# ON ONE-TO-ONE PROPERTY OF A VECTORIAL BOOLEAN FUNCTION OF THE SPECIAL TYPE ${ }^{1}$ 

M. M. Zapolskiy, N. N. Tokareva

S-boxes are widely used in cryptography. In particular, they form important components of SP and Feistel networks. Mathematically, S-box is a vectorial Boolean function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ that should satisfy several cryptographic properties. Usually $n=m$. We study one-to-one property of a vectorial Boolean function constructed in a special way on the base of a Boolean function and a permutation on $n$ elements. The number of all one-to-one functions of this type is calculated.
Keywords: Boolean function, vectorial Boolean function, S-box.
Let $\pi \in S_{n}$ be a permutation such that $\pi^{n}(x)=x$. Consider some $x \in \mathbb{F}_{2}^{n}, x=\left(x_{1}\right.$, $\left.\ldots, x_{n}\right)$, define $\pi(x)=\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$. Let $f$ be a Boolean function in $n$ variables, we construct vectorial Boolean function $F_{\pi}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ by the following rule:

$$
F_{\pi}(x)=\left(f(x), f(\pi(x)), f\left(\pi^{2}(x)\right), \ldots, f\left(\pi^{n-1}(x)\right)\right)
$$

Let $\Delta_{\pi, n}$ be the set of all these functions. Define $\rho(x)=\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right)$, i.e., $\rho=$ $=(n, 1,2, \ldots, n-1)$.

Proposition 1. Let $\pi \in S_{n}$ be such that $\pi^{n}(x)=x, F_{\pi} \in \Delta_{\pi, n}$. Then $F_{\pi}(\pi(x))=$ $=\rho^{-1}\left(F_{\pi}(x)\right)$ for all $x \in \mathbb{F}_{2}^{n}$.

We define action of $\pi$ on $\mathbb{F}_{2}^{n}$ by the rule: if $x \in \mathbb{F}_{2}^{n}$, then $x \circ \pi=\pi(x)$. This action splits $\mathbb{F}_{2}^{n}$ into orbits with respect to $\pi$. If $x$ is in some orbit $o$, we call $x$ a generator of $o$. We call $O_{\pi}(x)$ the orbit with respect to the action of $\pi$.

Example 1. For $n=4$, the set $\mathbb{F}_{2}^{n}$ is divided into six orbits with respect to the permutation $\rho$ :

| $O_{\rho}((0,0,0,0))$ | $(0,0,0,0)$ |
| :--- | :--- |
| $O_{\rho}((1,0,0,0))$ | $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$ |
| $O_{\rho}((1,0,1,0))$ | $(1,0,1,0),(0,1,0,1)$ |
| $O_{\rho}((1,0,0,1))$ | $(1,0,0,1),(1,1,0,0),(0,1,1,0),(0,0,1,1)$ |
| $O_{\rho}((0,1,1,1))$ | $(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)$ |
| $O_{\rho}((1,1,1,1))$ | $(1,1,1,1)$ |

We denote by $\Theta_{\pi, n}$ the set of all orbits with respect to the action of $\pi$ on $\mathbb{F}_{2}^{n}$. Proposition 1 implies that, for arbitrary $F_{\pi} \in \Delta_{\pi, n}$, values of elements of some $\pi$-orbit $g \in \Theta_{\pi, n}$ are elements of some $\rho$-orbit $q \in \Theta_{\rho, n}$, since $F_{\pi}\left(\pi^{i}(x)\right)=\rho^{-i}\left(F_{\pi}(x)\right)$. Let $M_{\pi, n}^{k}=\left\{g \in \Theta_{\pi, n}\right.$ : $|g|=k\}$.

Let $\Psi_{F_{\pi}, n}: \Theta_{\pi, n} \rightarrow \Theta_{\rho, n}$ be a mapping defined by the rule $\Psi_{F_{\pi}, n}\left(O_{\pi}(x)\right)=O_{\rho}\left(F_{\pi}(x)\right)$. Now we can formulate conditions for $F_{\pi}$ to be one-to-one in terms of $\Psi_{F_{\pi}, n}$.

Theorem 1. $F_{\pi} \in \Delta_{\pi, n}$ is an one-to-one function if and only if $\Psi_{F_{\pi}, n}$ is one-to-one. If $\Psi_{F_{\pi}, n}$ is one-to-one, then $\left|\Psi_{F_{\pi}, n}(g)\right|=|g|$, for all $g \in \Theta_{\pi, n}$.

As a corollary of Theorem 1, we obtain the following result.

[^0]Proposition 2. If $\left|M_{\pi, n}^{k}\right| \neq\left|M_{\rho, n}^{k}\right|$ for some $k$, then the set of one-to-one functions from $\Delta_{\pi, n}$ is empty.

Theorem 1 means that in order to construct one-to-one functions $F_{\pi} \in \Delta_{\pi, n}$ we can use bijective maps $\Psi_{n}: \Theta_{\pi, n} \rightarrow \Theta_{\rho, n}$ that satisfy $\left|\Psi_{n}(g)\right|=|g|$, where $g \in \Theta_{\pi, n}$. Then, depending on them, we can construct $F_{\pi} \in \Delta_{\pi, n}$ such that $\Psi_{F_{\pi}, n} \equiv \Psi_{n}$.

Proposition 3. Let $\Psi_{n}: \Theta_{\pi, n} \rightarrow \Theta_{\rho, n}$ satisfy $\left|\Psi_{n}(g)\right|=|g|$ for all $g \in \Theta_{\pi, n}$. Then, for all $k \in \mathbb{N}$, the restriction of $\Psi_{n}$ on $M_{\pi, n}^{k}$ is a permutation of $M_{\pi, n}^{k}$.

Now consider the case $\pi=\rho$. We define $M_{n}^{k}=M_{\rho, n}^{k}$. Consider an one-to-one function $\Psi_{n}$ which satisfies $\left|\Psi_{n}(g)\right|=|g|$ for all $g \in \Theta_{\pi, n}$. Let us construct function $F_{\rho} \in \Delta_{\rho, n}$ based on $\Psi_{n}$. Let $O \in \Theta_{\rho, n}$ be an orbit of length $k$. If the value of $F_{\rho}$ for some $x \in O$ is determined, then the value of $F_{\rho}$ is determined for all $x \in O$, since $F_{\rho}\left(\rho^{n}(x)\right)=\rho^{-n}\left(F_{\rho}(x)\right)$. Thus, for every $\Psi_{F_{\rho}, n}$, we are able to construct $\prod_{k \in I_{n}} k^{\left|M_{n}^{k}\right|}$ functions, where $I_{n}=\{z \in \mathbb{N}: z \mid n\}$, and all of them are pairwise different.

Proposition 4. For any $k \in \mathbb{N}, \sum_{\ell \in I_{k}} \ell \cdot\left|M_{n}^{\ell}\right|=2^{k}$.
This formula allows us to calculate $\left|M_{n}^{k}\right|$ for every $k$. There are always only two orbits of length one, so we can calculate $\left|M_{n}^{k}\right|$ for every prime $k$. Then we can calculate it for every $k$. Therefore, we get the number of one-to-one functions from $\Delta_{\rho, n}$ :

Theorem 2. The number of one-to-one vectorial Boolean functions in class $\Delta_{\rho, n}$ is equal to $\prod_{k \in I_{n}}\left|M_{n}^{k}\right|!\cdot k^{\left|M_{n}^{k}\right|}$.

DOI 10.17223/2226308X/13/13

## CRYPTOGRAPHIC PROPERTIES OF A SIMPLE S-BOX CONSTRUCTION BASED ON A BOOLEAN FUNCTION AND A PERMUTATION ${ }^{1}$

D. A. Zyubina, N. N. Tokareva

We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let $\pi$ be an arbitrary permutation on $n$ elements, $f$ be a Boolean function in $n$ variables. Define a vectorial Boolean function $F_{\pi}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ as $F_{\pi}(x)=$ $=\left(f(x), f(\pi(x)), f\left(\pi^{2}(x)\right), \ldots, f\left(\pi^{n-1}(x)\right)\right)$. We study cryptographic properties of $F_{\pi}$ such as high nonlinearity, balancedness, low differential $\delta$-uniformity in dependence on properties of $f$ and $\pi$ for small $n$.
Keywords: Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential $\delta$-uniformity, high algebraic degree.

S-boxes play the crucial role for providing resistance of a block cipher to different types of attacks. The major reason for this is that in classical and modern block ciphers the main complicated and nonlinear layer is presented namely by S-boxes. Mathematically, S-box is a vectorial Boolean function that maps $n$ bits to $m$ bits. Usually, $n$ coincides with $m$. It is well known that some special mathematical properties of S -boxes, such as high nonlinearity, low differential uniformity, high algebraic immunity, etc. make a

[^1]
[^0]:    ${ }^{1}$ The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0017) and supported by RFBR (project no. 18-07-01394) and Laboratory of Cryptography JetBrains Research.

[^1]:    ${ }^{1}$ The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-20191613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of Cryptography JetBrains Research.

