends linearly on £2, 
as follows from Theorem 1, we normalize the order by calculating the value ord(M)/£2 

instead of ord(M) itself. An obtained family of distributions is shown on Fig. 1. Taking an 
average value of order on different £'s, one can construct the averaged distribution of orders. 
We present this distribution in the Table 3.

Ta b l e 3 
The distribution for orders of the Frobenius action on A[€]

Order (M (€, 2€] (2€, (€2 + 1)/2] ((€2 + 1)/2,€(€ +1)]£ - 1
2

€ +1
2

€ - 1 Other € +1 Other €2 - 1
4

€2 + 1 €2 - 1 €2 + 1
2

Other
4 2

% 4.0 4.0 5.0 6.3 5.0 1.5 6.6 5.0 13.4 15.7 29.7 3.8
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Figure 1. A distribution of orders for the first 500 primes £

6. Application to point counting
In Schoof—Pila [9] algorithm determining xA,q(T) (mod £) is done by direct 

enumeration of at most £g possible coefficients. Each test requires expensive operations like 
ideal membership test and operations with division polynomials of degree £2g. So reducing 
the number of elements to enumerate is crucial.

The obtained results can be used for point counting on abelian variety A in the following 
modification of Schoof—Pila method.

1) Choose primes £ such that Д £ > 2(2g)qg, where H = (9g + 3).
KH log q g

2) For each prime £:
a) Build a list L of tuples (aT,..., ag, w), where aT,..., ag (mod £) are the 

candidates for coefficients of characteristic polynomial xA,q (T) (mod £) 
and w is a probability of (aT,..., ag) to be the coefficients of xA,q (T) (mod £). 
This probability is computed by using the distribution of the orders and 
formulae (5), (6), (8).

b) Sort the list L by w.
c) Determine xA,q (T) by testing tuples from the list starting with the ones 

having high values of w.
3) Determine xA(T) from the list of xA,q(T) (mod £) using CRT.
To test applicability of the distribution to point counting using the method described 

above, we run a series of experiments in SageMath [23] system. We choose a set of random 
primes p of size p > 216. For each prime p we compute a set of £ 5 such that
p = 1 (mod £) and a set of 10000 random genus 2 hyperelliptic curves with imaginary 
model

y2 = f(x) = x5 + f4x4 + f3x3 + f2x2 + fix + f0.

This model is most common in cryptography. Such a curve is generated by a random 
monic square-free polynomial f(x) in Fp[x] of degree 5. By Proposition 2, for each pair 
(p, £) we build a list L of pairs (a|, (a2 — 2q)2) corresponding to small orders r = (£ ± 1)/2 
from Table 3. We choose these orders because they appear in many conjugacy classes from 
Table 1 and the most common orders (£2 ± 1)/2 lead to big lists. For each curve we compute 
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the characteristic polynomial xP(T) of the Frobenius endomorphism by built-in methods of 
SageMath and so we know the exact value of xP(T) (mod t). After that we compared the 
number of attempts to find xP(T) (mod t) using classical enumeration (as in Schoof—Pila 
algorithm) against our proposed search in the list L.

Our experiments show that the number of attempts to find the xP(T) (mod t) is reduced 
by 1-12% for t C 100, where the success rate is decreasing with the growing of t. In the 
case of t > 100 we have the number of attempts reduced by ~ 1-2 %.

To improve this, we should generalize Atkin's “Match and Sort” algorithm for elliptic 
curves and use the data on Frobenius distribution in this generalized algorithm. This can be 
done by combining steps 2 and 3 in the algorithm above and by using baby-step giant-step 
algorithm to determine XA,q(T) from the lists L each corresponding to different t. However, 
a realization of this method is still an open problem even in the case when we use modular 
polynomials to determine the Frobenius order and so we know the exact order.

Conclusion
In this paper, we present a generalization of Atkin's formulae to any dimension and 

showed that the distribution of Frobenius orders is not uniform for abelian surfaces over a 
finite field Fq with q = 1 (mod t). Furthermore, we described possible applications of this 
distribution to point counting purposes. The formulae can be used to limit the number of 
possible characteristic polynomials xA,q (T) (mod t) in case when we know the Frobenius 
order. The distribution allows us to sort the lists of possible xA,q(T) (mod t) by probability.

The further work is to use this modular information about distribution efficiently in the 
generalization of Schoof's algorithm for genus 2 curves [6]. For elliptic curves there exist 
Atkin's “Match and Sort” algorithm and “Chinese and Match” algorithm [24] due to Joux 
and Lercier. But for higher dimension this is still an open problem.
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