UDC 519.7

DOI 10.17223/2226308X/13/12

ON ONE-TO-ONE PROPERTY OF A VECTORIAL BOOLEAN FUNCTION OF THE SPECIAL TYPE¹

M. M. Zapolskiy, N. N. Tokareva

S-boxes are widely used in cryptography. In particular, they form important components of SP and Feistel networks. Mathematically, S-box is a vectorial Boolean function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ that should satisfy several cryptographic properties. Usually n = m. We study one-to-one property of a vectorial Boolean function constructed in a special way on the base of a Boolean function and a permutation on n elements. The number of all one-to-one functions of this type is calculated.

Keywords: Boolean function, vectorial Boolean function, S-box.

Let $\pi \in S_n$ be a permutation such that $\pi^n(x) = x$. Consider some $x \in \mathbb{F}_2^n$, $x = (x_1, \ldots, x_n)$, define $\pi(x) = (x_{\pi(1)}, \ldots, x_{\pi(n)})$. Let f be a Boolean function in n variables, we construct vectorial Boolean function $F_{\pi} : \mathbb{F}_2^n \to \mathbb{F}_2^n$ by the following rule:

$$F_{\pi}(x) = (f(x), f(\pi(x)), f(\pi^{2}(x)), \dots, f(\pi^{n-1}(x))).$$

Let $\Delta_{\pi,n}$ be the set of all these functions. Define $\rho(x) = (x_n, x_1, x_2, \dots, x_{n-1})$, i.e., $\rho = (n, 1, 2, \dots, n-1)$.

Proposition 1. Let $\pi \in S_n$ be such that $\pi^n(x) = x$, $F_\pi \in \Delta_{\pi,n}$. Then $F_\pi(\pi(x)) = \rho^{-1}(F_\pi(x))$ for all $x \in \mathbb{F}_2^n$.

We define action of π on \mathbb{F}_2^n by the rule: if $x \in \mathbb{F}_2^n$, then $x \circ \pi = \pi(x)$. This action splits \mathbb{F}_2^n into orbits with respect to π . If x is in some orbit o, we call x a generator of o. We call $O_{\pi}(x)$ the orbit with respect to the action of π .

Example 1. For n = 4, the set \mathbb{F}_2^n is divided into six orbits with respect to the permutation ρ :

$O_{\rho}((0,0,0,0))$	(0, 0, 0, 0)
$O_{ ho}((1,0,0,0))$	(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
$O_{\rho}((1,0,1,0))$	(1, 0, 1, 0), (0, 1, 0, 1)
$O_{\rho}((1,0,0,1))$	(1,0,0,1),(1,1,0,0),(0,1,1,0),(0,0,1,1)
$O_{\rho}((0,1,1,1))$	(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)
$O_{\rho}((1,1,1,1))$	(1, 1, 1, 1)

We denote by $\Theta_{\pi,n}$ the set of all orbits with respect to the action of π on \mathbb{F}_2^n . Proposition 1 implies that, for arbitrary $F_{\pi} \in \Delta_{\pi,n}$, values of elements of some π -orbit $g \in \Theta_{\pi,n}$ are elements of some ρ -orbit $q \in \Theta_{\rho,n}$, since $F_{\pi}(\pi^i(x)) = \rho^{-i}(F_{\pi}(x))$. Let $M_{\pi,n}^k = \{g \in \Theta_{\pi,n} : |g| = k\}$.

Let $\Psi_{F_{\pi},n}: \Theta_{\pi,n} \to \Theta_{\rho,n}$ be a mapping defined by the rule $\Psi_{F_{\pi},n}(O_{\pi}(x)) = O_{\rho}(F_{\pi}(x))$. Now we can formulate conditions for F_{π} to be one-to-one in terms of $\Psi_{F_{\pi},n}$.

Theorem 1. $F_{\pi} \in \Delta_{\pi,n}$ is an one-to-one function if and only if $\Psi_{F_{\pi},n}$ is one-to-one. If $\Psi_{F_{\pi},n}$ is one-to-one, then $|\Psi_{F_{\pi},n}(g)| = |g|$, for all $g \in \Theta_{\pi,n}$.

As a corollary of Theorem 1, we obtain the following result.

¹The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0017) and supported by RFBR (project no. 18-07-01394) and Laboratory of Cryptography JetBrains Research.

Proposition 2. If $|M_{\pi,n}^k| \neq |M_{\rho,n}^k|$ for some k, then the set of one-to-one functions from $\Delta_{\pi,n}$ is empty.

Theorem 1 means that in order to construct one-to-one functions $F_{\pi} \in \Delta_{\pi,n}$ we can use bijective maps $\Psi_n : \Theta_{\pi,n} \to \Theta_{\rho,n}$ that satisfy $|\Psi_n(g)| = |g|$, where $g \in \Theta_{\pi,n}$. Then, depending on them, we can construct $F_{\pi} \in \Delta_{\pi,n}$ such that $\Psi_{F_{\pi},n} \equiv \Psi_n$.

Proposition 3. Let $\Psi_n : \Theta_{\pi,n} \to \Theta_{\rho,n}$ satisfy $|\Psi_n(g)| = |g|$ for all $g \in \Theta_{\pi,n}$. Then, for all $k \in \mathbb{N}$, the restriction of Ψ_n on $M_{\pi,n}^k$ is a permutation of $M_{\pi,n}^k$.

Now consider the case $\pi = \rho$. We define $M_n^k = M_{\rho,n}^k$. Consider an one-to-one function Ψ_n which satisfies $|\Psi_n(g)| = |g|$ for all $g \in \Theta_{\pi,n}$. Let us construct function $F_{\rho} \in \Delta_{\rho,n}$ based on Ψ_n . Let $O \in \Theta_{\rho,n}$ be an orbit of length k. If the value of F_{ρ} for some $x \in O$ is determined, then the value of F_{ρ} is determined for all $x \in O$, since $F_{\rho}(\rho^n(x)) = \rho^{-n}(F_{\rho}(x))$. Thus, for every $\Psi_{F_{\rho,n}}$, we are able to construct $\prod_{k \in I_n} k^{|M_n^k|}$ functions, where $I_n = \{z \in \mathbb{N} : z | n\}$, and all

of them are pairwise different.

Proposition 4. For any $k \in \mathbb{N}$, $\sum_{\ell \in I_k} \ell \cdot |M_n^{\ell}| = 2^k$.

This formula allows us to calculate $|M_n^k|$ for every k. There are always only two orbits of length one, so we can calculate $|M_n^k|$ for every prime k. Then we can calculate it for every k. Therefore, we get the number of one-to-one functions from $\Delta_{\rho,n}$:

Theorem 2. The number of one-to-one vectorial Boolean functions in class $\Delta_{\rho,n}$ is equal to $\prod_{k \in I_n} |M_n^k|! \cdot k^{|M_n^k|}$.

UDC 519.7

DOI 10.17223/2226308X/13/13

CRYPTOGRAPHIC PROPERTIES OF A SIMPLE S-BOX CONSTRUCTION BASED ON A BOOLEAN FUNCTION AND A PERMUTATION¹

D. A. Zyubina, N. N. Tokareva

We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let π be an arbitrary permutation on n elements, f be a Boolean function in n variables. Define a vectorial Boolean function $F_{\pi} : \mathbb{F}_2^n \to \mathbb{F}_2^n$ as $F_{\pi}(x) =$ $= (f(x), f(\pi(x)), f(\pi^2(x)), \ldots, f(\pi^{n-1}(x)))$. We study cryptographic properties of F_{π} such as high nonlinearity, balancedness, low differential δ -uniformity in dependence on properties of f and π for small n.

Keywords: Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential δ -uniformity, high algebraic degree.

S-boxes play the crucial role for providing resistance of a block cipher to different types of attacks. The major reason for this is that in classical and modern block ciphers the main complicated and nonlinear layer is presented namely by S-boxes. Mathematically, S-box is a vectorial Boolean function that maps n bits to m bits. Usually, n coincides with m. It is well known that some special mathematical properties of S-boxes, such as high nonlinearity, low differential uniformity, high algebraic immunity, etc. make a

¹The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of Cryptography JetBrains Research.