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A B S T R A C T

Eruption is; movement of the tooth from its developmental site in alveolar bone to its functional position in the
oral cavity. Erupt has been a matter of long historical debate. Each of the eruption theories has a say in tooth
eruption. So, the aim of this research is to explore the integration of eruption theories to understand the ae-
tiology of the eruption process.

1. Introduction

Eruption is necessary for survival of diverse species [1]. Eruption is
continuous process. It does not stop by reaching the occlusal plane, but
continues throughout life [2].

2. Types of tooth eruption

2.1. Active eruption

Active eruption is; the movement of the tooth from its develop-
mental site in alveolar bone to its functional position in the oral cavity
[3]. Eruption can generally be divided into different phases [4].

2.2. Pre-eruptive movement

It is made by the teeth germs. It is best thought of as the mean by
which the teeth are positioned within the jaw for eruptive movement.
The Pre-eruptive phase starts from the end of early bell stage till the
beginning of root formation [4].

2.3. Eruptive movement

Tooth movements during eruptive phase are subdivided into; in-
traosseous and supraosseous stages. The eruptive phase begins with the
onset of root formation and terminates by tooth appearance in the oral
cavity, just before function (pre-functional phase) [4].

2.4. Post-eruptive movement

This movement maintains the tooth position in occlusion by com-
pensation for occlusal and proximal tooth wear. The post-eruptive
phase starts when the teeth attain occlusion and continues for as long as
each tooth remains in the oral cavity (functional phase) [4].

2.5. Passive eruption

Passive eruption is characterized by the apical shift of the dento-
gingival junction. As this occurs, the length of the clinical crown in-
creases as the epithelial attachment migrates apically [5].

Although the movement of teeth into function has been the subject
of extensive research, there is no consensus regarding the mechanism
involved [1].

2.6. Normal eruption of human teeth

Tooth eruption in humans has numerous aspects [6]. The eruption
process starts with onset of root formation [7]. From this time till tooth
appearance in the oral cavity is called eruption time [6].

3. Theories of eruption

There is no consistent understanding of the cause behind tooth
eruption. The aetiology behind eruption and explanation of the erup-
tion mechanism seem to be essential to perform aetiology based treat-
ment [6].
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3.1. Eruption theories with recent points of view

3.1.1. Cushioned hammock theory
It was proposed by Harry Sicher [8]. This theory assumed that li-

gament (cushioned hammock ligament) below a tooth is responsible for
eruption (Fig. 1).

However the ligament described by Sicher [8] was an artifact in slide
preparation [9].

3.1.2. Root formation theory
The root formation theory assumes that the proliferating root en-

counters a fixed structure; and the apically directed force is converted
into a reactive occlusal force that causes coronal movement of the
erupting tooth (Fig. 2) [4].

However, there are facts refuted this hypothesis such as; rootless
teeth can erupt, some teeth erupt greater distance than the total root
length; and the teeth erupt after completion of root formation or when
the tissue forming the root is removed [4]. Also, the onset of root for-
mation does not coincide with the eruptive movement [4]. Moreover,
newly formed dentin at root apex is unmineralized and can be deformed
by trauma [10].

Recently it is postulated that since tension results in bone

deposition, the tensile responses that occur during teeth eruption are of
great concern.

In the (intra-osseous stage of eruptive phase), root formation and
jaw growth lead to compressive coronal hydrostatic stress. This induces
the dental follicle and stellate reticulum cells to secrete mediators for
bone resorption. Furthermore, the root formation would produce ten-
sile apical hydrostatic stress in the teeth germs that leads to bone de-
position [11,12]. Moreover, pre-occlusal eruption (supra-osseous stage
of eruptive phase) is completed by root growth and bone formation at
crypt base [3].

3.1.3. Vascular pressure/blood vessel thrust or hydrostatic pressure theory
This theory suggests that a local increase in tissue fluid pressure in

the periapical region is sufficient to move the tooth [13].
However, this is debatable because root and local vasculature ex-

cision, does not prevent tooth eruption [13].
Recently it is reported that the hydrostatic pressure theory occurs

during postemergent eruption [12]. This is due to that dental follicle
secrete mediators, such as vascular endothelial growth factor (VEGF),
that cause angiogenesis and so increase in the apical tissue pressure that
lead to tooth eruption [12]. Moreover, hydrostatic pressure theory was
supported by several studies that confirm tooth eruption after a local
injection of vasodilators [12]. Whereas injection of vasoconstrictors
caused decrease in the rate of eruption [14].

3.1.4. Bone remodeling theory
This theory based on; bone resorption occurs coronally and bone

apposition occurs apically. The dental follicle is the source for osteo-
blasts and osteoclasts [4,13].

Whether bone remodeling that occurs around teeth causes or is the
effect of tooth movement is not known, and both circumstances may
apply [13]. The strongest evidence in support of bone remodeling as a
cause of tooth movement comes from a series of experiments in dogs.
When the developing premolar is removed without disturbing the
dental follicle, or if eruption is prevented by wiring the tooth germ
down to the lower border of the mandible, an eruptive pathway still
forms within the bone overlying the enucleated tooth as osteoclasts
widen the gubernacular canal (Fig. 3). If the dental follicle is removed,
however, no eruptive pathway forms. Furthermore, if a metal or sili-
cone replica replaces tooth germ and so as long as the dental follicle is

Fig. 1. Diagram of basal end of rat incisor showing cushioned hammock liga-
ment [8].

Fig. 2. Photomicrograph showing root formation [4]. Fig. 3. Photomicrograph showing bone remodeling [4].

A.A. Rabea Future Dental Journal 4 (2018) 189–196

190

Future Dental Journal, Vol. 4 [2018], Iss. 2, Art. 16

https://digitalcommons.aaru.edu.jo/fdj/vol4/iss2/16



retained, the replica will erupt, with formation of an eruptive pathway.
It is concluded that programmed bone remodeling can and does occur
(i.e., an eruptive pathway forms in bone without a developing and
growing tooth). Second, the dental follicle is involved. However, the
conclusion cannot be drawn that the demonstration of an eruptive
pathway forming within bone means that bone remodeling is re-
sponsible for tooth movement unless coincident bone deposition also
can be demonstrated at the base of the crypt where its prevention can
interfere with tooth eruption [4].

Recently the molecular basis of tooth eruption supports bone re-
modeling theory as it confirms that mutation of the parathyroid hor-
mone receptor 1 (PTH1R) gene is correlated with disturbances in bone
remodeling and leads to primary failure of eruption (PFE) [12]. PFE is
nonsyndromic eruption disturbance that is not associated with defec-
tive osteoclasts [12]. The affected teeth had supracrestal presentation
and progressive open bite which is hallmark criteria of PFE (Fig. 4)
[12,15].

3.1.5. Dental follicle theory
The follicular theory postulates that the dental follicle is capable of

inducing, bone resorption above the developing crown and bone ap-
position below it (Fig. 5). This enables the formation of an eruptive path
to occur through which the tooth will be passively conducted [16]. In
osteopetrotic animal, which lack a factor that stimulates differentiation
of osteoclasts, eruption is prevented, because no mechanism for bone
removal exists. However, local administration of this factor, colony-
stimulating factor 1 (CSF-1), permits the differentiation of osteoclasts
and eruption occurs [4].

Recently molecular studies have revealed that eruption is regulated
by inductive signals between the dental follicle, reduced enamel epi-
thelium (REE), stellate reticulum and alveolar bone [17]. Regional
differences in the dental follicle were described [17]. It is suggested that
the coronal aspect of the dental follicle regulates osteoclastogenesis
(bone resorption) and the basal aspect of the dental follicle regulates
osteogenesis (bone formation) [17]. This was assessed using laser
capture microdissection (Fig. 6). Real time reverse transcription-

polymerase chain reaction (RT-PCR) was used to assess the expression
of bone resorption and bone formation marker genes. The receptor
activator of nuclear factor kappa B ligand (RANKL) gene is a marker
gene for bone resorption. Bone morphogenetic protein-2 (BMP-2) gene
is a marker for bone formation. The results showed a higher expression
of RANKL genes in the coronal half of the dental follicle, and higher
expression of BMP-2 genes in the basal half of the follicle [17].

3.1.5.1. Current concepts concerning the paracrine signaling function of the
dental follicle in tooth eruption. Tooth development is regulated by a
cascade of mutual interactions between the dental epithelium and the
dental mesenchyme [19].

Correspondingly, the process of tooth eruption is regulated by cel-
lular events leading to the recruitment of monocytes to the dental fol-
licle followed by bone resorption [20]. This molecular events are in-
itiated by interactions between the dental follicle, the REE and the
stellate reticulum [21].

Apoptosis of epithelial cells during the advanced stages of enamel
secretion have been reported [22]. This apoptotic process is has a direct
influence on osteoclastogenesis through the release of interleukin-1α
(IL-1α) by stellate reticulum cells, which its receptors are located in the
dental follicle [20]. IL-1α consequently stimulates the expression of
CSF-1 and monocyte chemotactic protein-1 (MCP-1) in the dental fol-
licle, allowing the dental follicle to act as a chemoatractant for mono-
cytes [20]. The stellate reticulum cells also participate in bone resorp-
tion by releasing parathyroid hormone-related protein (PTHrP) which
further increases the expression of both MCP-1 and CSF-1 [23]. CSF-1
down-regulates the expression of osteoprotegerin (OPG), a well-known
snare receptor for RANKL which inhibit osteoclast differentiation [24].
The cells of the REE and stellate reticulum therefore exert a paracrine
effect on the dental follicle, enhancing the expression of chemoat-
tractant molecules [25]. Additionally, the REE also secretes proteases
that aid in creating an eruption pathway through enzymatic digestion
of collagens [26]. Other molecules such as epidermal growth factor
(EGF) and transforming growth factor β 1 (TGF-β1) released by the cells
of the dental follicle enhance also the expression of CSF-1 in the dental
follicle (Figs. 7 and 8) [27].

Bone resorption is however not sufficient for the displacement of the
tooth. Thus, coronal bone resorption must be coupled with apical bone
formation [28]. The expression of these BMPs is greatly enhanced by
tumor necrosis factor–α (TNF-α) [28]. The cascade of signaling events
at the apical aspect of the developing tooth, are not completely eluci-
dated [29].

Matrix metalloproteinases (MMPs) are capable of degrading extra-
cellular matrix (ECM) structural. They play important roles in tissue
development [31].

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is specific
for collagens (I, II, and III), gelatin, fibronectin, and other matrix mo-
lecules [32]. MT1-MMP is essential during development and expressed

Fig. 4. Clinical photograph of patient with mutation in the PTH1R gene [12].

Fig. 5. Photomicrograph of a developing dog tooth indicating the position of
the dental follicle (F) around the developing tooth, developing mandibular al-
veolar bone (M) and overlying oral epithelium (E) [17].

Fig. 6. A diagram showing: Laser capture microdissection (LCM) [18].
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in the tooth and the surrounding connective tissue [33,34].
Migratory capabilities of follicle cells are disturbed in the absence of

MT1-MMP, as collagen content increases in the dental follicle. Also
MMPs have role in cell migration [35].

3.1.6. Periodontal ligament traction theory
This theory is based on the postulation that periodontal ligament

(PDL)-dental follicle complex possesses eruptive force due to the trac-
tion power that fibroblasts have [4]. In continuously growing rodent
and rabbit incisors teeth, surgical procedures performed and effectively
eliminated dental pulpal pressure, dentin formation, and the cervical
loop from contributing to incisor eruption, and PDL is the only tissue
responsible for eruption of this tooth [36]. Moreover, fibroblasts move
incisally along the erupting tooth, and their contraction generates sig-
nificant force for tooth eruption [37].

However, experiments in a rat model using lathyrogens (amino acid
derivatives that cause defective fibril formation when applied to the

PDL) did not cause different rate of eruption when compared to un-
treated rats [38]. Moreover, the rate of collagen turnover is much
higher than that of eruption [39]. Additionally, there is no difference in
metabolic structures within fibroblasts in the PDL of rapidly erupting
teeth and fully erupted teeth [40]. Also, periodontal fibroblasts exhibit
characteristics of cells actively synthesizing and secreting [41]. More-
over, the ability of rootless teeth to erupt on schedule indicates that the
PDL is not essential for eruption [42].

Recently it is hypothesized that functional stress results in greater
strain in dental follicle and PDL than in bone, these soft tissues act as
stress sensors [43]. Bone resorption and deposition involved with tooth
movement, is critical surface phenomena at the interface between soft
and bony tissues surrounding the developing tooth [44]. Moreover,
teeth normally drift forward and upwards in the jaws, which is not the
case in either osseo-integrated implants or when there is pathological
fusion of the bone to teeth [45]. Furthermore, The PDL has mechan-
osensor activity during orthodontic treatment [46].

Lately, it is confirmed that PDL fibroblast orientation increased
significantly during eruption (Fig. 9) [47]. It is proposed that PDL fi-
broblasts connect to collagen fibers inserting into the tooth's cementum
so their occlusal migration pulls the tooth toward the oral cavity [47].

PDL fibroblasts are spindle-shaped with multiple processes that join
with other cells during ligament development [48]. The fibroblasts long
axis is aligned parallel with the orientation of collagen fibers [49]. They
both create and are responsive to mechanical forces through focal ad-
hesion complexes [50]. In PDL fibroblasts, changes in the strain en-
vironment induce changes in gene expression, such as the upregulation
of collagen 1 [51]. Also, the importance of the CD44 receptor in
cell–cell and cell–matrix interactions is demonstrated [52]. The pro-
liferation and migration of PDL cells has been linked with CD44/HA
interactions [53].

3.1.7. Molecular determinants in tooth eruption
Eruption molecules control the timing of the cellular events of

eruption [54].
The RANKL needed for alveolar bone resorption come from the

dental follicle. Also CSF-1, down-regulates the expression of OPG to
enable osteoclastogenesis to occur. Also secreted frizzled-related pro-
tein-1 (SFRP-1) that inhibits osteoclastogenesis, also has its gene ex-
pression down-regulated in the dental follicle [55].

CSF-1 and MCP-1 were maximally expressed in the dental follicle.
Endothelial monocyte-activating polypeptide (EMAP-II) has been
shown to have a chemotactic effect on mononuclear cells. It up reg-
ulates the gene expression of both CSF-1 and MCP-1 [56].

The transcription factor gene c-fos and the transcription factor genes
nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB 1)
and (NFkB 2) are needed for osteoclast differentiation [57]. Type I re-
ceptor of interleukin-1α (IL-1R), is present in the dental follicle, and its
gene is enhanced by a ligand in the stellate reticulum [58].

Prior to eruption, CSF-1 expression is reduced and appears to be
replaced by VEGF which is highly expressed in the dental sac. VEGF up
regulates the expression of RANK [59].

BMP-2 is highly expressed in the basal half of the dental follicle.
BMPs regulate the expression of Cbfa1 (core binding factor a1). It acts
as a key transcriptional regulator of osteoblast differentiation during
bone formation [60].

At the onset of eruption, the sialoprotein of 95,000 relative mole-
cular weight (DF-95), is reduced by exactly the amount of three new
sialoproteins with MW 20–25,000. Fragmentation of DF-95 is a bio-
chemical marker of the beginning of tooth eruption.
Immunolocalization of DF-95 in the REE is a biochemical evidence in
initiation of eruption. Proteases of the enamel organ cause fragmenta-
tion of DF-95 and release metalloproteinase thus they initiate eruption
[61].

Wnt/β-catenin signaling plays an important role in bone formation
and regeneration [62].

Fig. 7. Paracrine signaling at the coronal half of the erupting tooth [17].

Fig. 8. Paracrine signaling between the stellate reticulum and dental follicle, as
well as within the dental follicle only [30].
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The gubernacular cord formation starts from the remnants of dental
lamina cells [63]. This structure is located behind the deciduous tooth
[64]. In this cord, there is EGF (epithelial growth factor), which has the
capacity to induce bone resorption leaving a space surrounding this
cord, so-called the gubernacular canal (Fig. 10) [65].

3.2. Recent theories of eruption

3.2.1. Bite forces sensed by soft tissue dental follicles theory
This theory postulates that follicular soft tissues detect bite-forces

and so direct bone remodeling with the effect of enabling tooth erup-
tion [11].

The authors reported the highest equivalent strains induced by bite

forces in the dental follicle and PDL in both erupted and unerupted
teeth irrespective of incisive or unilateral molar bite forces (Fig. 11).
Examination of the soft tissue dental follicles, suggested broad areas of
compression in overlying crowns, and wide zones of tension in follicle
below root apices (Fig. 12) [11]. So, these soft act as relevant stress
sensors [11].

3.2.2. Innervation-provoked pressure theory
This theory postulates that the root membrane acts as a glandular

membrane. So, the innervation in this membrane causes pressure in the
apical part of the tooth which results in tooth eruption [6].

It is hypothesized that tooth eruption depends on [6].
(1) Space in the pathway of eruption,
(2) Pressure from below,
(3) Adaptation of the periodontal membrane.

1. The crown follicle creates the necessary space in the eruption
path [6].

2. The root membrane functions as a glandular membrane. So, the
innervation causes overpressure that causes the tooth to elevate in the
eruption direction [6,66,67].

3. The adaptability of the periodontal membrane is essential for
eruption [6,68].

3.2.3. The equilibrium theory
After the functional plane is reached, the eruption of the tooth is

balanced in response to the growth of the vertical growth of the
mandible [69].

As the mandible grows vertically away from the maxilla, the teeth
have more room to erupt occlusally in order to maintain occlusal
contact with the opposing arch. This model of tooth eruption reinforces
the idea that postemergent tooth eruption, after reaching functional
occlusion, is controlled by forces impeding eruption, as opposed to
encouraging forces. These balancing forces of masticatory function and
the soft tissue pressures from the lips, cheeks, and tongue are the rate-
limiting factors of postfunctional occlusal eruption [12,69]

Fig. 9. Photomicrographs showing: PDL fibroblast orienta-
tion within the cervical region during mandibular first
molar (M1) eruption and occlusion. Intraosseous eruption,
(A–C), mucosal penetration, (D–F), and preocclusal eruption
(G–I). Enamel (e), dentin (d), bone (b) and the PDL (p). KO,
knockout; WT, wild type. Scale bar= 100 μm [47].

Fig. 10. Photomicrograph showing gubernacular canal and cord [4].
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Fig. 11. Diagrams showing patterns of equivalent strain. Irrespective the loading applied, equivalent strain was high in soft tissues of the PDL (red arrows) and dental
follicles (green arrows), and lower levels of strain in the hard tissues [11].

Fig. 12. Dental follicle compression (red) and tension (green) during bite forces. The upper surfaces of dental follicles are subject to greater compression, as
compared with the lower surfaces which were subject to greater tension [11].
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The lasting eruptive movement that occurs while the teeth are free
of contact, supports the idea that eruptive control is based on the
continuous force of the surrounding soft tissues [12].

3.2.4. Neuromuscular theory or unification theory
The neuromuscular theory or unification theory of tooth eruption

states that the synchronized forces of the orofacial muscles, under the
control of the central nervous system, are responsible for the active
movements of a tooth and the molecular events prepared a pathway
under the control of these forces [68,70−74].

The coordinated neuromuscular forces are converted into electrical,
electrochemical and biomechanical energies for the stimulation of cel-
lular and molecular activities within and around the dental follicle and
enamel organ to prepare a pathway as well as other cellular functions
for eruption of a developing tooth [55,70].

4. Evidence based on current systematic reviews

[1] A detailed analysis of the findings from scientific studies on me-
chanisms of tooth eruption was conducted [70].

[2] Systematic analysis of epidemiologic studies as well as many stu-
dies on animal tissues was carried out to understand the mechan-
isms behind tooth eruption [6].

[3] Other authors conducted a systematic review to outline the possible
mechanism of tooth eruption right from its development in the
bony crypt to its eruption till the occlusal level [3].

5. Conclusions and future considerations

• To sum up, tooth eruption must be considered as a stage of tooth
development.

• Root follicle, periodontal membrane, and crown follicle are involved
in the eruption process.

• Dental follicle and PDL play mechanosensor role in tooth eruption.

• The orientation of PDL fibroblasts determines the tooth directional
movement.

• Root formation produces compressive coronal and tensile apical
hydrostatic stress resulting in tooth eruption.

• The molecular and enzymic activities, are controlled by neuromus-
cular forces.

• Each of the eruption theories has a say to some portion of the
eruption process.

The presence of stem cells in the dental follicle [75], raises around
their potential role in tooth eruption. Identification of role of stem cells
during tooth eruption still needs further research.
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