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ARTICLE INFO ABSTRACT
Afﬁf{e history: Objectives: To evaluate the effect of different surface treatments; plasma treatment, silica coating using
Received 21 March 2016 plasma technology and sandblasting, on bond strength, surface roughness and microscopic structure of
5;“;“’??2‘3123‘”56‘1 form yttria-stabilized tetragonal zirconia polycrystals(Y-TZP) after thermo-cycling.

pri

Matrials and methods: One hundred discs (n = 100) of yttria-stabilized tetragonal zirconia were prepared
from (Y-TZP) ceramic blocks using MAD/MAM milling technology, and were divided into four equal
groups (n = 25) according to the type of surface treatment. Group (1): control (no surface treatment).
Group (2): zirconia discs were sandblasted by alumina particles. Group (3): zirconia discs treated by
plasma technology to produce surface roughness. Group (4): zirconia discs coated by silica using plasma
technology. Samples of each group were subdivided into four subgroups according to different analytical
techniques. Subgroup (A): (n = 10) subjected to testing of bond strength of zirconia discs to adhesive
resin cement after thermo-cycling. Subgroup (B): (n = 5), to evaluate the microscopic changes of zirconia
discs by scanning electron microscope (SEM). Subgroup(C): (n = 5) to evaluate the crystal structure and
phase transformation of YZ ceramic by X-ray diffraction (XRD). Subgroup (D): (n = 5) to measure three
dimensional surface roughness of YZ ceramic by optical interference microscope.
Results: Statistical analysis of shear bond strength by ANOVA revealed the presence of no statistically
significant difference between group (3) and (4); both showed the statistically significantly highest mean
shear bond strength values. Group (2) showed statistically significantly lower mean values followed by
group (1). SEM showed that the topographic pattern differed by different surface treatments of samples.
XRD revealed that; group (1) showed the statistically significantly highest mean % of zirconium oxide
(Tetragonal phase). Group (2) showed the statistically significantly lowest mean % of Zirconium oxide
(Tetragonal phase) and highest mean % of Boehmite and Zirconium oxide (Anorthic phase); Group (3)
and (4) showed the statistically significantly highest mean % of Zirconium oxide (Monoclinic phase) and
low % of zirconium oxide (Tetragonal phase). 3D- optical surface roughness showed that group (3) and
(4) had highest mean (Ra) values. Group (2) showed statistically significantly lower mean values. Group
(1) showed the statistically significantly lowest mean (Ra) values.
Conclusions: (1) Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling
agent application improve the bond strength to resin cement. (2) Plasma-Silica coating and plasma-
oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-
TZP ceramic. (3) Silica coating by plasma technology provides durable bond strength and can be a
promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic.
(4) Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of
plasma treatment.
© 2016 Faculty of Oral & Dental Medicine, Future University. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

New ceramic systems have been developed as attempts to
eliminate metal infrastructures and allow optimal distribution of
reflected light, providing high quality aesthetic restorations
through the use of reinforced ceramic cores either by dispersion of
leucite [1], glass infiltration into sintered alumina (Al,0s3) [2,3], the
use of high-purity alumina [4] or zirconium dioxide (zirconia, ZrO,)
[5]. Zirconia has emerged as a versatile and promising ceramic
material because of its biological, mechanical and optical proper-
ties. With a flexural strength of more than 900 MPa, fracture
toughness of up to 10 MPa/m®>, and an elastic modulus of 210 GPa,
they exhibit better mechanical performance, superior strength and
fracture resistance than do other ceramic materials [5,6]. Zirconium
dioxide as a dental material has a wide range of applications [7],
they were initially used for endodontic dowels and implant abut-
ments [8,9]. Its use has been extended to single crowns [10,11] and
posterior three-unit fixed partial dentures which can be fabricated
with a manual copy-milling machine, or computer aided design/
computer aided manufacturing (CAD/CAM) systems [12,13] of
either pre-sintered [14] or fully sintered zirconia blocks [15].

Adhesion of resin cement to high-strength zirconia ceramics is
not expected to be improved by acid etching and silanization
because they are inert acid resistant ceramics [16—21]. For zirconia
ceramics, airborne-particle abrasion is an alternative method for
roughening the ceramic surface [20,22,23].

However, there are some possibilities for improving bonding to
zirconia based ceramics that need to be tested, including modern
techniques for surface treatments by plasma technology. Plasma is
defined as a gas in which part of the particles that make up the
matter are present in ionized form. This is achieved by heating the
gas leading to dissociation of the molecular bonds and subse-
quently ionization of the free atoms. Thereby, plasma consists of
positively and negatively charged ions and negatively charged
electrons as well as radicals, neutral and excited atoms and mole-
cules [24,25].

In material science, possible applications of plasma include the
modification of surface properties like electrochemical charge or
amount of oxidation, wettability, hardness, resistance to chemical
corrosion, the water absorption capacity as well as the affinity to-
ward specific molecules can be modulated [26], using the common
plasma gas sources as oxygen, argon nitrogen or hydrogen.

Some studies have examined the effect of sandblasting on shear
bond strength of resin cement to zirconia ceramic, but further data
is needed to correlate the effect of sandblasting and different
plasma modalities on shear bond strength, microstructure, surface
roughness and phase transformation of yttria-stabilized tetragonal
zirconia.

2. Materials and methods

To conduct the present study, one hundred discs (n = 100) of
Yttria-stabilized tetragonal zirconia ceramic (Y-TZP) were fabri-
cated using Manual-aided Design/Manual-aided Manufacturing
(MAD/MAM) system (Talent dental, FP50-XP, Korea) referred to as
copy milling technique which is based on the pantographic
principle.

2.1. Preparation of composite resin pattern

In order to standardize the shape and dimensions of the sam-
ples, a specially designed Teflon mold was machine-cut in order to
fabricate circular resin discs of 10 mm diameter and 3 mm thick-
ness. The inner walls of the mold were painted with separating
medium (Vasline petroleum jelly, Mainland, China) then composite

https://digitalcommons.aaru.edu.jo/fdj/vol2/iss1/7

resin (Te-Econom Plus, Ivoclar Vivadent, Liechtenstein) layers were
incrementally condensed into the mold and light cured (XL- 3000,
3MJ/ESPE, St. Paul, USA) for 40 s on each side, for a total of 120 s. After
complete polymerization, the composite resin pattern was
removed from mold and inspected for any deficiencies which if
found were corrected by addition.

2.2. Milling of Y-TZP samples

The composite resin pattern was placed in the pantographic
machine. The copying arm of the machine traced the composite
pattern while the cutting arm, which had a carbide cutter (TF14,
Syandent tools, China) milled the pre-sintered zirconia block. After
completion of the milling process, the milled discs were separated
and handled with care to avoid damage to their margins or initia-
tion of microscopic cracks leading to subsequent failure.

2.3. Sintering process of zirconia discs

The milled zirconia discs were sintered in high temperature
furnace (Wholesale Sintering Furnace, Ds-1700MX, Mainland, China)
according to the manufacturer's recommendations. The tempera-
ture was raised to 1500 °C in 2 h then kept at final temperature
(1500 °C) for 2 h. Samples were slowly cooled to less than 100 °C in
1h.

2.4. Surface treatments of samples

One hundred discs (n = 100) of Yttria-stabilized tetragonal zir-
conia ceramic (Y-TZP) were divided into four equal groups, (n = 25
each) according to type of surface treatment; Group (1): control (no
surface treatment). Group (2): zirconia discs were sandblasted by
alumina particles. Group (3): zirconia discs treated by plasma
technology to produce surface roughness. Group (4): zirconia discs
coated by silica using plasma technology.

2.4.1. Sandblasting of the samples, group (2)

1. Each sample was individually mounted in a specially con-
structed holder which aided in standardization of the distance
of sample exposure from the sandblasting nozzle (10 mm).

2. The sample was sandblasted with 110 um aluminum oxide, at
2 bar pressure, for 15 s [27], using sandblasting machine
(Sandstorm, Vaniman manufacturing Co, Fallbrook, California, US).

3. After sandblasting, samples were cleaned using water and air
stream to remove any remnants of alumina particles on the
surfaces.

2.4.2. Oxygen etching by plasma technology; group (3)

Constructed zirconia samples of group (3) were etched using
plasma technology. For this purpose, oxygen gas was used as the
working gas in the plasma focus system, Fig. 1, and the condenser
bank was charged to 12 kV. The substrate holder that holds the
samples was incorporated in the vacuum chamber facing the rim of
the anode. The capacitor bank potential was transformed to the
plasma focus tube through the air spark gap, in this state the
plasma focus was formed after that it broke into ions and electron
beams. The energetic oxygen ion beam took the shape of fountain
and spread upwards to bombard the facing samples. To enhance the
treatment, the process was repeated 15 times.

2.4.3. Silica coating by plasma technology; group (4)
Constructed zirconia samples of group (4) were silica coated
using plasma technology. Argon gas was used as working gas; an
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Fig. 1. The plasma focus system and its schematic diagram.

energetic argon ion beam obtained from an ion source was used to
deposit thin film of silica on the zirconia substrate. The deposited
material originated from a second ion gun that was used to sputter
silica onto the substrate. The ion bombardment both; cleans the
substrate by sputtering and changes the chemical bonding at the
interface, prior to deposition.

2.5. Samples subgrouping

Samples of each group (n = 25) were subdivided into 5 sub-
groups according to the testing procedure employed.

2.6. Subgroup (A)

10 samples of each group were prepared for shear bond test as
follows:
Testing procedures:

1. Shear bond testing:
a. Acrylic block construction:

Previously treated Y-TZP samples were embedded in acrylic
resin block (Acrostone, Industrial area El-Salam City, Egypt). A
specially designed acrylic block former of 10 mm length and 20 mm
diameter was painted with Vaseline. Self-cure acrylic resin was
mixed according to manufacturer's directions in a glass container
and poured into the block former. After complete curing, the acrylic
resin block was removed and inspected for any deficiencies which
were corrected by addition.

b. Construction of composite discs:

Split metal ring with three central holes of 5 mm internal
diameter and 3 mm thickness each, was filled with composite resin
(Te-Econom Plus, Ivoclar Vivadent, Schaan, Liechtenstein) to fabricate
composite resin discs, which were light polymerized (XL-3000,
Curing Light 3M™ ESPE™, Australia) for 40 s on each side for a total
of 120 s.

c. Cementation procedures:

Composite resin discs were cemented to previously treated
zirconia discs according to the manufacturer procedure:

Published by Arab Journals Platform, 2016

1. A mix of silane coupling agent and metal/zirconia primer was
applied to the surface of Y-TZP sample with a micro-brush.

2. The material was allowed to react for about 3—5 min, and then it
was exposed to a strong stream of air.

3. The base and catalyst pastes of Multilink (3M ESPE, St Paul, MN,
USA) cement were precisely dispensed in equal amounts, auto-
mixed together through the disposable automix tip and applied
to the surface of the Y-TZP ceramic disc.

4. Composite disc was then bonded to surface of zirconia ceramic
disc; the bonding assembly was kept under a static load of 3 kg
using a specially constructed load applicator. Which consists of 5
parts: Base portion with internal central tube of 2 cm in diam-
eter into which the acrylic resin block was placed, two vertical
fixed arms connected to the base on each side, one horizontal
arm fixed to the two vertical arms, a central movable vertical
arm, that has a rounded table in its upper end to accommodate
for the load and its lower end is 5 mm diameter to ensure even
load distribution, and a load of 5 kg

5. Excess luting cement was removed using disposable micro-
brush, then all the margins of the bonding area was covered
by a viscous gel (Oxyguard, Kuraray Medical Inc., 1621 SakaZu,
Kurashiki. Okayama 710-8622, Japan) used to block the oxygen
and light cured for 20 s. After complete polymerization the
samples were washed with air-water spray.

d. Thermocycling:

The samples were stored in humidor at 37 °C for 48 h then
subjected to thermocycling in thermocycling device (Espec Corp,
United States) for 3000 cycles. Each cycle consisted of 1 min in 5 °C
cold bath and 1 min in 55 °C hot bath with a dwell time of 30 s, and
then the samples were air- dried.

e. Shear bond strength assessment:

1. Acircular interface shear test was designed to evaluate the bond
strength between zirconia samples and composite resin discs.

2. Each sample (acrylic embedded zirconia with its bonded com-
posite disc) was secured to the lower fixed compartment of
testing machine by tightening screws

3. Shearing test was conducted by compressive mode of load
applied at ceramic- composite resin interface using a mono-
bevelled chisel shaped metallic rod attached to the upper
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movable compartment of testing machine) Model LRX-plus;
Lloyd Instruments Ltd., Fareham, UK) traveling at cross-head
speed of 0.5 mm/min.

4. The load required for debonding was recorded in Newton using
computer software (Nexygen-MT-4.6; Lloyd Instrument).

5. The load at failure was divided by interfacial bonding area to
express the bond strength in MPa: T = P/rtr2, where; T = shear
bond strength (MPa), P = load at failure (N), T = 3.14, r = radius
of composite disc (mm).

6. The data were collected, tabulated and statistically analyzed.

f. Assessment of mode of failure:

The interfaces of the debonded samples were examined with a
stereomicroscope microscope (Olympus SZ-PT-Japan) at (X = 60)
magnification to determine the failure pattern, which was assigned
to belong to one of the following types:

e Cohesive failure within resin cement or composite resin,
e Adhesive at ceramic/cement interface or
e Mixed adhesive/cohesive modes.

Representative samples for each failure pattern were further
examined using a scanning electron microscope (SEM) with an
acceleration voltage of 20 kV and a working distance of 10 mm.

2. Scanning Electron Microscopic (SEM) analysis

In order to study the surface morphology of surface treated Y-
TZP samples, 5 samples from each group were gold coated with a
sputter coater (K550X sputter coater, England) then examined using
SEM (Quanta 250-FEG, FEI, Netherlands) at a magnification X 1000.

3. X-Ray Diffraction (XRD) analysis:

X-ray diffraction (Panalytical Empyrean, Holand) was employed
for the identification and quantitative determination of the various
crystalline phases present in Y-TZP samples after various surface
treatments with angular range 260: from 10° to 90°, at scan speed
19 s/step, using Cu Ké& radiation at 30 mA, 45 KV and measurement
temperature was 25 °C.

4, Optical surface roughness measurements:

The evaluation of the surface roughness was carried out using
profilometer (ZYGO Maxim-GP 200), which is a general purpose
surface optical profiler that measures the microstructure and
topography of surfaces in three dimensions.

3. Results
3.1. Results of shear-bond strength determination

3.1.1. Statistical analysis of shear bond strength

One-way ANOVA test was used for comparison between shear
bond strength (MPa) after different surface treatments. There was
no statistically significant difference between oxygen plasma
treated and silica plasma coated treatments; both showed the
statistically significantly highest mean shear bond strength values.
Sandblasted group showed statistically significantly lower mean
value. Control group showed the statistically significantly lowest
mean shear bond strength (Table 1 and Fig. 2).

3.1.2. Failure modes
Three modes of failure were detected after the samples have
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been subjected to shear bond test (Figs. 3—5). The prevalence of
each type of failure in each group and the statistical analysis is
shown in Table 2 (Fig. 6).

3.2. Results of scaning electron microscopic (SEM) examination

SEM analysis at 1000x magnification showed that the topo-
graphic pattern differed by different surface treatments of samples,
Figs. 7—10. Untreated Y-TZP ceramic surface (group (1)) showed a
series of parallel cuts after milling of the zirconia block and
multiple-sized debris covering almost all the surface with slight
roughness and shallow porosities, Fig. 7.

In samples sandblasted by 110 um Al,O3 (group (2)) impurities
were removed, surface roughness and irregularities were increased
showing grooves and sharp edges with extensive exposure of zir-
conia granules and wider inter-granular spaces, Fig. 8.

Samples roughened by oxygen gas using plasma (group (3)),
showed a series of parallel cuts after milling as untreated samples,
with more roughness, irregularities, and both irregular and
rounded pits and porosities, Fig. 9.

Silica coated samples using plasma technology show atypical
honeycomb pattern and clusters of silica particles covered loosely
the surface, porosities, and almost all the surface showed flaws and
micro-cracks, Fig. 10.

Control Sandblasted  Oxygenplasma  Silicaplasma

treated coated

Fig. 2. Bar chart representing mean values for comparison between shear bond
strength (MPa) of different groups.

Fig. 3. Stereomicroscopic image of the zirconia fractured sample demonstrating an
adhesive failure mode (X = 60).
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Fig. 4. Stereomicroscopic image of the zirconia fractured sample demonstrating a
cohesive failure mode (X = 60).

Fig. 5. Stereomicroscopic image of the zirconia fractured sample demonstrating
combined adhesive/cohesive failure mode (X = 60).

Table 1

Mean, standard deviation (SD) values of shear bond strength (MPa) measurements.
Surface treatment Mean SD P-value
Control 6.1¢ 2 <0.001*
Sandblasted 13.2° 2.5
Oxygen plasma treated 17.8% 2.1
Silica plasma coated 19.6% 2.6

Significant at P < 0.05, Different letters are statistically significantly different ac-
cording to Tukey's test.

Table 2
Frequencies (N), percentages (%) and results of Chi-square test for comparison be-
tween failure modes after different surface treatments.

Surface treatment  Control Sand- Oxygen Silica P-value
blasted plasma plasma
treated coated
Failure mode N % N % N % N %
Adhesive 3 30 3 30 0 0 0 0 0.014
Cohesive 0 0o 3 30 3 30 7 70
Mixed 7 70 4 40 7 70 3 30

*: Significant at P < 0.05.

Published by Arab Journals Platform, 2016

mSandblasted  mOxygenplasmatreated M Silica plasma coated

m Control

Adhesive failure Cohesive failure Mixed failure

Fig. 6. Bar chart representing prevalence of failure modes after different surface
treatments.

100 pm
Quanta FEG(Control) ]

AN, B A
HV det |mag O WD spot
20.00kV|BSED | 1 000x |14.1 mm| 4.0

Fig. 8. SEM (1000x ) image of sandblastedY-TZP sample.

3.3. X-ray diffraction analysis
The phases and mineralogical composition of samples after

different surface treatments are represented in Tables 3—6.
Figs. 11—14 show their XRD analysis.

3.4. Statistical analysis of X-Ray diffraction

Zirconium oxide (Tetragonal phase): Control group showed the
statistically significantly highest mean percentage. Oxygen plasma
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Fig. 9. SEM (1000x ) image of Y-TZP sample after oxygen plasma treatment.

Fig. 10. SEM (1000x) image of Y-TZP sample after silica plasma coating.

treated showed statistically significantly lower mean percentage
followed by silica plasma coated. Sandblasted group showed the
statistically significantly lowest mean percentage.

Zirconium oxide (Monoclinic phase): Silica plasma coated group
showed the statistically significantly highest mean percentage.
Oxygen plasma treated group showed statistically significantly
lower mean value. There was no statistically significant difference
between control and sandblasted groups; both showed no presence
of Zirconium oxide (Monoclinic phase).

Table 7 shows the statistical analysis of presence of different
phases in tested groups.

3.5. 3D- optical surface roughness determination

3.5.1. Statistical analysis of surface roughness (Ra)

There was no statistically significant difference between mean
(Ra) in oxygen plasma treated and silica plasma treated groups;
both showed the statistically significantly highest mean (Ra) values.
Sandblasted group showed statistically significantly lower mean
value. Control group showed the statistically significantly lowest
mean (Ra) value, Table 8, Fig. 16. 3D optical images are presented in
Figs. 17—-20.

4. Discussion

Y-TZP ceramics have superior strength, toughness, fatigue
resistance and potentially, enhanced long-term viability than other
ceramics [28,29]. MAD/MAM systems bear the advantages of
reduced cost, less sophistication, easy and fast technique compared
to other types of milling machines [30,31]. Samples were milled
from “green” pre-sintered zirconia blocks at a larger dimension to
compensate for 20%—25% shrinkage during the sintering stage
[14,32].

High crystalline content of zirconia ceramics renders them

Table 3
Phases and mineralogical composition of untreated Y-TZP ceramic samples.
Crystalline chemical formula Compound name Crystal system (phase) %
0y Zry Zirconium oxide Tetragonal 100%
Table 4 resistant to acid etching [33,34] therefore, alternative surface

Phases and mineralogical composition of Y-TZP ceramic samples after sandblasting.

Crystalline chemical formula Compound name Crystal system (phase) %

O1.99 Zry Zirconium Oxide Tetragonal 29%

H,Al; O Boehmite Orthorhombic 23%

0, Zry Zirconium Oxide Anorthic 48%
Table 5

treatment techniques for long-term durable bonding are required
[35—37]; such as sandblasting [38—43], plasma etching and silica
ceramic coating [44] used in the present study.

As the material and fabrication of test discs may have an influ-
ence on bond strength values to ceramic, composite resin discs

Phases and mineralogical composition of Y-TZP ceramic samples after O,- plasma treatment.

Crystalline chemical formula Compound name

32

Crystal system (phase)

0, Zrq Zirconium Oxide Tetragonal 81.2%
0, Zrq Zirconium Dioxide Monoclinic 18.8%
Table 6
Phases and mineralogical composition of Y-TZP ceramic samples after silica plasma coating.
Crystalline chemical formula Compound name Crystal system (phase) %
0, Zrq Zirconium Oxide Tetragonal 63.7%
0, Zry Zirconium Oxide Monoclinic 36.3%

https://digitalcommons.aaru.edu.jo/fdj/vol2/iss1/7
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Although there is an increase in clinical use of zirconia ceramics
due to improved mechanical properties, further evidence regarding
the adhesive cementation of Y-TZP restorations is necessary for the
clinical success and the long-term performance of such restorations
through establishing the most reliable bonding technique [46].
Bond strengths are influenced by several factors one of which is the

| ‘ ‘ e 41
'R SAREN Wi - l‘lll III ||||H||‘”|”|‘ I
0 ) w0 50 0 70 80

Postin [2Thet] Copper 1)

Fig. 12. XRD analysis of Y-TZP ceramic after sandblasting.

were cemented in this study to zirconia samples as most in-
vestigations [45]. This will provide a uniform rather than hetero-
geneous structure of tooth enamel and dentin, allowing for more
precise interpretation of bond strength values [40]. Also the present
study aimed at evaluating the bond strength at cement/ceramic
interface only after variable surface treatments of YZ-zirconia.
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Fig. 14. XRD analysis of Y-TZP ceramic after silica plasma coating.

luting cement type [47,48]. Resin cementation seems to be the
favorable choice for cementing zirconia restorations [46,47].
Multilink Automix resin cement was used in this study. It con-
tains dimethacrylate, HEMA and silica fillers which provide the
improved mechanical properties of the cement represented by high

https://digitalcommons.aaru.edu.jo/fdj/vol2/iss1/7

flexural strength (70 MPa) according to the manufacturers. These
improved mechanical properties could be responsible for high bond
strength results of Multilink Automix [39]. There is some evidence
that improved adhesive bonding to Y- TZP ceramics might be ach-
ieved using materials with a chemical affinity for metal oxides
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Table 7
Mean, standard deviation (SD) values and results of one-way ANOVA and Tukey's tests for comparison between XRD results after different surface treatments.
Surface treatment Control Sand-blasted Oxygen plasma Silica plasma P-value
treated coated
Compound name Mean SD Mean SD Mean SD Mean SD
Zirconium oxide tetragonal phase 100% 0 294 1.5 81.2° 2.6 63.7¢ 1.5 <0.001*
Boehmite ob 0 232 1.1 o° 0 o° 0 <0.001*
Zirconium oxide Anorthic phase oP 0 482 2.1 ob 0 ob 0 <0.001*
Zirconium oxide monoclinic phase 0¢ 0 0° 0 18.8° 1.7 36.3° 2.1 <0.001*

*: Significant at P < 0.05, Different letters in the same row are statistically significantly different according to Tukey's test.

Table 8
Mean, standard deviation (SD) values and results of one-way ANOVA test for com-
parison between surface roughness (Ra) after different surface treatments.

Surface treatment Mean SD P-value
Control 0.74¢ 0.12 0.005*
Sandblasted 1.26° 0.20

Oxygen plasma treated 1.76% 0.15

Silica plasma coated 1.56% 0.19

* Significant at P < 0.05, Different letters are statistically significantly different ac-
cording to Tukey's test.

mControl  mSandblasted M Oxygenplasmatreated M Silicaplasma coated Fig. 17. 3D-optical (Ra) image of untreated Y-TZP ceramic.
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Fig. 15. Bar chart representing mean % of different compounds after different surface Fig. 18. 3D-optical (Ra) image of Y-TZP ceramic after sandblasting.

treatments.

Control Sandblasted  Oxygenplasma Silicaplasma
treated coated Fig. 19. 3D-optical (Ra) image of Y-TZP ceramic after oxygen plasma treatment.

Fig. 16. Bar chart representing mean values for comparison between surface rough- [22'49_51 ] PhQSPhate e§ter monomers, such as .MDP (10-
ness (um) after different surface treatments. methacryloyloxyi- decyl-dihydrogenphosphate), chemically react
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Fig. 20. 3D-optical (Ra) image of Y-TZP ceramic after silica plasma coating.

with zirconium dioxide, promoting a water-resistant bond to
densely sintered zirconia ceramic [22]. So Metal/Zirconia Primer
which contains MDP and other monomers, including VBATDT
(6-[4-vinylbenzyl-n-propyl]lamino-1,3,5-tri-  azine-2,4-dithione),
MEPS  (thiophosphoric  methacrylate) and MTU-6 (6-
methacryloyloxyhexyl-2-thiouracil- 5-carboxylate) [52,53] was
also used.

According to Heikkinen [54], and Blatz et al., [55] silane coupling
agent in the present study was mixed together with zirconia
primer. Monobond Plus not only act as hybrid inorganic-organic
bifunctional molecules that copolymerize with the organic matrix
of the resin cement [56], but also improve the surface energy and
wettability of zirconia to resin cements [57].

Thermocycling was performed to simulate thermal changes that
occur in the mouth and act as a fastened aging process
[37,42,51,58]. Samples were subjected to 3000 thermal cycles be-
tween 5 and 55C°. It is considered as an important factor that has
been shown to decrease the bond strength in in-vitro studies
[55,59].

Shear bond strength test is one of the most widely used for
evaluation of adhesion in dentistry [43,46,49,59—62], because of
being easy, fast and reflects the clinical situation. The stresses
applied during the shear test were directed mainly at the zirconia/
cement interface resulting in a relatively uniform distribution of
inter-facial stresses because non-uniform distribution may cause
mainly cohesive failure within the cement or the ceramic, which
may lead to erroneous conclusions [23].

In the present study and in order to improve the bond strength
between composite resin cement and zirconia ceramic surface, not
only chemical retention was performed through using a mix of
silane agent and metal/zirconia primer, but also different surface
treatments of zirconia were performed to provide micromechanical
retention [39,63, 64].The mean values of bond strength of resin
cement to Y-TZP zirconia ceramic presented in this study varied
between 6.5 and 19.6 MPa depending on the surface treatment
method applied It was noticed that untreated, control (group (1))
samples showed the statistically significantly lowest mean shear
bond strength, (6.5 MPa). These data were also supported by SEM
evaluation (Fig. 7) which showed that the control group samples
have slight roughness produced during milling procedures caused
by diamond burs. This finding concurs with Blatz et al.,, [59] Al
Hussaini and Wazzan [64] and Hummel and kern [65], Because
such slight roughness was not enough to produce a retentive sur-
face in comparison with other surface treatments (groups (2), (3) &
(4)), and 3D-optical profilometer control group samples recorded
the lowest mean values of irregularities; 0.74 um.

The shear bond strengths of sandblasted samples (group (2)) in
the present study showed statistically significantly higher mean

https://digitalcommons.aaru.edu.jo/fdj/vol2/iss1/7

values than those of control group, (13.7 MPa). Sandblasting was
recommended as a preferred surface treatment method for densely
sintered oxide ceramics by Nothdurft et al., [39] Cavalcanti et al.,
[63] and Zhu et al. [67], Moreover, in this study deposition distance
was controlled using a specially constructed device as recom-
mended by Ozcan et al. [66].

Sandblasting was identified as a key-factor in establishing a
durable bond between the luting agent and the ceramic, when
combined with 10-Methacryloyloxyde-cyl dihydrogen phosphate
(MDP monomer), either contained in the adhesive primer (as in the
present study) or in the cement itself [59,68,69]. Oyagiie et al. [42],
and Blatz et al. [55], assumed that AL,O3 abrasive particles removed
any organic contaminants, produced an activated micro-roughened
zirconia surface, increased the bonding area, modifying the surface
energy and wettability [68], so they improve the bond strength by
allowing for micromechanical interlocking of the resin cement [70].

SEM evaluation showed that, AL,03 sandblasting produced an
increased roughness and irregularities with grooves and sharp
edges [71,72] (Fig. 8) these are considered to be important for the
interlocking of the composite resin cement to Y-TZP ceramic.
Moreover, 3D-optical profilometer analysis of the sandblasted
group (Table 8, Fig. 18) revealed higher mean value of irregularities
1.26 pm, compared to control group. Both silica plasma coated and
oxygen plasma treated groups showed the statistically significantly
highest mean shear bond strength values. Although there was no
statistically significant difference between them, silica- plasma
coated group in this study recorded higher mean value of shear
bond strength (19.6 MPa), followed by oxygen plasma-treated
group (18.1 MPa).

Plasma deposition techniques could change the surface prop-
erties by attaching a film to the surface of the material [73], in a fast
process that can be performed at low temperatures. Moreover the
thickness and chemical composition of the film can be controlled
[74,75] through the sputtered material from the target, the gas and
the plasma source used [73,76].

In the present study silica deposition process using argon gas
was performed, where Si-O bonds were available on the entire Y-
TZP surface, promoting the chemical adhesion achieved by the
silane coupling agent [42,77]. These results are consistent with
those of Derand et al. [40], who showed that treating zirconia
surface with plasma spraying increases shear bond strength to the
resin cement, compared to untreated group. They are also consis-
tent with those of Zhu et al. [67], who found that silica coating/
salinization was most effective in improving the bond strengths of
the resin cements to zirconia, compared with Al,O3 sandblasting
group due to the chemical bond formed via the silica layer on
ceramic surface, silane coupling agent, and resin cement.

In contrast, Kern and Wegner [22], and Blatz et al. [59],
concluded that air-abrasion combined with MDP containing resin
composite provides superior long-term shear bond strength than
silica-coated zirconia bonded to Bis-GMA resin cement. SEM eval-
uation of Si —coated plasma samples in this study (Fig. 10) support
the shear results, where a typical honeycomb pattern and clusters
of silica particles covered loosely the surface, creating chemically
reactive islets on the surface of the samples and could thus have
chemically modified the surface of zirconia to enable a better re-
action with the primers. Microcracks, some roughness and poros-
ities, were also supported by higher mean of irregularities, 1.6 um,
as indicated by 3-D profilometer analysis (Table 8, Fig. 20).

These results are in agreement with those of Della Bona et al.,
[70] who showed that silica coating increase the surface roughness
of zirconia. On the other hand Ozcan et al. [66], reported that sur-
face roughness (Ra) of zirconia samples was the highest with
50 mm Al,03 sandblasting than that of silica coated samples, also
SEM images (x500) showed rougher surface of sandblasted group



R. EI-Shrkawy et al.: Effect of different surface treatments on bond strength, surface

Z.R. El-Shrkawy et al. / Future Dental Journal 2 (2016) 41-53 51

compared to silica coated one.

Another application of plasma that was used in this study is the
treatment of Y-TZP samples with oxygen gas, which allow physical
etching that could improve the micro-roughness, increasing sur-
face oxidation; allowing for modification of surface-bound chemi-
cal groups, and provide hydrophilic surfaces; improving wettability
as well as the affinity toward the resin cement [26,78,79]. These
results (Table 1) concur with those of Piascik et al. [80], who re-
ported a more chemically reactive surface of Y-TZP samples when
plasma treated by oxy-fluoride gas, thus allowing for covalent
bonding between zirconia surface and resin cement, resulting in
higher bond strength compared with control group. On the other
hand plasma treated zirconia samples were found by Piascik et al.
[74], to display the highest shear bond strengths and improved
chemical bonding than control, polished, sandblasted and even Si-
coated groups. SEM results (Fig. 9) showed roughness, irregular-
ities, and both irregular and rounded pits and porosities, where the
primer and adhesive resin can infiltrate and interlock, this was
compatible with the highest mean of irregularities 1.8 wum showed
by profilometer (Table 8, Fig. 19).

X-ray diffractometer which was used to identify crystalline
phases in several studies [66,81—83] was used in this study to
compare crystalline phases present in zirconia after different surface
treatments as well as in control group. Although transformation of
pure zirconia from the tetragonal to the monoclinic phase takes
place during cooling after material sintering, in this study, the sin-
tered control specimens did not have any monoclinic zirconia and
only tetragonal phase predominated at 100% by volume (Table 3,
Fig. 13). This was in accordance to Piconi and Maccauro [5], and
Garvie et al. [84], who showed that Y-TZP zirconia, that is partially
stabilized with 3 Mol% of yttrium oxide is stabilized in the more
durable tetragonal phase even at room temperature and after sin-
tering. In the present study zirconia blocks were milled in green, pre-
sintered stage to avoid the negative effect of pre-cracks, flaws and
subsequent phase transformation that was indicated in several
studies [72,85,86] when grinding zirconia in fully sintered stage.

Since managing the sintering temperature and time is impor-
tant, control samples were sintered according to the manufac-
turer's instructions from room temperature to 1500 °C using a rise
time of 3 h and kept at 1500 °C for 2 h. Although Chevalier [87]
demonstrated that the amount of the cubic phase in zirconia in-
creases when the sintering temperature reaches 1500 °C for a long
sintering time (5 h), but smaller zirconia grains about 0.4 um size
that was used in this study as described by manufacturer have a
lower transformation rate. This was in agreement with Munoz-
Saldana et al. [88], and Tsukuma et al. [89], who observed that
the bigger the zirconia grain size; larger than 1 um, the more prone
the grains are for spontaneous t-m transformation. In this study,
and in order to avoid t-m transformation in sandblasted group,
manufacturer recommendations was carried out to apply low
pressure about 29 PSI, for short time period only 10 s for sand-
blasting the Y-TZP zirconia samples. Although, x-ray diffraction
(Table 7, Fig. 14) showed the absence of monoclinic phase in
sandblasted zirconia samples, the appearance of new anorthic zir-
conia phase 29% by volume, in addition to tetragonal zirconia 48%,
also supports the principle of zirconia phase transformation under
stresses. Anorthic phase is also known as triclinic phase (with close
similarity to monoclinic), is a crystal system with the lowest sym-
metry; where lattice vectors: a, b and c are non-equal, also «, § and
vy angles are not equal. This was compatible with the results of
Kosmac et al. [86], Hannink and Swain [90], and Swab [91], who
demonstrated that the tetragonal zirconia is meta-stable and the
surface t-m phase transformation can be initiated by surface
grinding or sandblasting.

Caglar and Yaniloglu [92] also found that sandblasting with
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AL,03 resulted in high surface roughness compared to Er Yag laser
treated and control groups. Sandblasting had the potential to
induce flaws in zirconia ceramic discs, with concomitant t-m
transformation. Guazzato et al. [72], and Kosmac et al. [86], also
indicated that sandblasting produced the most effective tetragonal
to monoclinic phase change when compared to fine polishing,
grinding with an abrasive wheel, or grinding using a diamond bur.
In the present study, X-ray diffraction of sandblasted zirconia
samples also showed the appearance of alumina particles
(Boehmite) at 23% by volume. These results were consistent with
Ozcan and Vallittu [60], Tiller et al. [93], Tiller et al. [94], and Lor-
ente et al. [95], who suggested that when using particles of Al,O3
for sandblasting of zirconia, there are complex reactions on the
substrate surface taking place, which consist of the separation and
accumulation of certain elements at the substrate surface. Both
silica coated and oxygen plasma treated groups in the present study
(Tables 5 and 6, Figs. 15 and 16), showed t- m phase transformation.
The effect of repeated shots of plasma ion beam that was charged at
12 KV and at 7 cm distance between the source and the zirconia
surface, together with the particles bombardment of samples can
explain the phase transformation due to creation of stresses and
high temperatures.

This was compatible with many studies [86,90,91] which
concluded that t-m phase transformation of zirconia can take place
under the effect of stress or temperature changes. While oxygen-
plasma treated group, shows predominant tetragonal phase 81.2%,
and only 18.8% monoclinic phase in the form of zirconium dioxide;
which supports the appearance of surface oxides, silica-coated
group by plasma technology shows higher monoclinic phase at
36.3%. This is due to higher kinetic energy created by argon gas used
in case of silica-coating as it has higher atomic mass (40), compared
with less atomic mass of oxygen (16), in addition it was indicated by
Giacobbe [96], that argon gas can cause more heat transfer at more
rapid rate between the plasma jet and the object.

5. Conclusions

Within the limitations of this in vitro study the following con-
clusions were evident:-

1. Surface treatments of Y-TZP ceramic together with MDP primer
(Metal/Zirconia primer) and silane-coupling agent (Monobond
Plus) application improve the bond strength to resin cement.

2. Plasma-Silica coating and plasma-oxygen treatment, both are
valuable methods that improve the bond strength of resin
cement to Y-TZP ceramic.

3. Silica coating by plasma technology provides durable bond
strength and can be a promising alternative pretreatment before
silane application to enhance bonding with zirconia ceramic.

4, Plasma surface treatment for zirconia induce tetragonal-
monoclinic phase transformation.
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