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Abstract

In this paper, we investigate the heredity of some kind of generalized metric
spaces to expcX and expnX. We will study the connection between a σ-space,
Σ-space, a stratifiable space, ℵ-space, ℵ0-space and its hyperspace.

Keywords: Hyperspace, σ-space, Σ-space, stratifiable space, ℵ-space, semis-
tratifiable space, ℵ0-space.

Mathematics Subject Classification (2010): 54B20, 54E18, 54E20,
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Introduction
Exponential spaces were introduced in the work [1]. Michael [2] studied various
topologies on the collection of nonempty closed subsets of a topological space. In the
works [3, 4], they studied some categorical and topological properties of the functors
exp, expc, expω and expn. In that work [5], categorical and cardinal properties of
hyperspaces with a finite number of components were investigated and it was proved
that this functor is not a normal functor. They proved that the functor Cn : Comp→
Comp is not normal, i.e., it does not preserve epimorphisms of continuous mappings.
They also discussed the density, the caliber, and the Shanin number of the space
CnX. This space is of interest since it contains the hyperspaces expnX of closed sets
with cardinalities not greater than n elements. T.Mizokami [6] studied the hereditary
property to the hyperspaces expcX and expωX when X is a generalized metric space
around Moore space. For example, as it is well known, Moore space, stratifiable
space, metrizable and σ-space are inherited to expωX [7]. As for as the reciprocal
relationship of topological properties between X and expcX and expnX, there has
been a natural problem as follows: Let C be a class of spaces with some property.
if X ∈ C, does then expcX or expnX belong to C? In this paper, we survey this
problem when C is restricted to class of generalized metric spaces known already.
As candidates for C, we consider the σ-spaces, paracompact Σ-spaces, stratifiable
spaces, ℵ-spaces, semistratifiable spaces and ℵ0-spaces classes. It is shown that the
functor expnX preserves the class of Σ-spaces, paracompact Σ-spaces, stratifiable
spaces, ℵ-spaces, semistratifiable spaces and ℵ0-spaces.

In [8], V.V. Fedorchuk stated the following general problems in the theory of
covariant functors that defined a new direction of investigations in the given field of
the topology: Let P be some geometrical property and F some covariant functor.
If topological space X has a property P , then F (X) has the same property P? Or,
conversely, i.e. for what functors F , if F (X) has property P would imply that X has
the same property? In our case F = expnX and X ∈ T1.
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In [5], categorical and cardinal properties of hyperspaces with a finite number
of components were investigated and it was proved that this functor is not a nor-
mal functor. It was proved in [9] that the Radon functor satisfies all the normality
conditions. In [10], the topological properties of topological groups were studied.

Let X be a topological T1-space. Denote by expX the set of all nonempty closed
subsets of the space X. The family of all sets in the form of O〈U1, ..., Un〉 = {F : F ∈
expX,F ⊂

n⋃
i=1

Ui, F
⋂
Ui 6= ∅, i = 1, 2, ..., n} where U1, ..., Un is a sequence of open

subsets of X, generates the topology on the set expX. This topology is called the
Vietoris topology. The set expX with the Vietoris topology is called the exponential
space or the hyperspace of the space X.

Let X be a topological T1-space. Denote by expnX the set of all non-
empty closed subsets of X of cardinality not greater than the cardinal number n,
i.e. expnX = {F ∈ expX : |F | ≤ n }. Put expωX =

⋃
{expnX : n = 1, 2, ...},

expcX = {F ∈ expX : F is compact in X}. It is clear, that expnX ⊂ expωX ⊂
expcX ⊂ expX for any topological space X [11].

It is known that for a Hausdorff space X and a natural number n, the space
expnX is closed in the space expX . It is easy to see that if X is a T1- space, then
the mapping i : X → expX corresponding to the point x ∈ X to the one-point set
i(x) = {x }, is an embedding, that is, considered as a mapping onto the set exp1X,
it is a homeomorphism. For a Hausdorff space X, we have a chain of embeddings:
exp1X ⊂ exp2X ⊂ ... ⊂ expX. It is clear that if n ≥ m then the space expmX is
closed in the space expnX [11].

Proposition 1. [12]. Let X be a T1-space. To each point (x1, x2, ..., xn) ∈ Xn we
associate a point {x1, x2, ..., xn} ∈ expnX with a point. Then we get a continuous
surjective map:

πn,X = πn : Xn → expnX.

Theorem 1. [13]. If X is Hausdorff, then πn is a closed continuous surjection.

T. Ganea ([13, p. 306.]) proved that in general πn is not an open mapping.
A continuous mapping f : X → Y is called a perfect map if X is a Hausdorff

space, f is a closed, onto and f−1(y) are compact subsets ofX. A continuous mapping
f : X → Y is called a quasi-perfect map if X is a Hausdorff space, f is a closed, onto
and f−1(y) are countable compact subsets of X.

Proposition 2. [14]. If f : X → Y is a perfect mapping, then for any closed A ⊂ X
and any B ⊂ Y the restrictions fA : A→ Y and fB : f−1(B)→ B are perfect.

1 Main Result

A topological space X is called a Lasnev space if there is an image of a metrizable
space under a closed continuous mapping [15]. It is clear that the closed continuous
image of each Lasnev space is Lasnev.
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Proposition 3. An arbitrary subset of the Lasnev space is also Lasnev.

Proof. Let X be a Lasnev space and L is an arbitrary subset of X . Then there
exists a metric space M and a closed continuous map f from M onto X. Since
each subspace of a metric space is also a metric space, it follows that the subspace
f−1(L) of M is so. It follows from [14] that the restriction fL : f−1(l) → L is a
closed mapping. Consequently, the subset L is Lasnev space subspace of the space
X. Proposition 3 is proved.

The product of two Lasnev spaces does not preserve Frechet property, sequential-
ity and countable tightness. However, the finite Cartesian product of Lasnev spaces
is not Lasnev space.

Example 1. [7]. There exists a countable Lasnev space X such that expcX is not
Lasnev space.

Corollary 1. If the space expnX is Lasnev, then X is also Lasnev.

Proof. It is clear X is a subset of expnX and class of Lasnev spaces is hereditarily
all subspaces. Therefore, X is a Lasnev space. Corollary 1 is proved.

A family N = {Ms}s∈S subsets of a topological space X is a network for X if for
every point x ∈ X and any neighbourhood U of x there exists an element s ∈ S,
such that x ∈ Ms ⊂ U . A family {As}s∈S of subsets of a topological space X is
locally finite if for every point x ∈ X there exists a neighbourhood U such that the
set {s ∈ S : U ∩ As 6= ∅} is finite. A family of subsets of a topological space is called
σ-locally finite (σ -discrete), if it can be represented as a countable union of a locally
finite (discrete) families [14].

Definition 1. [16]. A topological space X is called a σ-space if it has a σ-locally
finite network.

The class of σ-spaces is very well behaved in terms of various topological opera-
tions. It is easy to check that this class is hereditary and countably productive. It is
also true that the countable product of paracompact σ-spaces is again a paracompact
σ-space [17].

Proposition 4. A space X is a σ-space if and only if expnX is a σ-space.

Proof. Necessity. Let X be a σ-space. Then by [17] the countable product space X
is a σ-space, that is, Xn is a σ-space. It follows from [17] that the class of σ-space is
preserved under a closed map. Since the mapping πn is closed and πn(Xn) = expnX,
it follows that the spaces expnX is a σ-space.

Sufficiency. Obviously, X is a subspace of expnX and the class of the σ-spaces
is hereditary for all subspaces. Therefore, the space X is a σ-space. Proposition 4 is
proved.

Borges [18] showed the following property by which a stratifiable space, para-
compact σ-space, and σ-space are not hereditary to expcX, though they are so to
expωX.
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Corollary 2. A Hausdorff space X is a paracompact σ-space if and only if expnX
is a paracompact σ-space.

Corollary 3. [19]. Let X be a locally compact paracompact and Y a paracompact.
Then X × Y is a paracompact space.

Lemma 1. Let the family of open sets µ = {V α
i : α ∈ Ai, i = 1, 2, ..., n } is a

refinement of the family {G1, G2, ..., Gn} in open subsets of a topological space
X. Then the family µ1 = {O 〈V α1

1 , V α2
2 , ..., V αn

n 〉 : αi ∈ Ai, i = 1, 2, ..., n } is
a refinement of the family {O 〈G1, G2, ..., Gn〉} in the hyperspace expX, where
{V α

i ∈ µ : α ∈ Ai, i = 1, 2, ..., n }

Theorem 2. A locally compact space X is paracompact if and only if expcX is
paracompact.

Proof. Necessity. Let X be a locally compact paracompact space and consider its
arbitrary open cover µ = {O 〈Uα

1 , U
α
2 , ..., U

α
n 〉 : α ∈ A} in expcX. Consider the

trace of the family µ in the space X, i.e. µ1 = {Uα
i : α ∈ A, i = 1, 2, ..., n }. It is

clear that µ1 is an open cover of X. Since X is paracompact, there exists a locally
finite open cover of ν =

{
V β : β ∈ B

}
, which is a refinement of µ1.

Consider all possible finite combinations of the cover ν and put ν1 ={
O
〈
V β
1 , V

β
2 , ..., V

β
k

〉
: β ∈ B

}
. It is clear that ν1 is a cover of the space expcX and

ν1 is inscribed in the cover µ1 by virtue of Lemma 1. Let us show that the system ν1 is
locally finite. Let F ∈ expcX be an arbitrary element, then F is compact and F ⊂ X .
Since the cover of ν =

{
V β : β ∈ B

}
is locally finite, every point x ∈ F has a neigh-

borhoodO (x) such that
{
β ∈ B : O(x) ∩ V β 6= ∅

}
is finite. Let the point x run along

the compact set F . Since F is compact, there exists O (x1) , O (x2) , ..., O (xk), that

F ⊂
k
∪
i=1

O (xi) and
{
β ∈ B : O(xi) ∩ V β 6= ∅

}
are finite for every i = 1, 2, ..., k. Then

the set O 〈O(x1), O(x2), ..., O(xk)〉 is a neighborhood of the compact set F ∈ expcX

and
{
β ∈ B : O 〈O(x1), O(x2), ..., O(xk)〉 ∩O

〈
V β
1 , V

β
2 , ..., V

β
k

〉
6= ∅
}

is finite.
Sufficiency. Let expcX be paracompact. Let µ = {Uα : α ∈ A} be an arbitrary

open cover of the space X. Consider all possible finite combinations of the cover µ
and put µ1 = {O 〈Uα

1 , U
α
2 , ..., U

α
n 〉 : α ∈ A, Uα

i ∈ µ, i = 1, 2, ..., n}. It is clear that
µ is an open cover of the space expcX. Since expcX is paracompact, there exists a
locally finite open cover ν =

{
O
〈
V β
1 , V

β
2 , ..., V

β
s

〉
: β ∈ B

}
which is refinement of

the cover µ1.
Consider the trace ν1 of a family in the space X. Let us show that the trace

ν1 =
{
V β
i : β ∈ B, i = 1, 2, ..., n

}
is a locally finite open cover of X. Let x be an

arbitrary point of X, then {x} ∈ expcX. Since expcX is paracompact and ν is a
locally finite open cover of X, then there exists a neighborhood O 〈G〉 of {x}, that{
β ∈ B : O 〈G〉 ∩O

〈
V β
1 , V

β
2 , ..., V

β
s

〉
6= ∅
}

is finite. This means that x ∈ G and

G∩ V β
i 6= ∅, i = 1, 2, ..., s and for finite β ∈ B. Hence we have that the system ν1 is

locally finite. Theorem 2 is proved.
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Corollary 4. A locally compact space X is paracompact if and only if the space
expnX is paracompact.

Remark 1. In Theorem 2.1, the condition of locally compactness is essential. There
exists a paracompact space X∗ such that expnX

∗ is not paracompact space.

Indeed, consider the space “One arrow” of P.S.Alexandroff X∗ = [0, 1), the base
of which is formed by subsets of the form (α, β), where 0 ≤ α < β ≤ 1. It was
proved in [14] that X∗ is a hereditarily paracompact space. By virtue of Theorem
5.1.5 [14], every paracompact Hausdorff space is normal. If X∗ ∗X∗ is normal. We
get a contradiction. In this case a space expnX

∗ is not a paracompact space.
K. Nagami gave the definition of Σ-spaces that is more useful to use here than

the original one in [20].

Definition 2. [20]. A space is a (strong) Σ-space if there exists a pair {J , C} of
families satisfying the following conditions:

1. J is a σ-discrete family of subsets of X;

2. C is a cover of X by closed countably compact (respectively compact) subsets of
X;

3. If C ∈ C and U is an open subset of X such that C ⊂ U , then C ⊂ F ⊂ U for
some F ∈ J .

K. Nagami [20] showed that the class of paracompact Σ-spaces is preserved under
a quasi-perfect map and a countable product.

More strictly, T.Mizokami constructed an example that there exists a paracompact
Σ-space such that is not a Σ-space. But, If we consider class of paracompact Σ-spaces,
then we obtained following result.

Theorem 3. If X is a paracompact Σ-space, then expnX is also a paracompact
Σ-space.

Proof. Let X be a paracompact Σ-space. Then by [20] the class of paracompact
Σ-spaces preserves the countable product, it follows that Xn is a paracompact Σ-
space. Obviously, the class of Σ-spaces is preserved under a quasi-perfect mapping,
in particular, a perfect mapping. In addition, paracompactness is preserved under a
perfect mapping. Since the mapping πn is perfect and πn(Xn) = expnX, it follows
that the space expnX is paracompact Σ-space. Theorem 3 is proved.

Definition 3. [21]. A topological space X is called a srtatifiable space if X is T1-
space and to each open U ⊂ X, one can assign a sequence {Un}∞n=1 of open subsets
of X such that

1. [Un] ⊂ U ;

2.
∞⋃
n=1

Un ⊂ U ;
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3. Un ⊂ Vn, whenever U ∈ V for each n ∈ N .

It is easy to check that each stratifiable space is regular. We give another proper-
ties of this space. A stratifiable space is hereditarily and countably productive. The
stratifiable space is preserved under a closed continuous mapping [21].

Corollary 5. A space is srtatifiable if and only if is a srtatifiable space.

Proof. Necessity. Let X be a srtatifiable space. Then by [17] the countable product
space X is a srtatifiable space, that is, Xn is a srtatifiable space. It follows from [21]
that the class of a stratifiable space is preserved under a closed mapping. Since the
mapping πn is closed and πn(Xn) = expnX, it follows that the spaces expnX is a
stratifiable space.

Sufficiency. Obviously, X is a subspace of expnX and the class of the stratifiable
space is hereditary for all subspaces. Therefore, the space X is a stratifiable space.
Corollary 5 is proved.

Definition 4. [22]. A collection F of subsets of a space X is a k-network if whenever
K is a compact subset of an open set U , there exists a finite F ′ ⊂ F such that
K ⊂

⋃
F ′ ⊂ U . A regular space with σ-locally finite (countable) k-network is called

an ℵ-space ( ℵ0-space).
Proposition 5. [23]. Let f : X → Y be a perfect mapping of a topological space X
onto a topological space Y . If X has a k-network of cardinality τ ≥ ℵ0, then Y has
a k-network of cardinality ≤ τ .

Theorem 4. [17]. The classes of ℵ-spaces, ℵ0-spaces and paracompact ℵ-spaces are
hereditary and countable productive.

Theorem 5. A space X is an ℵ-space if and only if expnX is an ℵ-space.
Proof. Let X be an ℵ-space. By [17], the space Xn is an ℵ-space. Since the
cover of ν =

{
V β : β ∈ B

}
is locally finite, every point x ∈ Xn has a neighbor-

hood O(x) such that
{
β ∈ B : O(x) ∩ V β 6= ∅

}
is finite. Let a family µ =

∞⋃
w=1

νw

(where a family νw =
{
V β
w : β ∈ B w = 1, 2, ...

}
is a locally finite) k-network and

σ-locally finite in Xn. It is obviously that k-network is preserved under the per-
fect mapping [23]. Consider all possible finite combinations of the cover ν and
put ν1 =

{
O
〈
V β
1 , V

β
2 , ..., V

β
k

〉
: β ∈ B

}
. It suffices to show that the family ν1 ={

O
〈
V β
1 , V

β
2 , ..., V

β
k

〉
: β ∈ B

}
is locally finite in expnX. Let us show that the sys-

tem ν1 =
{
O
〈
V β
1 , V

β
2 , ..., V

β
k

〉
: β ∈ B

}
is locally finite. Let the point x run along

the set F . Since F = {x1, x2, ..., xn}, then there exists O (x1) , O (x2) , ..., O (xk),

that F ⊂
k
∪
i=1

O (xi) and
{
β ∈ B : O(xi) ∩ V β 6= ∅

}
are finite for every i = 1, 2, ..., k.

Then the set O 〈O(x1), O(x2), ..., O(xk)〉 is a neighborhood of the set F ∈ expnX

and
{
β ∈ B : O 〈O(x1), O(x2), ..., O(xk)〉 ∩O

〈
V β
1 , V

β
2 , ..., V

β
k

〉
6= ∅
}

is finite.
Obviously, X is a subspace in expnX, and the class of the ℵ-space is hereditary

for all subspaces. Therefore, the space X is a ℵ-space. Theorem 5 is proved.
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Theorem 6. Hausdorff space X is an ℵ0-space if and only if expnX is an ℵ0-space.

The proof consists of repeating the arguments in the proof of Theorem 5.

Corollary 6. Hausdorff space X is a paracompact ℵ-space if and only if expnX is
paracompact ℵ-space.

Definition 5. [24]. A topological space X is a semistratifiable space if to each open
set U ⊂ X one can assign a sequence {Un}∞n=1 of closed subsets of X such that

1.
∞⋃
n=1

Un ⊂ U ;

2. Un ⊂ Vn, whenever U ∈ V for each n ∈ N , where {Vn}∞n=1 is the sequence
assigned to V .

It is obviously the following property. The class of a semistratifiable spaces is
hereditary and countably productive [24].

Theorem 7. A topological space X is semistratifiable if and only if the space expnX
is semistratifiable.

Proof. Necessity. Let X be a semisrtatifiable space. Then by [24] the countable prod-
uct space X is a semisrtatifiable space, that is, Xn is a semisrtatifiable space, since
the mapping πn is closed and πn(Xn) = expnX. Take an open set O 〈U1, U2, ..., Un〉 ⊂
expnX. Then the set π−1n (O 〈U1, U2, ..., Un〉) is open in Xn. There exists a sequence

{Fm}∞m=1 to a closed subset of Xn such that
∞⋃
m=1

Fm = π−1n (O 〈U1, U2, ..., Un〉). It fol-

lows that O 〈U1, U2, ..., Un〉 = πn

(
∞⋃
m=1

Fm

)
=

∞⋃
m=1

πn(Fm). Since the set Fm is closed

in Xn for every n ∈ N , the mapping πn is closed. Therefore, the set Tm = πn(Fm)

is closed in expnX. Hence, O 〈U1, U2, ..., Un〉 =
∞⋃
m=1

Tm. Take an arbitrary open sub-

set of O 〈V1, V2, ..., Vt〉 ⊂ O 〈U1, U2, ..., Un〉. The inclusion π−1n (O 〈V1, V2, ..., Vt〉) ⊂
π−1n (O 〈U1, U2, ..., Un〉) implies that there exist closed subsets of {Km}∞m=1 such that

π−1n (O 〈V1, V2, ..., Vt〉) =
∞⋃
m=1

Km. Hence we have O 〈V1, V2, ..., Vt〉 =
∞⋃
m=1

πn (Km) and

Km ⊂ Fm for each m = 1, 2, . . . . It is clear that πn (Km) ⊂ πn(Fm) for each
m = 1, 2, .... Consequently, we obtained that the space expnX is semistratifiable.

Sufficiency. It is clear that X is a subspace of the space expnX and the class
of semistratifiable spaces is hereditary. Therefore, the space X is a semistratifiable
space. Theorem 7 is proved.
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