Утверждение 5. Пусть $g(x+2 y)=a(x, y)+2 b(x, y)$, где $x, y \in \mathbb{Z}_{2}^{n}$ и a, b-булевы функции от $2 n$ переменных, является бент-функцией. Тогда функция $g^{\prime}(x+2 y)=$ $=3 a(x, y)+2 b(x, y)$ также является кватернарной бент-функцией от $n \geqslant 1$ переменных.

Отметим, что утверждение верно и в обратную сторону.

ЛИТЕРАТУРА

1. Matsui M. Linear cryptanalysis method for DES cipher // Eurocrypt'1993. LNCS. 1994. V. 765. P. 386-397.
2. Adams C. Constructing symmetric ciphers using the CAST design procedure // Design, Codes, and Cryptography. 1997. V.12. No. 3. P. 283-316.
3. Hell M., Johansson T., Maximov A., and Meier W. A stream cipher proposal: Grain-128 // IEEE Intern. Symp. Inform. Theory. Seattle, WA, 2006. P. 1614-1618.
4. Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press, Elsevier, 2015. 230 p.
5. Kumar P. V., Scholtz R. A., and Welch L. R. Generalized bent functions and their properties // J. Combin. Theory. 1985. V. 40. No. 1. P. 90-107.
6. Solé P. and Tokareva N. Connections Between Quaternary and Binary Bent Functions // Cryptology ePrint Archive, Report 2009/544. http://eprint.iacr.org/.
7. Solé P. and Tokareva N. On quaternary and binary bent functions // Прикладная дискретная математика. Приложение. 2009. № 1. С. 16-18.

ON A SECONDARY CONSTRUCTION OF QUADRATIC APN FUNCTIONS ${ }^{1}$

K. V. Kalgin, V.A. Idrisova

Almost perfect nonlinear functions possess the optimal resistance to the differential cryptanalysis and are widely studied. Most known constructions of APN functions are obtained as functions over finite fields $\mathbb{F}_{2^{n}}$ and very little is known about combinatorial constructions in \mathbb{F}_{2}^{n}. We consider how to obtain a quadratic APN function in $n+1$ variables from a given quadratic APN function in n variables using special restrictions on new terms.
Keywords: vectorial Boolean function, APN function, quadratic function, secondary construction.
Let us recall some definitions. Let \mathbb{F}_{2}^{n} be the n-dimensional vector space over \mathbb{F}_{2}. A function F from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{m}, where n and m are integers, is called a vectorial Boolean function. If $m=1$, such a function is called Boolean. Every vectorial Boolean function F can be represented as a set of m coordinate functions $F=\left(f_{1}, \ldots, f_{m}\right)$, where f_{i} is a Boolean function in n variables. Any vectorial function F can be represented uniquely in its algebraic normal form (ANF):

$$
F(x)=\sum_{I \in \mathcal{P}(N)} a_{I}\left(\prod_{i \in I} x_{i}\right)
$$

where $\mathcal{P}(N)$ is a power set of $N=\{1, \ldots, n\}$ and $a_{I} \in \mathbb{F}_{2}^{m}$. The algebraic degree of a given function F is the degree of its ANF: $\operatorname{deg}(F)=\max \left\{|I|: a_{I} \neq 0, I \in \mathcal{P}(N)\right\}$. If algebraic

[^0]degree of a function F is not more than 1, then F is called affine. If for an affine function F it holds $F(\mathbf{0})=\mathbf{0}$, then F is called linear. If algebraic degree of a function F is equal to 2 , then F is called quadratic. Two vectorial functions F and G are extended affinely equivalent (EA-equivalent) if $F=A_{1} \circ G \circ A_{2}+A$, where A_{1}, A_{2} are affine permutations on \mathbb{F}_{2}^{n} and A is an affine function. Let F be a vectorial Boolean function from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n}. For vectors $a, b \in \mathbb{F}_{2}^{n}$, where $a \neq 0$, consider the value
$$
\delta(a, b)=\left|\left\{x \in \mathbb{F}_{2}^{n}: F(x+a)+F(x)=b\right\}\right| .
$$

Denote by Δ_{F} the following value:

$$
\Delta_{F}=\max _{a \neq 0, b \in \mathbb{P}_{2}^{n}} \delta(a, b) .
$$

Then F is called differentially Δ_{F}-uniform function. The smaller the parameter Δ_{F} is, the better the resistance of a cipher containing F as an S-box to differential cryptanalysis. For the vectorial functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n}, the minimal possible value of Δ_{F} is equal to 2 . In this case, the function F is called almost perfect nonlinear (APN). This notion was introduced by K. Nyberg in [1]. APN fuctions draw attention of many researchers, but there is still a significant list (see, for example, $[2-4]$) of important open questions. We are especially interested how to find new constructions of APN functions in vector space \mathbb{F}_{2}^{n}, since almost all the known constructions of this class are found only as polynomials over the finite fields, and to the best of our knowledge, only a few approaches to such combinatorial constructions was proposed $[5,6]$.

Since EA-equivalence preserves APNness, it is always possible to omit linear and constant terms in the algebraic normal form of a given APN function. Further we will consider quadratic vectorial Boolean functions that have only quadratic terms in their ANF. The following theorem gives a necessary condition on the ANF of a given APN function.

Theorem 1 [7]. Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be an APN function in n variables. Then every quadratic term $x_{i} x_{j}$, where $i \neq j$, appears at least in one coordinate function of F.

This property motivated us to suggest the following construction of quadratic APN functions. Let $G=\left(g_{1}, \ldots, g_{n}\right)$ be a quadratic APN-function in n variables. Consider vectorial function $F=\left(f_{1}, \ldots, f_{n}, f_{n+1}\right)$ in $n+1$ variables such that

$$
\begin{gather*}
f_{1}=g_{1}+\sum_{i=1}^{n} \alpha_{1, i} x_{i} x_{n+1}, \\
\ldots \tag{1}\\
f_{n}=g_{n}+\sum_{i=1}^{n} \alpha_{n, i} x_{i} x_{n+1}, \\
f_{n+1}=g_{n+1}+\sum_{i=1}^{n} \alpha_{n+1, i} x_{i} x_{n+1},
\end{gather*}
$$

where $\alpha_{1, i} \ldots, \alpha_{n+1, i} \in \mathbb{F}_{2}$ for $i=1, \ldots, n$ and $g_{n+1}=\sum_{1 \leqslant j<k \leqslant n} \beta_{j, k} x_{j} x_{k}$ for some fixed $\beta_{j, k} \in \mathbb{F}_{2}$. Note that if $\alpha_{1, i}, \ldots, \alpha_{n, i}$ are such that each term $x_{i} x_{n+1}$ appears at least in one of the coordinate functions f_{1}, \ldots, f_{n}, then the necessary condition of Theorem 1 is held for the constructed function F.

Each quadratic vectorial function G in n variables can be considered as a symmetric matrix $\mathcal{G}=\left(g_{i j}\right)$, where each element $g_{i j} \in \mathbb{F}_{2}^{n}$ is a vector of coefficients corresponding to
term $x_{i} x_{j}$ in the algebraic normal form of G and all diagonal elements $g_{i i}$ are null. It is necessary to mention that these matrices are essentially the same as so-called QAM matrices that were used in $[8,9]$ to construct and classify a lot of new quadratic APN functions over finite fields. Using these matrices, the APN property can be formulated in the following way:

Proposition 1. Let \mathcal{G} be the matrix that corresponds to quadratic vectorial function G. Then function G is APN if and only if $x(\mathcal{G} \cdot a) \neq 0$ for all $x \neq a$, where $a, x \in \mathbb{F}_{2}^{n}$ and $a \neq \mathbf{0}$.

In terms of matrices, the construction (1) can be considered as an extension of a given \mathcal{G} with an extra bit that represents g_{n+1} in every element and an extra pair of row and column that represents a set of new terms $x_{i} x_{n+1}$.

Consider a quadratic APN function G and the corresponding $n \times n$ matrix \mathcal{G}. Denote the vector of nonzero coefficients as $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Let us fix g_{n+1} and construct $(n+1) \times$ $\times(n+1)$ matrix \mathcal{F} by adding $\left(\alpha_{1}, \ldots, \alpha_{n}, 0\right)$ as the last column and the last row and adding new bit to every element according to the choice of g_{n+1}. Let us denote as \mathcal{G}^{\prime} the submatrix $\left(f_{i j}\right)$ of \mathcal{F}, such that $i, j<n+1$. Let $\langle X\rangle$ denote the linear span of X and F be the quadratic vectorial function corresponding to the constructed matrix \mathcal{F}.

Theorem 2. A function F is APN if and only if $\alpha \cdot a^{\prime}$ does not belong to $\left\langle\mathcal{G}^{\prime} \cdot a^{\prime}\right\rangle$ for all $a^{\prime} \in \mathbb{F}_{2}^{n}, a^{\prime} \neq \mathbf{0}$.

Theorem 2 shows how to choose new coefficients $\alpha_{1, i} \ldots, \alpha_{n+1, i} \in \mathbb{F}_{2}$ in the construction (1) such that an obtained function F is APN. When $n=3,4$ and 5 , for APN functions that are representatives of EA classes, all possible classes of quadratic APNs are obtained for 4,5 and 6 variables from the classification [10] and large variety of classes for constructing functions in 6 and 7 variables.

REFERENCES

1. Nyberg K. Differentially uniform mappings for cryptography. EUROCRYPT'93, LNCS, 1994, vol. 765, pp. 55-64.
2. Carlet C. Open questions on nonlinearity and on APN Functions. WAIFI 2014, LNCS, 2015, vol. 9061, pp. 83-107.
3. Glukhov M. M. O priblizhenii diskretnykh funktsiy lineynymi funktsiyami $[\mathrm{On}$ the approximation of discrete functions by linear functions]. Matematicheskie Voprosy Kriptografii, 2016, vol. 7, no.4, pp. 29-50. (in Russian)
4. Tuzhilin M.E. Pochti sovershennye nelineynye funktsii [APN-functions]. Prikladnaya Diskretnaya Matematika, 2009, no.3(5), pp. 14-20. (in Russian)
5. Gorodilova A. A. Characterization of almost perfect nonlinear functions in terms of subfunctions. Discrete Math. Appl., 2016, vol. 26, iss. 4, pp. 193-202.
6. Idrisova V. A. On an algorithm generating 2-to-1 APN functions and its applications to "the big APN problem". Cryptogr. Commun., 2019, no. 11, pp. 21-39.
7. Beth T. and Ding C. On almost perfect nonlinear permutations. EUROCRYPT'93, LNCS, 1993, vol. 765, pp. 65-76.
8. Yu Y., Wang M., and Li Y. A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr., 2014, no. 73, pp. 587-600.
9. Yu Y., Kaleyski N.S., Budaghyan L., and Li Y. Classification of Quadratic APN Functions with Coefficients in GF(2) for Dimensions up to 9. IACR Cryptol. ePrint Arch.: 1491, 2019.
10. Brinkmann M. and Leander G. On the classification of APN functions up to dimension five. Des. Codes Cryptogr., 2008, vol. 49, iss. 1-3, pp. 273-288.

[^0]: ${ }^{1}$ The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0017) and supported by RFBR (projects no. 18-07-01394, 20-31-70043) and Laboratory of Cryptography JetBrains Research.

