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This review deals with the metric complements and metric regularity in the Boolean 
cube and in arbitrary finite metric spaces. Let A be an arbitrary subset of a finite 
metric space M, and A be the metric complement of A — the set of all points of M 
at the maximal possible distance from A. If the metric complement of the set A 
coincides with A, then the set A is called a metrically regular set. The problem of 
investigating metrically regular sets was posed by N. Tokareva in 2012 when studying 
metric properties of bent functions, which have important applications in cryptography 
and coding theory and are also one of the earliest examples of a metrically regular 
set. In this paper, main known problems and results concerning the metric regularity 
are overviewed, such as the problem of finding the largest and the smallest metrically 
regular sets, both in the general case and in the case of fixed covering radius, and the 
problem of obtaining metric complements and establishing metric regularity of linear 
codes. Results concerning metric regularity of partition sets of functions and Reed — 
Muller codes are presented.

Keywords: metrically regular set, metric complement, covering radius, bent function, 
deep hole, Reed — Muller code, linear code.

1. Introduction
The problem of investigating and classifying metrically regular sets was posed by 

N. Tokareva [1, 2] when studying metric properties of bent functions [3]. A Boolean function 
in even number of variables is called a bent function if it is at the maximal possible distance 
from the set of affine functions.

Bent functions have various applications in cryptography, coding theory and 
combinatorics [2, 4, 5]. In cryptography, bent functions are valued because of their 
outstanding nonlinearity, which helps to construct S-boxes for block ciphers with high 
resistance to linear cryptanalysis, and, as it turned out, good diffusion properties and high 
resistance to differential cryptanalysis [5]. Bent functions were also used in the construction 
of the stream cipher Grain, being a part of a nonlinear feedback shift register [2]. From the 
coding theory standpoint, bent functions form the set of points at the maximal possible 
distance from the Reed — Muller code of the first order RM(1,m) in even number of 
variables m. Bent functions are used to construct Kerdock codes, which are optimal and have 
large code distances (see more in [5]). Bent functions also have a number of representations 
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and relations to different combinatorial objects: Hadamard difference sets, block designs, 
etc. [2, 5].

However, many problems related to bent functions remain unsolved; in particular, the 
gap between the best known lower and upper bound on the number of bent functions is 
extremely large; currently known constructions of bent functions are rather scarse.

In 2010 [6], N. Tokareva has proved that, like bent functions are maximally distant from 
affine functions, affine functions are at the maximal possible distance from bent functions, 
thus establishing the metric regularity of both sets. Combined with the importance of bent 
functions in cryptography and coding theory, this arouses the interest in studying the 
property of metric regularity and in the classification of metrically regular sets.

This paper deals with the metrically regular sets in the Boolean cube and in arbitrary 
finite metric spaces. Published results concerning the topic, as well as some currently 
unpublished, are overviewed.

Section 2 provides necessary basic definitions, simple examples of metrically regular 
sets and some of their trivial properties. Section 3 describes the results of Stanica, Sasao 
and Butler [7] concerning metric complements and metric regularity of partition sets of 
functions. Section 4 deals with the problem of finding the smallest and the largest metrically 
regular sets, both in general and in the case of fixed distance between sets [8]. Strongly 
metrically regular sets are introduced in Section 5 as a subclass of metrically regular sets. 
These allow one to obtain iterative constructions of metrically regular sets and get an 
estimate on how big the largest metrically regular set with fixed covering radius can be [9]. 
Section 6 touches upon the problem of describing metric complements and establishing 
metric regularity of linear codes. General results are presented, and the metric regularity 
of several families of Reed —Muller codes is established [10, 11].

2. Preliminaries
2.1. D e fi n i t i o n s

Let M be a finite discrete metric space with a metric d(-, •), which admits values from a 
set D. From now on, every space mentioned in the paper will be a finite discrete metric space. 
Let X C M be an arbitrary subset of the space (in this paper, whenever the symbol “c” is 
used, it will imply a nonempty proper subset) and y G M be an arbitrary point. The distance 
d(y, X) from the point y to the set X is equal to min d(y, x). The covering radius of the 

xeX
set X is defined as follows: 

p(X) = max d(z,X).
zeM

A set X with the covering radius r is also sometimes called a covering code [12] of radius r.
Consider the following set

{y G M : d(y,X) = p(X)}

of all vectors at the maximal possible distance from the set X. This set is called the metric 

complement [10] of X and is denoted by X .If X = X, the set X is said to be metrically 
regular [1].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically regular 
set, its metric complement A is also a metrically regular set. In this paper, a pair consisting 
of a metrically regular set A and its metric complement B = A will sometimes be referred 
to as “a pair of metrically regular sets A, B”.

Throughout the paper, we will mostly consider the metric space Fn of binary vectors 
of length n equipped with the Hamming metric. The Hamming distance dn(-, •) between 
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two binary vectors is defined as the number of coordinates in which these vectors differ, 
while wt(-) denotes the Hamming weight of a vector, i.e., the number of nonzero values it 
contains. Since F2 is a field, F2n is also considered as a vector space with the plus sign “+” 
denoting addition of vectors modulo two. A Boolean function in m variables is an arbitrary 
mapping from F2m to F2.

2.2. E x a m p l e s a n d b a s i c r e s u l t s
Let us consider some simple examples of metric complements and metrically regular 

sets in the space F2n.
1) Let X = {x} be the set consisting of one binary vector. It has covering radius n and 

its metric complement is the set .V = {x + 1}, consisting only of the opposite vector 

(here 1 is the all-ones vector). It follows that X = X, so X is a metrically regular 
set.

2) Consider a ball of radius r centered at x, i.e., X = {y G Fn : d(x,y) < r}. Then the 
vector x + 1 will be at the distance n - r from the set X, while any other vector will 
be at a smaller distance. Therefore, the covering radius of X is equal to n - r and 
its metric complement is the set X = {x + 1}. Then X = {x}, which shows us that, 
unless r = 0, the ball of radius r is not a metrically regular set.

For other examples of metric complements and metrically regular sets the reader is 
referred to [8-10].

Let us return to an arbitrary metric space M with a metric admitting values from a 
set D and present some basic results concerning metric regularity.

An automorphism of a set X C M is an isometric mapping from M into M which 
maps X into itself. The following result [10] is straightforward from the definition of metric 
regularity, and is also described in [6, 1] for affine/bent functions.

Theorem 1 [10]. Let X C M be a metrically regular set. Then sets of automorphisms 
of X and X coincide: Aut(X) = Aut(X).

As we could see from examples, not every set is metrically regular, which means that 
we can apply the procedure of taking metric complement more than twice and obtain new 
sets. It has been proven [10] that this process stabilizes for any set after not more than 
|D| - 1 repetitions.

Proposition 1 [10]. Let X be an arbitrary subset of M. Let us denote X0 = X, 
Xk+1 = Xk for k > 0. Then there exists a number N < |D| _ 1 such that Xn is a metrically 
regular set for any n N.

Using this proposition, we can, for example, split the set 2M of all subsets of M into 
equivalence classes, and call two sets X,Y C M equivalent if and only if the pair of 
metrically regular sets A, A*, which we obtain from the set X by repeatedly obtaining metric 
complement as in Proposition 1, coincides with the pair of metrically regular sets B,B* 

which we obtain from the set Y . How would the equivalence classes look? The description 
has not yet been given.

Proposition 1 is also useful when conducting experiments with metrically regular sets 
using computers.

3. Partition sets of functions
In [7], authors introduce the notion of partition sets of functions and study their metric 

complements and metric regularity.
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A set S of Boolean functions in m variables is said to be a partition set with respect 
to a partition U of the set F2m , if the elements in the same block of U all map to 0 or all 
map to 1, and all combinations of assignments to the blocks are included in S . Partition 
set functions include, for example, symmetric functions, rotation symmetric functions, self- 
anti-dual-functions and linear structure functions.

The following theorem presents the main result of [7], describing the covering radius 
and the metric complement of a partition set of functions.

Theorem 2 [7]. Consider a partition set of functions S , and let us denote the covering 
radius of S as pS. Let NS be the number of Boolean functions at distance pS from S. Then, 

ps = E Lki/2J i=1 and Ns = Пi=1
1

2- ki mod2
Gki/2j) + (rfci/21))

5

where ki is the cardinality of the i-th block of the l blocks in partition U .
The proof of the theorem is constructive and gives an explicit description of the metric 

complement S. From this description, the equality S = S is trivially established, showing 
that all partition sets of functions are metrically regular.

The authors then proceed to investigate special cases of partition sets of functions, 
namely, symmetric and rotation symmetric functions. They calculate covering radii for 
both of these sets, give characterization for the set of maximally asymmetric functions (the 
metric complement of the set of symmetric functions) and calculate the number of such 
functions. They also study the weight distribution of maximally asymmetric functions, as 
well as their algebraic degrees, and provide a classification of all functions with respect to 
the distance from the set of symmetric functions. For details, the reader is referred to [7].

4. Largest and smallest metrically regular sets
Let us return to affine and bent functions. Since the gap between the best known upper 

and lower bounds on the size of the set of bent functions is so large, it is interesting 
to investigate possible cardinalities of metrically regular sets, particularly, the extreme 
cardinalities, in an attempt to improve known bounds. The paper [8] focuses on the problem 
of finding the largest and the smallest metrically regular sets.

4.1. G e n e r a l p r o b l e m
In the Boolean cube F2n with the Hamming distance, any smallest metrically regular 

set has cardinality 1, as can be seen from the simplest example X = {x}, x G Fn. For the 
largest metrically regular set the solution is not so trivial. The following theorem reduces 
the general problem to a special case.

Theorem 3 [8]. Let A, B C Fn be a pair of metrically regular sets, i.e., A = B, B = A. 
Then there exists a pair of metrically regular sets A*, B* at distance 1 from each other such 
that either A C A*, B C B*, or both A,B C A*.

The Theorem 3 tells us that for each metrically regular set in the Boolean cube there 
exists a metrically regular superset with the covering radius of 1. Therefore, the covering 
radius of the largest metrically regular set in the Boolean cube is equal to 1. Since for any 
set A with p(A) = 1 it holds A U A = Fn, the largest metrically regular set is the metric 
(and ordinary) complement of the smallest metrically regular set with the covering radius 
equal to 1 .

The problem is reduced further by the following fact.
Proposition 2 [8]. If C C F2n is a minimal covering code of radius 1, then C is 

metrically regular.
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It follows from the Proposition 2 that any smallest covering code of radius 1 is also 
a smallest metrically regular set with the covering radius 1. Combined with Theorem 3, 
this shows that the problem of finding the largest metrically regular set is equivalent to 
the problem of finding the smallest covering code of radius 1. This is an open problem of 
coding theory [12] and is solved mostly for particular cases and small dimensions.

Proposition 2 is conjectured to hold true for larger values of the covering radius, however, 
this has not been proved yet.

Conjecture 1 [8]. If C C F2n is a covering code of radius r of minimal size, then C is 
metrically regular.

The conjecture was computationally checked [8] for several minimal covering codes with 
n = 2r+3,2r+4, whererequals2or3. Constructionsofthesecodescanbefoundin[13, 14].

4.2. F i x e d d i s t a n c e s
As we see from the previous subsection, the general problems of finding the largest and 

the smallest metrically regular sets are reduced to the cases when the covering radius is 
trivial (equal to either 1 or n). However, the set Bm of bent functions in m variables has 
the covering radius 2m-1 — 2m/2-1. In [8], the sizes of the sets at a fixed distance r from 
each other are considered. Theses sizes are estimated nondirectly, through estimating the 
size of the union of two metrically regular sets, maximally distant one from another. Let 
us return to the general finite metric space M with a metric d(-, •) admitting values from a 
set D. Then, the following bound holds.

Theorem 4 [8]. Let A,B C M be a pair of metrically regular sets at distance r G D 
from each other, and let Ck be the size of the largest sphere of radius k G D in M. Then

|A| + |BI >
2|M |

1 + У? Ck 
keD 
k<r

This bound is very similar to the sphere-packing bound on the size of a code, well-known 
in the coding theory. In the case when the space M is F2n with the Hamming metric, the 
bound becomes:

Corollary 1.
each other. Then

Let A,B C F2n be a pair of metrically regular sets at distance r from

|A| + IB I > r- 1
1+ E

k=0

5. Strongly metrically regular sets
5.1. Prelimi nari es

Metrically regular sets are defined by their outstanding metric properties, but a lot of 
them possess even more regularity. In order to investigate largest and smallest metrically 
regular sets further, the notion of a strongly metrically regular set was introduced in [9].

Let A C Fn be a set with the covering radius r. The set A is called strongly metrically 
regular, if for any vector x G F2n it holds

d(x, A) + d(x, >1) = r.

In other words, any vector of the Boolean cube belongs to some shortest path from the 
set A to the set >1. It is clear from the definition that any strongly metrically regular set is 
metrically regular.
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The following pair of metrically regular sets gives us a simple example: A = {0},A = {1}. 
Any vector x G F2n with the Hamming weight k is at distance k from the set A and at 
distance (n — k) from the set A, so the sum of both distances is equal to n, which is the 
covering radius of these sets.

But not all metrically regular sets are strongly metrically regular. One of the problems of 
the International Cryptographic Olympiad NSUCRYPTO 2016 [15] was to find a metrically 
regular set which is not strongly metrically regular (or prove that such set does not exist), 
and several contestants managed to find a solution. The smallest known example of such a 
set is contained in the Boolean cube of dimension 7.

Let A be an arbitrary subset of the Boolean cube F2n. The layer representation of F2n 

with respect to the set A is the sequence of layers defined as follows:

Ak = {x G F2n : d(x, A) = k}, k = 0, 1, . . ., r,

where r is the covering radius of A. Using layer representation, strongly metrically regular 
sets can alternatively be defined as follows:

Proposition 3 [9]. Set A is strongly metrically regular if and only if for any k from 0 
to r it holds Ak = Ar-k, where r is the covering radius of both sets.

It is easy to see that completely regular codes [16] are strongly metrically regular. 
The converse is not true: an example of a strongly metrically regular set which is not a 
completely regular code is the set A = {(000), (011), (111)} in F32.

5.2. I t e r a t i v e c o n s t r u c t i o n s
In [9], several iterative constructions of strongly metrically regular sets are obtained.
Theorem 5 [9]. Let A be a strongly metrically regular set with the covering radius r. 

Then C = A U A is also a strongly metrically regular set.
Then this theorem is generalized to obtain more iterative constructions of strongly 

metrically regular sets.
Theorem 6. Let A be a strongly metrically regular set with the covering radius r > 0 

(case r = 0 is trivial). Let i1,..., is be a sequence of indices satisfying 0 < i1 < i2 < ... < 
s

< is-1 < is < r. Then the union C = |J Aik is a strongly metrically regular set if and only
- k=1

if there exists a number p > 0 such that all the following conditions are satisfied:
1) for any k G {1,..., s — 1} the distance (ik+1 — ik) is equal to 1, 2p or 2p + 1;
2) foranykG{2,...,s—1}atleastoneofthedistances(ik+1—ik),(ik—ik-1)isgreater 

than 1;
3) i1 is either p or 0, and if i1 = 0, then i2 — i1 = 2p or 2p + 1 if i2 exists;
4) is is either r — p or r, and if is = r, then is — is-1 = 2p or 2p + 1 if is-1 exists;
The number p is the covering radius of C.
Theorem 6 allows one to construct many new strongly metrically regular sets with 

smaller covering radii given a strongly metrically regular set with the covering radius r. 
For example, consider a strongly metrically regular set with the covering radius 20. Then, 
if we take the union of layers with indices {2, 3, 7, 12, 16, 20}, it will be a strongly metrically 
regular set with the covering radius 2 and its metric complement will consist of layers with 
indices {0, 5, 9, 10, 14, 18}.

The number of strongly metrically regular sets with the covering radius r which can be 
constructed using Theorem 6 is also calculated.
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Theorem 7 [9]. Let A be a strongly metrically regular set with the covering radius 
r > 0. Then the number Gp(r) of different strongly metrically regular sets with covering 
radius p that can be obtained by applying Theorem 6 to the set A can be calculated using 
the following recurrent formulas:

{
Gp(r — p) + Gp(r — p — 1), when r > p,

2, when r = p,

0, when 0 < r < p.5.3. S p e c i a l c o n s t r u c t i o n s a n d l o w e r b o u n d s
Utilizing Theorem 6 and other considerations, two families of “large” strongly metrically 

regular sets {Y^}, {Zn} for n > 2r, r > 1 are constructed in [9]. Here, Y[, Zn C Fn and 
p(Yjr) = p(Zn) = r. Sets from these families asymptotically cover a large part of the Boolean 
cube:

|Yn 1 ~
2

2n,
2r + 1 ’

|Znr| = 2n-2r 2rr r—^ 1 2n

^nr *

The lower bound on the sizes of sets from the family {Ynr} is obtained, which results in 
the following lower bound on the size of the largest metrically regular set for fixed covering 
radius.

2

Theorem 8. Let A be the largest metrically regular set with the covering radius r in 
the Boolean cube of dimension n (n > 2r), and let p be the remainder of n +1 divided by 
2r + 1. Then

IAI>max {2" ( • ) ■2n-2r (2>

Construction of the family of strongly metrically regular sets {Ynr} allows one to obtain 
n2 

metrically regular sets with the covering radius r that cover roughly the fraction--------- of
2r + 1 

the whole Boolean cube when n is big enough, while the family {Znr} contains metrically 

regular sets with the covering radius r that cover roughly the fraction .__ of the Boolean
Vnr 

cube for large values of r.

6. Metric complements and metric regularity of linear codes
6.1. General result s

The papers [10, 11] touch upon the topic of metric complements of linear codes in the 
Boolean cube. First, let us formulate some basic results.

Proposition 4. Let L C F2n be a linear code. Then the metric complement of L is the 
union of cosets of L.

This result follows directly from the equality dH(x, y) = wt(x + y) and the linearity of 
the code. The following bound is also a simple and well-known result.

Proposition 5. Let L C Fn be a linear code of dimension k. Then p(L) n — k.
The paper [10] describes sufficient and necessary conditions on an arbitrary linear code L 

to attain this bound, as well as some sufficient conditions for p(L) = n — k — 1 or p(L) = 
= n — k — 2. Both of these results also present explicit form of the metric complement of 
the linear code in question, and in the case when p(L) = n — k, the code L is found to be 
metrically regular.



42 A. K. Oblaukhov

The following characterization of the second metric complement using the first is also 
presented in [10, 1].

Proposition 6. Let L C Fn be a linear code. Then p(L) = p(L) and a vector x is in L 
if and only if x + L = L.

Corollary 2. Let L C Fn be a linear code. Assume that L is an affine subspace, i.e., 

L = a + L1 for some linear code L1. Then L = L1.
6.2. S e t s o f a ffi n e / b e n t f u n c t i o n s

Let us remember that the notion of a metrically regular set and the problem of 
investigating and classifying metrically regular sets was first posed by N. Tokareva in [1] 
when studying metric properties of bent functions, particularly, the duality between bent 
functions and affine functions.

A Boolean function in even number m of variables is called a bent function, if it is at 
the maximal possible distance from the set of affine functions Am. If we denote the set of 
bent functions as Bm, then we have, by definition, Bm = Am.

Despite the fact that all characterizations of the set of bent functions that are currently 
known are rather ineffective when it comes to counting and constructing bent-functions, it 
turned out that these characterizations are enough to establish metric regularity of the set 
of affine/bent functions.

It follows from Proposition 6 that a linear code is metrically regular if and only if no 
vectors other that those from the code keep its metric complement stable under addition. 
This property of linear codes was used in [6, 1] to establish that the set of affine functions 
is the metric complement of the set of bent functions: N. Tokareva has shown that, for any 
non-affine function f, there exists a bent function g (from the Maiorana — McFarland class 
of bent functions) such that f + g is not a bent function. Thus, the following holds.

Theorem 9. Sets of affine functions Am and bent functions Bm are metrically regular.
A. Kutsenko studied metric properties of two subclasses of bent functions called self-dual 

and anti-self-dual bent functions. In [17], he shows that the set of self-dual bent functions 
is the metric complement of the set of anti-self-dual bent functions and vice versa, thus 
establishing the metric regularity of both of these sets. Other metric properties of bent 
functions (e.g. the graph of minimal distances between bent functions) were also studied 
by N. Kolomeec in [18-21].

6.3. Reed — Muller codes
Let Fm be the set of all Boolean functions in m variables. The Reed — Muller code of 

order k in m variables is defined as follows:

RM(k,m) = {f GFm :deg(f) < k},

where deg(-) denotes the degree of the algebraic normal form [2] of the function. These codes 
may also be represented as sets of value vectors of corresponding functions: binary vectors 
of length 2m, containing values which a function assumes on all vectors of Fm, listed in some 
fixed order. Distances between functions can therefore be defined as distances between their 
value vectors.

The Reed —Muller code of order 1 is, by definition, the set of affine functions, which is, 
in the case of even number of variables m, metrically regular (as is its metric complement — 
the set of bent functions). Does this hold for other codes from this family? In [11], this 
metric property for other Reed — Muller codes is being investigated.
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In [22], E. Berlekamp and N. Welch presented a partition of all cosets of the RM(1, 5) 
code into 48 classes with respect to the EA-equivalence (extended affine equivalence), 
providing a representative for each class. Then they obtained weight distributions for 
each class of cosets. This weight distribution allows one to explicitly describe the metric 
complement of the code by selecting classes with the largest minimal weigth. Proposition 6 
is then used to establish the metric regularity of RM(1, 5) in [11]. It is shown that, for any 
equivalence class of cosets (other than the RM(1, 5) itself), adding a function from that 
class to some function from the metric complement RM(1,5) yields a function outside of 
the metric complement, leading to the following

Theorem 10. The code RM(1, 5) is metrically regular.
Reed —Muller codes of orders 0, m and m — 1 coincide with the repetition code, the 

whole space, and the even weight code respectively. It is trivial that all of them are metrically 
regular. Metric regularity of the Reed — Muller code of order m — 2 is also easy to establish 
as follows [11].

The Reed — Muller code of order m — 2 has covering radius 2 [12]. By definition, it 
consists of all Boolean functions of degree at most m— 2. Since all functions of degree m have 
odd weights, and all functions of smaller degree have even weights, functions of degree m 
are at distance 1 from RM(m — 2, m), while functions of degree m — 1 are at distance 2, 
and therefore

RM(m — 2, m) = RM(m — 1, m) \ RM(m — 2,m).

Since RM(m — 2,m) is linear, p(RM(m — 2,m)) = p(RM(m — 2,m)) = 2 and thus 

functions of degree m are at distance 1 from RM(m—2, m). It follows that RM(m—2, m) = 
= RM(m — 2, m) and therefore the following holds:

Theorem 11. Codes RM(k,m) for k m — 2 are metrically regular.
Codes of order m — 3 are harder to handle. In 1979, A. M. McLoughlin [23] has proved

that 

p(RM(m — 3, m)) =
m+ 1,
m+2,

if m is odd, 
if m is even.

This result is reestablished by G. Cohen et al. in [12] using a method of syndrome 
matrices, different from the method in [23]. This method allows the author of [11] not only 
to obtain the covering radius of the Reed — Muller code of order m — 3, but also to describe 
the metric complement of this code. As with the covering radius, the cases of even and odd
m are distinct.

In the case of 
follows:

even number m of variables, the metric complement can be described as

RM(m — 3,m)= U (g + RM(m — 3,m)), 
geG

where

G = {g : supp(g) = {0, x1, x2, . . . , xm, x1 + . . . + xm}, x1, . . . , xm are linearly independent}, 

while, for m odd, the description is as follows:

RM(m — 3,m)= IJ (g + RM(m — 3,m)),
geG1uG2

G1 = {g : supp(g) = {0, x1, x2, . . . , xm}, x1, . . . , xm are linearly independent},
G2 = {g : supp(g) = {0, x1, . . . , xm-1, x1+ . . . +xm-1}, x1, . . . , xm-1 are linearly independent}.



44 A. K. Oblaukhov

Then, themetricregularityofRM(m-3,m) is provedbyestablishingthat no functions 
other that those contained in RM(m-3, m) preserve the metric complement under addition 
(once again utilizing Proposition 6).

The author then considers the code RM(2, 6). Using a proper ordering of the values in 
the value vectors of functions, this code can be presented in the following manner:

RM(2,6) = {(u,u+v) :uG RM(2,5),vG RM(1,5)}.

Since both RM(2, 5) and RM(1, 5) were shown to be metrically regular, this constructions 
is useful and allows the author to establish the metric regularity of the code RM(2, 6) as 
well. The proof of this result heavily relies on the fact that RM(2, 6) attains the upper 
bound on the covering radius provided by the (u, u + v) construction, i.e., p(RM(2, 6)) = 
= p(RM(2,5)) +p(RM(1,5)) [24].

Thus, the metric regularity of the codes RM(1, 5), RM(2, 6) and of the codes 
RM(k,m) for k > m — 3 has been established. Factoring in the result by N. Tokareva [6], 
which proves the metric regularity of RM(1, m) for even m, this covers all infinite families 
of Reed — Muller codes with known covering radius. The only other Reed — Muller codes 
with known covering radius, metric regularity of which has not been yet established, are 
RM(1, 7) [25, 26] and RM(2, 7) [27]. Given these results, the following conjecture is 
formulated [11].

Conjecture 2. All Reed — Muller codes RM(k,m) are metrically regular.

7. Conclusion
In the paper, the main published results concerning metric complements and metric 

regularity are presented. Metric regularity of partition sets of functions is established. 
General problem of finding smallest metrically regular sets is found to be trivial, while 
finding the largest is shown to be as hard as finding the smallest covering code of radius 1. 
For fixed covering radius, a lower bounds on the sum of sizes of metrically regular sets 
constituting a pair is obtained. Using the notion of strongly metrically regular set, iterative 
constructions of metrically regular sets are described and the number of sets which can be 
obtained using these constructions is calculated. Two families of “large” (relative to the size 
of F2n) metrically regular sets with fixed covering radius are constructed, giving the idea of 
how big the largest metrically regular sets can be. Characterizations of the first and the 
second metric complements of linear codes are given. Metric regularity of the Reed — Muller 
codes RM(1,m) for m even, RM(k,m) for k = 0, k > m — 3 and of the codes RM(1, 5) 
and RM(2, 6) is established.
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