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Abstract—The maximum likelihood measurer is considered of 
the time of appearance and the average power of the fast 
fluctuating Gaussian band pulse against Gaussian white noise. 
The possibilities of its practical implementation are 
demonstrated and its accuracy characteristics are determined. 
By statistical simulation methods, the experimental values of 
biases and variances of the resulting estimates are found. The 
error ranges of the theoretical formulas describing the 
measurer performance are established. There have been 
determined the conditions of high a posteriori accuracy for the 
measurer operation, that is, such signal-to-noise ratios above 
which the anomalous errors in estimating the pulse time 
parameter are practically non-existent.
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I. In t r o d u c t io n

The problem of estimating the parameters of the random 
pulse signals has a wide application in analyzing the 
operation of the various radio engineering devices [1-3]. One 
of the adequate models of a random pulse is the 
mathematical model of the form

s{t ) = | ( t ) / [(t -Xo V^], (1)

where I (x) = 1, if < ^ 2  , and I (x) = 0 , if > 1j2 ;  ^ (t )
is the stationary centered Gaussian random process; X  0 is 
the time of appearance and т is the duration of the pulse. The 
spectral density of the process |( t)  is described by the 
expression [1-3]

0(ю) = (жП0/  Q) {I  [(S -  ю^О] + 1 [(^ + } •

here the designations are: 9 is the band center, Q. is the 
bandwidth of the spectral density, and D0 is the average 
power (dispersion) of the process | ( t ) . It is presupposed that 
the pulse (1) duration т is much longer than the correlation 
time 2%IQ of the random substructure |( t)  (the process 
|( t)  fluctuations are “fast"), so that the following condition 
is satisfied: q = tQ 2л >> 1.

Examples of the signal (1) include the reflected radar 
signals, the signals in noise carrier communication systems, 
the pulses describing the optical noise flash, explosive noise 
in transistors, etc. [1-3].

Let the signal (1) be observed against Gaussian white 
noise n(t) with the one-sided spectral density Ao. By the 
observable realization

x(t) = s(t, X 0, D0 ) + n(t),

the parameters X 0 and D0 have to be measured taking the 
values from the prior intervals [Aj , Л 2 ] and [0, x>) , 
respectively. Thus, the boundaries of the observation interval 
[tJ, T2 ] are chosen according to the conditions
TJ < A J - t '2 < Л 2 + t 2̂ < T2 , i.e. the pulse (1) is always 
located within the observation interval.

II. Th e  Est im a t io n  Al g o r it h m

In order to estimate the parameters of the random pulse 
(1), the maximum likelihood method is applied. According 
to [4, 5], the logarithm of the functional of the likelihood
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ra tio  (F L R ) Z(X, D ) , a s  th e  fu n c tio n  o f  th e  c u r re n t  v a lu e s  X,

D 0 , c a n  b e  re p re se n te d  inD of the unknown parameters X 0 . 
the form of

l (X, d ) = [d m (x) ( d  + En ) -X 0En ln(1 + )] /^ g

(2)
X + x j  2

M  (x ) =  j

x- V  2 _

j  x{t’')h(t -  t’')dt ’ dt .

here h(t) is the pulse response of the filter whose transfer 
function я(со) satisfies the condition

\H(co)2 = I [(^ -ro )Q ] +1 [(^ + ro )Q ], and En  = N 0 n j 2% 
is the average power of the noise n(t) within the bandwidth 
Q of the process | ( t ).

Then, the joint maximum likelihood estimates (MLEs) 
X m and Dm of the time of appearance X 0 and the 
dispersion D0 are written down as follows [4]

(Xm, Dm ) = arg sup L(X, D ) ,
Xe[Ai, Л 2 I d  >G

or

X m = arg sup l (X, Dm )=  arg sup m (x),
Хе [Л1,Л2 ] Хе [Л1,Л2 ]

Dm = arg sup L(Xm . D ) = r (xm ) .
D>0

(3)

iswhere г (х) = max[0; M (X) x -  E n  ] , while M (x ) 
determined from (2).

According to (3), the maximum likelihood measurer of 
the time of appearance and the average power can be 
implemented in the form shown in Fig. 1. Here the 
designations are: 1 is the switch that is open for the time 
[Л 1 - V 2, Л 2  + V 2 ];2  is the filter with the transfer function

H  (cô / X  (2); 3 is the squarer; 4 is the delay line for the
time t; 5 is the integrator; 6 is the extremator that fixes the 
location of the greatest maximum of the signal as the 
estimate Xm (3) of the time of appearance; 7 is the nonlinear 
element with the characteristic f  (x ) = max(o, x ) ; 8 is the 
gating unit generating the signal sample at the point of time 
X m . The sample magnitude at the output of the gating unit 8 
is the estimate D m (3).

Figure 1. The block diagram of the measurer of the time of appearance 
and the average power of the random pulse

III. Th e  Ch a r a c t e r is t ic s  o f  t h e  Ma x im u m  
Lik e l ih o o d  Est im a t e s

Considering the characteristics of the joint MLEs of the 
time of appearance X m and the average power Dm is our 
next task. From (3), it follows that the structure of the 
algorithm of the estimate Xm is invariant with respect to the 
unknown average power D0 . Therefore, by applying the 
results of [6], for the conditional bias (systematic error) and 
variance (mean square error) of MLE Xm, one gets:

b(XXm |Xo ) = Pobo (Xm |Xo )+ (l -  Pg 2 + Л  ̂) 2  -  Xo ] ,

F  (x m Xo )=  PgV g> (Xm |Xo )+(1 -  Po ) x

: ( ( + Л1Л 2 + Л 1 У3 -  (Л 2 + Л 1 )Хо + Хо ].

(4)

here P0 is the probability of a reliable estimate, while 
b0 (xm |X0 ) and VG (xm |X0 ) denote the conditional bias and
variance of a reliable estimate, respectively. As a reliable 
estimate [6, 7], the estimate found under the assumption that 
|Xm -  X^ <x is considered.

From [6], it follows that

P0 и 2y  z exp
f  2 2 У z + У z2 I j  exp (̂l + gp )x

>/2 %

f

X exp

exp

(1  + qp  ) 2 x2 ^

V (1+qp)

exp(-  У zx) ф [х -  z(\\t +1)] ̂

2 2

^2 Z + У z(z -  2x) фХс -  z(2y + 1)]  ̂dx , (5)

bp (X m X o ) и G , Vo (x m X o ) и 13x2 [ 1 + (1 + gp  )2 f  /8 p 2qo4

where
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2(1 + qo ) V  [l + (1 + qo )2 ] ,  4o = D o lE ^
(6)

z 2 = uq2/( l  + q0 )2m = (Л2 -A i Vx , ^  =uq0i

is the power signal-to-noise ratio (SNR), and 

ф(х) = I  exp(- 1 4 ln  is the probability integral.

The accuracy of the formulas (4), (5) increases with p, z, m.
The characteristics of the estimate Dm (3), while the 

time of appearance X 0 is unknown, are found in [4]. Under 
m > 1, the expressions for the conditional bias and variance 
of MLE Dm , while taking into account the possible 
anomalous errors [7] in estimate X m of the parameter X 0 , 
can be written as

*(Dm |Do )= ( D ^  -  Do , U(Dm |Do )= (D,^) -  2 D ^ D ^  + D„2 ,

(7)

(D ^  = ] | [ l - x[ l -  A(x)]dx
2D,2

where

F  (x)= Fs (x)fn [x(l + qo )] ,

Fs (x ) = ф(х -  z ) -
-  2 exp[y2z ^ / 2  -  у  z(x -  z)]<b[x -  z(\\i + 1) -f 

+ exp[2y2z2 + 2y  z(z -  x) <Ф[x -  z(2y + 1) ̂
(8)

F  (x) = <[ exp[- (m ^\/2n )exp (-  x 7 2 ^ x > 1, 
x < 1,

and z, у , m are determined from (6).
Under m < 1 , when the estimate of the time of 

appearance Xm are the reliable one, the formulas (7) are 
simplified and take the form of [4]

^ ( D m|D 0 ) =  D 0

, 2-1  + — у exp 
y z  2

1 +
2yz2 ф ( z  ) -

V T tcz
exp^ £_2 ^

V 2 У
2 2у  z

~ Y
y z 2 I [1  - ф ( z (y  + 1) ) ] ^

2у  z
“ T exp  (2y 2 z 2 + 2y z 2 )  -  ф(z(2y + 1)) ]

(9)

U (Dm Do ) = Do2 J 1 - 1 -
V ^  2y  2z4

ф(z ) -

л/2лz
1 -

V у  z 2
exp  ̂ z ! ^

V 2 У у  z
1 -

у  z

X exp

2 '

f  2 2  7 1
+ y  z2 I [ 1 - ф (z(y  + 1) ) ] ^ - —  

V 2 j  2y  z

у  z
exp(2y2z2 + 2y  z2 )  ^ ф(z(2y + 1)) ] ^.

The accuracy of the expressions (7), (8) increases with p, 
z, m, while the accuracy of the expressions (9) -  with p, z 
[4].

IV. Th e  Re su l t s  o f  t h e  St a t is t ic a l  Sim u l a t io n

Analytical calculation of the error ranges of the formulas 
specified above is very difficult. Therefore, it is of interest to 
study the noise immunity of the maximum likelihood 
measurer and the limits of applicability of the approximate 
expressions (4), (5) and (7)-(9) for the characteristics of the 
joint MLEs Xm and Dm by the methods of the statistical 
computer simulation. To reduce the amount of computer 
time required for the simulation, the representation is used of 
the response of the narrowband filter A(t) (2) through its 
low-frequency quadratures [6]. This allows forming the 
decision statistics (2) as the sum of the two independent 
random processes as follows

M  (x) = [Mj (x) +M  2 ( x ) ,

X+xj 2
М г (x )= I  y'2 (t)d t . Уг ( ) = I  xi X')h0 ( -  t ')d t' . (10)

X-  ̂2 -ВД

xi (t)= ^i (t)l [( t-X  o Vx] + Пг (t), г = 1,2 .

where | г- (t) and пг (t) are the statistically independent 
centered Gaussian random processes with the spectral 
densities (ю) = (2^ D ^ q ) I  (ю/ q ) and Gn (ю)= No .
respectively, while ho (t) is the function whose spectrum

H  o (ю) satisfies the condition \H o (со)2 = I  (o/ q ).

During the simulation within the interval [л1, Л 2 ] ,

Л г = Л ^ x , i = J, 2 with the discretization step Д, the 
samples were formed of the realizations of the random 
processes y  ̂(t) (IG). It allowed us to obtain the stepwise 
approximation of the decision statistics of the form of

1 k  max

M (/)= ,2 + y 2k)д  > (11)
' к = km
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here = int{(  ̂-  V2Va}  ̂ ^max = int{(  ̂+ V2Va }  ̂ ^
is the normalized current value of the time of appearance, 
int{.} is an integer. In case when Д = 0 .0 ^ p and 
А/ = 0.01( Д1 is the discretization step along the variable l ), 
the mean square error of the step approximation (11) of the 
continuous realization (10) does not exceed 10 %.

The samples of the processes y ik , i = 1, 2 are generated 
in terms of the sequence of independent Gaussian random 
numbers by a moving summation method [6] as follows:

In Fig. 3 one can see the analogous dependence (4) of the

к + p m in. mmax к+p)
y ik ГД ^  ' îm-H k,m + "^im^k,m ■

m=к - p m=max(mmin, k-p)

p = 1  ^  H R^ii^ M к /  у ^  n, pyin+m+1 •n \  Д’ n=0

(12)

here mmin =  in t{ 0 - V2VA } , mmax =  in t{ 0 +  V2VД } ,
l0 = X 0I X  , H k,m = sin[2rcpA(k -  m)]/[7i(k -  m ) ,a n d  a im , 
R im are independent Gaussian random numbers with zero 
mathematical expectations and unit dispersions.

In the sums (12), the number of summands corresponds 
to the value p  = 50 providing a relative deviation of the 
generated sample dispersion from the simulated process 
dispersion to be no more than 5 %. Formation of the 
Gaussian numbers a  m̂, R m̂ with the parameters (0,1) has 
been implemented based on the sequences of the 
independent random numbers фп, ф n uniformly distributed 
within the interval [0,1] by the Cornish-Fisher method [6, 8]:

7 3 -  37.
Ci = 20N = IN ’n (i-1)+ , -  0.5], (13)

where C i is one of the sequences a  im , R im , and 0n is 
sequence Фп , фn corresponding to it. The number of 
summands N  in the sum (13), following [6, 8], has been 
chosen as equal to 5.

By the realization of the process M  (/) obtained with the 
help of the formulas (11), (12), according to (3), the 
normalized estimates lm =X mj  x , qm = DmlE N are 
determined and the variances of these estimates are found. 
Some results of the statistical simulation are presented in 
Figs. 2-6 where the corresponding theoretical dependences 
are also shown. Each experimental value has been obtained 
as a result of processing of no less than 104 realizations 
of M (/) under yVj = 0 , yV2 = m , /0 =(л.2 +^VjУ2 . Thus,
with the probability of 0.9, the confidence intervals 
boundaries deviate from the experimental values no more 
than by 10...15 %.

In Fig. 2, there is presented the theoretical dependence 
(5) of the normalized variance Е0/ = V0 (x m |X 0 ) x 2 of the 
reliable estimate X m under m = 1.

of the estimate X mnormalized variance Vi =  V (x  m |X  0 У х 2 
with the anomalous errors taken into account under m =  20 . 
The solid lines depict the results of the calculations when 
p = 50 , while the dashed lines demonstrate them under 
p=100 and the dash-dotted lines -  under p=200. The 
corresponding experimental values of the variances V0/ and 
V/ are designated by rectangles, crosses and diamonds under 
p = 50, p=100 and p=200, respectively.

In Fig. 4, there are shown the theoretical and 
experimental dependences of the probability of the 
anomalous error Pa = P [x m -X ^  >x0] = 1 - P0 (5). In Figs. 5,
6, one can see the theoretical and experimental dependences
(9) and (7), (8) of the normalized variances
V^ = V (d J D 0 у E ^  of the estimate Dm under m =  1 (when 

MLE X  m is reliable) and m =  20 (when the anomalous 
errors are possible in estimating the pulse (1) time of 
appearance), respectively. The designations in Figs. 4-6 
correspond to those given in Fig. 3.

Figure 2. The variance of the reliable estimate of the time of appearance 
of the random pulse
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Figure 3. The variance of the estimate of the time of appearance of the 

random pulse when there are the anomalous errors
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Figure 5. The variance of the estimate of the average power of the random 
pulse in case of the reliable estimate of the time of apperance

Figure 6. The variance of the estimate of the average power of the random 
pulse if the anomalous errors occur when estimating the time of apperance

V. Co n c l u s io n

Based on the results obtained, the following conclusions 
can be drawn. As follows from Figs. 2, 3, the theoretical 
dependences (5) for the variance of the reliable estimate X  m 
well approximate the experimental data under SNR 
z >  1 .5 ^ 2 , while the theoretical dependences (4) for the 

variance of the estimate X m with the anomalous errors taken 
into account agree generally with the experimental data 
under p >  50 and z >  0.5 . If z <  1.5 , then the theoretical 
dependences (5) deviate from the experimental values, as the 
formula (5) for the variance of the reliable estimate of the 
time of appearance does not take into account the finite 
length of the prior interval [Aj, Л  2 ] of the possible values of 
the parameter X 0. As a result, when the variance becomes

comparable with or greater than the value (Л2 - Л 1 )2/l2  , 
the accuracy of the formulas (5) deteriorates significantly. 
The deviation of the theoretical dependences Vo (Xm |Xo ) (5),

V (x m |X 0 ) (4) from the experimental values is also observed 

in case of the large SNRs, when q0 > 2 ^ 3 .  This is due to 
the fact that the formula (5) for the variance of the reliable 
estimate of the time of appearance has been obtained in 
neglecting the estimation errors of the order of the 
correlation time of the random process ^(t) [6]. Therefore, 
when the normalized variance decreases up to the value of 
the order of p-2 , the error of the formulas (4), (5) becomes 
significant.

If the SNR is not large enough ( z <  4 ^ 5  ) and the 
reduced length of the prior interval is m > >  1 , then it is 
necessary to take into account the anomalous errors in 
estimating the time of appearance. In this case, the accuracy 
of the MLE X m can significantly deteriorate. Under z >  5 
and m < 1 0 ^  20 , when the probability of the anomalous 
errors can be neglected, the values of the variances of the 
estimate X m obtained by the formulas (4) and (5) almost 
coincide.

According to Figs. 5, 6, the formulas (7), (8) and (9) are 
consistent satisfactorily with the experimental values of the 
variance of the estimated dispersion, if z >  3 ̂  4 . Under 
z >  5 , when the probability of anomalous errors in 
estimating the parameter X 0 is sufficiently small (the 
estimate of the time of appearance is reliable), the variances 
V (-Dm|^ 0) (7), (8) and (9) of the estimated dispersion 
coincide.

It may be noted that, as it is stated in [9, 10], the accuracy 
of the discontinuous parameter (time of appearance) can be 
increased by 20 percent (under big SNRs), approximately, by 
applying the Bayesian method to obtain the estimates. 
However, in this case the structure of the measurer becomes 
more complex.
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