2020

Прикладная теория графов

ПРИКЛАДНАЯ ТЕОРИЯ ГРАФОВ

УДК 519.87

ПАРАМЕТРИЧЕСКОЕ ЗАДАНИЕ СЕРИИ СЕМЕЙСТВ АНАЛИТИЧЕСКИ ОПИСЫВАЕМЫХ ЦИРКУЛЯНТНЫХ СЕТЕЙ СТЕПЕНИ ШЕСТЬ¹

Э.А. Монахова

Институт вычислительной математики и математической геофизики СО РАН, г. Новосибирск, Россия

Получена серия семейств неориентированных кольцевых циркулянтных сетей степени шесть любого заданного диаметра d > 1, которая включает в том числе циркулянтные сети максимального порядка для всех диаметров $d \equiv 0 \pmod{3}$ и $d \equiv 2 \pmod{3}$. Серия семейств задаётся определяющими соотношениями между порядком графа и его образующими и порождающим параметром $p, 1 \leq p < d$, при этом образующие и порядки графов являются полиномами третьей степени относительно диаметра графа. Приведены примеры построения новых семейств циркулянтных сетей степени шесть на основе задания функций p = p(d).

Ключевые слова: неориентированные циркулянтные сети степени шесть, циркулянтные графы заданного диаметра, семейства циркулянтных графов.

DOI 10.17223/20710410/49/8

A SET OF FAMILIES OF ANALYTICALLY DESCRIBED TRIPLE LOOP NETWORKS DEFINED BY A PARAMETER

E.A. Monakhova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia

E-mail: emilia@rav.sscc.ru

A set of families of undirected triple loop networks of the form $C(N(d, p); 1, s_2(d, p), s_3(d, p))$ with the given diameter d > 1 and a parameter $p = 1, 2, \ldots, d-1$ is obtained. For each such family, the order N of every graph in the family and its generators s_2 and s_3 are defined by a cubical polynomial function of the diameter. The found set includes circulant graphs of degree 6 with the largest known orders for any diameters $d \equiv 0 \pmod{3}$ and $d \equiv 2 \pmod{3}$. Examples of constructing new families of triple loop networks based on the definition of functions p = p(d) are presented.

Keywords: undirected triple loop networks, circulant graphs of degree 6 with given diameter, families of circulant graphs.

¹Исследование выполнено в рамках бюджетного проекта ИВМиМГ СО РАН № 0315-2019-0006.

Циркулянтные сети (графы) (см. обзоры [1-5]) широко изучаются в качестве популярной топологии для мультипроцессорных систем и компьютерных сетей и в ряде других приложений. Актуальным становится их применение в качестве топологии для сетей на кристалле (networks-on-chip) [6-8]. Это обусловлено их лучшими структурными характеристиками и высокими показателями масштабируемости при большом количестве узлов по сравнению со стандартными топологиями сетей на кристалле. Важной задачей для сетей на кристалле с циркулянтной топологией является разработка эффективных алгоритмов маршрутизации, связанных с особенностями требований, предъявляемых к используемым ресурсам сетей на кристалле.

Дадим определение циркулянтных сетей. Пусть $n, N \in \mathbb{N}, S = \{s_1, s_2, ..., s_n\}$ — множество целых чисел, $1 \leq s_1 < ... < s_n \leq \lfloor N/2 \rfloor$. Неориентированный *циркулянтный* граф $C(N; s_1, ..., s_n)$ имеет множество вершин $V = \mathbb{Z}_N = \{0, 1, ..., N-1\}$ и множество рёбер $A = \{(v, v \pm s_i \mod N) : v \in V, i = 1, ..., n\}$. Числа $s_1, s_2, ..., s_n$ называются образующими графа, N — его порядком, n — размерностью, степень вершин графа равна 2n. Будем исследовать кольцевые циркулянтные сети вида $C(N; 1, s_2, ..., s_n)$ с $s_1 = 1$, изучаемые в литературе как самостоятельный класс графов. Диаметр графа (оценивает максимальную структурную задержку в сети) равен $d(C(N; S)) = \max_{u,v \in V} d(u, v)$,

где d(u, v) — длина кратчайшего пути между вершинами u и v.

В литературе известны следующие аналитически описываемые семейства кольцевых циркулянтных сетей степени шесть и диаметра d: графы вида $C(3d^2 + 3d + 1; 1, 1)$ 3d + 1, 3d + 2) [9]; циркулянтные сети с $N = 8d^3/27 + 4d^2/3 + 2d + 1$ [10]; циркулянты с $N = 32 |d/3|^3 + 8 |d/3|^2 + 2 |d/3|$ [11] и диаметром, меньшим или равным d, где $d \ge 3$. Получены алгоритмы поиска кратчайших путей [12, 13] для семейства из [9] и эквивалентных графов вида $C(3d^2+3d+1; d, d+1, 2d+1)$ [14]. В [15] найдено семейство трёхмерных циркулянтов с порядком $N = 4d^2 - 2d - 2$, где $d \equiv 3, 5 \pmod{6}$ — диаметр графов, как решение оптимизационной задачи на максимум при рассмотрении произведения Кронекера двух циркулянтов степеней два и три. В [15] дан алгоритм поиска кратчайших путей для графов найденного семейства. Следует отметить, что образующие графа $C(3d^2+3d+1; 1, 3d+1, 3d+2)$, где $d \ge 1$, получены в [9] как решение оптимизационной задачи на максимум при укладке (tessellation) трёхмерного графа на плоскости, когда рассматриваются графы диаметра d вида $C(N_{\text{max}} = 3d^2 + 3d + 1; s_1, s_2, s_1 + s_2).$ Заметим, что в большинстве этих работ порядки графов рассматриваемых семейств это квадратичные функции от диаметра, хотя больший интерес представляет получение семейств с кубической функцией от диаметра, как более плотных и компактных графов. В [16] найдено семейство циркулянтных сетей степени шесть с максимальным порядком среди всех кольцевых циркулянтов заданного диаметра d и приведён аналитический алгоритм поиска кратчайших путей для найденного семейства. В работе [8] для кольцевых циркулянтных сетей степени шесть общего вида предложены различные алгоритмы поиска кратчайших путей и даны оценки требуемых ресурсов при реализации в сетях на кристалле.

В настоящей работе представлено параметрически задаваемое аналитическое описание кольцевых циркулянтных графов степени шесть, которое порождает серию семейств циркулянтных сетей, включающую в том числе семейство графов с максимально возможным порядком для любого заданного диаметра, а также позволяет синтезировать новые семейства с лучшими структурными характеристиками, чем известные в литературе. Интересным приложением полученного результата является возможность решения проблемы поиска кратчайших путей в семействах циркулянтных сетей степени шесть с помощью аналитического метода, общего для всех графов семейства.

1. Теорема о построении серии циркулянтных графов степени шесть

Рассмотрим множество трёхмерных циркулянтных графов вида $C(N; 1, s_2, s_3)$, где $1 < s_2 < s_3 \leq \lfloor N/2 \rfloor$. Будем использовать обозначение $D(x), 0 \leq x < N$, для длины кратчайшего пути из вершины 0 в вершину x. В графе $C(N; 1, s_2, s_3)$ выделим две ближайшие по циклу, образованному образующей s_1 , вершины u, v, u < v, такие, что значения D(u) и D(v) получены без использования образующих $\pm s_1$. Тогда расстояния из вершины 0 до всех вершин, лежащих между u и v, могут быть вычислены с использованием того факта, что разница между смежными вершинами равна единице.

Лемма 1. Пусть в циркулянтном графе $C(N; 1, s_2, s_3)$ вершины u, v, u < v, ближайшие по циклу, заданному образующей $s_1 = 1$, значения которых D(u) и D(v)получены без использования образующих ± 1 . Тогда

$$\max_{u \leqslant x \leqslant v} D(x) = \lfloor (D(u) + D(v) + v - u)/2 \rfloor$$
(1)

и достигается в вершине $x = \lfloor (v + u + D(v) - D(u))/2 \rfloor$.

Следующая теорема даёт возможность построения целой серии семейств рассматриваемых графов заданного диаметра, что достигается введением в аналитическое описание графов параметра p, зависящего от диаметра. Эта теорема задаёт один из возможных типов определяющих соотношений между порядком графа и его образующими, когда и порядок графа N, и образующие s_2 и s_3 являются полиномами третьей степени относительно диаметра.

Теорема 1. Для каждого целого d > 1 пусть

$$p = 1, 2, \dots, d-1.$$
 (2)

Тогда диаметр циркулянтных графов вида $C(N; 1, s_2, s_3)$, где

$$\begin{cases} N = 8p^{3} - (16d + 8)p^{2} + (8d^{2} + 8d)p + 2d + 1, \\ s_{2} = 4p(d - p)^{2} + 2p(d - p) + d - 3p, \\ s_{3} = s_{2} + 4p, \end{cases}$$
(3)

равен d.

Доказательство. Рассмотрим циркулянтный граф $C(N; 1, s_2, s_3)$ вида (3). Пусть

$$\Delta = s_3 - s_2 = 4p, \tag{4}$$
$$r = (d-p)\Delta + \Delta/2 + 1.$$

Согласно (3), порядок графа равен произведению двух нечётных чисел N = (2(d-p) + 1)r и его образующие имеют вид $s_2 = (d-p)r - \Delta/2$, $s_3 = (d-p)r + \Delta/2$.

Поскольку число вершин графа состоит из целого числа интервалов длины r, будем называть их r_i -интервалами на графе, где $0 \leq i \leq 2(d-p)$ — номер интервала, или кратко $r_i = [ir, ir + r]$. Симметрия функции расстояний D(x) в циркулянтах относительно N/2 позволяет в дальнейшем ограничиться значениями $i = 0, 1, \ldots, d-p$. Будем также использовать термин Δ -интервалы для обозначения перемещений (прыжков) по r_i -интервалу на длину Δ из вершин левого или правого концов r_i -интервала. В силу (4) перемещение на величину Δ даёт приращение функции расстояния D(x) на 2. Так как $r = N - (s_2 + s_3)$, перемещения в графе на величину r также дают приращение функции расстояния D(x) на 2.

Выделим в рассматриваемом графе две вершины F и R = N - F, F < N/2 < R, играющие ключевую роль в определении функции расстояний:

$$F = (s_2 + s_3)/2 = (d - p)r$$

Имеем R = F + r, $D(F \pm \Delta/2) = D(R \pm \Delta/2) = 1$. Тогда, выбирая минимальный из двух возможных путей в вершину F (или R) из 0, получим

$$D(F) = D(R) = \begin{cases} 2p+1 & \text{при} \quad 1 \le p < \lceil d/2 \rceil, \\ 2(d-p) & \text{при} \quad \lceil d/2 \rceil \le p \le d-1. \end{cases}$$
(5)

Для определения диаметра рассматриваемого графа учитываем следующее. Каждый из интервалов вида

$$[js_2 \mod N, js_3 \mod N], \ 1 \leq j \leq d,$$

состоит из j Δ -интервалов, на концах которых вершины x имеют расстояния до нуля D(x) = j. В силу леммы 1 в серединах этих Δ -интервалов находятся вершины с максимумами (равными) расстояний до 0. Аналогичные рассуждения применимы для интервалов вида

$$[N - js_3 \mod N, N - js_2 \mod N], \ 1 \leq j \leq d.$$

Согласно (3) и учитывая, что N = 2F + r, для N выполняется условие

$$jF \equiv -2iF \pmod{N}$$

для нечётных j, где

$$2i + j = 2(d - p) + 1.$$
(6)

Рассмотрим r_i -интервал, где $i \in \{0, ..., d-p\}$. Имеем

$$-2is_2 \mod N = i(r+\Delta), \quad -(2i+2)s_3 \mod N = (i+1)(r-\Delta),$$

 $js_3 \mod N = ir + j\Delta/2, \quad (j-2)s_2 \mod N = (i+1)r - (j-2)\Delta/2.$

Таким образом,

$$D(i(r + \Delta)) = 2i, \quad D((i + 1)(r - \Delta)) = 2i + 2; \tag{7}$$

$$D(ir+j\Delta/2) = j, \quad D((i+1)r - (j-2)\Delta/2) = j-2.$$
 (8)

Итак, надо доказать, что для графов вида (3) максимальное расстояние до вершины 0 из любой вершины $x, 0 \le x \le \lfloor N/2 \rfloor$, равно d. Для удобства представления будем рассматривать интервал $0 \le x \le R$. Всё множество вершин $\{0, \ldots, R\}$ разобъём на шесть подмножеств $V_m, 0 \le m \le 5, \sum_{m=0}^5 |V_m| = (d-p+1)r$, соответственно типам содержащихся в них r_i -интервалов (табл. 1 и 2). Тип r_i -интервала определяется значениями функции D(x) на его концах (например, для множеств V_0, V_1 и V_2 имеем D(ir) = 2i,

Таблица 1

Параметр $p: 1 \leqslant p < \lceil d/2 \rceil$											
Множество	Тип <i>r_i</i> -интервала	Значения і	Мощность множеств								
V_0	2i, 2i+2	$0 \leqslant i < \lfloor d/2 \rfloor - p$	$ V_0 = (\lfloor d/2 \rfloor - p)r$								
V_1	2i, j-2, 2i+2	$i = \lfloor d/2 \rfloor - p$	$ V_1 = r$								
V_2	2i, j, j-2, 2i+2	$\lfloor d/2 \rfloor - p < i < \lfloor d/2 \rfloor$	$ V_2 = (p-1)r$								
V_3	2i, j, j - 2, 2d - 1 - 2i	$i = \lfloor d/2 \rfloor$	$ V_3 = r$								
V_4	2d+1-2i, j, j-2, 2d-1-2i	$\lfloor d/2 \rfloor < i < d-p$	$ V_4 = (\lceil d/2 \rceil - p - 1)r$								
V_5	2p+1, j, j, 2p+1	i = d - p	$ V_5 =r$								

Распределение вершин $0 \le x \le R$ графов вида (3) по типам r_i -интервалов при наличии обратной волны из F

Таблица 2

Распределение вершин $0 \le x \le R$ графов вида (3) по типам r_i -интервалов при отсутствии обратной волны из F

Параметр $p: [d/2] \leq p \leq d-1$												
Множество	Тип <i>r</i> _i -интервала	Значения і	Мощность множеств									
V_1	2i, j-2, 2i+2	$i=0,\ p=d/2$	$ V_1 =egin{cases} r,&p=d/2,\ 0,&p eq d/2 \end{cases}$									
V_2	2i, j, j-2, 2i+2	$\begin{cases} 0 < i < d - p, p = d/2, \\ 0 \le i < d - p, p \neq d/2 \end{cases}$	$ V_2 = \begin{cases} (p-1)r, & p = d/2, \\ (d-p)r, & p \neq d/2 \end{cases}$									
V_5	2(d-p), j, j, 2(d-p)	i = d - p	$ V_5 = r$									

D(ir + r) = 2i + 2), а также тем, учитываются или нет значения j и j - 2 в определении функции расстояния D(x) вершин внутри интервала (учитываются значения, не превышающие d). Для наглядности доказательства теоремы все основные параметры, относящиеся к множествам V_m , $0 \le m \le 5$, суммированы в табл. 1 и 2.

В табл. 1 представлены результаты, когда есть прямая волна расстояний, порождённая *r*-интервалами из 0, и есть обратная волна расстояний, порождённая *r*-интервалами из вершины *F* (см. первое соотношение (5)). В табл. 1 выделяются особые случаи: $V_0 = \emptyset$ при $p = \lfloor d/2 \rfloor$, $V_2 = \emptyset$ при p = 1, $V_4 = \emptyset$ при $p = \lceil d/2 \rceil - 1$.

В табл. 2 представлены результаты, когда есть прямая волна расстояний, порождённая *r*-интервалами из 0, и нет обратной волны расстояний, порождённой *r*-интервалами из вершины *F* (см. второе соотношение (5)). В этом случае в графе отсутствуют множества вершин типа V_0 , V_3 и V_4 , а также $V_1 = \emptyset$ при $p \ge (d+1)/2$.

В процессе доказательства далее будем разделять вершины, принадлежащие всем r_i -интервалам из множеств V_m , $0 \leq m \leq 5$, на три множества (интервала вершин): $r_i = A_1 \cup A_2 \cup A_3$, где $\sum_{k=1}^{3} |A_k| = r$. Обозначив через x_l (x_r) номера вершин в A_2 , соответствующие левому (правому) концам интервала A_2 , получим

$$A_1 = [ir, x_l], \ A_2 = [x_l, x_r], \ A_3 = [x_r, ir + r].$$

1) Пусть $x \in V_0$, где $1 \leq p < \lceil d/2 \rceil$, $p \neq \lfloor d/2 \rfloor$ (табл. 1).

Множество вершин V_0 состоит из r_i -интервалов, $0 \leq i < q = \lfloor d/2 \rfloor - p$, где D(ir) = 2i, D(ir+r) = 2i+2 и значения j, j-2 не учитываются при расчёте D(x) для вершин $x \in r_i$. Для V_0 определим $x_l = ir + q\Delta, x_r = (i+1)r - q\Delta, |A_1| = |A_3| = q\Delta$.

Для A_1 имеем D(x) = 2i на концах $i \Delta$ -интервалов, затем на концах оставшихся $(q-i) \Delta$ -интервалов значения D(x) увеличиваются на 2, достигая значения $D(x_l) = 2q$.

Таким образом, для A_1 функция D(x) достигает максимума, когда i = q - 1. В силу (1) получаем max $D(x) = 2\lfloor d/2 \rfloor - 1 < d$.

Для A_2 имеем $D(x_l) = D(x_r) = 2(\lfloor d/2 \rfloor - p)$. Из вершин x_l и x_r навстречу друг другу идут волны Δ -интервалов, увеличивающих на 2 значения D(x), которые за-канчиваются, когда D(x) достигает значений $2\lfloor d/2 \rfloor$. В силу (1) получим для всех $i \max_{x \in A_2} D(x) = d$.

Учитывая для r_i -интервала, что, начиная с вершины x = ir + r, D(x) = 2i + 2 на концах (i + 1) Δ -интервалов, получаем, по аналогии с A_1 , $\max_{x \in A_3} D(x) = 2\lfloor d/2 \rfloor \leqslant d$.

2) Пусть $x \in V_1$, где $1 \leq p < \lceil d/2 \rceil$ и p = d/2.

Множество вершин V_1 состоит из одного r_i -интервала, где $i = \lfloor d/2 \rfloor - p$ (см. табл. 1 и 2). Для него D(ir) = 2i, D(ir + r) = 2i + 2, и при расчёте D(x) для вершин $x \in r_i$ учитываем только $j - 2 \leq d$. Определим $x_l = ir + i\Delta$, $x_r = (i + 1)(r - \Delta)$, $|A_1| = i\Delta$, $|A_3| = (i + 1)\Delta$.

Для A_1 имеем D(x) = 2i на концах всех $i \Delta$ -интервалов. Таким образом, применяя (1), получим $\max_{x \in A_1} D(x) = \lfloor (2i+2i+\Delta)/2 \rfloor = 2\lfloor d/2 \rfloor \leqslant d$. Отметим, что $A_1 = \emptyset$ при p = d/2.

Для A_2 , согласно (7), имеем $D(x_l) = 2i$ и $D(x_r) = 2i+2$. Из вершин x_l и x_r навстречу идут волны Δ -интервалов, увеличивающих на 2 значения D(x). Волны заканчиваются, когда D(x) достигает при нечётных d значения (d-1) или при чётных d—значения (d-2) при движении из x_l или значения d при движении из x_r . Применяя (1), получим: $\max_{x \in A_2} D(x) = \lfloor (2i + d + \Delta/2 + 1)/2 \rfloor = d$ при чётных d; $\max_{x \in A_2} D(x) = \max\{\lfloor (2i + 2i + 2 + \Delta)/2 \rfloor, \lfloor (2i + 2 + d - 1 + \Delta/2 + 1)/2 \rfloor\} = d$ при нечётных d. Отметим, что и в случае p = 1 при чётных d, когда $|A_2| = 3$, $\max_{x \in A_2} D(x) = d$.

Для A_3 имеем D(x) = 2i + 2 на концах всех (i + 1) Δ -интервалов, $D(x) = j - 2 = 2\lceil d/2 \rceil - 1$ в их серединах. Таким образом, применяя (1) и (6), получаем $\max_{x \in A_3} D(x) = \lfloor (2i + 2 + j - 2 + \Delta/2)/2 \rfloor = \lfloor (2(d - p) + 1 + 2p)/2 \rfloor = d.$ 3) Пусть $x \in V_2$, где $1 \leq p \leq d - 1$.

Множество V_2 состоит из r_i -интервалов, где D(ir) = 2i, D(ir + r) = 2i + 2, и при расчёте D(x) для вершин $x \in r_i$ учитываем значения j и j-2. Значения i представлены в табл. 1 и 2. Определение x_l и x_r на r_i -интервале зависит от значений i:

- а) при 2i < d p 1: $x_l = i(r + \Delta) + \Delta/2$, $x_r = (i + 1)(r \Delta) \Delta/2$, $|A_2| = (d p 2 2i)\Delta + \Delta/2 + 1$;
- б) при 2i = 2|d/2| p: $x_l = i(r + \Delta) + \Delta/2$, $x_r = (i + 1)r |j/2|\Delta$, $|A_2| = 1$;
- e) при 2i > d-p: $x_l = ir + \lceil j/2 \rceil \Delta, x_r = (i+1)r \lfloor j/2 \rfloor \Delta, |A_2| = (d-p-j)\Delta + \Delta/2 + 1.$

Для A_1 имеем D(x) = 2i на концах $i \Delta$ -интервалов и D(x) = j в их серединах во всех случаях a-e. Для A_3 аналогично имеем D(x) = 2i + 2 на концах (i + 1) Δ -интервалов, D(x) = j - 2 в их серединах. Таким образом, применяя (1) и (6), получаем $\max_{x \in A} D(x) = \max_{x \in A} D(x) = \lfloor (2i + j + \Delta/2)/2 \rfloor = d.$

Для A_2 , согласно (7), имеем $D(x_l - \Delta/2) = 2i$ и $D(x_r + \Delta/2) = 2i + 2$ в случае a; согласно (8), $D(x_l - \Delta/2) = j$ и $D(x_r + \Delta/2) = j - 2$ в случае s. Из вершин $(x_l - \Delta/2)$ и $(x_r + \Delta/2)$ на множестве A_2 навстречу друг другу идут волны Δ -интервалов, увеличивающих на 2 значения D(x). Учитывая значения $|A_2|$ и применяя (1), получим: $\max_{x \in A_2} D(x) = \lfloor (2(2i+2) + 2(d-p-2i-2) + \Delta/2 + 1)/2 \rfloor = d$ в случае a; $\max_{x \in A_2} D(x) = \lfloor (2j + 2(d-p-j) + \Delta/2 + 1)/2 \rfloor = d - в$ случае s.

4) Пусть $x \in V_3$, где $1 \leq p < \lceil d/2 \rceil$.

Множество V_3 состоит из r_i -интервала, для которого $i = \lfloor d/2 \rfloor$, D(ir) = 2i, значение $D(ir+r) = 2\lceil d/2 \rceil - 1$ формируется обратной волной длины r из вершины F. Поскольку $j = 2(\lceil d/2 \rceil - p) + 1 \leq d$, при расчёте D(x) для вершин $x \in r_i$ учитываем j и j - 2. Определим $x_l = ir + j\Delta/2$, $x_r = (i+1)r - j\Delta/2$, $|A_1| = |A_3| = j\Delta/2$.

Для A_1 имеем D(x) = 2i на концах $i \Delta$ -интервалов и D(x) = j в их серединах. Таким образом, применяя (1) и (6) и учитывая значение $|A_1|$, получим $\max_{x \in A_1} D(x) = |(2i + j + \Delta/2)/2| = d.$

Так как в случае p = 1 при нечётных d значение $|A_2| = -1$, то для него A_2 не рассматривается. При p > 1 для A_2 имеем $D(x_l) = D(x_r) = j$. Из вершин x_l и x_r навстречу идут волны Δ -интервалов, увеличивающих на 2 значения D(x), которые заканчиваются, когда D(x) достигает значений $2\lceil d/2\rceil - 1$. Из (1) следует $\max_{x \in A_2} D(x) =$

$$= \lfloor (2j + 2(d - p - j) + \Delta/2 + 1)/2 \rfloor = d.$$

Для A_3 имеем $D(x_r) = j$, $D(ir+r) = 2\lceil d/2 \rceil - 1$ и D(x) = j-2 для остальных концов Δ -интервалов. Применяя (1), получим $\max_{x \in A_3} D(x) = \max\{2\lceil d/2 \rceil - 1, \lfloor (2(j-2)+\Delta)/2 \rfloor\} = d.$

5) Пусть $x \in V_4$, где $1 \leq p < \lceil d/2 \rceil$.

Множество V_4 состоит из r_i -интервалов, $\lfloor d/2 \rfloor < i < d - p$, для которых D(ir) = (2d + 1 - 2i), D(ir + r) = (2d - 1 - 2i) — нечётные значения, образованные обратной волной длины r из вершины F. При расчёте D(x) для вершин $x \in r_i$ учитываем j и j - 2. Положив $x_l = ir + j\Delta/2$, $x_r = (i + 1)r - j\Delta/2$, получим $|A_1| = |A_3| = j\Delta/2$.

Для A_1 имеем D(x) = j на концах всех Δ -интервалов, D(ir) = 2d + 1 - 2i. Таким образом, в силу (1) получим $\max_{x \in A_1} D(x) = \max\{\lfloor (2j+\Delta)/2 \rfloor, \lfloor (2d+1-2i+j+\Delta/2)/2 \rfloor\} = \max_{\lfloor d/2 \rfloor < i < d-p} \{2d+1-2i\} \leq d.$

Для A_2 имеем $D(x_l) = D(x_r) = j$. Из вершин x_l и x_r навстречу идут волны Δ -интервалов, увеличивающих на 2 значения D(x). Волны заканчиваются, когда D(x) достигает значений $2\lceil d/2 \rceil - 1$. Учитывая $|A_2|$ и применяя (1), получим $\max_{x \in A_2} D(x) = |(2j + 2(d - p - j) + \Delta/2 + 1)/2| = d$.

Для A_3 имеем $D(x_r) = j$, D(ir + r) = 2d - 1 - 2i. На концах остальных Δ -интервалов, входящих в A_3 , D(x) = j - 2. Таким образом, сравнивая с множеством A_1 и применяя (1), получим $\max_{x \in A_3} D(x) < \max_{x \in A_1} D(x) < d$.

6) Пусть $x \in V_5$, где $1 \leq p \leq d-1$.

Множество V_5 состоит из r_i -интервала, где i = d - p. При расчёте D(x) для вершин $x \in [F, R]$ также учитываем j = 1. Используя (5), определяем значения D(x)в вершинах F и R. Делим вершины r_i следующим образом: $A_1 = [F, F + \Delta/2],$ $A_2 = [F + \Delta/2, R - \Delta/2], A_3 = [R - \Delta/2, R], |A_1| = |A_3| = \Delta/2, |A_2| = (d - p - 1)\Delta + \Delta/2 + 1.$ Для A_1 и A_3 различаем два случая:

a) D(F) = D(R) = 2p + 1. Согласно (1), получаем $\max_{x \in A_1} D(x) = \max_{x \in A_3} D(x) = |(2p+1+1+\Delta/2)/2| = 2p+1 \leq d;$

б)
$$D(F) = D(R) = 2(d-p)$$
. Согласно (1), получаем $\max_{x \in A_1} D(x) = \max_{x \in A_3} D(x) =$
= $\lfloor (2(d-p) + 1 + \Delta/2)/2 \rfloor = d$.

Случай, когда $x \in A_2$, сводится к случаю 5, когда $x \in A_2$ и j = 1.

Из доказательства теоремы 1 следует наличие общей схемы структуры рассмотренных графов, что, вероятно, даст возможность разработки для них общего вида функции расстояний D(x), зависящей от d и параметра p.

2. Способы построения серии семейств циркулянтных сетей степени шесть

Можно выделить два способа получения серии циркулянтных сетей степени шесть.

Первый способ. Пусть параметр p последовательно пробегает значения на всем диапазоне (2) для каждого целого d > 1. Тогда получаем бесконечное множество Ψ кольцевых циркулянтных сетей степени шесть и диаметров d = 2, 3, ...:

$$\Psi = \bigcup_{p=1,2,\dots,d-1} \bigcup_{d>1} C(N;1,s_2,s_3),$$

где N, s_2 и s_3 определяются формулами (3). Имеет место следующее свойство порядков графов полученной серии семейств.

Лемма 2. Число вершин N графов вида (3) при всех d > 1 и p = 1, 2, ..., d - 1 есть произведение двух взаимно простых нечётных чисел.

Доказательство. Рассмотрим циркулянтный граф $C(N; 1, s_2, s_3)$ вида (3). Здесь N = qr, где q = 2d - 2p + 1, $r = 4pd - 4p^2 + 2p + 1$. Отсюда следует r = 2pq + 1, то есть q и r — взаимно простые числа при всех d > 1 и $p = 1, 2, \ldots, d - 1$.

В табл. 3 дан пример представления значений порядков N графов в виде произведений двух взаимно простых чисел для диаметров $2 \leq d \leq 8$ и $1 \leq p \leq d - 1$.

Таблица 3

Представление порядков N графов множества Ψ в виде произведения двух взаимно простых чисел

d	p													
	1	2	3	4	5	6	7							
2	$N = 3 \times 7$													
3	$N = 5 \times 11$	3×13												
4	$N = 7 \times 15$	5×21	3×19											
5	$N = 9 \times 19$	7×29	5×31	3×25										
6	$N = 11 \times 23$	9×37	7×43	5×41	3×31									
7	$N = 13 \times 27$	11×45	9×55	7×57	5×51	3×37								
8	$N = 15 \times 31$	13×53	11×67	9×73	7×71	5×61	3×43							

С помощью системы Wolfram Mathematica 10 был получен фрагмент одного из возможных построений семейств циркулянтных сетей из множества Ψ . Диаметр графов изменялся от d = 2 до 25, а параметр p—от p = 1 до p = d - 1. В табл. 4 приведены описания найденных трёхмерных циркулянтных графов вида $C(N; 1, s_2, s_3)$: диаметры графов $3 \leq d \leq 10$, соответствующие им значения $1 \leq p \leq d - 1$, порядки графов N и образующие s_2 и s_3 . На рис. 1 показан график зависимости N от p и d для полученного фрагмента циркулянтных графов из множества Ψ .

Решим теперь задачу оптимизации для циркулянтных графов из множества Ψ : на множестве графов Ψ заданного диаметра d > 1 найти функцию p = p(d), которая задаёт максимум функции N = N(p) при всех d > 1.

d	p	N	s_2	s_3	d	p	N	s_2	s_3	d	p	N	s_2	s_3	d	p	N	s_2	s_3
3	1	55	20	24	6	3	301	123	135	8	3	737	329	341	9	7	355	128	156
3	2	39	9	17	6	4	205	74	90	8	4	657	284	300	9	8	147	33	65
4	1	105	43	47	6	5	93	21	41	8	5	497	203	223	10	1	741	349	353
4	2	105	38	46	7	1	351	160	164	8	6	305	110	134	10	2	1173	548	556
4	3	57	13	25	7	2	495	221	229	8	7	129	29	57	10	3	1365	631	643
5	1	171	74	78	7	3	495	214	226	9	1	595	278	282	10	4	1365	622	638
5	2	203	83	91	7	4	399	163	179	9	2	915	423	431	10	5	1221	545	565
5	3	155	56	68	7	5	255	92	112	9	3	1027	468	480	10	6	981	424	448
5	4	75	17	33	7	6	111	25	49	9	4	979	437	453	10	7	693	283	311
6	1	253	113	117	8	1	465	215	219	9	5	819	354	374	10	8	405	146	178
6	2	333	144	152	8	2	689	314	322	9	6	595	243	267	10	9	165	37	73

Параметры описания графов множества Ψ при $3\leqslant d\leqslant 10$

Таблица 4

Рис. 1. График зависимости порядка N циркулянтов из Ψ для $d=2,\ldots,25$ и $p=1,\ldots,d-1$

Теорема 2. Для любого целого d > 1 максимум N = N(p), определяемого формулами (3), достигается при

$$p(d) = p^* = \begin{cases} \lfloor d/3 \rfloor, & \text{если } d \equiv 0 \pmod{3} \text{ или } d \equiv 1 \pmod{3}, \\ \lceil d/3 \rceil, & \text{если } d \equiv 2 \pmod{3} \text{ или } d \equiv 1 \pmod{3}. \end{cases}$$
(9)

Доказательство. Рассмотрим циркулянтный граф $C(N; 1, s_2, s_3)$ вида (3). Функция N — кубический полином относительно p для любого заданного d. Надо найти такую целочисленную функцию p(d), при которой значение N равно максимуму для любого d > 1. Для этого вычислим производную N по p и приравняем её нулю: $\frac{dN}{dp} = 24p^2 - 16(2d+1)p + 8d(d+1) = 0$. Полученное квадратное уравнение относительно p имеет коэффициенты $a = 24, b = -(32d+16), c = 8d^2 + 8d$. Дискриминант $\delta = b^2 - 4ac = 16^2(d^2 + d + 1) > 0$. Следовательно, N имеет один локальный максимум, когда $p_1 = (2d + 1 - \sqrt{d^2 + d + 1})/3$ (второе решение $p_2 = (2d + 1 + \sqrt{d^2 + d + 1})/3 \ge d$ не подходит). Так как $d < \sqrt{d^2 + d + 1} < d + 1$ и соответственно $d/3 < p_1 < (d + 1)/3$, взяв ближайшее целое, получим для любого d > 1 значения p(d), равные (9). Подставляя найденные значения p в (3), получим (10) (см. далее), а также соответствующие значения образующих максимального графа.

В торой способ. Если в качестве p взять любую целочисленную функцию от d, удовлетворяющую условию $1 \leq p(d) < d$, то можно синтезировать новые бесконечные семейства циркулянтных сетей. Ниже представлены два примера полученных таким способом семейств циркулянтных сетей степени шесть, принадлежащих Ψ .

Пример 1. Пусть $p(d) = \lceil d/2 \rceil$, где d > 1. Тогда

$$C(N;1,s_2,s_3) = \begin{cases} C(d^3 + 2d^2 + 2d + 1; 1, (d^3 + d^2 - d)/2, (d^3 + d^2 + 3d)/2) \text{ при чётных } d, \\ C(d^3 + d^2 + d; 1, (d^3 - 3)/2 - d, (d^3 - 3)/2 + d + 2) \text{ при нечётных } d. \end{cases}$$

Новое семейство из примера 1 по соотношению N/d лучше семейств, найденных в [9, 10, 14, 15].

Пример 2. Пусть $p(d) = p^*$, где p^* определяется соотношением (9). Тогда семейство циркулянтных графов $C(N; 1, s_2, s_3)$ диаметра d > 1 с максимальным N и образующими, представленными в виде полиномов третьей степени от d, описывается следующим образом:

$$N(d) = \begin{cases} \frac{32}{27}d^3 + \frac{16}{9}d^2 + 2d + 1, & \text{если } d \equiv 0 \pmod{3}, \\ 32\lfloor d/3 \rfloor^3 + 48\lfloor d/3 \rfloor^2 + 22\lfloor d/3 \rfloor + 3, & \text{если } d \equiv 1 \pmod{3}, \\ 32\lfloor d/3 \rfloor^3 + 80\lfloor d/3 \rfloor^2 + 70\lfloor d/3 \rfloor + 21, & \text{если } d \equiv 2 \pmod{3}, \end{cases}$$
(10)

$$(s_2(d), s_3(d)) = \begin{cases} \left(\frac{16}{27}d^3 + \frac{4}{9}d^2, s_2 + \frac{4}{3}d\right), & \text{если } d \equiv 0 \pmod{3}, \\ \left(\frac{16}{27}d^3 + \frac{4}{9}d^2 - \frac{2}{3}d + \frac{17}{27}, s_2 + \frac{4}{3}d - \frac{4}{3}\right) & \text{или} \\ \left(\frac{16}{27}d^3 + \frac{4}{9}d^2 - \frac{4}{3}d - \frac{46}{27}, s_2 + \frac{4}{3}d + \frac{8}{3}\right), & \text{если } d \equiv 1 \pmod{3}, \\ \left(\frac{16}{27}d^3 + \frac{4}{9}d^2 - \frac{2}{9}d - \frac{29}{27}, s_2 + \frac{4}{3}d + \frac{4}{3}\right), & \text{если } d \equiv 1 \pmod{3}. \end{cases}$$

Семейство из примера 2 по соотношению N/d превосходит семейства, полученные в [9–11, 14,15]. Для всех диаметров $d \equiv 0 \pmod{3}$ и $d \equiv 2 \pmod{3}$ максимальный порядок N(d), равный (10), совпадает с максимумом N, найденным в [16], а при $d \equiv 1 \pmod{3}$ оказывается меньше на величину $4(2\lfloor d/3 \rfloor + 1)$. Отметим, что при $d \equiv 1 \pmod{3}$ существуют два набора образующих третьей степени от d, которые задают максимум N(d), равный (10).

Заключение

Получена серия параметрически описываемых бесконечных семейств кольцевых циркулянтных сетей степени шесть, включающая графы максимального порядка для заданного диаметра. Это является новым результатом в теории циркулянтных сетей, дающим возможность синтеза ранее неизвестных семейств с меняющимся диаметром, а также при фиксированном диаметре d > 1 построения серии из d - 1 графов. Ранее были известны только отдельные бесконечные семейства циркулянтов. Другая

особенность полученного результата — наличие общей схемы структуры графов получающихся семейств — даёт возможность разработки для них общих аналитических методов поиска кратчайших путей, что подтверждено на примере семейства из [17], являющегося частным случаем параметрически описываемых бесконечных семейств. Получение новых серий семейств сетей, построенных на других типах определяющих соотношений между порядком и образующими графа, и эффективных аналитических алгоритмов парной маршрутизации для них является одним из направлений будущей работы и представляет интерес с практической точки зрения, так как циркулянтные графы степени шесть известны как одна из перспективных топологий для сетей на кристалле.

Автор выражает благодарность О. Г. Монахову за экспериментальные результаты, проведённые с помощью системы Wolfram Mathematica 10.

ЛИТЕРАТУРА

- 1. *Монахова Э. А.* Структурные и коммуникативные свойства циркулянтных сетей // Прикладная дискретная математика. 2011. № 3. С. 92–115.
- Monakhova E.A. A survey on undirected circulant graphs // Discrete Math. Algorithms Appl. 2012. No.4. https://www.researchgate.net/publication/267143246_A_survey_ on_undirected_circulant_graphs.
- 3. Perez-Roses H. Algebraic and computer-based methods in the undirected degree/diameter problem A brief survey // Electr. J. Graph Theory Appl. 2014. No. 2(2). P. 166–190.
- Bermond J.-C., Comellas F., and Hsu D. F. Distributed loop computer networks: a survey // J. Parallel Distributed Comput. 1995. No. 24. P. 2–10.
- 5. *Hwang F. K.* A survey on multi-loop networks // Theor. Comput. Sci. 2003. No. 299. P. 107–121.
- 6. Romanov A., Amerikanov A., and Lezhnev E. Analysis of approaches for synthesis of networks-on-chip by using circulant topologies // J. Physics: Conf. Ser. 2018. V. 1050. P. 1–12.
- 7. Romanov A. Yu. Development of routing algorithms in networks-on-chip based on ring circulant topologies // Heliyon. 2019. V. 5. No. 4. P. 1–23.
- 8. *Романов А. Ю., Ведмидь Е. А., Монахова Э. А.* Проектирование сетей на кристалле с топологией кольцевой циркулянт с тремя образующими: разработка алгоритмов маршрутизации // Информационные технологии. 2019. № 25(9). С. 522-530.
- 9. Yebra J. L. A., Fiol M. A., Morillo P., and Alegre I. The diameter of undirected graphs associated to plane tessellations // Ars Combinatoria. 1985. No. 20B. P. 159–172.
- 10. Wong C. K. and Coppersmith D. A combinatorial problem related to multimodule memory organizations // J. Assoc. Comput. Mach. 1974. No. 21. P. 392–402.
- 11. Chen S. and Jia X.-D. Undirected loop networks // Networks. 1993. No. 23. P. 257–260.
- 12. Barriere L., Fabrega J., Simo E., and Zaragoza M. Fault-tolerant routings in chordal ring networks // Networks. 2000. V. 36(3). P. 180–190.
- 13. *Thomson A. and Zhou S.* Gossiping and routing in undirected triple-loop networks // Networks. 2010. No. 55(4). P. 341–349.
- 14. Liestman A. L., Opatrny J., and Zaragoza M. Network properties of double and triple fixed-step graphs // Int. J. Found. Comp. Sci. 1998. V. 9. P. 57–76.
- 15. Jha P. K. A family of efficient six-regular circulants representable as a Kronecker product // Discr. Appl. Math. 2016. V. 203. P. 72–84.
- 16. Monakhova E. Optimal triple loop networks with given transmission delay: Topological design and routing // Intern. Network Optimization Conf. (INOC'2003), Evry/Paris, France, 2003. P. 410–415.

 Монахова Э. А., Монахов О. Г. Динамический алгоритм парной маршрутизации для аналитически задаваемых семейств циркулянтных сетей степени шесть // Сб. статей XIX Междунар. науч.-технич. конф. «Проблемы информатики в образовании, управлении, экономике и технике». Пенза: ПДЗ, 2019. С. 30–37.

REFERENCES

- 1. *Monakhova E. A.* Strukturnye i kommunikativnye svoystva tsirkulyantnykh setey [Structural and communicative properties of circulant networks]. Prikladnaya Diskretnaya Matematika, 2011, no. 3, pp. 92–115. (in Russian)
- 2. Monakhova E.A. A survey on undirected circulant graphs. Discrete Math. Algorithms Appl., 2012, no.4. https://www.researchgate.net/publication/267143246_A_survey_on_undirected_circulant_graphs.
- 3. *Perez-Roses H.* Algebraic and computer-based methods in the undirected degree/diameter problem A brief survey. Electr. J. Graph Theory Appl., 2014, no. 2(2), pp. 166–190.
- 4. Bermond J.-C., Comellas F., and Hsu D. F. Distributed loop computer networks: A survey. J. Parallel Distributed Comput., 1995, no. 24, pp. 2–10.
- 5. *Hwang F. K.* A survey on multi-loop networks. Theor. Comput. Sci., 2003, no. 299, pp. 107–121.
- Romanov A., Amerikanov A., and Lezhnev E. Analysis of approaches for synthesis of networks-on-chip by using circulant topologies. J. Physics: Conf. Ser., 2018, vol. 1050, pp. 1–12.
- 7. Romanov A. Yu. Development of routing algorithms in networks-on-chip based on ring circulant topologies. Heliyon, 2019, vol. 5, no. 4, pp. 1–23.
- 8. Romanov A. Yu., Vedmid E. A., and Monakhova E. A. Proektirovanie setej na kristalle s topologiej kol'cevoj cirkulyant s tremya obrazuyushchimi: razrabotka algoritmov marshrutizacii [Designing networks-on-chip based on triple loop (circulant) networks: routing algorithm development]. Informacionnye Tekhnologii, 2019, no. 25(9), pp. 522–530. (in Russian)
- 9. Yebra J. L. A., Fiol M. A., Morillo P., and Alegre I. The diameter of undirected graphs associated to plane tessellations. Ars Combinatoria, 1985, no. 20B, pp. 159–172.
- 10. Wong C. K. and Coppersmith D. A combinatorial problem related to multimodule memory organizations. J. Assoc. Comput. Mach., 1974, no. 21, pp. 392–402.
- 11. Chen S. and Jia X.-D. Undirected loop networks. Networks, 1993, no. 23, pp. 257–260.
- 12. Barriere L., Fabrega J., Simo E., and Zaragoza M. Fault-tolerant routings in chordal ring networks. Networks, 2000, no. 36(3), pp. 180–190.
- 13. *Thomson A. and Zhou S.* Gossiping and routing in undirected triple-loop networks. Networks, 2010, no. 55(4), pp. 341–349.
- 14. Liestman A. L., Opatrny J., and Zaragoza M. Network properties of double and triple fixedstep graphs. Int. J. Found. Comp. Sci., 1998, vol. 9, pp. 57–76.
- 15. Jha P. K. A family of efficient six-regular circulants representable as a Kronecker product. Discr. Appl. Math., 2016, vol. 203, pp. 72–84.
- 16. Monakhova E. Optimal triple loop networks with given transmission delay: Topological design and routing. Intern. Network Optimization Conf. (INOC'2003), Evry/Paris, France, 2003, pp. 410–415.
- 17. Monakhova E. A. and Monakhov O. G. Dinamicheskij algoritm parnoj marshrutizacii dlya analiticheski zadavaemyh semejstv cirkulyantnyh setej stepeni shest' [A dynamic algorithm of two-terminal routing for analytically described families of degree six circulant networks]. Proc. XIX Intern. Conf. "Problemy Informatiki v Obrazovanii, Upravlenii, Ekonomike i Tekhnike", Penza, PDZ Publ., 2019, pp. 30–37. (in Russian)