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General overview, the aim of this Working Group report 
 

 It is now evident that fresh- and marine-water ecosystems have long been overloaded by nutrients that 

originate, among others, from land-based agriculture, and the manifold point-type anthropogenic sources, such 

as waste-water treatment plants. The situation in this sense is rather acute in the Baltic countries and their 

waters. This situation will not improve until we identify the true sources and pathways of pollutants and 

quantify their contribution, advance our process-understanding to describe the mechanisms through which the 

pollution occurs, and by what steps we may be able to influence that, and quantify what, if any such steps – 

today popularly termed ‘mitigation measures’ – may produce certain levels of benefit sustainably. 

 Various advancements have already been made in a number of the above steps, but the applied 

mitigation measures are often local and scarce, their effects are often influenced by other unknown and 

uncontrolled factors, and their installation is too recent to yield noticeable changes due to e.g. the nutrient 

retention characteristics of the ecosystem. It is therefore of paramount importance that we monitor and use 

environmental data towards long-term planning in order to sustain or improve the state of our environment. 

Environmental modeling is a growingly important tool for future planning. One main branch of such modeling 

– the use of process-based models – is a generally data intensive, but in exchange rather detailed way of 

quantifying natural processes.  

 As part of the greater context of the NORRA project, this Working Group reports on its work towards 

(a) cataloguing existing environmental data for selected pilot-watersheds of Estonia that are needed to run 

process-based simulation models for those watersheds; (b) identifying suitable, and feasibly usable models, 

and calibrate, validate and test them under Estonian conditions; (c) evaluating the models’ performance and 

capability to become decision support tools; and (d) and advising on data and knowledge gaps towards further 

future progress. 
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Introduction to eco-hydrological catchment modeling 

 

 Background to simulation modeling in this project 

 Decision makers actively seek assistance from environmental information systems to be informed of 

the status of environmental resources and variables, and to help assist policy-making. Such information systems 

rely on long-term field monitoring data, as well as data from computer-based models of various complexity, 

among them numerical simulations models.  

 With recent advancements in computing facilities and in the development of a range of models, 

numerical simulation modeling is increasingly becoming the tool of choice when it comes to assessing the 

anticipated impact of certain natural or human-induced changes to/in our environment (Kværnø et al., 2013). 

As the understanding of natural processes by the scientific community keeps improving, this improvement 

continually translates into a better ability to quantify those processes by such models (Deelstra, 2014). Changes 

that can be addresses by simulation studies include a wide range of scenario and impact assessment studies 

driven by e.g. planned land-use or land management changes (Farkas et al., 2013), industrial, urban 

infrastructure and other facilities planning, etc. 

 This report summarizes the work of a working group within the NORRA project, aiming to assess the 

suitability of different dynamical models to describe Estonian eco-hydrological conditions. It has also been an 

expressed goal that the participating groups attempt to improve understanding of surface, subsurface and in-

stream processes that are most relevant in Estonia, and collaboratively try to identify the main constrains and 

future tasks of applying dynamical eco-hydrological models in Estonia. 

 In this project, we used 5 different models in parallel to achieve the established goals, and simulated 

the water and nutrient-transport and loads in 3 selected watersheds of Estonia. We first summarize some 

important aspects and limitations of eco-hydrological modeling in general, and some specifics of the multi-

model approach that we have taken. 

 
 

 Overview of eco-hydrological catchment models – benefits and constrains 
 

 The continuous dynamic models that consist of mathematical descriptions of physical, biogeochemical 

and hydrochemical processes, and combine significant elements of both physical and conceptual semi-

empirical nature can be called process-based eco-hydrological models. An eco-hydrological process-based 

model for a river catchment necessarily contains a hydrological module as a basic feature. Another necessary 

part is a vegetation and soil sub-model. Also, such a model usually includes the sub-models for biogeochemical 

cycles (mainly nitrogen and phosphorus) with a certain level of complexity. The hydrological, vegetation and 

biogeochemical sub-models are usually coupled in order to include important interactions and feedbacks 

between the processes, like water and nutrient drivers for plant growth, water transpiration by plants, nutrient 

transport with water, etc. Usually, vertical and lateral fluxes of water and nutrients in catchments are modelled 

separately, whereas meteorological parameters are used as external drivers. 

 It is an important dilemma, how detailed an eco-hydrological model should be at the catchment scale. 

Model complexity by itself should not be seen as a binding necessity. Often, a complex phenomenon or process 

can be described mathematically in a simplified form and parametrized using more easily available 

information. When that is the case, using a simple model is preferable compared to using a complex model and 

a great degree of detail in describing and parameterizing the process, which is often problematic, lacks proper 

data, and the control of the overall model behavior is difficult. 
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 Different models operate at intrinsic spatial-temporal resolutions that they were designed for. The 

spatial resolution, scale of application, and objective of the study are interrelated. Processes that are evidenced 

at some smaller scales may behave differently at larger scales. Therefore information obtained from 

experiments and observations at a small temporal or spatial scale cannot directly and automatically be 

transferred to larger scales. Similarly, large-scale observations cannot be used directly for small-scale 

simulations. As a rule of thumb, the deeper one intends to examine a phenomenon - and thus intends to go to 

smaller modeling scales - the more parameters will be required to describe processes, which may be an 

overwhelming task and may result in massive and uncontrollable uncertainties. 

 It is possible to classify eco-hydrological models by their spatial and temporal resolution, which will 

help the user in identifying the desirable model in this aspect ( 

Figure 1). 

 

 
 

Figure 1. Spatial-temporal resolution of a select list of eco-hydrological simulation models 
 

 

 Benefits and constraints of using multiple models in parallel 

 

 Ensemble modeling – i.e. the use of a number of models in combination – is a natural part of weather 

and climate modeling today. This practice, however, has not set foot yet in environmental modelling, although 

the research area of estimating soil hydraulic properties as input to numerical simulation models now growingly 

applied one or another version of such techniques (Baker and Ellison, 2008). Ensemble modeling carries a 

number of benefits and potential over the use of a single model.  
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 Models can differ in their theory and structure, but also in the information that they require. As a result, 

their sensitivity, scale of support and scale of command may also differ. Their use is easy to justify if it is 

difficult to determine which, if any, single model may be superior to others. In ensemble modeling, the main 

aim is not to make the single model perfect, but to capture the trend that multiple models agree on. The 

ensemble will amplify trends that are common among models, while by-chance predictions will be softened. 

The outputs, therefore, can be interpreted – qualitatively or quantitatively - as a measure of uncertainty.  

 In soils related predictions, two different types of ensemble models have been explored. Guber et al. 

(2009) used a bag of 19 published pedotransfer functions in an ensemble prediction scheme to parameterize an 

eco-hydrological model that solves the Richards’ Equation to calculate water flow. In their scheme, they used 

different models that required different sources and levels of input and that had different structure. A more 

popular approach – and one that is more simple to implement – is the use one of several schemes to resample 

data of the main data pool, and use those to develop a given number of predictive models of the same structure, 

which are then statistically pooled to give a prediction – optionally with a measure of uncertainty. Such 

schemes include e.g. bagging and bootstrapping, and have been used by several authors in the field of helping 

to parameterize simulation models (e.g. Schaap et al., 2004; Nemes et al., 2010). Although it technically 

belongs to the latter type of ensemble modeling, Monte-Carlo simulations, or similar techniques may also serve 

the purpose, since the technique involves parameterizing multiple model runs slightly differently as selected 

model parameters are recurrently sampled from a pre-determined frequency distribution. Such techniques are 

typically applied in parameter sensitivity and uncertainty analysis.  

 The first type of ensemble modeling is rare, since it typically involves an excessive amount of work 

that cannot be automated like the latter ensemble types (data or parameter resampling). Their specific value is 

in that multiple model types – and the trends that they produce - can be compared, and the findings are not 

conditional on having to pre-selecting and accepting a model concept or structure. Very often, however – and 

this was the case in this project – different models often evaluate environmental metrics of interest differently, 

and the results may not be easy to match. In such cases, conversions, expert-interpretations, or additional 

scaling may be necessary. Apart from the benefit of the ability to potentially discard (an) outlying model(s), 

each approach has the inevitable extra benefit of being able to produce some metric of uncertainty to the output, 

which can then be expert-interpreted, and potentially propagated further to additional studies or models, if 

desirable.  

 

 

 User-bias 

 

 While objective metrics are used when calibrating and validating simulation models, it is inevitable that 

users make choices in e.g. model parameterization that are not standard choices, but are somewhat influenced 

by their personal preferences. Such can be the case with e.g. various resembling parameter sets that may yield 

very similar model results. Different modelers may reason differently why one parameter set or the other should 

be preferred to reach the same goal. The background of the modeler may also have some influence on the 

model parameterization, in that a crop scientist will likely be more knowledgeable and comfortable with 

adjusting crop related parameters, while a soil scientist may do the same with soil parameters. This aspect may 

have significance if different groups work in parallel, and if some or all models are not-auto-calibrated using 

the same initial parameterization. 

 Unless some obvious discrepancy is found, we see no reason to deem any alternate solutions insufficient 

if otherwise their simulation metrics are up to standard, and the calibration/validation that was performed 

covers all aspects of the expected use of the model. 

 Nevertheless, we discussed any potential aspects in this study that may be related to user bias. In this 

project we first addressed this matter via awareness, i.e. the recognition that this factor exists and may have 

some impact on the outcome of the modeling results. Second, we performed the relevant modeling exercises 

involving more than one researcher in the work-flow. Most model simulations were either performed jointly, 
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or were followed up by consulting with (an)other modeling expert(s) in the project. This has been achieved 

through recurrent meetings between researchers of the different institutions.  

 

 

 On data-driven limitations 

 

 Simulation modeling studies, especially when multiple models have to be parameterized, inevitably 

face the situation of missing information, whether those are model parameters (e.g. site- or area-specific 

constants or soil parameters), or driver variables (weather data, etc.). Such missing information can originate 

from multiple sources, that include but are not limited to e.g.: 

- Routine or targeted data collection normally taking place at a different scale (e.g. water outflow from 

fields) 

- Differences in methodology or standards between the model and the area/country of application (e.g. 

different soil particle-size distribution standards) 

- The information not being readily available from the information source 

 It can also happen that some of such inputs have simply not been determined, when e.g. particular data 

collection has not been in the focus before, or lack of resources did not allow proper data collection or 

monitoring.  

 Lack of data can pose different degrees of difficulty to the modeler to overcome, and will require 

different strategies to overcome. A user can opt to consult model documentation for reference values – which 

are somewhat generic – or can look up earlier case studies for values used under similar circumstances. In 

certain cases, interpretation or up/down scaling of information from studies at other scales can provide useful 

information towards parameterizing a model. This step involves expert judgement as a resource that modeling 

studies often have to rely on. Expert knowledge and understanding of underlying physical processes and/or of 

the equations behind the modeled processes (that are typically simplifications of reality) can very often yield 

sufficient information to set certain model parameters satisfactorily. Of course, it is important to emphasize 

that this should be done in consultation with experts familiar with the local conditions. Simulation modeling 

based studies typically encounter several of the listed problems, and the solution is eventually found using a 

combination of tools. In this report, examples of such data inferences – and how they were addressed – are 

provided at the appropriate sections. 

 The consequence of having to use such solutions to fill data gaps is the increased risk of introducing 

uncertainties into the study by propagating both random and non-random (systematic) errors. The user is 

advised to experiment with the model to learn about the model’s sensitivity to the setting of different 

parameters, in order to be informed about greater or lesser risks of error due to uncertainty in the 

parameterization that can be interpreted later. Some model developers assist the user by providing a tool that 

is suitable for this task, while in other cases the modeler needs to run trial-and-error simulations with alternative 

parameterizations.  

 Advantages and disadvantages of multi-model simulations have been introduced earlier. Even if it is a 

costly and labor intensive approach, using multiple models to address the same problem can help the scientist 

– and eventually the policy maker – to identify likely trends and the unlikely outliers, which may be the result 

of imperfections in parameterizing a model. This approach is now actively used to the benefit of society in the 

form of forecasting daily weather, or the chances of dangerous weather extremes. Our study adapted the multi-

model simulation approach for the same reason, i.e. to help reduce the potential risk of relying on a single 

model and its parameterization. 
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 General limitations in eco-hydrological modeling 
 

 The regionalization of models has been a recurring theme in the atmospheric and hydrological sciences 

over the last few decades. Such studies are an inevitable part of building a pro-active rather than re-active 

approach to responding to projected climatic changes, or other changes such as changes in land use or land 

cover. Models and modelling results in general are continually improving, but still remain limited in many 

ways, due to a combination of many factors, such as e.g. inadequate or unreliable environmental or other 

support data and limited funding available to collect more data; or limited (quantitative) knowledge of natural 

processes and their limited representation in simulation models. 

 It has long been a dilemma whether models or their support data are the limiting factor in a study. 

Models are being developed and fine-tuned constantly by their developers. It is generally seen that model 

performance will greatly depend on how well it is parameterized, how detailed support data are available for 

it to be calibrated on, and how efficient its calibration was. In the vast majority of large-scale modeling 

applications there are gaps in data availability – and it was also the case in this study. A number of modules in 

the simulation models had to be generically parameterized, lacking more detailed and/or local data. An example 

is the hydraulic characterization of the soils used. It usually yields a more efficient investment of resources to 

collect additional support data in such cases, than to invest in a more complex model, since the data are likely 

the limiting factor in the quantitative characterization of our knowledge. 

 Model calibration and validation is another extremely important step of the modeling process, which, 

unfortunately requires significant resources and effort in that detailed field data should be collected. Examples 

of such data collection are given by Iital (2005) or Bechmann and Deelstra (2013), presenting methodologies 

and results of environmental monitoring programs of small agricultural catchments in Estonia and Norway, 

respectively. In Estonia, runoff and nutrient loss data have been collected in small agricultural catchments. 

This, however, recently has been stopped, even though the size of these catchments is suitable for model 

calibration/validation since processes like nutrient retention are less dominant compared to larger catchments. 

Once calibrated for the smaller catchments, the same parameter settings could be used to model surface and 

subsurface runoff and nutrient loads for larger catchments. Another important aspect, especially when it comes 

to the simulation of nutrient losses from agriculture-dominated catchments, is to take into consideration the 

dominant flow paths. For example if subsurface drainage systems exists for creating optimal cropping 

conditions, those are undoubtedly important pathways for runoff and nutrients. Therefore, simulation models 

for such cases have to be able to properly simulate these processes. In addition, natural drainage may also be 

an important flowpath for water and nutrients.  

 Data collected in monitoring programs is extensive and at the same time costly; but of good enough 

quality to be used for modelling purposes. The availability of validation data is often in connection with the 

general economical situation, and the availability of resources for the subject in question. Lack of validation 

data is more often a problem in developing countries than in Western countries, although this is not a hard rule. 

Our study was somewhat limited in model validation terms – as it was detailed in each of the relevant modeling 

reports. While some validation did take place, such efforts should be extended in the future. For the current 

application, the approach of interpreting the simulation results in relative terms and drawing conservative 

conclusions should help reduce the risks posed by a lack of extensive model validation.  

 Data used as input to each of the simulation models have their own intrinsic uncertainties, originating 

from e.g. (a) their natural variability, b) the timing and sensitivity of our measurements and (c) the used 

techniques of data collection. These are all sources of error and uncertainty. In studies where future scenarios 

are generated, the uncertainty of extrapolations using imperfect models also have to be recognized. 

Additionally studies like this build on successive layers of simulation modeling, where the uncertainty of the 

output of one layer is passed on to the next layer of modeling (e.g. hydrology models and nutrient-transport 

models). It takes a large effort to address, quantify and reduce such uncertainties, which is a problem that is 

rarely addressed sufficiently. One way of quantifying certain sources of uncertainties is to work with 
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distributions of stochastic data, rather than to use any chosen (mean) value. This can be done in e.g. a Monte-

Carlo simulation scheme, but using such a technique was beyond the means of this project. 

 There is also a limitation introduced to simulation based scenario studies by not being able to assume 

a number of potential future changes. This study, for example, incorporates our current knowledge on the type 

and distribution of land-use, and the use of current agro-techniques. Changes to any of those factors may yield 

significant changes when their effects are up-scaled to the regional or national level. Therefore, it is desirable, 

when establishing new policies, subsidy-systems, etc. to (re-)evaluate the effect of any such factors, when 

improved information becomes available. 

 Apart from some general limitations seen by the simulation based studies, a number of specific 

limitations are recognized – and partially listed in the relevant section later. We briefly cite two examples here. 

The limited availability of measured discharge data as well as ground-water data limited the calibration and 

validation of the SWAT model for the water availability simulations. While we attempted to eliminate any 

potential biases to the best of the modelers’ knowledge during model calibration, the resulting modeling 

uncertainty still has to be factored in. In terms of the applied modeling techniques, certain limitations are 

present in the moisture regime module of some of the applied models that can to be noted. While the field-

capacity approach to approximate soil water transport (aka ‘bucket’-type model) is accepted and frequently 

used by model developers and users, this approach is not able to account for the potential benefit of upward 

capillary rise from the ground-water. 

 
 

 Simulated metrics 

 

 There were four metrics that were of concern in this project, and hence were variables of interest. First 

and foremost, in order to be able to simulate the transport of nutrients and sediments, the hydrological balance 

of the studied catchments had to be simulated reasonably well. The primary metric that is typically field-

observed and can also be simulated is the outflow from a river catchment. If outflow is not successfully 

simulated, typically the other metrics in question will not be simulated successfully either. Suspended sediment 

(SS), NO3-nitrogen (NO3-N) and total phosphorus (TP) concentrations were then subsequently simulated and 

assessed. These metrics are of main concerns when it comes to water quality issues related to nutrient/pollutant 

loads from land-based agriculture. Water discharge data was available on a daily basis in units of m3/sec, while 

information on SS, NO3-N, TP was available on a monthly or bi-monthly basis in units of mg/L. 
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Materials and Methods 
 

 Study areas 
 

 Estonia’s general geographical and climatic characteristics  

 

 Estonia consists mainly of lowlands bordered by the Baltic Sea, Latvia, and Russia. It has numerous 

lakes and many rivers where water bodies in total comprise approximately 5% of the area of the country. 

Estonian rivers are typically short with a small catchment areas and therefore relatively scarce in water. The 

river system, however, is dense. In terms of drainage, different Estonian rivers are divided into four natural 

river basin districts: Narva-Peipsi river basin district, the Gulf of Finland river basin district, the Gulf of Riga 

river basin district, and the river basin district of islands. 

 There are 10 rivers longer than 100 km. The longest is the Võhandu River – 162 km, then the Pärnu 

River – 144 km. These are followed by Põltsamaa, Pedja, Kasari, Emajõgi and Keila River. 15 rivers with 

catchment areas greater than 1000 square kilometers exist, whereas the entire catchment area of the Narva 

River is greater than the territory of the Republic of Estonia. The catchment area of the River Emajõgi, located 

almost in its entirety in Estonia, forms 22% of the country’s territory. The river with highest fall is Piusa; the 

elevation difference of its source and mouth is 208 m. The highest stream gradient, 3.5 m/km is on the River 

Mustoja, which flows into the Gulf of Finland, while the lowest is on River Emajõgi with only 0.04 m/km. 

The specificity of Estonian nature lies in the occurrence of the karstic feature (subsurface streams, swallow 

holes, etc) in Northern Estonia and the islands. Due to karst, some rivers flow partly underground. 

 While Estonia is a flat country, much of its area is forested or marshy. Approximately 25 percent of the 

land is considered arable. Permanent pastures comprise 11 percent of land use. The climate in Estonia is similar 

to Nordic climate, having a mixture of coastal and inland influences. Estonia's marine location keeps the 

climate moderate along the coast. Inland, temperatures are typically more extreme. Summers in Estonia are 

generally cool, with temperatures rarely exceeding 20°C. Winters are cold, with temperatures usually 

remaining below freezing from mid-December to late February. July and August are the wettest months. The 

annual average precipitation at the river basins is about 600–750 mm with the average potential 

evapotranspiration rate of 300-500 mm annually. Rain and melting snow cause some flooding of rivers in the 

spring. 

 

 Characterization and justification of the selected study areas 

 

 Three river watersheds have been selected to test and evaluate the performance of chosen simulation 

models to describe watershed hydrology and water-quality measures, and to assess if the combination of these 

models and available data is suitable to describe and represent similar metrics for entire Estonia. The three 

watersheds possess somewhat different characteristics.  

 All the watersheds in this project, Vihterpalu, Keila and Leivajõgi are located in northern part of 

Estonia. They are typical Estonian lowland rivers that drain into the Baltic Sea. Vihterpalu River’s watershed 

has a total area of 480 km2, Keila River’s water yield is collected from an area of 631.79 km2 and Leivajõgi’s 

watershed is sized 84.85 km2. The river basins were considered upward of their respective gauge stations 

(Vihterpalu, Keila and Pajupea). All the basins are covered mostly by forests and agricultural landscapes. 

 Different types of models require and allow different types and levels of representation of distinct areas. 

For example, the point models only allow using a soil profile as basic unit, and it is up to the user to allocate 

what area that represents. Box-type catchment models, like INCA, allow the user to delineate a limited number 

of land-use areas, combined with a given soil type. GIS-based catchment models think in layers of information, 
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and hence will internally delineate a finite, but large number of units based on an overlaid combination of a 

land-use map and a soil map – allowing various combinations of both types of information. This latter approach 

is the most detailed and advanced approach, and hence we use that as the example that we present. 

 Using the Corine Land Cover map and performing an analysis using GIS, information about the land 

use distribution in each basin and sub basin was extracted (Table 1). For example, we can observe that 72% of 

the Vihterpalu basin is covered by forest and semi natural areas and the major concentration of this land use is 

at subbasin Vihterpalu 2 with 36 % coverage of the total basin area. Keila River is covered at about the same 

proportion by forest and agricultural areas; only at subbasin Maidla the agricultural areas dominate (51% of 

the area). Out of the three studied basins, the Keila basin has the largest proportion of point-source type 

pollutants. Leivajõgi has a bit more heterogeneous land use distribution with 56% of forest areas and 42% of 

agricultural areas at the entire basin level. Forest areas are mostly located at subbasin Leivajõgi 3 (34% of the 

basin area), followed by subbasin Leivajõgi 1 with 12%. The other two subbasins are mostly covered by 

agricultural areas. In general, the artificial surfaces, wetlands and water bodies are not influential land covers 

in any of the three basins. 

   

 

 
 

 
 

 
 

Table 1: Vihterpalu, Keila, and Leivajõgi landuse distribution at Basin and Subbasin levels.  
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Altogether, the three watersheds represent various types of landscapes, water and pollution sources and river 

types. We note, however, that these choices were partly driven by necessity, as these three are some of the 

limited number of watersheds that are (or have been) monitored in Estonia.  
 

 

 Data monitoring at the study areas  

 

 There are four meteorological stations relevant for this study that belong to the KAUR (Estonian 

Environment Agency) network, namely Pakri MJ, Lääne-Nigula MJ, Tallinn-Harku AJ, Kuusiku MJ and Kehra 

HJ. These stations also collect data on precipitation, but they are outside the examined basins. Each basin has 

a gauging discharge station that measures the discharge at the downstream end of each river.  

The water quality measurement, including the determination of TN, TP, nitrate, ammonia and suspended 

sediment concentrations were based on grab water samples, collected at the gauging stations twice in a month.  

 

The NORRA database contains all the monitored data used in this Report.  

 

 

 

 Models’ description 

 

 Guidelines to selecting models (best practices, etc.) 

 

 There are numerous considerations to be accounted for, when simulation modeling based studies are 

designed, and the actual simulation models or model packages are chosen (Waveren et al., 1999; Farkas and 

Hagyo, 2010; Deelstra et al., 2010). The outcome of a particular simulation based study is heavily dependent 

on – besides the model itself - the quality, resolution and amount of the input data available and used, the 

quality and extent of the expert knowledge about locally prevailing conditions, as well as the validity of any 

assumptions that are inevitably made while parameterizing the model (Waveren et al., 1999; Deelstra et al., 

2010). For this reason, we have found it important that a balance is found between e.g. model quality and 

relevance to the given area, the model’s resolution both spatially and temporally vs. the resolution and 

availability of the base data, model simplicity and ease of use and the experts’ familiarity with the given 

simulation model(s). The potential for linkages to/with pre-existing studies as well as the capability to address 

issues of stakeholders’ interests are also examples for considerations that point beyond the idea of choosing 

the ‘best model’ in terms of strictly its scientific complexity and acceptance. This project served as an excellent 

basis for working with various models and evaluating the general experience with them in terms of the cost-

benefit balance for the user. 

 Saloranta et al. (2003) established a set of operational and functional selection criteria for (computer) 

models whose application is intended to support decision making related to a particular water management 

issue. However, these criteria, the so-called “benchmark-criteria” can also guide potential model users in 

selecting the appropriate model for use in other areas as well. The benchmark criteria are presented in the form 

of 14 questions – with a 3-tier response system – through which each model can be evaluated.  

  

Based on the benchmark criteria, a preliminary model evaluation has been performed to select simulation 

models for the NORRA project process-based simulation modelling tasks.  
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Models available for the team have been evaluated and the list of criteria that was deemed most important is 

as follows: 

Q1.1. How well does the model’s output relate to the management task? 

Q1.2. How well does the model’s spatio-temporal resolution match the requirements of the task?  

Q1.3. How well has the model been tested?  

Q1.4. How complicated is the model in relation to the task? 

Q1.5. How is the balance between the model’s input data and data availability? 

Q1.8. How is the peer acceptance for the model with scientific theory?  

Q3.5. How is the model’s flexibility for adaptation and improvements 

 

 Our project, however, had a somewhat different set of goals than most classic modelling studies do, in 

terms of model selection and modelling work. It was our expressed approach that we use multiple simulation 

models to perform the same task, instead of picking one model. We have summarized reasons for this approach 

earlier. When this is the case, the above approach for model selection is useful information for documentation 

and discussion purposes, and we have followed a systematic evaluation of models. It was, however, decided 

that the working group will use several models that are feasible to use: (a) some team members are already 

familiar with it; (b) its capabilities match with the task; and (c) there is no obvious data gap that prohibits its 

use entirely. The agreed model selection yielded a list of models that carry different characteristics, and that 

are presented in the following chapters. 

 It is expected that any systematic change to climatic features will also have an influence on the longer 

term water balance of a given watershed. The choice of a simulation model to simulate surface and subsurface 

water balance and water availability in the study areas was somewhat more complex, given the overlapping 

expertise among (but also within) the institutions of the project partners.  

Within the frames of the NORRA project, we further developed the model selection procedure by introducing 

Excel sheets containing not just the “benchmark” questions, but also scoring and explanation for model’s 

evaluation. We believe, that this gives an opportunity to get more coherent evaluations from the different 

experts.  

Tables 3a-3c show some selected parts of the question sheets for model evaluation. The scores are 

automatically summed up for each of the evaluated model in a separate sheet (Table 2).  

 

  
 

Table 2: Final outcome of the model’s evaluation procedure, following the criteria of Saloranta et al. (2003) 
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Table 3a: Model evaluation using the benchmark criteria of Saloranta et al. (2003) – Relevance  

 

 
 

Table 3b: Model evaluation using the benchmark criteria of Saloranta et al. (2003) – Sensitivity 
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Table 3c: Model evaluation using the benchmark criteria of Saloranta et al. (2003) – “Easiness-of-use”  

 

Table 4. shows an example of a somewhat similar assessment of numerous hydrological models, but from a 

different angle. While their assessment was not based on the questions by Saloranta et al. (2003), but rather 

focusing on the models’ capabilities, there is still a significant overlap between the two lists of evaluation 

criteria.  

 

 From both evaluations, the SWAT and INCA models emerged as the most potent models to use for the 

hydrological simulations at the watershed scale. From the scientific point of view, both the models present 

widely used and well accepted, conceptually well-established models that have the ability to be flexibly used 

in various environments and levels of data availability. From the practical point of view, the partners have 

voted for using SWAT and INCA because of i) their availability, ii) having experience at both institutes in 

applying these models under various geographical and climatic conditions; iii) the ease at which support is 

available from the developers and – in case of SWAT -  from the huge SWAT user group World-wide if needed; 

and iv) the already proven ability of the models to describe hydrological processes under conditions similar to 

those in focus.  

The HYPE model got lower scores because it was less known within the Consortium due to its novelty. 
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Table 4: Model evaluation using comparative matrix’s 

 

 

 Selected models in brief 

 

 As we introduced earlier, we have opted to use a set of diverse criteria to choose which models we 

intended to work with; ranging from the model being internationally accepted and documented, and capable 

to do the desired task, via their complexity and data requirement to project partners’ familiarity with each of 

the models. The models we selected for this study, followed by the corresponding expert(s) within Project 

are: 

 

o HBVlight and PERSiST – hydrological models that provide hydrology input for the INCA model 

family – study conducted by Csilla Farkas, Rain Elken 

o INCA – consisting of INCA-N and INCA-P water quality models - Csilla Farkas, Rain Elken 

o SWAT – hydrology and water quality model - Juan Manuel Garcia Diaz, Andreas Porman and Tiia 

Pedusaar for hydrology; Rain Elken and Csilla Farkas for water quality 

o SOIL and SOIL-N - hydrology and water quality model - Anatoli Vassiljev 

o HYPE - Rain Elken 

Processes DrainMod Coup HBV INCA SWAT

Precipitation Driving Driving Driving Driving Driving

Snow dynamics/snowmelt Calculated Calculated Calculated Calculated Calculated

Interception Indirectly Calculated Calculated Indirectly Calculated

Transpiration Indirectly Calculated Calculated Indirectly Calculated

Evaporation Indirectly Calculated Calculated Indirectly Calculated

Surface runoff Calculated Calculated Calculated Calculated Indirectly

Infiltration Calculated Calculated Indirectly Indirectly Indirectly

Bypass/ macropore flow NO Calculated Indirectly NO Calculated

Plant water uptake Indirectly Calculated Indirectly Indirectly Calculated

Soil water redistribution NO Calculated Calculated NO Uniform 

Capillary rise Calculated Calculated NO NO NO

Water flow in frozen soil Indirectly Calculated Calculated NO at saturation

Lateral flow to stream NO NO Calculated Calculated Calculated

Subsurface drainage flow Indirectly Calculated NO Indirectly Indirectly

Percolation to sat. zone Calculated Calculated Calculated Calculated Calculated

Lateral inflow Parameter Parameter NO NO NO

Capillary rise to unsat. zone NO Calculated Calculated NO Indirectly

Recharge to deep aquifer NO NO NO NO Calculated

Base flow Calculated NO Calculated Calculated Calculated

Model layer
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 Description of the selected models (with tabular information for transparency) 

 

PERSiST/HBVlight & INCA 

 

 PERSiST (Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is a simple 

daily-based rainfall-runoff hydrology model developed in cooperation with the Swedish University of 

Agricultural Sciences and the University of Reading (UK). At its core, PERSiST is a conceptual, semi-

distributed, so called bucket-type model which simulates water fluxes from precipitation through the terrestrial 

part of a catchment into rivers and streams. The model requires daily input of air temperature and precipitation 

from one or more sites as driving data. For calibration PERSiST requires measured stream flow at one or more 

stations in a river.  

The main reason for the usage of PERSiST within the Project is its capability to generate hydrologic input to 

water quality INCA models. INCA models rely on external time series of hydrologically effective rainfall 

(HER - the fraction of precipitation that directly contributes to runoff) and soil moisture deficits (SMD - the 

difference between the current depth of water and the water holding capacity) which can be directly produced 

by PERSiST. 

For the user the model in one single executable file (Figure 2 with initial screen) where catchment parameters 

and driving meteorological data need to be input as separate text files in specific formats. 

 
Figure 2. PERSiST model initial screen 

 

 HBVlight is a semi-distributed, conceptual hydrological model that describes the essential 

characteristics of the precipitation-runoff process. It is a simplified version of the HBV eco-hydrological model 

developed by the Swedish Meteorological and Hydrological Institute (SMHI). HBVlight simulates the volumes 

of water stored as snow, subsurface water and streamflow. The model does calculations for 10 elevation bands 

within a catchment in order to take into account the elevation variation of the driving precipitation and 

temperature data. Each elevation band may be divided into a maximum of four computational elements - three 

land use zones with different vegetation and soil types and one lake area. 

Similar to PERSiST, HBVlight has a simple user-interface (Figure 3) with parameters and driving data loaded 

as text files. 
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Figure 3. HBVlight model screen for parameterisation 

 

 

 The INCA (Integrated Nitrogen Model for European Catchments) is a semi-distributed stochastic 

catchment-scale model to assess the impact of point and diffuse pollution sources on in-stream chemistry in an 

integrated form. It is developed by the University of Reading (UK) and provides process-based representation 

of the factors and processes controlling nutrient dynamics in both the land and the in-stream proportion of 

catchments. One of the key drivers while designing the model was to minimize input data requirements. For 

simulating nitrogen and phosphorus processes the model has two separate executable files – INCA-N and 

INCA-P for nitrogen and phosphorus respectively. In the INCA model, hydrologically effective rainfall (HER 

– modelled with PERSiST or HBVlight) is input to the soil water storage module, driving water flow through 

the catchment. Hydrology within a catchment is modelled using a simple two-box approach, with key “tanks” 

of water in the reactive soil zone and deeper groundwater zone. Flows from the soil and groundwater zones are 

controlled by residence times in the “tanks”. To account for spatial distribution, the user has to define up to six 

landuse/soil classes, which should remain uniform for the whole catchment, but can be differentiated within 

sub-catchments. The modeling structure is based on stream definition of a discrete set of linked reaches where, 

for the purpose of modelling chemical processes, each reach is assumed to be fully mixed. Each reach may 

have input from diffuse sources (from land) or point sources such as wastewater effluent discharges.  

Figure 4 illustrates the classification of landuse/soil classes and reach structure on the example of the Keila 

catchment. 
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Figure 4. Land use combined with soils in the INCA model and reach structure (example for Keila) 

 

SWAT 

 The Soil and Water Assessment Tool (SWAT) (Neitsch et al. 2009) is a continuous time, semi-

distributed watershed-scale model that operates on a daily time step. SWAT is physically based and developed 

to quantify the impact of land management practices in large, complex watersheds. SWAT requires information 

on weather, soil properties, topography, vegetation, and land management practices in the watershed. The 

physical processes associated with water movement, sediment movement, crop growth, nutrient cycling, etc. 

are directly modeled by SWAT using these input data. For modeling purposes, a watershed may be partitioned 

into a number of sub-watersheds or sub-basins, which are spatially connected. Input information for each sub-

basin is grouped into hydrologic response units or HRUs (Figure 5). HRUs are lumped land areas comprised 

of unique land cover, soil, slope, and management combinations. Runoff is predicted separately for each HRU 

and routed to obtain the total runoff for the watershed. SWAT calculates canopy storage (water intercepted by 

vegetative surfaces), infiltration, redistribution (movement of water through a soil profile after input of water), 

evapotranspiration (ET and PET), lateral subsurface flow, base flow and surface runoff. Surface runoff is 

computed using a modification of the SCS curve number method. The curve number method varies non-

linearly with the moisture content of the soil. The curve number drops as the soil approaches the wilting point 

and increases to near 100% as the soil approaches saturation. The model increases runoff for frozen soils but 

still allows significant infiltration when the frozen soils are dry. 

 

 

 

 

Agricultural areas loam

30.76 Agricultural areas peat

Urban all

18.55 loam, sandy loam

sand

For_L Forest_Loam 20.20 Forest and semi natural areas loam

For_P Forest_Peat 10.18 Forest and semi natural areas peat

14.98 loam, sandy loam

sand

Wet Wetland 5.34 Wetland all (peat) 

INCA Code INCA_name Area % LAND USE SOIL

For_SL Forest_Sandy Loam Forest and semi natural areas

AGR_L Agric_Loam

AGR_SL Agric_Sandy Loam Agricultural areas
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Figure 5. Identification of sub-basins and HRU’s by the SWAT model 

 

 

SOIL and SOILN 

 The models SOIL and MACRO were developed to provide data needed for nitrogen-leaching models 

but these models can only be used to model small fields. These models are one-dimensional, developed for use 

in small homogeneous areas at the field or plot scale. In this study, both models (SOIL and MACRO) were 

used in succession with different versions of the SOILN model such that the results from SOIL and MACRO 

(e.g. soil moisture content, water flows between layers, and soil temperature) are used as input to the SOILN 

model.  

 The SOIL model simulates water and heat processes in soil taking into account the plant cover. The 

basic structure in the model is the depth profile of the soil. Two coupled differential equations for the water 

and heat flow represent the central part of the model. These equations are solved with an explicit numerical 

method (Jansson 1991). Meteorological data, most importantly, precipitation, air temperature, air humidity, 

wind speed, and cloudiness, are the driving variables to the model. 

 The MACRO model considers the division of the soil profile into the micro- and macro pore. Soil 

macro pores (e.g. root and worm holes, structural shrinkage cracks) allow rapid non-equilibrium fluxes of water 

in soil (Beven and Germann, 1982), and consequently influence the leaching of nitrogen. Larsson & Jarvis 

(1999) showed that such influence might be quite significant. Hydrological models developed for watersheds 

usually ignore the non-equilibrium water movement. In this study, in addition to the SOIL, the MACRO model 

was used because some authors (Litaor et al., 2008) have indicated the presence of macro pores in peat soils. 

 The SOILN model simulates major C and N-flows in soils and plants. The model has a daily time step 

and simulates flow and state variables at a field level. Input variables are daily data on the air temperature and 

solar radiation and data on soil heat and water conditions simulated by the SOIL or MACRO model. The soil 

is divided into layers. In each layer, mineral N is represented by one pool for ammonium N and one for nitrate 

N. Ammonium N is usually regarded as immobile whereas nitrate form is transported with the water fluxes (a 

special option can also make ammonium mobile). The ammonium pool is increased by the nitrogen supplied 

from manure application, mineralization of organic material and by atmospheric deposition, and it is decreased 

DTM Land use map
Soil map

SWAT

defining reach structure

Defininig sub-catchments

defining HRUs
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by immobilization to an organic material, nitrification to the nitrate pool and plant uptake. The nitrate store 

increases through the nitrification of the ammonium pool, fertilization and atmospheric deposition.  The 

leaching, denitrification and plant uptake reduce the amount of nitrate N in the soils. Water flows that transport 

nitrate N between the layers are responsible for nitrogen leaching. The rate of the decomposition of organic 

matter depends on soil moisture and temperature conditions. Nitrogen dynamics of the organic matter is 

governed by C flows and mineralization or immobilization depend on the C/N ratio of the decomposed material 

and availability of mineral N (Johnsson et al., 1987). The models were adapted according to the scheme 

described in (Vassiljev et al., 2004). The scheme includes calculations for the different soil profiles and 

simulation of water movement in the river system.  

 

HYPE 

 Within the project, the HYPE model was selected as the model to be incorporated into the integrated 

web-based Airviro modelling system of EERC (the Estonian Environment Research Centre). This hydrological 

catchment model has been developed by the Swedish Meteorological and Hydrological Institute (SMHI). The 

model simulates the flow of water and the transport of substances through the soil, river and lakes to the river 

outlet (Arheimer et al., 2008; Lindström et al., 2009). The HYPE model is a semi-distributed hydrological 

model for water and water quality. It simulates water and nutrient concentrations in the landscape over time, 

most often HYPE is run at daily time steps. Its spatial division is related to sub-catchments (in the model called 

sub-basins) and classes (non-located fractions of the sub-basin area separated by land use/vegetation, soil type, 

or elevation). Figure 6 shows an example of a catchment divided into two sub-basins, and 4 SLC (soil-landuse)-

classes represented with different colour. SLC-s compare to hydrological response units (HRUs) in other 

models, with its parameters controlling their operation. Within a sub-basin, HYPE simulates different 

hydrological compartments; snow pack, soil (three layers) including shallow groundwater, rivers and lakes. In 

addition, it simulates the coupling between sub-basins through routing of river flow. It’s also possible to take 

into account anthropogenic processes like reservoirs, flow regulation, irrigation, and abstractions. The 

schematic overview of processes involved in HYPE is shown in Figure 7. 

 

Figure 6. Example of the spatial division of a catchment into sub-basins and soil-landuse classes (SLC). 
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Figure 7. Schematic description of processes in the HYPE model. 

 

 HYPE is an open source model. By default it doesn’t provide any graphical user interface; the model 

operates with input-output text files where the user has to set the model up in a time consuming process. Airviro 

is a system primarily designed for air quality modelling and management. It has also been developed by SMHI, 

and the Apertum IT AB internet technology company and has been continuously developed since the early 

nineties. EERC is one of some 80 places world-wide where this system is being installed and used. The Airviro 

system provides a user-friendly interface and is capable of handling large amounts of data and lots of users 

who can run different models simultaneously, and assists the user with a prepared model set-up platform. The 

main target group of users are environmental specialists from different organizations and authorities who deal 

with water related issues. The Airviro system provides the user a lot of options to visually represent modeling 

results and they can be easily shared between users. 

 The general plan in the project was to set up the model for whole Estonia, where end-users can then 

rely on the system for their specific tasks, after manipulating some task-specific parameters. While Apertum 

IT AB did the integration of HYPE into Airviro, Keskkonnaagentuur (the Estonian Environment Agency) 

carried out the model set-up and preparation. As part of this step, basic calibration and validation was done on 

the three pilot catchments in this project, while a more in-depth calibration is ongoing work. 

 

 

 Model setup and parameterizing the selected models 

 

 Prior to setting up a model, it is necessary to collect all the information related to the physical basin’s 

representation, weather data and hydrological data. This step is usually time consuming since the available 

datasets are rarely in the condition to be readily usable, they often need a range of manipulations, such as gap 

filling, re-formatting, re-classifying or estimating these input data. Figure 8 shows the example of the 

procedure to setup the SWAT model. The physical inputs described later, land use map, soil map and slope 

bands from the DEM were overlaid, to define the Hydrological Response Units HRUs, which is a unique 

combination of land use, soil and slope for each sub-basin that is thereby defined. Subdividing the basin into 

areas having unique land use and soil combinations enables the model to reflect differences in 

evapotranspiration and other hydrologic conditions for various coverages and soils. 
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 In this project, ArcSWAT, an ArcGIS extension and graphical user interface for the SWAT model, has 

been used to process all the information that goes into the model. Model inputs are discussed in a separate 

section of this report. Once the inputs have been entered, the models’ embedded processes need to be 

parameterized prior to first run. It is, however, important that simulation models undergo a manual or 

automated calibration process of parameters in order to optimize how observations are reproduced and 

validation on independent data to quantify the model performance. 

Figure 8: Schematic representation of setting up the SWAT model 

 

  

Depending on data availability and modelling accuracy, one sub-basin may have one or several HRUs defined. 

In this study, dominant HRUs were used to match the complexity of the model with other models involved in 

this project like Inca and HBV-light. This option chooses the land use, soil and slope combination of the largest 

potential HRU in the sub-basin. 
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 Vihterpalu 

 

Keila Leivajõgi 

Number of HRUs 19 11 11 

Number of Subbasins 19 11 11 

Number of meteo station used during 

calibration and validation 2 2 1 

Number of radar grid points** (discussed 

later) 121 157 24 

Number of virtual meteo stations, areal 

precipitation from (interpolation + 

radar)** (discussed later) 
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11 11 

 

       Table 5: Summary of sub-basins, HRUs and meteorological observation locations for the 3 catchments. 

 

 

 The Working Group made a very strong effort to be able to standardize the study cases among the 

various models - to the extent it was possible – in order to limit duplication of work, and reduce the number 

of factors that differ between model runs. Latter is important because we would like to be able to conclude 

about results between models, and the more the methodology or data differs, the less we are able to cite that 

the models being the cause of any differences.  

 

Our efforts included e.g.: 

 

1. Using common data sources and estimation methods (Figure 9) 

2. Using common initial and boundary conditions (Tables 6 and 7) 

3. Using harmonising model parameters, where possible (Table 8) 

4. Using common calibration and validation periods 

5. Using common model evaluation techniques 

 

The common data source was the NORRA data platform (Figure 9), available for all the modellers 

and containing information on both, model input data (meteorological data, soil information etc.) and 

reference data for model’s calibration (time series of measured discharge and water quality data).  

 

Examples for setting up common initial and boundary conditions, and harmonising model parameters 

are given in Tables 6-8. 
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Figure 9: The common data platform in the NORRA project 

 

 

 
 

Table 6: Example for setting up common initial conditions for different models 
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Table 7: Example for setting up common boundary conditions for different models 

 

 

 

 

 

Drainmod INCA

available used available used

weather data 

daily average temperature + + + + + +

daily precipitation + + + + + +

global radiation - - - + + +

net radiation - - - + - -

air humidity - - - + + +

wind speed - - - + + +

hydraulically effective rainfall (HER) - + - - - -

potential evapotranspiration (PET) + - + + + +

measured + - + + + -

Penman method (modelled) - - + + + +

Penman method (direct input) + - - - + +

Thornthwaite method (modelled) + - - - - -

soil heat flow lower boundary: + - + + - -

base temperature as the lower boundary + (3.5 Co) - - - - -

constant heat flow in time - - + + - -

soil temperature cycle in time - - + - - -

soil water lower boundary: + inbuilt + + + +

no flow (impermeable layer) + + + + + +

reacharge to deep aquifer - - - - + -

ground water level in time - + - -

pressure head in time + - + - - -

free drainage - - + - -

seepage flow + - + - -

unit grad flow - - + - - -

Coup SWAT

UPPER BOUNDARY CONDITIONS

LOWER BOUNDARY CONDITIONS
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Table 8: Example for harmonizing the parameters uses in different models 
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 Solutions to upscale model results to the catchments 

 

As presented earlier, upon model selection, one makes choices in terms of model theory and their 

capabilities. In terms of representing a catchment, the models selected for this project utilize three different 

approaches for water and nutrient routing. The chosen catchment models are all semi-distributed models. Fully 

distributed models are capable of capturing the true spatial distribution of input variables, but are extremely 

data- and calculation-intensive. Their use may not pay off in data-scarce situations at all. On the contrary, semi-

distributed models are less data and calculation intensive. They consider smaller homogeneous units, sub-

basins or hydrological response units (HRUs), for which the meteorological and physical parameters are 

lumped, and the model returns the ‘average behavior’ of these smaller units, which are then aggregated 

(‘routed’) for pre-defined locations downstream – and eventually for the catchment outlet. Among semi-

distributed models, there are two dominant approaches to solve such routing. Some models rely on a true, 

geography-based routing using true GIS background. Such models in this study are SWAT and HYPE. Other 

models - like HBV, PERSiST and INCA in this study – only connect the output of one sub-basin as input to 

the next using retention parameters that are inputs. These solutions are integrated parts of the models, and are 

implemented via model input and parameterization during model run. Each model’s core documentation 

describes the process. 

 

 Point models, such as the SOIL model, work differently. Those models can only model finite small 

areas by assuming that a soil profile represents that area homogeneously, and unlike in nature, the resulting 

surface and subsurface water flow cannot directly be routed to an adjacent area. In such cases, some solution 

is needed to channel water and solutes through the landscape and the river system, which solution requires 

calculations outside the model. The approach taken in this project is described herein. 

 Differences between the small homogeneous fields and the heterogeneous watersheds can be quite 

significant. Various types of land cover and soils can be included by dividing the watershed into subareas with 

similar characteristics. The zone of aeration extends from the surface to the water table and is usually thin in 

areas located close to permanent streams and quite thick in areas located far from streams and especially on 

hills. The soil profile with a thin zone of aeration will be saturated very quickly, forming surface runoff. The 

soil profile with a thick zone of aeration needs much more water for saturation and very rarely forms surface 

runoff. The contribution of the aeration zones with different thicknesses in the formation of a water flow and 

nitrogen transport depends on their areal fractions of the watershed. The quantity and quality of water fluxes 

from the fractions were calculated with the SOIL/MACRO and SOILN models and the results were aggregated 

to represent the entire catchment. Daily inflow to the river system from a watershed represented by N profiles 

was calculated as: 

 

 



N

i

itit kII
1

, *  (Eq. 1) 

where t is time, Ii,t represents water discharge from the area represented by each field (profile) i at the time t, 

and ki - the fraction of the watershed area occupied by the i-th soil profile. The discharge measured from the 

watershed can be used to calibrate ki. This approach is commonly used in hydrological modelling and gives 

good results.  

 In this study, the measured water flow was used to calibrate ki. It was mentioned above that different 

soil profiles produce different waves of water flow. For instance, soil profiles with a thin zone of aeration 

produce a water flow after any storm, including summer periods. On the contrary, soil profiles with a thick 

zone of aeration produce a water flow only during wet periods (autumn, winter and spring). Every year, there 

are usually dozens of waves formed under different conditions. Different impact of different soil profiles gives 
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an opportunity to use the shape of the hydrographs to find the fraction of the whole watershed represented by 

the soil profile i. 

 Inflow at any point on the watershed travels a certain distance to reach the outlet of the watershed. 

During this travel it undergoes changes caused by channel storage. The transformation undergone by the inflow 

is due to (a) the translation effect and (b) the storage effect, consisting of a time lag and shape modification 

(Singh, 1988). Comparison of the results from a linear model with those from the St Venant equations applied 

for Estonian rivers (Vassiljev et al. 2004) showed that in common simple cases (without backwater effect or 

other complex phenomena), both of the approaches showed the same precision. Therefore, the linear river 

routing model was used in this investigation. The linear model for water movement is: 
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where Qt is the water discharge at the outlet of the watershed at time t, I represents the inflow to the river 

system, hτ is the ordinate of the response function, where τ represents the consecutive numbers of these 

ordinates (from 1 to max). 

The response function may be approximated by a flexible function with a low number of parameters. Some 

standard optimization procedures may be used to find the parameters of the response function. In this study, 

the representation of the response function suggested by Kalinin and Miljukov (1957) was used. This can be 

described as: 
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where Γ(n) is the gamma function, and n and k are fitting parameters. 

 

 

 Capabilities and limitations of the selected simulation models 

 

 Models differ in their capacity to be able to simulate the potential impact of mitigation measures, given 

the differences in their theory, architecture and included processes. A separate section is allotted for this subject 

in a later part of the report. 

 

 

 Models’ input data 
 

 General data needs  

 

The models used in this study generally need i) driving input data, consisting of time series of various 

meteorological data; ii) information on soil, land use, slope etc. and iii) reference data for model calibration 

(time series of measured discharge and water quality data).  
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 Data availability for the pilot areas (sources, references to data providing agencies, services) 

 

 The chosen process-based models rely on a range of inputs, as dictated by their data needs. The user 

often faces a multitude of trade-offs while choosing a model and its options to handle inputs. It is because one 

may intuitively choose a more complex solution to describe a natural process, but the availability (or lack of) 

and quality-issues with environmental data may limit the benefits of using such complex processes. A realistic 

evaluation of the balance in available data and models and model options remains a challenging task for every 

modeler. We summarize the core data that were used in this project using the example of the SWAT model’s 

case, and note that each model’s data needs are somewhat different. We refer the interested reader to the 

models’ core documentation for further details. The SWAT model requires the following core types of data: 

 

• Physical inputs: DEM (Digital Elevation Model) elevation maps, land cover map and soil map 

including soil hydraulic properties – all of which are used to define the Hydrological Response Units 

(HRUs) and their core properties. 

• Weather inputs: precipitation, air temperature (daily min and max), solar radiation, wind speed and 

relative humidity. 

• Hydrological data: stream flow data. 

• Point-source information: location, amount, timing. 

 

 

Physical inputs 

 

DEM (Digital Elevation Model)  

 A 10 meters resolution map of Estonia provided by Maa-amet (Estonian Land Board) 

http://www.maaamet.ee, was used for delineation and slope calculations (Figure 10). 
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Figure 10: Digital Elevation Model of NW Estonia 

 

The basin and sub-basins definition consist of terrain analysis using a digital elevation Model (DEM), to define 

the contributing area to any stream or river, which is more easily defined in mountain areas than in flat areas. 

All the basins and sub-basins were calculated using both permanent stations and temporary stations. We 

obtaining the following areas after the delineation (Table 10): 

Table 10: Basin and sub-basin areas of the 3 catchment areas delineated using DEM. 

 

Land Cover map (CLC) 

 The Corine Land Cover (CLC) 1:100.000 raster map has been used in the project. The CLC consists of 

a geographical database describing vegetation and land use in 44 classes, grouped in three nomenclature levels. 

It covers entire Europe and gives information on the status and the changes of the environment. We were using 

the CLC 2006 raster map 100m, version 12/2009 for Estonia but it was necessary to transform the CLC 

classification codes into the land cover/plant classification system (4-letter codes) that SWAT recognizes. We 

present the applicable map in this section (Figure 11), but presented and discussed the resulting classifications 

in the chapter that describes the study areas.  
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Figure 11: Corine Land Cover (CLC) LABEL 1 Classification 

 

Soil map  

 We used the ESDB (European Soil Database) map of dominant soils for Estonia as source of basic soil 

information (Figure 12). 

 

The core soil database available for the project corresponds to the Harmonized World Soil Database (HWSD) 

v 1.2, and represents the dominant soils for Estonia. It is a 30 arc-second raster database in which the soils’ 

spatial distribution is presented, along with aggregated information on soil profiles and their associated 

properties.  Soil properties – namely soil hydraulic properties - needed for process-based modeling are 

usually not readily available in such databases, and thus need to be estimated from other soil information or 

using expert judgment at the worst case. A number of soil (physical) properties were available in the database, 

which were relevant towards estimating a number of the necessary model inputs. These properties – presented 

for top- and sub-soils separately - are: 

 

- Soil Classification according to the FAO 1985 system 

- Clay content (% of particles of diameter equivalent <0.002 mm in the <2mm (fine earth) fraction) 

- Silt content (% of particles of diameter equivalent between 0.002 to 0.05 mm) 

- Sand content (% of particles of diameter equivalent between 0.05 to 2 mm)  

- Organic carbon content (%) 
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Figure 12: Map of dominant soils for Estonia (ESDB (European Soil Database)) 

 

  

 The SWAT model, however, requires information on a different list of soil and soil related properties, 

which are seldom part of such generic databases. These are as follows:  

- Hydrological Group (A B C D) 

- Maximum rooting depth of soil profile (SOL_ZMX) 

- Moist bulk density (g/cc) (SOL_BD1) 

- Moist soil Albedo (SOL_ALB1) 

- Soil erodibility (K) (USLE_K1). 

- Available water capacity (cc/cc) (SOL_AWC1) 

- Saturated hydraulic conductivity (mm/hr) (SOL_K1) 

 

 In order to successfully complete the simulation runs, this project used a range of tools in different 

estimation schemes to obtain the above listed soil properties. Those schemes are presented in the next chapter 

on inference to missing data. 

 

Weather inputs 

 Weather data from the Meteorological stations network were used for the core simulations from the 

following stations: Pakri MJ, Lääne-Nigula MJ, Tallinn-Harku AJ, Kuusiku MJ. Among the required weather 

related data, precipitation is typically that shows the largest spatial heterogeneity, and so increasing the density 

of precipitation data is always desirable. Therefore, we also included the Kehra location that has additional 

precipitation records. All these stations belongs to Keskkonnaagentuur (Estonian Environment Agency) and 

all data were collected at a daily time step for the period 2000-2011. We used the following information for 

the simulations to establish the ‘atmospheric demand’ in the model, representing potential evapotranspiration: 
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- Precipitation (mm/day). 

- Air temperature (Min and Max) (Degrees Celsius). 

- Solar radiation. (Mj/m2/day). 

- Wind speed (m/s). 

- Relative Humidity (%). 

 

 Figure 13 in the next sub-section presents the geographical distribution of meteorological stations. One 

can observe that all the rain gauges in this network are located outside the river basins – none of them are inside 

any of the catchments. This challenge triggered the idea of experimenting with an alternate weather-data 

source, the application of radar-based data, which is detailed in a separate chapter below.  

 

Hydrological data 

 Stream flow data measurements are not necessary as input to run the model, but rather they are essential 

for model calibration and validation. The following stations were of use in this project: 

- Three stations from the hydro network (Vihterpalu, Keila and Pajupea) for calibration and validation 

purposes, 

- Six temporary stations (locations of interest to get outputs from the model) (Figure 13): 

 

- Vihterpalu basin: Vihterpalu 1, Pirsalu 1, Vihterpalu 2. 

- Keila basin: Keila 1, Keila 2, Maidla. 

Figure 13: Meteorological stations, hydro network stations and locations of interest 

 

 We were installing a Keller water level sensor in each location of interest from May 2014 to November 

2015, to collect water level readings in an hourly time step; while a field work campaign began simultaneously 

to measure river discharge in order to collect enough measurement data to establish a rating curve. 
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Point source pollutants 

 Wastewater effluents were used as direct point source input for the INCA and SWAT models. Data was 

obtained from the relevant database maintained by the Estonian Environment Agency. Up to year 2009, point 

sources loads data was available only annually, while since 2010 loads are measured four times a year. The 

variables that are input to the simulation models are: wastewater discharge, total nitrogen, total phosphorus, 

total suspended sediments. For the two models, the following subdivision of total nitrogen and phosphorus 

loads was made based on expert opinion: 

  Nitrate (NO3)  50% of total nitrogen 

  Ammonium (NH4) 40% of total nitrogen 

  Organic nitrogen 10% of total nitrogen 

  Phosphate (PO43−) 80% of total phosphorus 

  Organic phosphorus 20% of total phosphorus 

 

 

Land management data 

 

 Data on fertiliser application in Estonia is available only at the national level by National Statistics, but 

it did not provide sufficient certainty on local application rates and timings, and therefore we didn’t use it. 

Fertilization and tillage information was input based on expert knowledge and after coonsulting the calibration 

data on water quality. 

 

 

 Specific data needs of models (only the significant ones need to be listed for general 

understanding) 

 

 The HYPE model within the Airviro system used a time period and weather input that was different 

from the other models. The task that was performed with HYPE was different than that with the other models: 

while the three catchments were evaluated, HYPE was used to simulate the hydrology of the entire country of 

Estonia. This, obviously, required weather input for the entire country, which could not be satisfied using the 

data collections that we listed elsewhere in this report – i.e. 5 meteorological stations or the Tallinn-Harku 

radar. In Airviro, a module has been developed that extracts precipitation and temperature input directly from 

the output of the High Resolution Limited Area Model (HIRLAM). The HIRLAM model is maintained by 

Keskkonnaagentuur in Estonia, and has a spatial resolution of 11 km. Naturally HIRLAM is a model for 

weather forecasting and the forecasts are renewed at regular time steps, as more and more recent actual 

observations become available. When a real observation becomes available, the forecast product is substituted 

with the observed data and the Airviro module collects the real data. By using HIRLAM model data, good 

spatial resolution has been achieved, and as an extra benefit, data for transboundary catchments is also 

provided. The limitation of using these data is that HIRLAM is only available since 2009, and we did not find 

a way to use data from observation stations for preceding years, which situation is likely to improve in the 

future. 

 

 Inference to missing data 

 

 Users more often than not are in the situation that there are either gaps in their data series or required 

variables are simply not available. In such cases, various techniques are applied as tools of inference for the 

required data. Here we cite two such cases that required action in this project:  
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(a)  the estimation of soil hydraulic and related properties for the HRUs, 

(b)  the interpolation of weather data from locations outside the watersheds. 

 

Estimation of soil (hydraulic) properties 

 Estimation or derivation of these properties required a range of techniques and considerations, which 

are described below. After deriving each of those properties for each unique soil layer, they were coupled to 

the applicable map units. 

Hydrological Group 

 The U.S. Natural Resources Conservation Service (USDA-NRCS) classifies soils into four main 

hydrological groups, based on their infiltration characteristics, i.e. presenting different potential for 

surface runoff. Soil properties that influence runoff potential are those that the minimum infiltration 

rate for a bare, un-frozen soil, such as the depth of seasonally variable water-table, saturated hydraulic 

conductivity, and/or the depth to a restrictive/non-permeable layer. The grouping took place using 

expert judgement after consulting the detailed criteria and the available soil information from the soil 

map.  

Maximum rooting depth of soil profile 

 Generic soil maps cannot provide locally relevant and crop specific rooting depths. We followed 

common practice for cases when there is no knowledge of substantially restrictive layers, and the 

modeled soil profile is not very deep, and established rooting depth to be equivalent to the depth of the 

modeled soil profile, which was 1m in this study.  

Moist bulk density 

 The proper estimation of moist bulk density is hampered by the fact that international databases 

either lack information on the definition of how stored bulk density data were obtained, or those are 

typically dry bulk density values.  

 Documentation on the Harmonized World Soil Database v 1.2 suggests one of two processes to 

estimate soil bulk density. Upon reviewing the results of both processes, we have opted to retain the 

values derived based on the analysis of data in various regional SOTER databases (i.e. the SOTWIS 

Database). This process allowed the estimation of bulk density by soil type and depth, based on 

available data on soil texture, organic matter content and porosity. Similarly to what has been 

documented for HWSD, we observed much more realistic estimates for specialty cases (e.g. extreme 

high OC Histosols) using this method than using the alternative one. 

 Moist bulk density was then subsequently used to calculate saturated water content, in order to 

avoid potentially substantial mismatches between the two variables, in case another estimation or 

calculation technique is used. 

Moist soil Albedo 

 There have been multiple ways suggested to approximate moist soil albedo, and we adapted the 

approach proposed by the developers of the SWAT model, in order to reduce the uncertainty introduced 

by differences in understanding, as well as due to the availability of the necessary input. The procedure 

calculates albedo as a function of soil organic matter/carbon content.  

Soil erodibility (K) 

 A number of approaches are recognized worldwide to approximate the soil erodibility factor, 

which expresses the inherent erodibility of a particular soil. Upon choosing a method to approximate 

the applicable value, one needs to consider the great uncertainty in each of those values – which 
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becomes evident when methods are compared to each other – and the availability of the necessary 

variables to derive the estimate. For example, soil structure information is more rarely available than 

soil texture information. 

 We have chosen to adapt the look-up table derived by Stewart et al. (1975) for US-EPA, which 

indicates the general magnitude of the K-factor as a function of organic matter content and soil textural 

class. Every value was individually judged, and expert judgement was used for soils that were out of 

range for the table (i.e. Histosols with very high OC). 

Available water capacity and saturated hydraulic conductivity 

 Methodology to derive these variables is described together, given that the same advanced 

estimation method and the same data source was used. 

 Available water capacity has been defined as the difference between the amounts of water held 

at ‘field capacity’ minus the amount held at ‘wilting point’. Latter is commonly approximated by the 

laboratory measured water content at -1500 kPa pressure, while the earlier has a definition that is still 

among the most debated definitions in soil physics. Nevertheless, since the SWAT model is to be used, 

the definitions understood in its documentation were adhered to: the amount of water held at -33kPa is 

considered as ‘field capacity’, with the option to consider a different value (-10kPa) for sands, where 

sands are loosely defined. We note that this approach is primarily adhered to in the U.S. 

 Estimation of the above properties, and of saturated hydraulic conductivity, requires an external 

source-database. Since such database was not available for the project from Estonia, we looked into the 

potential use of internationally available soil hydraulic databases, such as that of USDA-NRCS, the 

data compilation behind the Rosetta estimation software, the European HYPRES database, or the also 

European EU-HYDI database. Given that EU-HYDI is a database that was assembled from many 

European countries, it is recent (2014) and has the greatest depth of relevant information we anticipated 

that this database has the greatest relevance for Estonian conditions and for the given task.  

 A subset of soils were used from the EU-HYDI database that had original measured data (i.e. 

not interpolated) on the above water retention points, saturated hydraulic conductivity, as well as soil 

particle-size fractions according to the FAO system, as well as organic carbon content and bulk density. 

The selection was subsequently error checked to discard any obviously erroneous data/samples, which 

yielded 2269 samples. The method introduced by Nemes et al. (2006) has been used to estimate the 

given properties. This encompasses using a k-nearest neighbor algorithm to provide local estimates of 

the given soil hydraulic properties, based on the source-database. While details of the method are not 

provided here, we mention that by ‘local estimate’ we refer to the specialty of this technique (vs. nearly 

all other known estimation techniques in soil hydrology) that it is not based on a generic set of 

equations, but an estimate is formulated for each sample real-time using only samples that resemble the 

properties of the actual sample (i.e. that are its nearest neighbors). The algorithm we used also 

embedded a sub-sampling algorithm, which allowed for multiple estimations from the same source-

database, and thereby the calculation of an uncertainty metric to each of the estimated values. For each 

of the represented top and subsoils in the Estonian soil map, we therefore generated estimates of -10kPa, 

-33kPa and -1500kPa water retention, and saturated hydraulic conductivity, and each value had an 

uncertainty metric associated to them. Calculation of the available water capacity was then calculated 

from the relevant values, using -33kPa water contents ‘field capacity’ for all soil textures. 

 

 

 Meteorological data – a special case with radar data for future applications 

 

 Here we refer back to a statement made in the section on collecting weather data for modeling. The 

available meteorological stations were scarce and fell outside the catchments (Figure 13). Therefore, while 

those were the only ‘hard-data’ available on the required climatic variables, we understand that (1) there is a 
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degree of uncertainty associated with those, and that (2) this situation is not expected to change soon, which 

will affect similar future studies as well. In response, in order to assist potential future applications, we 

experimented with an alternate weather-data source, radar-based precipitation data.  

 

 Harku radar was installed in 2009 but became fully operational in 2010. It is a Vaisala WMR200 dual 

polarization Doppler weather radar that scans in 15 minute sets. The radar data was collected from the radar 

files archives (IRIS raw file) for January 2010 until 31 of December 2011. We note that this period is much 

shorter than the available time-series using the meteorological stations, and therefore at this stage it is more 

sufficient for testing the methodology than to derive overarching conclusions.  

 We were interested in precipitation accumulation in (mm/d). The daily precipitation is based on the 

horizontal reflectivity (dBZ) at 0.5 km elevation and the pCAPPI product from Harku radar. The Z-R 

relationship was used to convert radar reflectivity to rainfall intensity (mm/h) as Z=200R^1.6, where Z is the 

corrected reflexivity dBZ, and R is the rainfall rate in mm/h. Rainfall values were accumulated at 18UTC as 

daily precipitation in order to match the accumulation period of the radar data with that of the meteorological 

stations data (PR24He at 18UTC). Finally, for each location, the daily precipitation for each location 

(meteorological stations and grid points), in total 308 files altogether, were extracted from the radar archives 

in a csv format. 

 

 
Figure 14: Example image of Tallinn-Harku radar precipitation (left) and the derived 2km grid used in this 

project. 

 

 There was a need to synchronize precipitation from weather stations and the Harku radar to facilitate 

working with the SWAT model. SWAT uses the approach to distribute the precipitation in the basin, that each 

sub-basin takes the precipitation data from the precipitation station that is closest to the centroid of that sub-

basin. This approach was used during the calibration and validation period of 2000-2011, by using precipitation 

data only from the meteorological stations.  
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 To use the radar data we had to bridge a large temporal and spatial gap between data from the data 

sources. In order to resolve this mismatch, we were interpolating the rain gauge data at the grid points for the 

period 2000 to 2009 using the Inverse Distance Weighted (IDW) method, and then added the radar data 

extracted at same grid points for 2010 to 2011. We decided to create a grid of 2x2km to extract the daily 

precipitation from the radar at each point. This process has given us 121 points in and adjacent to the Vihterpalu 

catchment, 157 for Keila and 24 for Leivajõgi. We also extracted daily radar data at the same locations where 

the meteostations (Pakri MJ, Lääne-Nigula MJ, Tallinn-Harku AJ, Kuusiku MJ and Kehra HJ) are. 

 

Figure 15: Schematic representation of the base idea of Inverse Distance Weighting and supporting the 

SWAT model with weather data from the radar and from meteorological stations.  
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 Given the approach the SWAT model takes in distributing the precipitation, if one sub-basin contains 

more than one grid point, only the closest grid data point to the centroid of the sub-basin will be taken and the 

rest will be dismissed. In order to avoid losing the spatial precipitation pattern, the areal precipitation was 

aggregated to get the average precipitation over the sub-basin area, obtaining a final daily value of precipitation 

per sub-basin. It is still a single value for the sub-basin, but it relies on multiple grid points. 

 The precipitation input used during the calibration and validation period 2000-2011 originates from the 

meteo stations themselves, without any modifications, allowing the model to distribute the precipitation in each 

sub-basin. One of the aims when implementing radar data was that it has then become possible to combine the 

interpolation at grid points, adding the radar data at these grid points and generating an indication of areal 

precipitation in each sub-basin. This resulted in having a ‘virtual station’ per each sub-basin. This extra 

precipitation dataset was added into the model, replacing the original dataset to verify if there is any 

improvement in the efficiency of the model. 

 

 

 Model calibration and validation 

 

 Why is it necessary 

 

 While some challenge the notion, it is dominantly seen and accepted in the modeling community that 

it is necessary and beneficial to calibrate and validate a simulation model against local benchmark data. If such 

data do not exist or are insufficient or unreliable, it may be argued that calibrating the model does not make 

much sense. Nevertheless, the modeler – and especially any stakeholder that relies on the modeling results – 

needs to understand the risks that this poses: using a model that has been developed elsewhere and applying 

any recommended, generic, parameter sets have been developed elsewhere carries enormous risks and 

uncertainties – the size of which are unknown. To mention a classic example, the rainfall-runoff factor in the 

otherwise simple Universal Soil Loss Equation (USLE) that was established in the US could not be used in the 

UK, given that the daily amount of rainfall fell in a completely different intensity and pattern in the two 

countries (short, intensive storms vs. prolonged drizzle).  

 It is therefore understood by this modeling group that calibration and validation on independent 

benchmark data is really necessary. Model calibration entails setting up a base run for the model, and 

comparing the simulated and measured benchmark data using the selected statistical metrics. In the likely 

scenario that this first run does not yield the best possible results, selected (recommended) model parameters, 

coefficients are then iteratively modified by the user - in either a trial-and-error manner, or by using an auto-

calibration tool that is provided with the model (e.g. SWAT-CUP for SWAT) – and the output patterns and 

statistical metrics are checked again. The effective, systematic adjustment of such calibration parameters 

requires expert understanding of their function and inter-relations, and what type of change is expected because 

of their modification.  

 Calibration, for instance, targets to help avoid e.g. systematic biases in the simulations, helps avoid a 

pattern-like behavior in estimation errors, or helps the model in reflecting the occurrence of any extreme events 

that are often missed. In catchment hydrology, a multitude of factors affect each and every case that suggest 

that the same parameter sets are not applicable in different locations. The model user often faces hard choices 

when it comes to performing the model calibration, as adjustments often work against each other, and also 

because improvements at one end often cause a decrease in simulation accuracy at the other end. What criteria 

to use, what order of preference to keep in adjusting parameters, and in general the question of when should 

calibration be deemed ready are all decisions that are hard to give (or get) advice on. The targets to reach are 

also often dependent on the overall goal of the study; while one study may seek good annual averages for the 

benchmark variable, others may be more interested in matching extreme events, even if the annual averages 

returned by the model are sub-optimal.  
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 Model calibration can be a daunting task, and it often becomes the most laborious part of setting up and 

running an environmental simulation model. Nevertheless, this is the only tool that is in the hand of a modeler 

to ensure that systematic biases – in space and time – and scale issues (e.g. extreme events) are addressed as 

best as possible.  

 

 

 Model calibration and validation in the NORRA project 

 

 As introduced, prior to model calibration that user typically faces a number of hard choices, as it is 

rarely the case that all the necessary information is available for the modeler. In this project the following tasks 

had to be addressed.  

- Decision about the reasonably attainable temporal and spatial scale 

- Collection of data, and decisions about methods and/or alternate sources to fill data gaps. 

- Decisions about preferred and attainable model processes for individual models as well as for reasons 

of later model comparability 

 

 Upon inquiring for and collecting the necessary and available data, the group consulted again and 

agreed on compromises that had to be made due to both model limitations and data availability. The elaborate 

process of model calibration was made by the individual modelers named earlier, or in some cases by joint 

work of two modelers. Apart from the SWAT model, which offers the option of using an auto-calibration tool 

called SWAT-CUP, all other models were manually calibrated. This process is most often very elaborate, and 

requires a great depth of expert knowledge and experience.  

 Out of the available data, it was decided in the consortium that in general the period of 2000-2005 was 

going to be used for model calibration, and the successive period of 2006-2011 was going to be used as a period 

of model validation. Model validation, in this context means that the parameterization optimized and 

established for the calibration period is used to simulate the validation period as independent data, without any 

attempt to match the measured field data via any parameter or other adjustment. 

 In certain sub-tasks, such as e.g. the experimentation with the use of radar-based precipitation data as 

input, a different calibration and validation period was used due to differences in data availability. These are 

noted at the appropriate sections. 

 Model calibration for catchment hydrology and for sediment and nutrient losses were done in separate 

steps. Hydrological processes are primary drivers of sediment and nutrient transport processes. Some models 

– or their combinations – require an established hydrology background to be able to handle particulate and 

nutrient transport processes. It is also desirable to separate these processes in order to simplify the model 

calibration, which still involves the adjustment of dozens (if not more) of parameters for each such module.  

 

 

 Metrics of model evaluation 

 

 Model performance was evaluated using three statistical types of metrics, each capable of evaluating 

somewhat different aspects of the simulations: the Nash-Sutcliffe model efficiency coefficient (NS), the 

regression coefficient (R2) and the bias percentage (PBIAS). 



43 

 The Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970) is a dimensionless, normalized statistic that 

determines the magnitude of the residual variance relative to the variance in the measured data. The Nash-

Sutcliffe efficiency ranges from −∞ to 1; improved model performance is indicated as the NS approaches 1, 

while a value of zero or negatives indicate that simulated values are no better than the mean of observed values. 

NS is calculated as: 

 

where Qi is the measured value (discharge), Qi’ is the simulated value, Q is the average measured value, and n 

is the number of data points. 

 The regression coefficient (R2) is a standard regression type metric that has been widely used for model 

evaluation in literally every natural science. The R2 value describes the degree of collinearity in the measured 

and simulated data. R2 ranges from 0 to 1, with higher values indicating less error variance, and typically values 

greater than 0.5 are considered acceptable. R2 is calculated as: 

where m stands for measured, s indicates simulated, and all other notations are as for NS (above). 

 

 Percent bias (PBIAS, %) is an error index, that indicates the average tendency of the simulated data to 

be greater or smaller than the corresponding observed data. The optimal value of PBIAS is 0, small absolute 

values are indicating accurate model simulation. Positive values indicate model underestimation, and negative 

values indicate model overestimation (Gupta et al., 1999). 

PBIAS is calculated as: 

 

 Using a combination of performance indicator types helps in obtaining a robust idea on the performance 

of a simulation model. Ideally, one obtains high NS and R2 and low PBIAS, but it is rarely this simple in 

practice. While there is no consensus on specific coefficient values for the daily time step, we present the 

performance ratings for monthly simulations (Table 11), as suggested in e.g. Moriasi et al. (2007).  

 It has to be noted that it is much more difficult to achieve good modelling statistics at the daily time 

step than at monthly or annual steps. This is because at the monthly time scale, a lot of smoothing is taking 

place, given the time-scale of the most dominant processes in catchment hydrology and sediment transport, 

and so at the monthly step there is a significant degree of smoothing involved, which is easier for the model to 

capture. In other words, it is much easier to predict a mean value (or similar) than to predict the fluctuations.  
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Table 11: General performance ratings for simulations at the monthly time step (Moriasi et al., 2007) 
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Results 
 

 Modeling catchment hydrology 

 

  Model calibration and validation results 

 

 The evaluation statistics of both model calibration and validation are provided in Table 12. Figures of 

calibration/validation model runs vs. the available flow data are provided in Annex for the interested reader.  

First, a few notes need to be provided.  

1. It was decided early in the project that the MACRO model will only be run for one selected catchment 

in order to be able to evaluate the effect of its capabilities without much burden on the modelers.  

2. Some models could not be successfully run for some of the catchments. This was due to some unknown 

model stability issues, which would have required an excessive effort – and joint work with the model 

developers – to overcome. It was therefore decided by the working group that pursuing the goal of 

completing the table below without gaps is beyond the means of this project and should be left as a 

future task. 

 

 
Table 12: Results for catchment hydrology using catchment- or point-models. Color coding reflects the rate of 

success of the model calibration and validation according to the recommendations by Moriasi et al., (2007). 

(Table 11) 

 

 The results reflect generally successful simulations of water flow patterns in the three catchments, using 

the various introduced models. In general, modeling the hydrology of the Vihterpalu catchment – the catchment 

with the least amount of anthropogenic influence was least challenging, although the simulation of Keila’s 

hydrology was rather successful too. The modeling of Leivajogi presented both weaker model results, as well 

as model instability problems. We have encountered a number of challenges in both calibrating and validating 

the models. We highlight a few specific cases that will help present some concerns and findings of the 

hydrology modeling task. 

 

 Figure 16 presents an example of what often happens – and happened in this project – when simulating 

soil hydrological response. The presented data shows how the SOIL model’s ability to simulate peak flows 

varied. The fact that the model often missed the observed peaks – primarily their volume, not their timing – is 

most likely due to not being able to simulate the quick pathway of macropore flow, by which the retention time 

of water in/on land was prolonged. Water is then simulated to either leave the area with a time-delay and 

potentially different pattern of outflow, or leave the simulated system via another process (e.g. evaporation, 

CALIB VALID CALIB VALID CALIB VALID CALIB VALID CALIB VALID CALIB VALID

N-S 0.52 0.49 0.71 0.64 0.65 0.42 0.78 0.69

PBIAS 2% 2% 3% -5% 9% 16% -1% -3%

N-S 0.14 0.63 0.63 0.66 0.59 0.55 0.41 0.71 0.62

PBIAS 31% -17% -22% 2% 17% 14% 24% -1% 7%

N-S 0.63 0.70 0.62 0.62 0.33 0.35 0.55 0.5 0.71 0.55

PBIAS (%) 16% 23% 9% -1% 40% 45% 14% 11% -7% 6%

Keila

Vihterpalu

Leivajogi

HBV INCAPERSIST SWATDISCHARGE STAT

CATCHMENT BASED MODELS

SOIL MACRO

PROFILE BASED MODELS
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plant-uptake) or as a loss (e.g. groundwater recharge). In either case, this is a water balance concern for the 

modeler.  

 
Figure 16: Simulation of the hydrology of the Vihterpalu catchment for the entire 2001-2011 period using the 

SOIL(N) model.  

 

 To indicate how differently a macropore-capable model can handle this aspect of water redistribution, 

we present the comparison between the SOIL and MACRO models for the Leivajogi catchment in Figure 17. 

The MACRO model was substantially more capable of simulating the flow peaks than the SOIL model; on 

occasion even overshooting the peak. The improved calibration and validation metrics with the MACRO model 

are also apparent from Table 12.  
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Figure 17: Simulation of the hydrology of the Leivajogi catchment for the entire 2001-2011 period using the 

SOIL(N) model (top) and the MACRO model (bottom). 

 

 Related to this point is that models – especially macropore-capable models - should be enhanced to 

account for artificial (subsurface) drainage processes that are important pathways to the transport of large 

volumes of water in a short period of time. Drainage itself, but especially when coupled with macropore flow, 

is a fast-flow process that carries great importance in describing the hydrological balance of an area; failure to 

capture this process will result in misjudging the amounts and rates of water and nutrient transport in the 

environment. 

 

  Utility of alternate sources for meteorological data 

 

 An attempt was made to perform and present a case in which the workgroup used a novel type of data 

source to obtain an aerial coverage of precipitation data. As presented, radar-based precipitation data was used 

as input to the SWAT model. A separate report by some authors (Manuel Garcia et al.) in the same team and 

project present the case in more detail, we only present and discuss a single, representative case.  

 Figure 18 presents a comparison of weather-station and radar-based precipitation data. It is obvious, 

and the pattern was similar for the other locations as well, that the currently available radar-based data severely 

underestimates the precipitation amounts signaled by weather stations; where the differences often exceed 

50%. Consequently, it is expected that when such weather data are used, simulated water flows will be much 

lower than when station data are used. 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 total % difference

Keskmine  ilmateenistus Sademete hulk (mm)  1981-2010 50 35 37 31 42 69 72 83 64 74 63 53 672

pcp Kehra  2010 25.7 60.7 61.6 32.9 66.3 60.7 109.3 49.5 94.7 66.8 113.5 88.9 831

pcp Kehra RADAR 2010 2.6 21.4 37.7 26 34.9 20.6 26.1 31.5 33 39.9 63.4 36.6 374

pcp Kehra 2011 58.5 31.9 32.2 13.3 33.2 76.9 118.4 52.5 113.1 69.5 49.1 87.1 736

pcp Kehra RADAR 2011 23.2 11.3 14.4 12.3 21.2 47.5 55.6 26.9 74.3 54.6 18.1 63.9 423

55.01

42.46
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Figure 18: Station vs. radar precipitation data for the Kehra radar. Source: 

http://www.ilmateenistus.ee/kliima/kliimanormid/sademed/ 

 

 Figure 19 presents the case of simulating water flow at the Pajupea permanent station using the SWAT 

model, and a combination of interpolated weather data (2001-2009) and radar-based precipitation (2010-2011) 

presented above. It is clearly visible how the simulated hydrograph signals low flow conditions, and is unable 

to return the patterns of measured flow when the water input by precipitation is significantly reduced.  

 

 

Figure 19: Simulation of water flow at the Pajupea permanent station using the SWAT model, and a 

combination of interpolated weather data (2001-2009) and radar-based precipitation (2010-2011). Red is 

observed flow, blue is modelled. 

 

 

 

 

 

http://www.ilmateenistus.ee/kliima/kliimanormid/sademed/
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  Discussion, assessment 

 

 In interpretation of the results, we first have to remind the reader that our model evaluation statistics 

were obtained on simulation catchment hydrology on a fine temporal resolution – i.e. on daily basis – which is 

much more difficult to fine-tune than doing the same on monthly data which the model-evaluation metrics by 

Moriasi et al., (2007) were meant for. Daily data reflect hydrological processes (fluctuations) that are much 

more difficult to capture because those are a product of short-response events (often extreme events) for which 

data may not be readily available, and for which the models may not contain sufficient (or any) processes to 

handle. This means that given the obtained results, we have to be optimistic about the catchment hydrology 

modeling part of our project. We therefore grade our model results to be successful and suitable for further 

work, i.e. sediment and nutrient transport simulation, as well as further advisory on the given catchments’ 

hydrology. 

 Modeling catchment hydrology on a daily basis is challenging but it is necessary to keep refining the 

temporal scale of simulations, since a number of influential phenomena – and driving forces – occur at a very 

fine temporal scale. Intensive storms, for example occur at the minute or hourly scale. For many areas, the 

frequency and intensity of such storms is projected to increase in the future, and thus understanding and proper 

modeling of their impact is of paramount importance. It is for this reason that we elected to use the finest 

possible temporal scale to be simulated in this study, even though the data support to that was often not optimal. 

The applied simulation models presented a compromise. Given the complexity of parameterizing processes 

that take place at different scales, it is typical that detailed models do not simulate processes at larger scales, 

and vice versa. The chosen catchment models were directly relevant for the areas of application in this study. 

The point models require further interpretation and aggregation to be made relevant at larger scales. Apart from 

lack of detailed data, latter is a challenge that users face when attempting to apply event-based numerical 

models. Such models are able to emulate processes of fine temporal scale, but are typically limited in spatial 

terms – at least now in the 2010s. It will be desirable in the future to advance those models, or to couple them 

with catchment scale models, in order to be able to account for events at fine temporal scales, such as 

intensive/extreme rainfall events. Till then, daily time-step should be considered to be the best-available, but 

also the most desirable solution to use.  

 

 The availability of meteorological data was a source of uncertainty in our project. Meteorological 

stations from which data were available were scarce, and they fell outside the catchments. This meant that we 

had to rely on interpolations. There are multiple ways to interpolate such data, each carrying its inherent 

uncertainty. However, neither of them carry the capability to represent sub-grid spatial variability that is not 

representable by a distance-based gradient, especially if the landscape between the available stations is also 

heterogeneous. The most affected important weather parameter is (the amount and temporal distribution of) 

precipitation, which often varies along short distances. This will likely make the modeling study miss existing 

– potentially intensive – local rainfall events, and cause unexplained peaks in the observed flow. 

 In order to make an attempt to overcome this problem in the future, this project ran an experiment, by 

using an alternate source for precipitation. Radar stations can provide information on spatially distributed 

rainfall, which can then be matched with the individual modeling units of the modeled catchments. The effort 

appeared to be feasible. However, in our study, unfortunately the mismatch between total indicated rainfall by 

the two data sources was large enough, and was systematic, to yield an impossible water balance and to 

overcome the purpose of the study. We believe that the Doppler radar will eventually be a valuable data source 

for the likes of study that this project also conducted. The technique, however, is an indirect technique, which 

will first need to be fine tuned (calibrated?) to indicate realistic precipitation estimates. Unless and until the 

alternative, novel source is able to represent the ground-measured data with good statistical certainty, 

simulations of water flow will be strongly biased and will not represent true conditions. An overarching 

statistical evaluation of such data should precede their practical use for such modeling purposes. 

 



50 

 As briefly mentioned earlier, model instability affected our work. Instability in this context refers to a 

numerical instability, where the internal calculations in some model process do not converge to a solution, 

which then halts the model, or yields unreasonable results. It is often obvious that the model output exists but 

it is unreasonable, while in other cases it requires expert judgement to understand and conclude that the output 

is not in the expectable range, or water-balance components do not add-up. In either case, the model is not 

ready to assist in drawing conclusions. Our study was somewhat affected by this, and the reasons could not be 

eliminated by reasonable effort. When we could not avoid such instability, we did/do not communicate the 

modeling results – as noted earlier. 

 Barring above mentioned instability/convergence problems, the listed simulation models were mostly 

calibrated manually by the respective experts by systematically changing calibration parameters in a trial-and-

error scheme. The SWAT model, however, has also been calibrated using SWAT-CUP, the auto-calibration 

tool provided with the model. Modelers in this project experienced that the auto-calibration tool may not 

provide better calibration statistics than manual calibration did – which was the case for the Leivajogi 

catchment, for example. Auto-calibration may take away some burden from the modeler, but may also need 

expert supervision to provide expectably good calibration results. We think that this is due to the nearly 

impossible task to automatically fit a model to rather specific situations – especially if input data may be scarce 

or difficult to trust. The calibration tool may yield a set of calibrated parameters that present a ‘local minimum’ 

on the model error domain, while expert knowledge may help modify some parameters to achieve yet better 

model fit metrics. We advise the modeler to critically evaluate any auto-calibrated parameter sets for 

reasonability. 

 

 The areas of application presented some very specific soil conditions – in certain areas – that were 

borderline or outside the scope of the applied models, or the data sources available to provide estimates of soil 

properties. Peat soils present very specific and rather extreme properties. These ‘soils’ may be formed from a 

very small percentage of mineral material (clay, silt, sand) and a high to extremely high (up to 70-80%) amount 

of organic material, with very high porosities, and un-soil-like soil hydraulic properties that are difficult to 

characterize and represent. Their properties are also rather heterogeneous within the same group of organic 

soils. Correspondingly, internationally available data sources lack proper data to provide estimates of their 

hydraulic properties with good certainty, and model developers also handled the representation and internal 

parameterization for such soils with low priority. In this study this became evident when applying the 1D point 

models and their parameterization, and when attempting to parameterize the other models for areas represented 

by such soils. This raises concerns about the applicability of the applied models – or in fact all models – for 

such soil conditions. This problem is not country specific, however, but also affects Estonia and our case 

studies, and calls for more data collection on organic soils.  

 

 

 

 We have simulated catchment hydrology using the different simulation models separately, while we 

have introduced ‘ensemble modeling’ and its advantages earlier. To re-capture, ensemble modeling means 

using individual models that can perform the same task, and later relying on their (weighted) average as the 

outcome of modeling. This is commonly done today in e.g. weather forecasting. In this study we were short of 

resources to develop and perform true ensemble modeling, but we established the knowledge base for it in that 

we evaluated the data needs and availability, catalogued the models’ capabilities and limitations – as well as 

the modeling expertise within this workgroup. We recommend, and prepare to be able to implement, ensemble 

modeling as one of the first steps in any follow-up to this project. 
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 Modeling nutrient transport 

 

  Model calibration and validation results 

 

 The evaluation statistics of both model calibration and validation for sediment and nutrient transport 

are provided in Tables 13a-c. Figures of model-wise calibration/validation results are provided in Annex for 

the interested reader. The results for modeling sediment and nutrient transport were substantially less 

successful than the simulation of catchment hydrology – with some promising exceptions. The success of 

simulations was more model dependent in this case than in case of modeling catchment hydrology. There are, 

however, frequently occurring low values of the Nash-Sutcliffe efficiency metric, signaling general problems 

with the simulations. Similarly to hydrology modeling, we have encountered a number of challenges in both 

calibrating and validating the models. We highlight a few specific cases that will help present some concerns 

and findings of the hydrology modeling task. 

 

 

Table 13a. Results and statistics with nutrients – catchment based models 

  SOILN  SOILN for MACRO 

  Calib Valid Calib Valid 

Leivajõgi N-S 0.41 0.32 0.43 0.32 

 PBIAS -2.18 -3.12 15 17 

Vihterpalu N-S -0.12 -0.2   

 PBIAS -0.8 -18.2   

Keila N-S -0.24 -0.71   

 PBIAS 8.92 7.18   

Table 13b. Results and statistics for nitrate concentration – profile based models 

Table 13c. Overview of calibration results for the different models used in the Project 

 

SWAT INCA_N SWAT INCA_P SWAT INCA_P

CALIB CALIB CALIB CALIB CALIB CALIB

R2 0.22 0.72 0.22 0.59 0.61

N-S -4.50 0.54 0.10 0.25 0.13

R
2 0.21 0.61 0.23 0.33 0.11

N-S -0.64 0.47 -2.54 -0.09 -1.48/0.5

Keila

Vihterpalu

NITRATE
SUSPENDED 

SEDIMENT
TP
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 The example shown in Figure 20 presents the modeling of nitrate N concentrations in the Leivajogi 

catchment as a result of leaching and runoff, modeled using the MACRO model. Despite the less-than-perfect 

model efficiency metrics, the model does manage to indicate the generally observed concentration, although 

with much variation in the success of catching the amplitude of peaks. Peaks in N concentrations are 

substantially influenced by release from point sources and the application of manure and fertilizers (and the 

weather pattern that follows), which was an area of significant uncertainty in this study. Information on point 

sources, such as input from waste-water treatment plants was not available. This made the modelers to add 

some point source input using estimated timing and amounts to attempt to explain previously unexplained 

peaks (e.g. as in Figure 20). Another potential source of N input is fertilization and manure application, of 

which we also did not have sufficient, locally specific information.  

 

Figure 20: Simulation of nitrate N concentrations in the Leivajogi catchment for the entire 2001-2011 period 

using the MACRO model. 

 

Figure 21: Simulation of ammonia and nitrate N concentrations in the Keila catchment (calibration period) 

using the INCA_N model. 
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 Some simulation results also gave indications that there are uncertainties around the forms of nitrogen 

in the river, which roots back to uncertainties regarding the source of N. Nitrates and ammonia in rivers 

typically dominantly originate from different sources, i.e. nitrates from fertilization, and ammonia from animal 

waste as well as waste water treatment plants. Figure 21 shows an example where it appears that the total 

amount of nitrogen was probably better simulated (perceived as the sum of the lower two panels) than the 

individual components, i.e. nitrate (middle-panel) and ammonia (lower-panel) separately. This is further 

indication of the importance of having sufficient reference data available for model calibration and validation. 

 Figures 22 and 23 demonstrate the INCA-P and the SWAT results with respect to suspended sediment 

concentration.  

 
Figure 22: Simulation of suspended sediment concentrations in the Keila catchment using the INCA_P 

model. 

 

 
Figure 23: Simulation of suspended sediment concentrations in the Leivajögi catchment  

using the SWAT model. 
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Both Figures 22 and 23 indicate, that the model’s can describe, in general, the sediment concentrations 

in the river, but do not capture the extremely high concentration values. The reason for that, most probably is, 

that these models are run on a daily time step, while extremely high soil losses are mostly generated by short-

term extreme precipitation events. Thus, event-based models, operating on an hourly or even finer time step 

are needed to describe the physics, standing behind flash flood and extreme erosion.  

 

  Discussion, assessment 

 

 Simulating the hydrological and nutrient balance of catchments with less anthropogenic influence with 

more success seems logical: the simulation of anthropogenic point-type effects is difficult, especially when the 

available data is scarce. In our cases, two of the most significant such sources were point-source polluters and 

agricultural fertilization – both of which are a lot more significant when simulating nutrient concentrations and 

loads in surface waters. Point source polluters comprise mostly of waste-water treatment plants that can release 

large amounts of nutrients downstream. For this project, no or very scarce information was available about 

point source polluters, and thus the model calibration/validation could not account for their contribution to the 

nutrient loads, hampering model performance. Lacking such data, it could only be speculated by the modelers 

when and how much effluent may have been released into the river upstream.  

 

 Various land-uses typically yield different amounts of sediment and nutrient losses when exposed to 

the same amount and intensity of rain. Models that can differentiate between land-uses – typically all catchment 

models - require input on land-use specific losses. Lacking such data, in this project, this information was 

assumed by expert judgement. The only available information source was national statistics on fertilizer 

application, which was consulted prior to assuming certain levels and timing of fertilizer application in the 

models. 

 

 It needs to be noted that apart from the uncertainties that arise from unknown, scarce or uncertain source 

information on nutrient loads, the effect of modeling errors in hydrology modeling also propagates through to 

nutrient and sediment modeling. Even if total loads are known, a mis-representation of river flow will result in 

mis-judged concentration values, and vice versa. Even if the catchment hydrology is modeled perfectly, 

unknowns in nutrient applications and loads will make their modeling carry great uncertainty. And we finally 

note, without much discussion, that model instabilities did affect our nutrient modeling as much as it did the 

hydrological modeling, and it was unfortunately beyond the means of this project to be able to mitigate some 

of those cases. 
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General discussion and outlook 
 

 Numerical/dynamic simulation models are continually being improved by their developers – and via 

feedback by independent users – and hence they are growingly seen as tool of choice when it comes to 

quantifying environmental phenomena, or predicting the effect of any future scenarios. However, the user 

needs to understand and accept that the results of numerical models – just as the models themselves - are bound 

by limitations.  

 Models work well to the extent and quality as the included processes and the underlying data allow 

them to. Models are developed via concept-understanding as well as empirical observations. They are also 

tested against other, independent observations. Model performance is weakened if those observations are 

spatially or temporally scarce, low quality or entirely missing. In the context of this project, we were able to 

identify a number of such problematic areas. For example, data on point-source type pollution (e.g. waste-

water treatment) were not, or rather scarcely available (only annual or quarterly data). There was no data 

available to the project on the diffuse (aerial) use of fertilizers – as major N and P sources – in agricultural 

areas. Neither was there sufficient information on nutrient retention times in surface waters – both streams and 

lakes. When such important data are lacking, the modeler can only rely on expert opinion, or generic estimates 

based on other locations, which always increases the degree of uncertainty to the results. At the same time, 

original data also present an unknown – sometimes sizeable – degree of uncertainty as well as error, which 

should be reasonably accounted for.  

 Models themselves also present imperfections and limitations. Models are often experimented with in 

a context that is beyond its original means, and thus the user may find that certain known processes are not 

included in a model. Moreover, different developers may have applied concepts of different types and 

complexities in their respective models. In the first case, the user will either have to ignore the process entirely, 

or find an expert-based solution (often a tweak in the data) to mimic the process or phenomenon. In the latter 

case, advantages and disadvantages of certain mathematical solutions are often seen on a case-by-case basis, 

and their performance usually interacts with the availability and quality of input data. Such is the case, for 

instance with the soil hydraulic properties or the calculation of evapotranspiration. These often pose known 

and quantifiable, or unknown degrees of uncertainties.  

 Calibration of models is a sensitive part of any simulation-based study. Models can, and should, be 

recalibrated when any new knowledge or data becomes available. Hence, the necessity to re-calibrate a model 

to perform the same task may re-appear for future studies on the same areas. Calibration tools and techniques 

may also evolve with time, so the complexity and burden of this task may change in the future. 

 Overall, we advise the user of our results to consider its limitations resulting from imperfections to the 

available models, and in the context of the scarcity – or lack of – desirable data.  

 Simulation results are often taken by their face value, whereas there can be large uncertainties to the 

estimated values. Such uncertainties can originate from many sources – several were listed previously – and 

their importance is often not communicated. We want to emphasize awareness of the uncertainty problem, and 

how to handle it. Studies are often not funded to the degree that researchers are able to support their studies 

with uncertainty estimates, although attempts are being made continually. We recommend that (a) research 

results are interpreted with uncertainties in mind; (b) trends and patterns, rather than individual values are 

focused at, and (c) that future studies are initiated and funded such that uncertainty analysis can become an 

explicit part of the study. 

 When studies at larger scales are performed, data availability concerns often derive the necessity to 

upscale or extrapolate information – input or output – to larger areas. This has also affected our study. It 

requires great awareness and care towards deciding to what extent certain information can be extrapolated, and 

any decision on extrapolations should be made by joint discussions and understanding. Some types of 

data/information can present greater variability over short distances than others (e.g. precipitation over air 
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temperature). It also has to be ensured that the information to be extrapolated does not introduce noticeable 

bias to the representation of a larger area.  

 In order to be able to link the proper causes and effects, one also need to consider that every step of 

upscaling usually results in loss of capability to establish such cause-effect connections. For example, while 

being able to simulate the annual loading of N and P to the Baltic Sea is of major significance, a national scale 

study of that kind usually lacks the level of detail that would help establish whether e.g. waste water treatment 

plants as point sources, or agriculture as a diffuse polluter – and within that area, what type of activity – is the 

main source, and is the most beneficial environmentally and economically to mitigate. This is a major source 

of uncertainty for the decision-maker, since it becomes very difficult to judge effectively if a new policy can 

be expected to yield the expected benefits. It would be very important to collect data on sources and the 

apportionment of pollution in order to help effectively mitigate the arising pollution.  

 When new information-collection campaigns are designed and initiated, it may yield great dividends if 

environmental modelers are invited to discuss their information needs for effective work. They may be able to 

recommend ways of ‘what’ information and ‘how’ it should be collected that may provide very good cost-

benefit ratio towards eliminating data gaps and certain sources of uncertainty in future studies. Long-term 

monitoring stations, when already established, could collect much useful information at low added cost, for 

example, but it is equally important to try to eliminate gaps in the collected monitoring data. The proposed 

monitoring strategy will have a regional perspective, in addition to the specific national needs. We need to 

emphasize the “sustainability” of any monitoring strategy, i.e. that the proposed activities shall not be 

extravagant with regard to future capacities of the individual countries. One way to enhance the sustainability 

is to design monitoring programs that are both suitable and attractive for research and educational purposes. 

For these reasons, it is also important that the applied measurement methods and procedures are sufficiently 

advanced to comply with international scientific standards. 

 The main limitation to the work of this working group was the lack of data as inputs to the simulation 

models, and often the spatial representativeness of data that were available. This reports cites a number of such 

issues, and points at a number of solutions that were used to try to overcome such lack of data. It is the expressed 

opinion of this working group that while existing simulation models are not perfect, it is rather the data quality 

and quantity available for use that was limiting this work, and hence improving that situation would be the first 

course of action if future improvements are expected in modeling the hydrology and nutrient losses from 

catchments. This is true for both input information (e.g. fertilizer use) as well as simulated variables (e.g. 

effluent amounts and concentrations).  

 At the same time, the modeler needs to appropriately judge the value in using a more data demanding, 

but otherwise better model when the necessary data are unavailable or rather uncertain. Some models, given 

their internal set of equations that drive the simulation of processes, may not be applicable across the range of 

conditions that needs to be simulated. This project ran into complications in simulating the hydrological 

balance of peat soils; a specific set of soils with extremely high organic matter content and very low bulk 

density. In some cases, overcoming such situations takes specific expert knowledge to alter the model’s input 

while continually monitor the output to remain meaningful and reasonable.  

 

 We envisage these dynamic models to be suitable and appropriate to use to analyze and predict the 

impact of predicted climatic changes, as well as changes in land-use on agricultural hydrology and nutrient and 

pollutant transport and losses. Dynamic models are the best-available tools, and combined with the already 

accumulated experience, they will be suitable to inform the policy maker as well as the public about the 

direction and expected magnitude of changes. More than one of the applied process-based models are suitable 

to be used at a larger – national – scale, and they can even be combined in a model ensemble. The benefits of 

ensemble modeling have been discussed earlier in this report, but its implementation was beyond the means of 

this project, and remains a recommended direction of future work. This being said, we repeat that it is necessary 

to expand the network of environmental data collection to areas other than the already known research-
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watersheds, and to ensure that existing monitoring stations stay on-line as well. Data quality and availability 

are both crucial to be able to inform and validate our models, and hence form the basis for any modeling study.  

 Looking forward, we have gained knowledge on capabilities and limitations of the various models that 

we used in this study. This has special significance towards planning to use these models to simulate mitigation 

measures. Some of the models cannot simulate the effect of certain mitigation measures, or if they can, that is 

only possible via an expert-based alteration of inputs, i.e. such application is not self-evident. The simulation 

of effects of mitigation measures also assumes that proper data are available about the current situation. For 

example, this project was not able to secure wide-spread information on fertilizer application timings and rates, 

or crop yield data, that constitute crucial reference information for scenario modeling.  

 

 In terms of advice as to what model to recommend for future use, there is an inherent tradeoff between 

models within and much beyond this project or its constituting tasks. Some models are rather complex and 

require a vast amount of input information – e.g. the SWAT model in our study. The INCA model family 

requires less input, but its capabilities are more limited e.g. in terms of simulating the expected impact of 

implemented or future mitigation measures. Yet another step in the same direction would be to elect to use 

simple statistical models – that require even fewer input - in place of process based models. Such statistical 

models, however, most often ignore processes and phenomena that all specialized scientists would agree are 

important, even if their impact may not be evident from existing (poor?) data collections. 

 When selecting model(s), the goals of a modeling study and the availability of support and input 

information need to be harmonized, which is partly accounted for in the model selection process that we 

recommended earlier. However, we need to re-emphasize that the lack of existing data and its poor spatial 

representativeness should not be an excuse to eliminate complex models, but should rather be a warning that 

our data collection is behind the capabilities of our ever-developing predictive tools, and hence field monitoring 

and the collection of other relevant data should continue and expand.  
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