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Abstract We consider two point-like charges in electro-
static interaction within the framework of a nonlinear model,
associated with QED, that provides finiteness of their field
energy. We find the common field of the two charges in
a dipole-like approximation, where the separation between
them R is much smaller than the observation distance r :
with the linear accuracy with respect to the ratio R/r , and
in the opposite approximation, where R � r, up to the term
quadratic in the ratio r/R. The consideration proposes the
law a + bR1/3 for the energy, when the charges are close
to one another, R → 0. This leads to the singularity of the
force between them to be R−2/3, which is weaker than the
Coulomb law, R−2.

1 Introduction

Recently a class of nonlinear electrodynamic models was
studied [1] wherein the electrostatic field of a point charge
is, as usual, infinite in the point where the charge is located,
but this singularity is weaker than that of the Coulomb field,
so that the space integral for the energy stored in the field
converges (and also the scalar potential is finite in the position
of the charge [2]). This class unites Lagrangians [2–4] that
grow with the field invariant F = (

B2 − E2
)
/2 faster than

(−F)w,w > 3/2 (see Ref. [2] for a more subtle estimate
of the boundary of the necessary growth). Thus, the simple
quadratic effective Lagrangian first considered as regards a
different aspect in [5] is also included into the class under
consideration.

The infiniteness of the field near the charge distinguishes
the class under consideration from many other models (see
Refs. [6–12] and the references therein) with finite self-
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energy of the point charge, allied to their famous prototype,
the Born–Infeld model [13], where the finiteness of the field
is achieved at the cost of square-root nonanalyticity of the
Lagrangian, which leads to an infinity to the Maxwell equa-
tion. The most popular application [6–12,14–22] of these
models is to combine them with General Relativity in order
to study their effect on the initial singularity and on the
evolution of the Universe. In contrast to the Born–Infeld
model, the models from the class of Ref. [1] refer to nonsin-
gular Lagrangians that follow for instance from the Euler–
Heisenberg (E–H) effective Lagrangian [23,24] of QED trun-
cated at any finite power of its Taylor expansion in the field.
This allows us to identify the self-coupling constant of the
electromagnetic field with a definite combination of the elec-
tron mass and charge and to propose that such models may be
used to extend QED to extreme distances, smaller than those
for which QED may be thought of as a perfectly adequate
theory.

More advanced approaches based on the Euler–Heisenberg
Lagrangian that do not depend upon any assumption of small-
ness of its field argument (the background field) and do not
hence appeal to expansion of the Lagrangian in powers of the
background fields, have received attention, as well, under the
restriction, however, that fields not-too-fast-varying in space
and time are studied as solutions of the nonlinear Maxwell
equations. Among the nonlinear effects studied, there are the
linear and quadratic electric and magnetic responses of the
vacuum with a strong constant field in it to an applied electric
field [25], with the emphasis on the magneto-electric effect
[26–28] and magnetic monopole formation [29]. Also self-
interaction of electric and magnetic dipoles was considered
with the indication that the electric and magnetic moments
of elementary particles are subjected to a certain electromag-
netic renormalization [30] after being calculated following a
strong-interaction theory, say, QCD or lattice simulations.
Interaction of two laser beams against the background of a
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slow electromagnetic wave was studied along these lines, too
[31]. The finiteness of the field energy allows one to develop
a soliton view on a moving point charge [3,32].

In the present paper we are extending the consideration
to cover the electrostatic problem of a system of two point
charges that interact following nonlinear Maxwell equations
stemming from the Lagrangian quadratic in the field invariant
F. Their common field is not, of course, just a linear combina-
tion of the individual fields of the two charges. The nonlinear
problem is outlined in Sect. 2, where we present the nonlinear
Maxwell equations and give them a certain form in Sect. 2.2
apt for finding the approximate solutions of Sect. 3. Once
the field energy is finite it is possible in principle to define
the attraction or repulsion force between the charges as the
derivative of the field energy with respect to the distance R
between them. Contrary to standard linear electrodynamics,
this is evidently not the same as the product of one charge by
the field strength produced by the other! This rule holds true
only if one of the charges has a much smaller value than the
other.

In Sect. 3 we develop the procedure of finding the solution
to the static two-body problem in two opposite approxima-
tions determined by the ratio of the distance R, to the coor-
dinate of the observation point r1. Where this ratio is small,
R/r � 1, we find in Sect. 3.1 the leading expression for
the common field, which makes the nonlinear correction to
electric dipole, and the corresponding potential. In Sect. 3.2
the opposite case r/R � 1 is considered, first, also in the
leading approximation (Sect. 3.2.1). The simplifying circum-
stance that makes these approximations easy to handle is that
it so happens that one needs, as a matter of fact, to solve only
the second (following the classification of Ref. [33]) Maxwell
equation, the one following from the least action principle,
while the first one, the Bianchi identity, [∇ × E] = 0, is
trivially satisfied. The situation becomes far more compli-
cated in the next-to-leading approximation (r/R)2 developed
in Sect. 3.2.2. In developing the above approximations no
assumption was made on whether the nonlinear scale deter-
mined by the self-coupling of the electromagnetic field is
large or small as compared to r or R. Their use in the expres-
sion for the energy of the two charges as a function of the
separation R in the limit R → 0, i.e. when the charges are so
close to one another that R is much less than the nonlinearity
scale, allows one to make a preliminary estimation confirmed
by another approach to be reported in a separate publication,
that, for small separation, the energy of the system of two
point charges can be represented as a + bR1/3, where a and

1 Throughout, Greek indices span Minkowski space-time, Roman
indices span its three-dimensional subspace. Boldfaced letters are three-
dimensional vectors, the same letters without boldfacing and index des-
ignate their lengths, except the coordinate vector x = r, whose length
is denoted r. The scalar product is (r ·R) = xi Ri , the vector product is
C = [r × R], Ci = εi jk x j Rk .

b are finite constants depending only on the two charges (in
QED they include the electron mass and charge). Hence the
force between two point-like charges goes to infinity follow-
ing the law R−2/3. This formula replaces, in the given non-
linear model, the Coulomb law R−2 for the force between
two point charges.

2 Nonlinear Maxwell equations

2.1 Nonlinear Maxwell equations as they originate from
QED

It is well known that QED is a nonlinear theory due to virtual
electron–positron pair creation by a photon. The nonlinear
Maxwell equation of QED for the electromagnetic field ten-
sor Fνμ (x) = ∂μAν(x) − ∂ν Aμ(x) (F̃τμ (x) designates its
dual tensor F̃μν = (1/2) εμνρσ Fρσ ) produced by the classi-
cal source Jμ (x) may be written as, see e.g. [25],

∂νFνμ (x) − ∂τ

[
δL (F,G)

δF (x)
Fτμ (x) + δL (F,G)

δG (x)
F̃τμ (x)

]

= Jμ (x) . (1)

Here L (F,G) is the effective Lagrangian (a function of
the two field invariants F = (1/4)FμνFμν and G =
(1/4) F̃μνFμν), of which the generating functional of one-
particle-irreducible vertex functions, called effective action
[34], is obtained by the space-time integration as Γ [A] =∫ L (x) d4x . Equation (1) is the realization of the least action
principle

δS [A]

δAμ (x)
= ∂νFνμ (x) + δΓ [A]

δAμ (x)
= Jμ (x) ,

where the full action

S[A] = SMaxw[A] + Γ [A]

includes the standard classical, Maxwellian, electromag-
netic action SMaxw [A] = − ∫

F (x) d4x with its Lagrangian
known as LMaxw = −F = (1/2)

(
E2 − B2

)
in terms of the

electric and magnetic fields, E and B.

Equation (1) is reliable only as long as its solutions vary
but slowly in the space-time variable xμ, because we do not
include the space and time derivatives of F and G as possible
arguments of the functional Γ [A] treated approximately as
local. This infrared, or local approximation shows itself as a
rather efficient tool [25–31]. The calculation of one electron–
positron loop with the electron propagator taken as solution
to the Dirac equation in an arbitrary combination of constant
electric and magnetic fields of any magnitude supplies us
with a useful example of Γ [A], known as the E–H effective
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action [23,24]. It is valid to the lowest order in the fine-
structure constant α, but with no restriction imposed on the
background field, except that it has no nonzero space-time
derivatives. A two-loop expression of this local functional is
also available [35].

The dynamical equation (1), which makes the “second
pair” of Maxwell equations, may be completed by postulating
also their “first pair”

∂ν F̃
νμ(x) = 0, (2)

whose fulfillment allows for using the 4-vector potential
Aν(x) for representation of the fields: Fνμ (x) = ∂μAν(x)−
∂ν Aμ(x). This representation is important for formulating
the least action principle and quantization of the electro-
magnetic field. From it, Eq. (2) follows identically, unless
the potential has the angular singularity like the Dirac string
peculiar to a magnetic monopole. In the present paper we
stick to Eq. (2), although its local opposite is not meaning-
less, as discussed in Ref. [29], where a magnetic charge is
produced in nonlinear electrodynamics.

We are now going to separate the electrostatic case. This
may be possible if the reference frame exists where all the
charges are at rest, J0 (x) = J0(r). (We denote r = x).) Then
in this “rest frame” the spatial component of the current dis-
appears, J (x) = 0, and the purely electric time-independent
configuration Fi j (r) = 0 would not contradict Eq. (1). With
the magnetic field equal to zero, the invariant G = (E · B)

disappears, too. In a theory even under a space reflection, to

which class QED belongs, also we have ∂L(F,G)
∂G(x)

∣∣∣
G=0

= 0,

since the Lagrangian should be an even function of the pseu-
doscalar G. Then we are left with the equation for a static
electric field Ei = Fi0 (x),

∂i Fi0 (r) − ∂i
δL (F,0)

δF (r)
Fi0(r) = J0 (r) . (3)

2.2 Generalities of solutions to nonlinear Maxwell
equations

Equation (3) is seen to be the equation of motion stemming
directly from the Lagrangian

L = −F + L (F,0) (4)

with the constant external charge J0 (r) and the zero argu-
ment set for the second field invariant G. In the rest of the
paper is based on this Lagrangian with the understanding
that it may originate from QED as described above or, alter-
natively, be given ad hoc to define a certain model. In the
latter case, if treated seriously as applied to short distances
near a point charge where the field cannot be considered
as slowly varying, in other words, beyond the applicability

of the infrared approximation of QED outlined above, the
Lagrangian (4) may be referred to as defining an extension
of QED to short distances onceL(F,0) is the E–H Lagrangian
(or else its multi-loop specification) restricted to G = 0.

It was shown in [1] that the important property of finiteness
of the field energy of the point charge is guaranteed if L(F,0)

in (4) is a polynomial of any power, obtained, for instance,
by truncating the Taylor expansion of the H–E Lagrangian at
any integer power of F. On the other hand, it was indicated
in [3] that a weaker condition is sufficient: if L(F,0) grows
with −F as (−F)w, the field energy is finite provided that
w > 3/2. The derivation of this condition is given in [2] and
in [4]. As a matter of fact a more subtle condition suffices:
L(F) ∼ (−F)

3
2 lnu(−F), u > 2.

In the present paper we confine ourselves to the sim-
plest example of the nonlinearity generated by keeping
only quadratic terms in the Taylor expansion of the E–H
Lagrangian in powers of the field invariant F,

L (F((x),0) = 1

2

d2L (F,0)

d2F

∣∣∣
∣
F=0

F2(x),

where the constant and linear terms are not kept, because
their inclusion would contradict the correspondence princi-
ple, which does not admit changing the Maxwell Lagrangian
LMax = −F for small fields. The correspondence principle
is absorbed into the calculation of the E-H Lagrangian via
the renormalization procedure.

Finally, we shall be dealing with the model Lagrangian
quartic in the field strength,

L = −F(x)+1

2
γF2(x), (5)

with γ being a certain self-coupling coefficient with the
dimensionality of the fourth power of the length, which may
be taken as

γ = d2L (F,0)

d2F

∣∣∣
∣
F=0

= e4

45π2m4 , (6)

where e and m are the charge and mass of the electron, if
L is chosen to be the E–H one-loop Lagrangian. We do not
refer to this choice henceforward. Generalization to general
Lagrangians can also be done in a straightforward way.

The second (3) and the first (2) Maxwell equations for the
electric field E with Lagrangian (5) are

∇ ·
[(

1 + γ

2
E2(r)

)
E(r)

]
= j0(r), (7)

∇ × E(r) = 0. (8)
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Denoting the solution of the linear Maxwell equations as
Elin(r)

∇ · Elin(r) = j0(r), ∇ × Elin(r) = 0,

we write the solution of (7), in the following way [25–30]:

(
1 + γ

2
E2(r)

)
E(r) = Elin(r) + [∇ × �(r)], (9)

because ∇ · [∇ × �(r)] = 0.

The second Maxwell equation (9) may be conveniently
written in the form to be exploited later,

E(r) = N(r)ξ
(
γ N 2(r)

)
,

N(r) = Elin(r) + ∇ × �(r), (10)

where the function ξ(x) is defined as a real solution to the
cubic equation

(
1 + x

2
ξ2(x)

)
ξ(x) = 1, x ≥ 0. (11)

Its explicit form is given by the Cardano formula:

ξ(x) = x−1/3

×
⎛

⎝
[√

1 + 8

27x
+ 1

]1/3

−
[√

1 + 8

27x
− 1

]1/3
⎞

⎠ .

(12)

We substitute (10) in the first Maxwell equation (8) to get

∇ × (Nξ(γ N 2))

= ξ(γ N 2)[∇ × N] − γ ξ ′(γ N 2)[N × ∇]N 2 = 0, (13)

where the prime designates the derivative with respect to the
argument. Taking into account the relations

∇ × N = ∇ × Elin + ∇ × [∇ × �]
= ∇(∇ · �) − Δ� = −Δ�, (14)

∇N 2 = 2 (N × [∇ × N] + (N · ∇)N)

= 2 (−N × [Δ�] + (N · ∇)N) ,

N × (N × [Δ�]) = −N 2[Δ�],
ξ ′(x) = − ξ3(x)

2 + 3xξ2(x)
= −ξ(x)(ξ(x) − 1)

x(2ξ(x) − 3)
, (15)

for (13) we obtain

− ξ(γ N 2)

3 − 2ξ(γ N 2)

(
Δ�

− 2

N 2 (1 − ξ(γ N 2))N × [(N · ∇)N]
)

= 0. (16)

Since the function ξ(x)/(3 − 2ξ(x)) does not have zeros on
[0;∞), Eq. (13) is equivalent to the equation

Δ� = f (�),

f (�) = 2

N 2 (1 − ξ(γ N 2))N × [(N · ∇)N]. (17)

In the center-symmetric case of a single point charge con-
sidered in [1–3,32], one has �(r) = 0 as a solution to
Eq. (17). This simplification makes the exact solution pos-
sible. The equality �(r) = 0 holds as well in the axial-
symmetric problem of two point charges within the approx-
imations linear with respect to the ratios R/r or r/R to be
considered in Sects. 3.1 and 3.2. In these cases it will be
sufficient to represent the solution of the differential part
of Eq. (7) in the form (9) setting �(r) = 0 in it, then the
first Maxwell equation (8) is fulfilled automatically. On the
contrary, within the next order of (r/R)2 the pseudovector
function �(r) is nontrivial, which makes the axial-symmetric
“quadrupole-like” solution found in Sect. 3.2.2 for the field
of two point-like charges more sophisticated.

3 Two-body problem

By the two point-charge problem we mean that the current
j0(r) in (7) is the sum of delta-functions centered in the posi-
tions r = ±R of two charges q1 and q2 separated by the
distance 2R (with the origin of coordinates xi placed in the
middle between the charges),

∇ ·
[(

1 + γ

2
E2(r)

)
E(r)

]

= q1δ
3 (r − R) + q2δ

3 (r + R) . (18)

In what follows we shall be addressing this equation as
accompanied by (8) for the combined field of two charges.

In what follows we shall refer to the field-energy density
that in the present model (5), when there is only an electric
field, reads

Θ00 =
(

1 + γ E2

2

)
E2 − E2

2

(
1 + γ E2

4

)

= E2

2
+ 3γ E4

8
. (19)

The integral for the full energy of two charges

P0 =
∫

Θ00d3x (20)

converges, since it might diverge only when integrating over
close vicinities of the charges. But in each vicinity the field of
the nearest charge dominates, and we know from the previous
publication [1] (also to be explained below) that the energy
of a separate charge converges in the present model. When
the charges are in the same point, R = 0, they make one
charge q1 + q2, whose energy converges, too.
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3.1 Small separation r � R between charges (dipole
approximation)

We shall be looking for the solution of (18) in the form

E = E(0) + E(1) + · · ·

where E(0) and E(1) are contributions of the zeroth and first
order with respect to the ratio R/r � 1, respectively. This
strong inequality means that the observation point is far from
the location of the two charges. So the result of our consider-
ation in the present section will be an extension of the dipole
field to the case that the point charges self-interact and inter-
act nonlinearly with each other.

The zeroth-order term is spherical-symmetric, because it
corresponds to two charges q1, q2 in the same point that add
to one charge q1+ q2,

E(0)(r) = r
r
E (0)(r)

= r
r

q1 + q2

4πr2 ξ

(

γ

(
q1 + q2

4πr2

)2
)

, (21)

where ξ(x) is the solution (12) of Eq. (12). Equation (8) is
automatically fulfilled by the center-symmetric form (21).
The field E(0) is a nonlinear extension [1] of the standard
Coulomb field

q1 + q2

4πr2

r
r

of the sum charge.
Let us write the first-order term E (1)

i in the following gen-
eral axial-symmetric form, linear in the ratio R/r :

E(1) = r (R · r) a(r) + Rg(r), (22)

where a and g are functions only of the scalar r, and the
symmetry axis is fixed as the line passing through the two
charges. Let us subject (22) to Eq. (8) and ∇ ×E(1) = 0. The
relation

a(r) = 1

r

d

dr
g(r), (23)

provided that the vectors r,R are not parallel. We shall see
that with the ansatzes (22) and (21) with Eq. (9) can be sat-
isfied with the choice �(r) = 0:

(
1 + γ

2
E2(r)

)
E(r) = Elin(r), (24)

namely, we shall find the coefficient functions a, g from Eq.
(24) and then ascertain that Eq. (23) is obeyed by the solution.

The inhomogeneity in (24),

Elin(r) = q1

4π

r − R
|r − R|3 + q2

4π

r + R
|r + R|3 , (25)

satisfies the linear (γ = 0) limit of Eq. (18),

∇ · Elin(r) = q1δ
3 (r − R) + q2δ

3 (r + R) ,

and also (8). The inhomogeneity (25) is expanded in R/r as

Elin(r)

= q1 + q2

4πr2

r
r

+ q2 − q1

4πr2

(
R
r

− 3
r
r

(R · r)
r2

)
+ · · · .

(26)

This is the standard monopole+dipole approximation with
the understanding that d = (q2 − q1)R is the dipole moment
of the two charges, while the dots stand for the disregarded
quadrupole and higher multipole contributions.

The zeroth-order term satisfies the equation

(
1 + γ

2
E (0)2(r)

)
E (0)(r) = q1 + q2

4πr2 , (27)

with the first term of the expansion (33) taken for the inho-
mogeneity. This is an algebraic (not differential) equation,
cubic in the present model (5), solved explicitly for the field
E (0) as a function of r in this case, but readily solved for the
inverse function r(E (0)) in any model, this solution being
sufficient for many purposes. Even without solving it we see
that for small r � γ 1/4 the second term in the bracket domi-
nates over the unity, therefore the asymptotic behavior in this
region follows from (27) to be

E (0)(r) ∼
(
q1 + q2

2πγ

) 1
3

r− 2
3 .

This compared to the Coulomb field (q1 + q2)/(4π)r−2

weakened singularity is not an obstacle to convergence of
both integrals in (20) for the proper field energy of the equiv-
alent point charge q1 + q2.

With the zeroth-order equation (27) fulfilled, we write a
linear algebraic equation for the first-order correction E(1)

from ( 24), to which the second, dipole part in (33) serves as
an inhomogeneity,

E(1) = q2 − q1

4πr2

(
R
r

− 3
r
r

(R · r)
r2

)

−γ

2
[2(E(1) · E(0))E(0) + E (0)2E(1)]. (28)

This equation is linear and it does not contain derivatives. We
use (22) as the ansatz. After calculating
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Fig. 1 The left graph corresponds to the nonlinear dipole field, the
second term in Eq. (31); the right graph shows the standard dipole field.
We use R = 0.05, q1 = −10, q2 = 8, γ 1/4 = 40. Besides the vast dif-

ference in the magnitude scale, the left pattern shows flattening towards
the vertical axis, on which two bold dots indicating two charges are
placed

2
(
E(1) · E(0)

)
E(0) + E (0)2E(1)

= rE (0)2 (R · r)
r2

(
2g + 3r2a

)
+ RgE (0)2,

we obtain two equations, along R and r, with the solutions
(δq = (q2 − q1)/(4π), Q = (q2 + q1)/(4π)):

g = δq

r3

1

1 + γ
2 E

(0)2
= δq

Qr
E (0), (29)

a = −δq

r5

3 + 5γ
2 E (0)2

(
1 + γ

2 E
(0)2

) (
1 + 3γ

2 E (0)2
) . (30)

From (27) we obtain

d

dr
E (0) = − 2Q

r3
(
1 + γ

2 E
(0)2

) − γ E (0)2

1 + γ
2 E

(0)2

d

dr
E (0).

Hence

d

dr
E (0) = − 2Q

r3
(

1 + 3γ
2 E (0)2

) .

With the help of this relation the derivative of (29) can be
calculated to coincide with (30) times r. This proves Eq. (23)
necessarily to satisfy the first Maxwell equation (8).

By substituting Eqs. (29) and (30) in the decomposition
(22) we finally have

E = r
r
E (0)(r) + q2 − q1

4π
(
1 + γ

2 E
(0)2

)

×
[
R
r3 − r (R · r)

r5

3 + 5γ
2 E (0)2

1 + 3γ
2 E (0)2

]

(31)

for the solution of both Maxwell equations up to O(R2/r2).

The potential corresponding to the electric field (31) has
the form

ϕ = V0(r) + q1 − q2

q1 + q2

E (0)(r)

r
(r · R), (32)

where V0(r) is the potential of the field of one charge [2]:

V0(r) =
∫ ∞

r
E (0)(r)dr

− r E (0)(r) + sign(Q)
√|Q|

(
2

γ

)1/4

×F
[

2 arctan

(√
γ

2
|E (0)(r)|

)1/2

,
1

2

]

,

whereF(φ,m) = ∫ φ

0 (1−m sin2 θ)−1/2dθ is elliptic integral
of the first kind.

The first term (31) is the nonlinear electric monopole field
(21) substituting for the Coulomb field in the nonlinear prob-
lem under study, while the second term in (31) may be con-
sidered as giving a nonlinear correction to the electric dipole
field. The lines of force and the equipotential curves of the
latter field drawn under the choice of parameters correspond-
ing to a strong nonlinearity are shown in Fig. 1.

3.2 Large separation r � R between charges

The quantities that relate to the approximation valid at r �
R, dealt with in this section, will be written with a tilde to
distinguish it from the corresponding quantities in Sect. 3.1
relating to the opposite approximation.

Let us expand the inhomogeneity (25) to the first order in
the ratio r/R (without assuming the smallness of R and r as
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compared to γ 1/4):

Elin(r)

= q2 − q1

4πR2

R
R

+ (q2 + q1)

4πR2

(
r
R

− 3R
R

(R · r)
R2

)
+ · · · .

(33)

The first term here has the clear meaning of the sum of two
oppositely directed Coulomb fields produced in the point
r = 0 by the two charges placed far from one another. The
second one looks like a dipole field in the variable R with
the equivalent “dipole moment” (q2 + q1)r.

We are looking for a solution to Eq. (24) in the form of
the expansion in powers of r/R,

E = Ẽ(0) + Ẽ(1) + · · ·
= f

4πR2

R
R

+ 1

4πR2

(
r
R
c + R

R

(R · r)
R2 b

)
+ · · · (34)

with the yet unknown dimensionless coefficients f, c and b
being functions of R. The first Maxwell equation [∇×E] = 0
is satisfied by (34).

In the zeroth order we have the equation for

Ẽ(0)(R) = f

4πR2

R
R

= Ẽ (0)(R)
R
R

in the form

Ẽ (0)
(

1 + γ

2
Ẽ (0)2

)
= q2 − q1

4πR2 , (35)

which implies that f/(4πR2) = Ẽ (0)(R) is the function
obtained from E (0)(r) of the previous Sect. 3.1 by the sub-
stitutions r → R and q2 + q1 → q2 − q1.

3.2.1 Leading (dipole-like) approximation

In the first order, the use of (35) turns Eq. (24) into a linear
algebraic equation for Ẽ(1)(R),

Ẽ(1) = q2 + q1

4πR2

(
r
R

− 3R
R

(R · r)
R2

)

−γ

2
[2(Ẽ(1) · Ẽ(0))Ẽ(0) + Ẽ (0)2Ẽ(1)]. (36)

Calculating the second term in the right-hand side (the aux-
iliary electric field E(r) = (γ /2)E2(r)E(r)) with the ansatz
(34),

2(Ẽ(1) · Ẽ(0))Ẽ(0) + Ẽ(0)2Ẽ(1)

= R
R
Ẽ (0)2 (R · r)

4πR4 [2c + 3b] + rẼ (0)2 c

4πR3 ,

we obtain from (36) two equations for the components of
E(1) along R and along r that determine the values

c = (q2 + q1)

1 + γ
2 Ẽ

(0)2
= q2 + q1

q2 − q1
Ẽ (0)R2, b = −c

3 + 5γ
2 Ẽ (0)2

1 + 3γ
2 Ẽ (0)2

.

Finally,

E = Ẽ(0) + Ẽ(1) = Ẽ (0)(R)
R
R

+ q2 + q1

4πR2
(
1 + γ

2 Ẽ
(0)2(R)

)

×
(
r
R

− R
R

(R · r)
R2

3 + 5γ
2 Ẽ (0)2(R)

1 + 3γ
2 Ẽ (0)2(R)

)

, (37)

where Ẽ (0) is the solution of Eq. (35) as a function of R.
The field (37) obviously satisfies the first Maxwell equation
[∇ ×E] = 0. By comparing (37) with the linear field of two
charges in a similar approximation (33) we observe that in
the zeroth-order term the difference (q2 − q1)/R2 of the two
Coulomb fields in the point r = 0 has been replaced by the
nonlinear field Ẽ (0) of the equivalent charge q2 − q1, while
in the first-order term the “dipole field” (q2 + q1)r has been
modified by two different factors in the terms parallel to r
and R.

To be more general, note that the fields (37) and (31) turn
into one another under the simultaneous replacement of the
observation coordinate r by the separation R between the
charges, and of the sum q2 + q1 of the charges by their dif-
ference q2 − q1. The same symmetry under the interchange
r ↔ R, q2 + q1 ↔ q2 − q1 certainly holds for the linear
γ = 0 limits (33), (26) of Eqs. (37) and (31). This symme-
try occurs, because the second Maxwell equations, within
the approximations adopted in this section, r � R, (36),
and in the previous section, r � R, Eq. (28), turn into each
other under the transformation under consideration, while the
first Maxwell equation is satisfied for both. As for the exact
equation (24), this transformation maps it into a strange dif-
ferential equation of a nonexistent theory.

3.2.2 Next-to-leading (quadrupole-like) approximation

In this section we are studying the next term Ẽ(2), quadratic
in the ratio r/R, extending the expansion (34). To this end we
first extend the expansion (33) of the linear field (25) Elin(r)
to include the corresponding term:

Elin(r) = q2 − q1

4πR2

R
R

+ q1 + q2

4πR2

(
r
R

− 3
R
R

(r · R)

R2

)

+3(q1 − q2)

8πR2

(
2
(r · R)

R2

r
R

+
( r

R

)2 R
R

−5
(r · R)2

R4

R
R

)
+ O

(
r3

R3

)
. (38)
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Once, up to the first order in r/R, Eq. (34) satisfies the first
Maxwell equation [∇×E] = 0 automatically with any coef-
ficients f, b, c we conclude, as we did in the previous sec-
tion, that the curl [∇ × �(r)] involved in (9) is zero to this
order, Eq. (37) being the solution to Eq. (9) without this curl.
This implies that the expansion of [∇ × �(r)] starts with
the quadratic term (r/R)2. Bearing in mind that the vector
product [r×R] is the only pseudovector in our problem and
that the action of ∇ lowers the power of r by one we look for
the pseudovector � in the form

� = [r × R]

| [r × R] |
[
Ωφ

(
r · R
r R

)
r3

R3 + O

(
r4

R4

)]
, (39)

where Ωφ ((r · R)/(r R)) is a scalar function of the angle
θ between the observation direction and the axis, on which
the charges lie, cos θ = (r · R)/(r R). A straightforward
calculation yields (we refer to

er = r
r
, eφ = − r × R

|r × R| , eθ = eφ × er

and to the relation (∇ · �) = 0) obeyed by (39).

[∇ × �]

= 1

R

[(
cot θΩφ(θ) + dΩφ

dθ

)
er − 4Ωφ(θ)eθ

] ( r

R

)2
,

(40)

Δ� = − [∇ × [∇ × �]]

= 1

R2

(
d2Ωφ(θ)

dθ2 + cot θ
dΩφ(θ)

dθ

−(cot2 θ − 11)Ωφ(θ)

)
r

R
eφ (41)

From the last relation it follows that it is sufficient to solve
Eq. (17) up to the first order in r/R. We expand the right-hand
side of Eq. (17) in a series in r/R:

N × [(N · ∇)N]
= Elin(r) ×

(
(Elin(r) · ∇)(Elin(r) + ∇ × �)

)
+ O

( r

R

)2

= (q1 − q2)
2

16π2R7 sin2 θ

(
− d2Ωφ

dθ2 + 4 cot θ
dΩφ

dθ
(42)

+(3 − 6 csc2 θ)Ωφ − 12q1q2

4πR(q1 − q2) sin θ

)
r

R
eφ

+O
( r

R

)2
, (43)

1 − ξ
(
γ N 2

)

N 2 = 8πR4

(q1 − q2)2 (1 − κ(R)) + O
( r

R

)
. (44)

Thus, we obtain from (17) with the use of (41), (43) and (44)
a linear differential equation for the function Ωφ(θ):

(κ(R) − 2 − (κ(R) − 1) cos 2θ)
d2Ωφ(θ)

dθ2

−(4(κ(R) − 1) sin 2θ + cot θ)
dΩφ(θ)

dθ

+(3κ(R)(cos 2θ + 3) − 3(cos 2θ + 7) + csc2 θ)Ωφ(θ)

= 24q1q2(κ(R) − 1)

4πR(q2 − q1)
sin θ, (45)

where κ(R) = 4π Ẽ (0)R2/(q2 − q1) = ξ
(
γ

(q2−q1)
2

16π2R4

)
, and

ξ is the solution (12) of Eq. (11). The general solution of
Eq. (45) in the class of functions regular in θ has the form

Ωφ(θ) = 12q1q2

4π(q1 − q2)R

κ(R) − 1

3κ(R) − 2
sin θ cos2 θ

+C1 sin θ

(
1 + 7 cos(2θ) + 4

κ(R)
sin2 θ

)
. (46)

The term with the constant C1 satisfies the homogeneous
equation obtained from (45) by omitting its right-hand side.
Consequently, this solution determines a field that is not
generated by the source, and therefore we discard it. The
condition C1 = 0 can be represented also in the form
Ωφ (π/2) = 0. By substituting (46) with C1 = 0 into (40)
we have

[∇ × �] = 24q1q2

4π(q2 − q1)R2

κ(R) − 1

2κ(R) − 3

× (r · R)

R2

(
2
(r · R)

R2

R
R

− r
R

)
+ O

( r

R

)3
.

Then

N = Elin(r) + ∇ × � = N(0) + N(1) + N(2) + O
( r

R

)3
,

N(0) = q2 − q1

4πR2

R
R

, N(1) = q1 + q2

4πR2

(
r
R

− 3
(r,R)

R2

R
R

)
,

N(2) = 3(q1 − q2)

8πR2

[
2α(R)

(r,R)

R2

r
R

+
( r

R

)2 R
R

− 5β(R)
(r,R)2

R4

R
R

]
,

where

α(R) = (q1 + q2)
2 + 4q1q2

2κ(R)−3

(q1 − q2)2 ,

β(R) =
5(q2

1 + q2
2 ) + 2q1q2

(
3 + 8

2κ(R)−3

)

5(q1 − q2)2 .

For N 2 we have

N 2 = N20 + N21 + N22 + O
( r

R

)3
,

N20 = (q1 − q2)
2

16π2R4 , N21 = q2
1 − q2

2

4π2R4

(r,R)

R2 ,

N22 = 3

4π2R4

(r,R)2

R4

(
q2

1 + q2
2 + q1q2

2κ(R) − 1

2κ(R) − 3

)

− 1

8π2R4 (q2
1 + q2

2 − 4q1q2)
( r

R

)2
.
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We expand Eq. (10) in a series within the order (r/R)2:

E = Nξ
(
γ N 2

)
= Ẽ(0) + Ẽ(1) + Ẽ(2) + O

( r

R

)3
.

The first two terms, Ẽ(0) and Ẽ(1), are determined by Eq.
(37). For the second-order correction Ẽ(2) we obtain

Ẽ(2) = ξ (γ N20)N(2) + γ N21ξ
′ (γ N20)N(1)

+
(
γ ξ ′ (γ N20) N22 + γ

2
ξ ′′ (γ N20) N

2
21

)
N(0).

Differentiating (11) we obtain the expressions

ξ ′(x) = − ξ3(x)

2 + 3xξ(x)2 , ξ ′′(x) = 12
(1 + xξ2(x))ξ5(x)

(2 + 3xξ2(x))3 .

This finally results in the second-power correction to (37):

Ẽ(2) = 3

8πR2

(
c(R)

[
2
(r · R)

R2

r
R

+ R
R

( r

R

)2
]

−5d(R)
(r · R)2

R4

R
R

)
, (47)

where

c(R)

= 1

3κ(R)

(
(q1 + q2)

2

q1 − q2
+ q2

1 − 4q1q2 + q2
2

q1 − q2

2κ(R)

3κ(R) − 2

)

,

d(R) = κ(R)

5(q1 − q2)(2κ(R) − 3)
(8(q1 + q2)

2κ3(R)

− 4(13(q2
1 + q2

2 ) + 14q1q2)κ
2(R)

+ 2(47(q2
1 + q2

2 ) + 14q1q2)κ(R)

− 11(5(q2
1 + q2

2 ) − 2q1q2)).

Note that (47) obeys the first Maxwell equation,

[∇ × Ẽ(2)] = 0,

identically for any coefficients c and d.
Similarly to the coefficient (q1 − q2) in the third

(quadrupole) term in (38), the coefficients c(R) and d(R)

are odd under the permutation q1 ↔ q2. Note that the seem-
ing singularity at q1 = q2 cancels from these coefficients
due to the equality κ(R) = 1, which holds in this case. In
the linear limit γ = 0 one also has κ(R) = 1, and c(R) and
d(R) turn both into q1 − q2, so that (47) turns into the last
(quadrupole) term in the expansion (38) of the linear field.

4 Concluding remarks

We were working within the simplest nonlinear electrody-
namics with the self-interaction of the fourth power of the
electromagnetic field (5), which, if needed, may be thought

of as resulting from the first nontrivial term of expansion of
the Euler–Heisenberg effective Lagrangian in powers of its
background field argument F, while the other field invariant
is kept vanishing, G =0. In this case the coefficient γ , whose
dimensionality is [length4], which determines the strength of
the nonlinearity, is expressed as (6) in terms of the electron
mass and charge. Otherwise it may be considered to be arbi-
trary. Anyway, in our calculation the smallness of γ 1/4 as
compared to the two other quantities r and R carrying the
dimensionality of length was nowhere assumed.

We considered the electrostatic problem of interaction
between two point-like charges q1 and q2 placed in the
points r = ±R by solving the nonlinear Maxwell equation
(18), which follows from the least action principle for the
Lagrangian (4), together with the standard Bianchi identity
(8). For a small separation between the charges, R � r ,
we found the electric field (31) in the approximation, linear
with respect to the ratio R/r , which serves as the nonlinear
extension of the usual dipole field. The result for the corre-
sponding scalar potential is Eq. (32). The lines of force and
equipotential-curve pattern is shown in Fig. 1 in the config-
uration space r with the parameters chosen in such a way as
to make the nonlinearity effect best pronounced. For large
separation between the charges, R � r, we found the elec-
tric field in the approximations (37), linear with respect to
the ratio r/R, and (47), quadratic.

Using the two opposite representations (31) and (37) we
can get a rough estimate for the behavior of the field energy
(20), (19) in the asymptotic regime R → 0, where the two
point charges approach each other infinitely close. According
to that estimate, in this regime the energy of the system of
two point charges can be represented as

P0 = a + bR
1
3 , (48)

where a and b are finite constants depending only on the
charges q1 and q2, and on the self-coupling constant γ . The
R-independent term a is the self-energy of the united point-
like charge with the value q1+ q2. This is finite, as estab-
lished in [1]. The behavior (48) is rigorously confirmed fol-
lowing a quite different procedure to be published elsewhere.
Although the energy is finite in the limit R = 0, the force
F between the two charges defined as the derivative of the
energy with respect to the distance is weakly infinite:

F = dP0

dR
= R

R
5
3

b

3
.

This formula replaces, in the given nonlinear model, the
Coulomb law F ∼ R · R−3 for the force between two point
charges. The power 2/3 here is determined by the power 2
in the self-interaction in (5).
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