
Future Computing and Informatics Journal Future Computing and Informatics Journal

Volume 3
Issue 2 (2018) Vol 3,Issue 2,2018 Article 8

2018

Task schedul ing for cloud computing using multi-objective hybrid Task schedul ing for cloud computing using multi-objective hybrid

bacteria foraging algorithm bacteria foraging algorithm

Sobhanayak Srichandan
Department of Computer Science, IIIT Bhubaneswar, Odisha, India, srichandan@iiit-bh.ac.in

Turuk Ashok Kumar
Department of Computer Science, NIT Rourkela, Odisha, India, akturuk@nitrkl.ac.in

Sahoo Bibhudatta
Department of Computer Science, NIT Rourkela, Odisha, India, bdsahu@nitrkl.ac.in

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/fcij

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Srichandan, Sobhanayak; Kumar, Turuk Ashok; and Bibhudatta, Sahoo (2018) "Task schedul ing for cloud
computing using multi-objective hybrid bacteria foraging algorithm," Future Computing and Informatics
Journal: Vol. 3 : Iss. 2 , Article 8.
Available at: https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for
inclusion in Future Computing and Informatics Journal by an authorized editor. The journal is hosted on Digital
Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo,
u.murad@aaru.edu.jo.

https://digitalcommons.aaru.edu.jo/fcij
https://digitalcommons.aaru.edu.jo/fcij/vol3
https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2
https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8
https://digitalcommons.aaru.edu.jo/fcij?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol3%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol3%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol3%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo

Task scheduling for cloud computing using multi-objective hybrid bacteria
foraging algorithm

Sobhanayak Srichandan a,*, Turuk Ashok Kumar b, Sahoo Bibhudatta b

a Department of Computer Science, IIIT Bhubaneswar, Odisha, India
b Department of Computer Science, NIT Rourkela, Odisha, India

Received 10 October 2017; revised 19 January 2018; accepted 7 March 2018

Available online 5 June 2018

Abstract

Cloud computing is the delivery of computing services over the internet. Cloud services allow individuals and other businesses organization
to use data that are managed by third parties or another person at remote locations. Most Cloud providers support services under constraints of
Service Level Agreement (SLA) definitions. The SLAs are composed of different quality of service (QoS) rules promised by the provider.
A cloud environment can be classified into two types: computing clouds and data clouds. In computing cloud, task scheduling plays a vital role
in maintaining the quality of service and SLA. Efficient task scheduling is one of the major steps for effectively harnessing the potential of cloud
computing. This paper explores the task scheduling algorithm using a hybrid approach, which combines desirable characteristics of two of the
most widely used biologically-inspired heuristic algorithms, the genetic algorithms (GAs) and the bacterial foraging (BF) algorithms in the
computing cloud. The main contributions of this article are twofold. First, the scheduling algorithm minimizes the makespan and second; it
reduces the energy consumption, both economic and ecological perspectives. Experimental results show that the performance of the proposed
algorithm outperforms than those of other algorithms regarding convergence, stability, and solution diversity.
Copyright © 2018 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Cloud computing; Resource allocation; Pareto solutions; Bacteria foraging; Genetic algorithms

1. Introduction

With the ubiquitous growth of Internet access and big data
in their volume, velocity, and variety through the Internet,
cloud computing becomes more and more proliferating in
the industry, academia, and society. Cloud computing is
composed of distributed computing, grid computing, utility
computing, and autonomic computing [1]. Cloud computing
provides on-demand computing and storage services with
high performance and high scalability. Several computing
paradigms have promised to deliver this utility computing.

Cloud computing is one such reliable computing paradigm.
However, the rising energy consumption of cloud data cen-
ters has become a prominent problem. Task scheduling is an
important step to improve the overall performance of the
cloud computing. Traditional monitoring and management
mechanisms are designed for enterprise environments,
especially a unified environment. However, the large scale,
heterogeneous resource provisioning places serious chal-
lenges for the management and monitoring mechanism in
multiple data centers. To the best of our knowledge, this
is the first paper to address the scheduling issue using multi-
objective hybrid bacteria foraging algorithm in the IaaS
cloud with the heterogeneous system.

In recent years, the problem of task scheduling on
a distributed environment has caught the attention of re-
searchers. Task scheduling is considered a critical issue in the

* Corresponding author.

E-mail addresses: srichandan@iiit-bh.ac.in (S. Srichandan), akturuk@

nitrkl.ac.in (T. Ashok Kumar), bdsahu@nitrkl.ac.in (S. Bibhudatta).

Peer review under responsibility of Faculty of Computers and Information

Technology, Future University in Egypt.

Available online at www.sciencedirect.com

ScienceDirect

Future Computing and Informatics Journal 3 (2018) 210e230
http://www.journals.elsevier.com/future-computing-and-informatics-journal/

https://doi.org/10.1016/j.fcij.2018.03.004

2314-7288/Copyright © 2018 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:srichandan@iiit-bh.ac.in
mailto:akturuk@nitrkl.ac.in
mailto:akturuk@nitrkl.ac.in
mailto:bdsahu@nitrkl.ac.in
www.sciencedirect.com/science/journal/23147288
https://doi.org/10.1016/j.fcij.2018.03.004
https://doi.org/10.1016/j.fcij.2018.03.004
http://www.journals.elsevier.com/future-computing-and-informatics-journal/
https://doi.org/10.1016/j.fcij.2018.03.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cloud computing environment by considering different factors
like completion time, the total cost for executing all users'
tasks, utilization of the resource, power consumption, and fault
tolerance. The problem of finding the right compromise be-
tween the resolution time and the energy consumed by a
precedence-constrained parallel application is a bi-objective
optimization problem. The solution to this problem is a
set of Pareto points. Pareto solutions are those for which
improvement in one objective can only occur with the wors-
ening of at least one other objective. Thus, instead of a unique
solution to the problem, the solution to a bi-objective problem
is a (possibly infinite) set of Pareto points. Task scheduling
has been proved as an NP-complete problem [2,3]. Cloud
computing not just help a decent variety of uses, yet in addi-
tion give a virtualized condition for the applications to keep
running in an efficient and minimal effort way [4].

A cloud data center usually consists of a large group of servers
connected to the Internet. A task scheduler is needed in a cloud
data center to arrange task executions. The task scheduler has to
efficiently utilize the resources of the cloud data center to execute
tasks. The performance issues of the scheduling algorithm
include themakespan and energyconsumption.Agood scheduler
can use fewer resources and times to accomplish tasks execution.
Using fewer resources implies that less energy is consumed. The
minimization of energy consumption and makespan is one of the
major issues for building large-scale clouds.

There are different prospects of cloud computing has
been studied to exploit the diversity of it viz. designing and
implementing scheduling strategies and algorithms for specific
tasks fault-tolerant tasks with real-time deadlines or energy
efficient tasks such as dependent or independent. There is certain
inherent problem associated with resource provisioning and task
scheduling. The optimization goals, once set at the design time,
will be statically built into the task scheduling and resource
provisioning algorithm and implementation as the monolithic
system component, thus lacking flexibility and adaptability in
the presence of changing workload characterization, resource
provisioning and cloud execution environment. Lots of task
scheduling and resource provisioning strategy and algorithms,
though intended with varied different optimization objectives,
often contribute to some widespread functional mechanism and
employ comparable software engineering framework for
execution. However, adding new scheduling competence needs
to be done for each scheduling algorithm one at a time, which is
not only monotonous but also costly and leads to error.

Natural selection tends to eliminate animals with poor
foraging strategies through methods for locating, handling,
and ingesting food and favors the propagation of genes of
those animals that have successful foraging strategies, since
they are more likely to obtain reproductive success. After
many generations, poor foraging strategies are either elimi-
nated or re-structured into good ones. Since a foraging or-
ganism/animal takes actions to maximize the energy utilized
per unit time spent foraging, considering all the constraints
presented by its own physiology, such as sensing and cognitive
capabilities and environmental parameters (e.g., density of
prey, risks from predators, physical characteristics of the

search area), natural evolution could lead to optimization.
It is essentially this idea that could be applied to complex
optimization problems. The optimization problem search
space could be modeled as a social foraging environment
where groups of parameters communicate cooperatively for
finding solutions to difficult engineering problems [5].

Authors in Ref. [6] has provided an elaborate idea about GA
by introducing several variants for task scheduling in the Cloud
computing environment. He has introduced an algorithm to
solve task scheduling problem by modifying GA in which the
initial population is generated by MaxeMin approach to get
more optimum results in term of “makespan”. Authors in Ref.
[7] propose a resource scheduling algorithm considering the
execution time of every distinct workload, but most importantly,
the overall performance is also based on type of workload i.e.
with different QoS requirements (heterogeneous workloads) and
with similar QoS requirements (homogenous workloads).

To accomplish tasks execution in parallel following ques-
tions must be answered: (1) how to distribute resources to
tasks; (2) in what order the clouds should execute tasks since
tasks have data dependencies; (3) how to schedule overheads
when physical machines (PM) set up, finish or switch tasks.
Resource allocation and scheduling can solve these three
problems. Resource allocation and task scheduling have been
studied in high-performance computing [8] and embedded
systems [9]. However, the autonomic feature and the resource
heterogeneity within clouds [10] and the PM implementation
require different algorithms for resource allocation and task
scheduling in the IaaS cloud computing, especially in the
federated, heterogeneous multi-cloud system.

Although a large number of articles have been published on
analysis of the foraging behavior and self-adaptability proper-
ties of BFA as a single objective optimizer, till date, to the best
of our knowledge, little such analysis exists for the multi-
objective hybrid BFA algorithms. In this paper we propose a
new multi-objective hybrid bacteria foraging algorithm
(MHBFA) composed of genetic algorithm and a multi-objective
bacteria foraging algorithm to find the set of Pareto-front so-
lutions, hence called MHBFA. The major components of
MHBFA algorithm are selection, mutation, and crossover from
the genetic algorithm and multi objective optimization BFA
algorithm [11e13], proposed by Passino in 2002, is a new
comer to the family of nature-inspired optimization algorithms.
BFA is a relatively new swarm intelligence algorithm inspired
by the foraging behavior of Escherichia coli (E. coli) in human
intestines. There exists a unique communication mechanism
between individuals of E. coli for the communication purposes.
We consider combinatorial optimization problem to formulate
the proposed the task scheduling problem for minimization of
energy and makespan.

The major contributions of this paper are:

� We propose a scheduling algorithm for heterogeneous
cloud environment.

� We develop the hybrid bacteria foraging algorithm to solve
multi objective optimization i.e. minimization of make-
span and energy consumption.

211S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

� We employ the mutation and crossover technique of ge-
netic algorithm in bacteria foraging algorithm to achieve
local and global optimal solution.

� We verify the effectiveness of the proposed multiobjective
hybrid bacteria foraging algorithm (MHBFA) specifically
its role in solutions' diversity and quality, convergence and
stability.

We employ the mutation and crossover technique of genetic
algorithm in bacteria foraging algorithm to achieve local and
global optimal solution. We verify the effectiveness of the
proposed multiobjective hybrid bacteria foraging algorithm
(MHBFA) specifically its role in solutions' diversity and
quality, convergence and stability. Statistical validation of the
obtained results against that of GA, PSO, BFA using signifi-
cance test.

The rest of the paper is structured as follows. In Section 2, a
description of framework of task scheduling algorithm has
been presented. System Models and Definition for resource
scheduling has been presented in Section 3. Section 4
describes the problem formulation. Section 5 presents the
multi-objective approach gives a brief overview of multi-
objective approach based on BFA. Section 7 presents the
BFA based proposed strategy in detail. Section 8 presents the
simulation results. Conclusions and the future works have
been presented in Section 9.

2. Framework of task scheduling algorithm

To design and provide scheduling management framework
for engineering implementation in IaaS Clouds, in this section,
we introduce one of the important aspects in cloud computing
resource management, i.e., task scheduling. The goal of cloud
computing is to provide an optimal scheduling of the tasks, to
provide the users, and the entire cloud system with optimal
operation time, improved QoS at the same time and load
balancing. Load balancing and task scheduling are closely
related with each other in the cloud environment. Task
scheduling is for the optimal matching of tasks and resources
[14]. To design and provide scheduling management frame-
work for engineering implementation in IaaS Clouds, in this
section, we introduce one of the important aspects in cloud
computing resource management, i.e., task scheduling. The
cloud is mainly to provide users with a Quality of Service
(QoS). The main aim of task scheduling algorithms is to
achieve two main objectives namely, task scheduling helps to
minimize the makespan and energy. Now we briefly depicts
the entire energy aware task scheduling framework. This
framework is composed of four main components: user portal,
information service, task scheduler, and cloud data center with
physical machines (PM) Fig. 1. The user portal provides an
interface for users to submit task unit. The task unit further
divided into small tasks to be executed in PMs.

Information Service keeps the details of resource utilization
and other log information to help scheduler to schedule a task
to a PM in a data center. The scheduler accepts the task unit

from the user portal and uses Information Service to choose
the appropriate PM in a cloud data center. After the task unit
is complete its execution, the result and the new status of
the resource will be sent back to the Information Service for
another scheduling.

3. System models and definition

The model of the cloud system to be considered in this
work can be described as follows [15]. We describe different
models and definitions associated with problems formulated in
this paper. In this paper, we have assumed that the cloud
scheduling environment is highly heterogeneous and with the
Physical machines have uncertain utilization information.
We have designed multiple objectives of minimizing energy
consumption and makespan. Under the favorable condition we
find the Pareto set of multi-objective optimization.

3.1. Definitions

The cloud service provider keeps the detail information
about the arrival of user requests and the available utilization
of PMs in the data center. The complete scenario can be
represented by using a direct acyclic graph where the user
requests are presented. Here properties of tasks, task unit
relationship and task unit arrived are captured.

The fundamental properties of tasks that we take into
consideration are the CPU bounded task that spends most of
it's time in computation that is assigned with multiple pro-
cessing element large RAM size. Whereas the I/O bound tasks
dependent only peripheral devices connected to the machines.

Because of which it may need a machine with sufficient
network bandwidth and a buffer of large capacity. One
important property of the task unit is to add input and output
instruction size to reserve the resource available in a PM.
There might exist dependencies among the task units. As an
example given in Fig. 2 is a DAG, in which each node rep-
resents a task unit and its task type, a directed line depicts the
dependency relationship between the tasks, and we can add
weight to connects two tasks, the edges to represent the
flow size. The graph can be represented by using 5-tuples as
follows: G ¼ (TD, TS, D, Mi, Mout). The semantics and
definition of all tuples is given as follows:

Definition 1. User request (TD): This is the set of users
request that consists of 1/n task units.

Definition 2. Task type (TS): It is the task type of each
single task unit from 1/m, where Tm denotes maximum
number of task in a task unit. Form example if we have three
task unit fTD1;TD2;TD3g, then each task unit may have task
type TD1 ¼ ðTS1;1/TS1;mÞ, TD2 ¼ ðTS2;1/TS2;mÞ and
TD3 ¼ ðTS3;1/TS3;mÞ.
Definition 3. Task dependency (D): It represents the de-
pendencies between the task units in TD. Let Dij ¼ 1, that is
the data obtained from TDi is used by TDj. Otherwise, Dij ¼ 0.

212 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

D3;3 ¼

2
664

TD1 TD2 TD3

TD1 0 1 0
TD2 1 0 0
TD3 0 1 0

3
775

Definition 4. Input data ðMinÞ: It represents the input data
size of task unit.

Definition 5. Output data ðMoutÞ: It represents the output
data size of task unit. We have assumed that the resource pool is
heterogeneous and the resources may be a physical machine or
a server or PC in remote that constitute the data center.
The same resources have the different configuration. The next
outcome is different even when they deal with the same type of
task. The overall heterogeneity characteristics can be general-
ized by varying the network bandwidth and physical machine
capacity. The capacity of the PM gives minimum time taken to
execute the data present in a task that builds a direct relationship
between the CPU capacity and the available memory size.

The network bandwidth facilitates the rate and cost of data
communication between two physical machines. But, it does
not differentiate the type of tasks rather deal with the only data
flow. The resource information, M, consists of six-tuples i.e.
M ¼ (PS, CP, R, CE, Nbw, Ecom). The definition of each tuple
given as follows.

Definition 6. Physical machines (PS): Let PS ¼ ðPM1;
PM2;PM3;…; PMnÞ denote the set of physical machines in-
side a data center.

Definition 7. Computing power (ES): Let ES is a matrix
that give the computing power of the PM. The execution time
of task unit type i on a physical machine PMj is denoted as
ESij. The average power of PMj is denoted as ESavg;j, we
calculate ESavg;j value by calculating the mean of elements in
column of matrix ESj. The detail is explained as follows:

ESij ¼

2
66664

PM1 PM2 … PMj

TD1 TS1;1 TS1;2 … TS1;j

TD2 TS2;1 TS2;2 … TS2;j

« « « « «
TDi TSi;1 TSi;2 … TSi;j

3
77775

Definition 8. RAM in PM (R): It is the available RAM
(memory) size of each PM.

Definition 9. Computing energy (CE): CE this is the matrix
that gives the rate of consumption of executing a task unit
computing energy and, CEij denotes the energy consumed by a
PMj to execute i task unit type per unit time per unit data.

Definition 10. Bandwidth ðNbwÞ: Nbw denotes the band-
width between PMs and, the data transfer rate between PMi to
PMj is denoted as Nbw;ij.

Definition 11. Communication energy ðEcomÞ: Ecom de-
notes the energy consumption rate for the communication i.e.
the energy consumed during transmission of data from a
physical machine PMi to PMj per unit time per unit data is
denoted as Ecom;ij.

Definition 12. Mapping variable (c): c is mapping variable
that maps task unit and PMs. cðiÞ ¼ j represents the assign-
ment of task unit i to PMj to be executed.

3.2. Models

This section highlights the various models and few defini-
tions based upon which the problem is formulated. The two
most important objectives we have considered for optimiza-
tion for cloud computing resource scheduling is the minimi-
zation of the makespan and energy consumption. The
contradictory nature of these two objectives arises out of
parallelism and heterogeneity. The former states that make-
span is reduced at the cost of rigorous inter-PM data trans-

Fig. 1. Cloud architecture.

213S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

mission, which directly affects the total energy consumption in
the data center and the later says that the resource that faster in
nature is not necessarily the cheapest.

3.2.1. Makespan model
We define makespan as the time taken from the moment a

user submits his request to the completion of the last task unit.
It includes both the processing time and waiting time. The
processing time for the user request is calculated as follows:
the user request is decomposed into task unit, and then topo-
logical sorting is applied to make sure that every task unit can
only be dependent on those with smaller indexes.

The total processing time is virtually the same as with the
completion time of task unit TDi. We calculate the completion
time CTðiÞ for each task unit TDi, by adding the execution
time for the current task unit and the time is taken to arrive all
the required data at the current PM.

Consider the DAG depicted in Fig. 2 as an example.
We figure out the completion time of task unit TD8 by adding
the completion time of task unit and TD8 and the processing
time of TD5, TD6, and TD7 (i.e., the time when all the input
data for task unit TD8 will arrive). The above information can
be mathematically modeled as follows:

CTðiÞ ¼ Taux þ Tex ð1Þ
where Taux is the time taken to arrive all the required task to
the current task, which is given as follows:

Taux ¼Maxi�1
j¼1

�
Dij �CTðjÞ þDij �Mout

NðBW;p;qÞ

�

where p and q are defined as follows: p ¼ cðjÞ, q ¼ cðiÞ and
Tex is the time taken to execute current task, which is given as
follows:

Tex ¼ ESðg;hÞMi;i ci

where g and h are defined as follows: g ¼ TDi, h ¼ cðiÞ.
The values of CT vector's elements may be calculated

recursively. When the waiting time ignored, we claim the
makespan value of CT(n) of the user request, where n is the
user request's last task unit. The cloud computing works on a
concept of virtualization where the hardware abstraction is
performed. It works on the principle of creating a virtualized
environment, where each physical machine has its running
execution environment. Here the scenario creates an illusion in
the user's mind that the user owns whole CPU, memory, and
other hardware accessories: yet in fact, it is just a virtual
environment, and the user still needs to transfer data “from and
to” into the physical memory. But when we observe Eq. (1), it
holds true only when the PM is directly assigned to a task unit
to which it is assigned. The conclusion drawn from the last
passage is that the level of multi-threading can not be too high;
generally, the CPU would invest a significant measure of time,
energy in setting switch and page fault, more regrettable as yet
may lead to thrashing.

The waiting time is eventually going to add up with the
processing time as the level of multi-threading is not too high
when certain PMs are overloaded, or more task units are
assigned. A deep analysis of the process reveals that the
balancing of load among the PMs present in the data center is
an essential attribute for task scheduling. But it is impossible
until we have proper information about the distribution of
load among the PMs of the data center. Even if this infor-
mation are measurable, but the cloud broker or resource
provider do not make it publicly accessible. To assume more
tasks the resource provider tends to understand the process.
Because of above such reason we are compelled to find its
solution. As we have the prior information on the task yet to
be assigned, that is sufficient for predict the load on different
PMs even though the information about the already assigned
task may not be known to us. It is an effective way but seems
to be restrictive. In this proposal, we made an assumption that
the ratio of load distribution each PMs average computing
power and load distribution [16]. We define the load balance
as follows:

LB¼
Xn

i¼1

ðAðiÞ �BðiÞÞ2 ð2Þ

where, n is the number of PMs in the data center

AðiÞ ¼

Pm
j¼1 Mi;j

��cðjÞ ¼ i

Pm
j¼1 Mi;j

ð3Þ

BðiÞ ¼ Ri

�
ECavg;iPn

i¼1 Ri

�
ECavg;i

ð4Þ

There is a few risk associated with the deviation from
the ideal ratio i.e. some PMs may remain busy compelling
other tasks into the waiting queue for a long time that
adversely increases the makespan of the system. Therefore
we have assumed that the ideal ratio is considered for initial
load distribution. Hence the load balancing is a risky
parameter which indirectly affects the makespan of the
system. So the newly mathematical model for makespan is
given as follows:

CTf ¼ CTðnÞ � eb ð5Þ
where b is a load balancing factor. b increases with the in-
crease in data traffic and the makespan also increase showing
the effect of unequal load distribution. The small value of is
the impact of load balance on the makespan is ignorable
indicating the idleness of data traffic.

3.2.2. Energy model
The energy consumption in a cloud is the sum of energy

consumption individual unit that participates during the
servicing of the user requests. The authors in Ref. [17]

214 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

proposed an energy model which states that the CPU con-
sumes more energy compared to other equipment or hardware
that involve in the task scheduling process. The CPU energy
consumption is dependent on the utilization of resources,
voltages, and frequencies. Particularly for CPU, energy con-
sumption mostly relies upon its voltage and frequency, which
implies, the energy consumption remain unchanged as long
as the working state of CPU is constant. Energy consumed
during computation and communication can be calculated as
follows:

EC ¼
Xn

i¼1

CEðg;hÞEcom;ðg;hÞMi;i ð6Þ

where g and h are defined as follows: g ¼ TDi, h ¼ cðiÞ.

ECE ¼
Xn

i¼1

Xi�1

j¼1

Dj;iMo;j

Nbw;ðp;qÞ
�Ecom;ðp;qÞ ð7Þ

where p and q are defined as follows: p ¼ cðjÞ, q ¼ cðiÞ
Finally, the mathematical expression for the total energy
consumption is the sum of two parts first, communication
energy and computation energy which is expressed by the
following equation:

TE ¼ EC þECE ð8Þ

4. Problem formulation

From the framework of task scheduling algorithm, the
following subsection first analyzes the relationship between
make span and energy consumption then the objectives
formulated.

4.1. A priori analysis

The cloud operation comprises of five stages: the arrival of
requests from users, resource exploration that facilitates the
resource requirement, scheduling of resource this schedules
the resources to execute users requests, service and process
monitoring and the last one feedback submission. Out of
these steps, the third one plays a vital role in the quality of
service and total cost during the user request execution life
cycle. The major factor that affects this stage is the makespan
and energy consumption. To explore both makespan and
energy efficiency, three crucial issues must be addressed.
First, excessive power cycling of a server could reduce its
reliability. Second, turning resources off in a dynamic envi-
ronment is risky from the QoS perspective. Due to the vari-
ability of the workload and aggressive consolidation, some
PMs may not obtain required resources under peak load, and
fail to meet the desired QoS. Third, ensuring SLAs brings
challenges to accurate application performance management
in cloud computing environments. All these issues require
effective scheduling policies that can minimize energy
consumption and make span without compromising the user-

specified QoS requirements. Currently, task scheduling in a
Cloud data center aims to provide high performance while
meeting SLAs, without focusing on allocating PMs to mini-
mize energy consumption and makespan. Task scheduling in
cloud computing is an NP-complete problem [18]. Authors in
Ref. [17] propose an energy efficient resource scheduling
algorithm that reduces operating costs and provides quality of
service. Energy saving and resource utilization are achieved
through scheduling of virtual machines. The QoS is modeled
by the amount of resource needed for the CPU capacity
measured in Millions Instructions Per Second (MIPS), the
amount of primary memory (RAM), and by the network
bandwidth rate. Insufficient available of these resource leads
to SLA violation.

In Ref. [19] authors proposes a load sharing optimization
problem between a remote and a local Cloud service. Their
multi-objective approach defines to optimize energy con-
sumption per job and response time using a Poisson arrivals
jobs rate.

Authors in Refs. [20e22] propose DVFS enabled tech-
niques to minimize power consumption in a distributed system
ignoring performance.

From the above study, we observe that it is a trade-off to
minimize makespan and energy. So, minimization of both
these conflicting parameters at topological sorting to mini-
mize both makespan and energy can be better realized as the
multi-objective optimization problem which is discussed
below.

4.2. Problem objective

In this section, the overall problem is defined and named as
Multi objective optimization of task scheduling algorithm
(MOOTS) problem.

4.3. Objective functions

Based on Definition and Eqs. (1)e(8) given in previous
section, our objectives are defined as follows.
Objective (1): Minimization of makespan ðCTfÞ
Min

�
CTðnÞ � eb�LB

� ð9Þ
Objective (2): Minimization of energy (TE)

MinðTEÞ ð10Þ

Fitness function m¼ a
�
CTðnÞ � eb�LB

�þ bðTEÞ ð11Þ

where 0 � a< 1 and 0 � b< 1 are weights to prioritize
components of the fitness function.

4.4. Constraints

The following constraints are considered.

Constraint 1. This constraint confirms that each task unit can
only select one physical machine from the resource pool
available in cloud data center. This is given as follows.

215S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

cðiÞ 2 f1;2;…;ng ci f1;2;…;mg ð12Þ

where n is task units and m is number of task per task unit.
The maximum time required to process a user's task unit.

Constraint 2. Each task unit's maximum processing time;

CPTSicðiÞMi;i � Tp
max cðiÞ ð13Þ

where Tp
max is the maximum processing time.

Constraint 3. Each task unit maximum communication time;

MAXi�1
j¼0

�
Dij �Mo;j

Nbw;cðjÞcðiÞ

�
� Tc

max cðjÞ ð14Þ

where j is task unit, i is the number of PMs and, Tc
max is the

maximum communication time.

Constraint 4. Each task unit maximum processing energy
consumption;

CETSicðiÞCPTSicðiÞMi;i � Ep
max cðiÞ ð15Þ

where Ep
max is the processing energy.

Constraint 5. Energy consumption during communication by
each task unit.

Xj

i¼1

DijMo;i

Nbw;cðiÞcðjÞ=EcomcðiÞcðjÞ
� Ec

max cðjÞ ð16Þ

where Ec
max is the communication energy.

Constraint 6. For the proper utilization of PMs the load
distribution should be some threshold value for it, and in our
case, the lower threshold limit is 0, and the upper limit is as
given in the following equation;

Pn
i¼1Mi;i

��cðiÞ ¼ k

Pn
i¼1Mi;i

� Thu cðkÞ ð17Þ

where Thu is the upper threshold for executing task.

4.5. Intractability of MHBFA problem

Definition 1. Let L ¼ ðx1;…; xji;…; xnÞ be a given list of n
items with a value of xji2ð0; 1�, and B ¼ b1;…; bm be a finite
sequence of m bins each of unit capacity. The bin-packing
problem is to assign each xji into a unique bin, with the sum
of numbers in each bj2B not exceeding one, such that the

total number of used bins is a minimum (denoted by L*)
[23,24].

Proposition 1. The optimization problem described in
Eq. (11) is an NP-hard problem.

Proof. This proposition can be easily proven by reducing
the problem to the bin-packing problem [23,24], which is a
well-known NP-hard problem. The number of bins m is
equal to the available N data centers. The dimensions of an
application j consist of two parameters dj and eji. However,
eji depends on the frequency of the CPUs of data center i.
By defining a transformation function r : R� R/R, we can
transform eji to ej. This restriction only considers data cen-
ters with the same frequency for all CPUs. Consequently,
f ðdj; ejÞ ¼ xji and by Definition 1, it is a bin-packing
problem. ▫

5. Multiobjective approach

5.1. Preliminaries and background

In general, the multi-objective optimization problem in-
volves multiple conflicting objectives. To obtain the solution
for multi objective challenges the objectives are aggregated
to scalar function and these single objective optimization
problems are solved. In this paper we find out Pareto optimal
set which is an optimal trade off. The detail scenario and
local and global Pareto optimal set difference have been
defined below.

In an multiobjective optimisation problem partially order
conveying that two solutions are related to each other. One
way is that one objective dominates over other and second
case no one dominates.

Definition 1. Let us consider a case of multiobjective mini-
mization problem. In this scenario we have m decision variable
and n objectives.

Minimize y¼ ff1ðxÞ; f2ðxÞ;…; fnðxÞg ð18Þ
where x ¼ x1; x2;…xm2x is called decision vector, x is
parameter space, y is objective vector. A decision vector a2x
is said to dominate a decision vector b2xðSÞ if and only if

ci2f1;…;ng fiðxÞ � fiðxÞ

di2f1;…; ng fiðxÞ � fiðxÞ ð19Þ

Based on the above relation, we can define non-dominated and
Pareto-optimal solutions.

Definition 2. Let a2x be an arbitrary decision vector. Pareto
optimal decision vectors cannot be improved in any objective
without causing degradation in at least one other objective. In
our terminology, they represent, globally optimal solutions.
However, analogous to single objective optimization
problems, there may also be local optima which constitute a
non-dominated set within a certain neighborhood.

216 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

This corresponds to the concepts of global and local Pareto-
optimal sets introduced by Deb [25].Note that a global
Pareto-optimal set does not necessarily contain all Pareto-
optimal solutions. If refer to the entirety of the Pareto-
optimal solutions, simply write “Pareto-optimal set”. The
corresponding set of objective vectors is denoted as “Pareto
optimal front”. To solve multi-objective optimization problem
by BFA, some variants of BFA and hybrid BFA have been
proposed. Authors in Refs. [26e28] have proposed Multi-
objective Bacterial Foraging Optimization (MBFA). The
draw back of their proposal is that it stuck in local optima
as their basic technique is derived from BFA. However
many of the approach now a days ignores multi-dimensional
approach of the problem. Authors in Refs. [28e31] have
proposed hybrid HBFA task scheduling algorithm considering
one dimensional approach. In the proposed work we include
multi-objective optimization with integration between health
sorting approach and Pareto dominance mechanism, where
the main goal of multi-objective optimization problems is to
obtain a non-dominated front which is close to the true Pareto
front.

6. Principle of HBFA

The genetic algorithm (GA) has lack of local search
capability and excellent global search. The ability of Bacteria
Foraging (BF) global search is poor and very high local search
capability [32e38]. When we combine these two algorithms
through the selective combination of certain favorable func-
tion, this could give rise a solution that may contain best local
and global search capability and faster convergence time. The
HBF posses all the merged properties of GA and BF
[30,39,40]. The GBF appears to be an implementation of BF
than GA, but it combines the features of both the algorithm.
Literature in reviewed that BF is hybridized with other algo-
rithms other than GA and theoretically verified the effective-
ness of the developed algorithm. In all these literature it
has been observed that the HBF has maintained general val-
idity and optimized features can be applied in many other
applications.

The HBF inherits both swarming, and elimination and
dispersal from BF. The objective is to make BF more global
concerning search capability so we need to keep these
features with HBF and change those function which does
not support global search capability. The elimination and
dispersal and swarming are the procedure which is critical in
globalization search procedure hence they have been kept in
the procedure. The other two functions, i.e., chemotaxis and
reproduction are in focus to convert into global searching
capability.

The concept of genetic algorithm was introduced by
Holland in 1973, which is inspired by biological evolution. It
is a random search algorithm achieved by simulating natural
selection and genetic mechanisms. Genetic algorithm simu-
lates the basic process of biological evolution with a string

of digital to analog the individual chromosome organisms,
and the basic processes of biological evolution through se-
lection, crossover and mutation operators. The fitness func-
tion represents the quality of the solutions, the average
fitness of each generation can be increased through the
continuous upgrading of the population, the direction of the
evolution of the population can be guided through fitness
function and on this basis we can make the solution repre-
sented by the optimal individual approximate the global
optimal solution.

7. Proposed MHBFA for scheduling problem

This section provides the proposed MHBFA bacteria
foraging optimization algorithm to solve task scheduling in
cloud computing. The evaluation of the objective function
is proceeded in each iterative steps which lead to obtain
better solution to the multi objective optimization problem.
The position (coordinate) of the bacteria represents the
parameters to be optimized. In a simple sentence, we can
say that a bacteria represents the solution for our task
scheduling problem. We have generated many bacteria for
the algorithm input. The bacteria are evaluated against the
objective function to obtain minimum makespan and
energy.

The parameters are discretized in the desirable range,
each set of these discrete values represent a point in the space
coordinates. These parameters are discretized in the desirable
range. Each of these discrete values describes a point on a
space coordinate. In the proposed MHBFA algorithm, at each
iteration, all bacteria are evaluated according to a measure of
solution quality.

Our primary objective is to reduce makespan and energy
consumption, which is bacteria position. The parameters used
in algorithm's are as follows: p: Dimension of the search

Fig. 2. DAG of task unit and tasks.

217S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

space; S: the number of bacteria in the population; CðiÞ: it is
random direction taken during tumble; Nc : chemotaxis steps;
Ns : swimming length; Nre : reproduction steps; Ned : elimi-
nation and dispersal events; Ped : elimination and dispersal
probability.

7.1. Initial position generation

The task unit details derived from the DAG of Fig. 2 is
given as follows (see Table 1).

The bacteria holds the solution of the problem domain
which is the novelty associated with the proposed algorithm.
For the proposed problem, we obtain the intermediate repre-
sentation of solution as follows: The bacterium is encoded
with two variable h and l which denotes the linear vector and
the other one is a matrix. The h give the scheduling sequence
of all tasks on to the PMs. The l indicates the mapping of tasks
to PMs.

7.2. Bacterial representation

The representation of bacteria which is a potential solution
of the identified problem related to energy consumption is
shown in Fig. 3.

The set of bacteria consists of S ¼ S1; S2;…; Sn. Each
bacteria is encoded with h and l as follows.

Given tasks as given in Definition 3.1, the h can be denoted
as follows.

hn ¼ fTDn1;TDn2;…;TDnkg ð20Þ
The h follows restriction of DAG and also it is the per-

mutation of task numbers. The initial contents of the h are
generated using a breadth-first search procedure over the
DAG. The h contains task numbers. The repetition of the
task number in the h is not allowed. The importance of the h is
that it specifies the order of execution of tasks in the
cloud resource. Suppose we are given h, resources
PS ¼ fPM1; PM2; PM3;…; PMmg, the l can be expressed as
follows.

l¼

2
664
x11 x12 x13 … x1m
x21 x22 x23 … x2m

…

xn1 xn2 xn3 … xnm

3
775

The possibility of assignment of task TSi to the PM. PMj

is denoted as xij. We assign the value to l from the uniform
distribution on the interval [0,1], satisfying the following
condition:

xi;j2½0;1�; i2f1;2;…;ng; j2f1;2;…;mg ð21Þ

Xm
j¼1

xi;j ¼ 1; i2f1;2;…;ng; j2f1;2;…;mg ð22Þ

The allocation matrix value remains between 0 and 1.
When the value exceeds this range, then we set it to the closest
boundary value. The formula given in (21) facilitates this.
When we observe formula (22), it gives a sum of all proba-
bility values of allocation TDi, where i is the task, it also
affirms that the value should not be greater than 1. While
updating the l value formula (22) could be violated, so we
normalize the value by using formula (23).

xi;j ¼ xi;jPn
k¼1

ð23Þ

To select a resource for scheduling a task TDi, we check the
highest probable value in the row to find the match.

ni ¼max
�
xi;j

�
; i2f1;2;…;ng ð24Þ

The example of l with four PMs and tasks given in the
DAG is given as follows:

Based on the l value the c (mapping of tasks to PMs) is
given in Table 2.

7.3. Hybrid chemotaxis

Hybrid chemotaxis is a process where the E. coli bacteria is
carried in flagella. It comprises of three basic steps i.e.

Table 1

Task units and their tasks.

TSi1 TSi2 TSi3 TSi4

TD1 TS11 TS12 TS13

TD2 TS21 TS22 TS23

TD3 TS31 TS32 TS33 TS34

Fig. 3. Structure of a bacteria.

Table 2

c value.

PM3 PM3 PM4 PM2 PM1 PM1 PM2 PM1 PM4 PM3

TS11 TS12 TS13 TS21 TS22 TS23 TS31 TS32 TS33 TS34

218 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

tumbling, swimming and mutation. By tumbling (movement in
the random direction) and swimming (motion in the same
direction) the bacteria moves ahead to collect nutrients. We
add the mutation step of genetic algorithm to make the process
of chemotaxis as hybrid chemotaxis.

Here we initialize the bacteria set Sn. We initiate a loop
to find the fitness function for each bacteria in the bacteria
set. Extract the first bacteria from the set i.e.h1 and l1, find
the fitness function m as Jði; j; k; lÞ that corresponds initial
position vector qði; j; k; lÞ in jth hybrid chemotaxis, kth
reproduction and lth elimination and dispersal step. In this
paper we have considered qði; j; k; lÞ as the current l and h

value. Assign Jlastði; j; k; lÞ ¼ Jði; j; k; lÞ. Next, calculate
qði; jþ 1; k; lÞ for (j þ 1)th hybrid chemotaxis step as
follows:

qði; jþ 1;k; lÞ ¼ qði; j;k; lÞ þCðiÞfj ð25Þ
qði; jþ 1; k; lÞ gives rise the fitness function at (j þ 1)th

hybrid chemotaxis step as Jði; jþ 1; k; lÞ. CðiÞ is the size of the
step taken in the random direction specified by the tumble.
Generate a random direction fj, which is a value between
interval ½�1; 1�. It is the direction angle of the jth hybrid
chemotaxis step.

If the Jði; jþ 1; k; lÞ at qði; jþ 1; k; lÞ is better than the
Jði; j; k; lÞ at qði; j; k; lÞ then the bacterium takes another step of
size CðiÞ, otherwise it tumbles in a random direction of size fj.
This process continue until j ¼ Nc. During the chemotactic
process the bacterium cell alternate between swims and tum-
bles. The steps involved in hybrid chemotaxis are presented in
Algorithm 4. The swim, move and tumble process carried out
as follows:

7.3.1. Tumble
In this process, the bacteria tumble in random direction. We

calculate Jði; j; k; lÞ at new position and assign this value to
Jlastði; j; k; lÞ. The new position is calculated based on Eq. (25).

7.3.2. Move
In this step we update the position as lði; jþ 1; k; lÞ to

get new values of l as follows: Let lði; jþ 1; k; lÞ ¼
lði; j; k; lÞ þ CðiÞfðjÞ, as this results in a step of size CðiÞ in
the direction of the tumble for bacterium j. Normalize l ac-
cording to formula (23). Calculate fitness function
Jði; jþ 1; k; lÞ.

7.3.3. Swim
The swimming and tumbling of the bacteria depends on the

value of Jði; jþ 1; k; lÞ and Jði; j; k; lÞ, i.e. If Jði; jþ 1; k; lÞ
greater than Jði; j; k; lÞ, the bacteria swims in step size of CðiÞ
else tumble in random direction of fj steps.

Update the qði; jþ 1; k; lÞ. Here we only update l. The
significance of this updation process is that we get different c
value but the h value remains same. The updation process is as
follows, i.e. l is updated through mutation as given in
following example.

Mutation (updation of l): Mutation to be done in l to
generate new l0.

Before mutation l¼

2
666666666666664

0:12 0:26 0:46 0:16
0:23 0:19 0:34 0:24
0:32 0:06 0:30 0:33
0:26 0:28 0:25 0:21
0:44 0:12 0:43 0:01
0:38 0:31 0:05 0:26
0:27 0:33 0:25 0:16
0:62 0:16 0:12 0:09
0:31 0:20 0:11 0:37
0:13 0:10 0:54 0:23

3
777777777777775

; and

after mutation l0 ¼

2
666666666666664

0:46 0:26 0:12 0:16
0:23 0:34 0:19 0:24
0:32 0:06 0:30 0:33
0:26 0:28 0:25 0:21
0:44 0:12 0:43 0:01
0:38 0:31 0:05 0:26
0:27 0:33 0:25 0:16
0:09 0:16 0:12 0:62
0:31 0:20 0:11 0:37
0:13 0:10 0:54 0:23

3
777777777777775

Table 3 gives c value i.e. task allocation to PM before
mutation, that corresponds to l value.

Table 4 gives c value i.e. task allocation to PM after
mutation, that corresponds to l value.

The process continues till maximum swimming length
reaches to Ns. If at any point ðJði; jþ 1; k; lÞ> JðlastÞði; j; k; lÞÞ
then the swimming process stops and the chemotactic process
continue for next bacterium.

An individual chemotactic step concludes with the
movement of a bacteria to a new coordinate position, also
known as the space points. The point in the space defines the
set of a set of m value. For each of the points, the fitness
function is evaluated to decide the net movement in the
solution space. We represent the fitness of ith bacterium's
cost function Jði; j; k; lÞ. When we complete chemotactic
process then we move to reproduction process as described
in next section.

Table 3

c value before mutation.

TS11 TS21 TS32 TS31 TS33 TS34 TS12 TS23 TS22 TS13

PM3 PM3 PM4 PM2 PM1 PM1 PM2 PM1 PM4 PM3

Table 4

c value after mutation.

TS11 TS21 TS32 TS31 TS33 TS34 TS12 TS23 TS22 TS13

PM1 PM2 PM4 PM2 PM1 PM1 PM2 PM4 PM4 PM3

219S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

7.4. Hybrid-reproduction

The reproduction process continues in three steps viz. se-
lection, crossover and mutation. In this paper JiðhealthÞ denotes
the accumulated fitness function value during the bacterium
lifetime of bacteria i. Sort bacteria in order of ascending cost
JiðhealthÞ.

7.4.1. Selection
Select the bacterial population and sort them in increasing

order on the basis of minimum Jhealth (which is the health
of the ith bacteria). The Jhealth is calculated as follows:
JiðhealthÞ ¼

PNcþ1
j¼1 Jði; j; k; lÞ. Each JiðhealthÞ is the fitness value

(m) of bacteria i.

7.4.2. Crossover
The cross over is performed with the h value. The signifi-

cance of this crossover process is that it gives new task
execution order. It is done randomly in the bacterial population
with the least fit in nature. The updation of h is done as given in
Ref. [41] i.e. randomly choose as explained in following
example h from bacterium population. A new h is generated
through crossover operation, as follows. The crossover opera-

tion randomly chooses other bacterium's h to form a pair of h. It
randomly marks a cut-off point for each pair, which divides the
h of the pair into two parts. Then the tasks in each second part
are reordered. Fig. 4 shows a h crossover process where the new
ordering of the tasks in one's second part to the relative position
of these tasks in the other original scheduling vector in the pair.

220 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

Because h is discrete value, the swarm effects does not
consider the scheduling vector.

7.4.3. Mutation
The mutation is performed by taking the l value of least

cost Jhealth value as done in previous chemotactic steps. The
outcome of the reproduction step gives rise bacterias, i.e.,
half of the population of total bacteria. The discarded bac-
teria have higher JðhealthÞ values compared to the one
selected for future production. The newly selected bacterias
further split to fill the vacant places of discarded bacteria in

bacteria population. This process again moves to chemo-
tactic step as described above. The process continues until
k<Nre.

7.5. Elimination-dispersal

The bacterias dispersed to the random location in the
optimization after elimination. The elimination is done with
the probability Ped to keep the bacteria population constant.
This process again moves to reproduction step as described
above. The process continues until k<Ned.

221S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

7.6. Termination

In this step the algorithm output qði; j; k; lÞ and h and
terminate the process. The pseudo code of our bacterial
foraging algorithm is given in Algorithm 3.

8. Simulation results

In this section, we present the simulation result and discuss
the performance of the proposed MHBFA solving MOO
problem to verify its effectiveness by comparing the results
with other existing heuristic algorithms namely PSO [42], GA
[15], BFA [27]. We have presented the simulation result using
[15,43,44] simulation with the Matlab R2013a software plat-
form. Our simulation process is of two fold. In the first phase
we present experimental results and in second phase we make
statistical result comparison. The parameter settings to
conduct simulation for the algorithms are given in Table 5.

We have considered three examples and simulated these
using our simulation environment. This example consists of 5,
10 and 15 task unit with each task unit different tasks number
and five physical resources (PM) for task scheduling and
resource allocation on cloud computing. The detail parameter
and values and the characteristics of PMs and task unit, that
we have used for all our experiments is depicted in Table 6.

We have the five-task unit with 23 tasks, ten task unit with
100 tasks and fifteen task unit with 200 tasks. The first
example with five task units are as follow: TD1, TD2, TD3,
TD4 and TD5, where TD1 ¼ ðTS11;TS12;TS13;TS14;TS15Þ
and the resource set are as ðPM1;PM2; PM3; PM4; PM5Þ.
The details are given in Table 7. Min and Mout matrix s (in
terabytes) of task unit is given as follows.

From the above available data, we compute the ratio of
workload and computing capacity of PM to generate ESi;j matrix.
The rows and columns of ESi;j matrix gives the value of execu-
tion time of a task in each PM and time taken by a PM to execute
the task. The ESi;j matrix detail is given as follows. Where the
column consists of all five PMs and row consists of TD1 only.

Let Nbw, the transfer rate be 100 Mbps for uploading and
downloading. The receiving time for a task is obtained by
dividing Min and Mout matrix with Nbw. The mapping variable
c and matrix D is obtained while running the process and not
mentioned due to space problem. The details of ten and fifteen
task unit is also follows same as five task unit. Our simulation
process is of two fold. In the first phase we present experi-
mental results and in second phase we make statistical result
comparison of the results.

8.1. Experimental results

In this experiment we have consider heterogeneous resources.
As the targeted system is a generic Cloud computing environ-
ment, i.e. Infrastructure-as-a-Service (IaaS), it is essential to
evaluate it on a large-scale virtualized data center infrastructure.
However, it is extremely difficult to conduct repeatable large-
scale experiments on a real infrastructure, which is required to
evaluate and compare the proposed resource management al-
gorithms. Therefore, to ensure the repeatability of experiments,
simulations have been chosen as a way to evaluate the perfor-
mance of the proposed heuristics. To measure the efficiency of
the proposed MHBFA algorithm, we configure the performance
evaluation criteria based on the parameter defined in the given
Table 5. The performance index we considered is makespan that
indicates execution time and energy consumption, which is en-
ergy consumed by a PM. Table 6 gives the detail of evaluation.
The unit of makespan and energy are in minutes and Joule.

We set the environment as low PM heterogeneity with
nonuniform and uniform parameters, to calculate makespan
and energy consumption of the Cloud task units. The effi-
ciency of an algorithm is measured, by analyzing how it re-
sponds to the different heterogeneity of tasks and resources.
A comparison of both energy consumption and makespan for

low PM heterogeneity has been shown for uniform and
nonuniform parameters.

Fig. 6 shows the makespan comparison for nonuniform and
uniform parameters with low machine heterogeneity. From the
figure, we observe that the makespan is least in the case of
MHBFA for both the non-uniform and uniform parameters.

Fig. 4. Crossover operation.

222 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

This is so, as the low variation in execution time across PMs
and we have obtained the filtered PM list through PM
provisioning.

We have simulated the low PM heterogeneity by taking five,
ten and fifteen PMs. Fig. 5 shows the effect on energy con-
sumption by the four heuristics in case of low PM heterogeneity
with nonuniform and uniform parameters. From Fig. 5 we
observe that MHBFA achieves minimum energy consumption
as compared to GA, PSO and BFA resulted in the highest energy
consumption in all cases of 5, 10 and 15 PMs. While in case of
low PM heterogeneity with the uniform matrix similar condi-
tions are found. When we look the case of low PM heteroge-
neity, MHBFA performs better than other algorithms viz. GA,
PSO, and BFA for both uniform and nonuniform parameters.
The other three algorithm GA, PSO and BFA have higher en-
ergy consumption compared to MHBFA.

This likewise exhibits the viability of the MHBFA in dealing
with the time prerequisite of the user. As said before, tasks which
are sent to theCloud are expected to be autonomous of each other.
The attributes of tasks sent to the Cloud to think about the
makespan of various algorithms. The outcomes demonstrate that

on account of GA, PSO, and BFA algorithms when we send a
similar number of tasks/task unit to the Cloud, makespan, and
energy increasewhereas in the case of theMHBFAmakespan and
energy utilization decreases in all instances of 5,10 and 15 PMs.

From Fig. 5 we observe the energy consumption comparison
in low machine heterogeneity environment for nonuniform
uniform parameters. The figure depicts that the energy con-
sumption is low in MHBFA for both the uniform and nonuni-
form parameters as compared to GA, PSO and BFA. The reason
behind this is the PM list that is obtained from the PM provi-
sioning unit is already filtered that gives rise low variation in
execution time across various PMs present in the data center.
One more important point to be observed here is that the
requirement of time management by MHBFA to minimize en-
ergy consumption. The results also depicts that in the case of
GA, PSO and BFA algorithms, whenwe send similar task unit to
the cloud data center, energy consumption and makespan in-
creases where the same parameter decreases in case of MHBFA.

Here, we have assessed the makespan and energy consump-
tion of the Cloud task units for large PM heterogeneity case with
nonuniform and uniform frameworks. We simulate, high PM
heterogeneity having an arbitrary number of PMs between 5, 10
and 15. Fig. 8 demonstrates the makespan for nonuniform and
uniform cases with high machine heterogeneity. We observe
from Fig. 8 that, the execution of the MABFA heuristic is far
superior to that of GA, PSO and BFA for the instance of
nonuniform and high machine heterogeneity.

Fig. 7 demonstrates the energy consumption for nonuni-
form and uniform lattices with high machine heterogeneity.
The energy consumption decrease in MHBFA and minimum
in contrast with GA, BFA, and PSO. Here, we observe that
when a similar number of tasks units sent, the energy con-
sumption and makespan are the minimal for the proposed
calculation. This is because more task units allocated on less
expensive and efficient PM, because of the capacity of
MABFA to discover optimal PM. By analyzing the results in
Figs. 5e8, we conclude that the MHBFA heuristic out-
performs all the other approaches in the cases with both low or
high machine heterogeneity.

8.2. Statistical analysis of results

There are many performance indices available to measure
the quality of multi-objective optimization algorithms
[25,45e49]. The following four indices are often used viz. the
converge ratio of two sets ðCÞ, the distance-based distribution
ðDÞ, the maximum spread ðSPÞ, and hyper area ðHAÞ (or

Table 6

Scheduling parameters and their values.

Parameter Value

Number of PMs 5e15

Number task unit 5e20

Number tasks per task unit 20e200

Size of task 1000e6000 TB

Bandwidth 100 Mbps

PM ratings 0.10e0.30 Mbps

Energy consumption 0.1e0.3 J/min

Table 7

Task unit and its tasks details.

TD1 TD2 TD3 TD4 TD5

TS11 TS21 TS31 TS41 TS51

TS12 TS22 TS32 TS42 TS52

TS13 TS23 TS33 TS43 TS53

TS14 TS24 TS34 TS44 TS54

TS15 TS35 TS45

Table 5

Values considered for different parameter.

Algorithm Parameter name Parameter value

PSO Swarm size 50

Self-recognition coefficient 2

Social coefficient 2

Inertial weight 0.9

BFA Population size 50

Elimination-dispersal steps 2

Reproduction steps 4

Chemotaxis steps 70

Maximum swim steps 4

Step size 0.1

Elimination-dispersal probability 0.25

Attraction depth 0.1

Attraction width 0.2

Repellant depth 0.1

Repellant width 10

GA Number of cloudlets 10e30

Number of processors 5

Number of iterations 30

Population size 10

Crossover type Two-point crossover

Crossover probability 0.5

Mutation type Simple swap

Mutation probability 0.6

Termination condition Number of iterations

223S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

hyper volume used with dimension above two) ratio
[43,50e55]. We have presented the statistical result using [43]
simulation model so as to study the statistical result analysis of
the MHBFA algorithm.

The mean coverage ratio of proposed algorithm with the
GA, BFA and PSO is given in Table 8. We compute the mean
coverage ratio by taking the average of Cðxi; yjÞ, 1 � i � 50,
1 � j � 50, where x and y represent MHBFA with the GA,
BFA and PSO, and x and y is different. Each data set Cðx; yÞ
has 1500 values. In case of C(MHBFA, BFA) the mean
coverage ratios (Mean) (0.52256), standard deviation(0.2641)
(SD) and Covariance (CV) (50.53) and in C(MHBFA, GA)
(0.426, 0.2152, 50.51) are superior to the ratios C(BFA,
MHBFA) (0.35358, 0.2559, 72.38) and C(BFA, GA) (0.50694
0.2543 50.16), respectively.

The Wilcoxon test focused on the algorithm, MHBFA,
which had the higher mean coverage ratios. We studied the
behavior of this MHBFA on the remaining algorithms
(GA, BFA, and PSO). The sample data came from using the
MHBFA, GA, BFA and PSO at their coverage ratios in 50
independent runs. Each data set C(x, y) has 1500 values.

When we conduct the Friedman's test to obtain Chi square
value we obtain 700.06 and p-value of six data sets as given in
Table 9.

The p-value is lower as compared to a ¼ 0:05. The results
obtained from the test has significance difference among them.
Observation to these results says that a significant difference
can be observed by applying post-hoc statistical analysis
among these algorithms. The Wilcoxon z values in and cor-
responding p values C(MHBFA,GA) vs. C(GA,MHBFA),

Fig. 5. Energy consumption with low resource heterogeneity.

224 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

C(MHBFA,BFA) vs. C(BFA,MHBFA), C(BFA,GA) vs.
C(GA,BFA), C(GA,PSO) vs. C(PSO,GA), C(BFA, PSO) vs.
C(PSO,BFA) and C(MHBFA,PSO) vs. C(PSO, MHBFA) are
ðp< 0:00001Þ, ðp< 0:0319Þ, ðp ¼ 0:00001Þ, ðp< 0:2238Þ,
ðp ¼ 0:000001Þ and ðp< 0:5507Þ as given in Table 9 for all
three examples corresponds to different pair of algorithms.
When we observe the z-value of the analysis results of
C(MHBFA,GA) vs. C(GA,MHBFA), C(MHBFA,BFA) vs.
C(BFA,MHBFA), C(BFA,GA) vs. C(GA,BFA), C(GA,PSO)

vs. C(PSO,GA), C(BFA, PSO) vs. C(PSO,BFA) and
C(MHBFA,PSO) vs. C(PSO, MHBFA) is 14.31, 2.145, 17.35,
1.216, 13.35 and 2.216, and these values give an impression
that there is a significant difference between two algorithms
because Wilcoxon z value is bigger. That is, the performance
of MHBFA performs better as compared to the performances
of GA, BFA, and PSO in finding the better Pareto-optimal
solutions. Authors in Refs. [43,56] confirmed the use of the
great nonparametric statistical tests to carry out comparisons

Fig. 6. Makespan with low resource heterogeneity.

225S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

of optimization methods. This study used Wilcoxon matched-
pairs signed-rank test to compare two algorithms in the single-
problem analysis [43,57].

Table 10 shows the results of performance comparisons of
MHBFAwith the GA, BFA, and PSO regarding SP, D, and HA
in different 50 runs of the five, ten and fifteen-task unit with
five, ten and fifteen PMs. There exist an inverse relation be-
tween SP and D and HA. With the increase in the value of SP
the D and the HA significantly decreases. From the result we
can conclude that the value of the SP, D, and HA obtained by
applying the MHBFA is far superior than that of GA, BFA,
and PSO. In summary, the above experimental results confirm
that the MHBFA outperforms both the GA, BFA, and PSO in
finding the better Pareto-optimal solutions.

The work proposed in Ref. [58] uses discrete bacteria
foraging algorithm (DBFA), the problem in this technique is
that it fails to achieve global optima, where in the proposed
algorithm we take care both local and global optimum
[30,39,40].

8.3. Scalability of the proposed MHBFA

The last set of experiments and statistical analysis is used to
study whether the integrated management solution is scalable
for large size of cloud environment with hundreds of task
units. The scalability of our solution is based on computational
complexity of MHBFA algorithm for task scheduling problem.
The reason is that the process of mapping tasks to PMs is

Fig. 7. Energy consumption with high resource heterogeneity.

226 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

known to be NP-hard. The average number of tasks executed
per PMs are called the task execution ratio. The ratio is an
important factor which affects the time to solve the placement
problem. For this experiment, we considered three values of
task execution ratio is: 2:1, 4:1 and 6:1, and the number of task
executed is varied from 23 to 200. The execution time of the
entire algorithm was measured on a 2.4 GHz Intel Core i3

machine. Figs. 5e8 show the result of the experiment con-
ducted. From the figure we can see that the running time of the
MHBFA algorithm increases as the task unit increases. It is
because, when the task execution ratio increases, the number
of PM to accommodate tasks rises up, making the placement
problem harder. In addition, the statistical result shows that
MHBHA performs outstanding with the increase in number of

Fig. 8. Makespan with high resource heterogeneity.

227S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

PM in the cloud data center. Therefore, we can say that the
proposed MHBFA algorithm can be suitable for large-scale
cloud data centers.

9. Conclusions and future work

In this paper, a generic task scheduling algorithm in cloud
computing environment is proposed, based on bacteria

foraging and genetic algorithm concept. To handle the trade-
off between the makespan and energy consumption cost
functions, the problem is modeled as a multi objective opti-
mization problem. One of the most effective and simplest
optimization methods, known as hybrid BFA based approach,
has been applied to get Pareto optimal solutions for the given
problem. Extensive simulations have been carried out to show
the effectiveness and scalability of the proposed strategy on

Table 8

Results of comparisons in terms of mean coverage ratio.

5 Task unit 10 Task unit 15 Task unit

Mean SD CV Mean SD CV Mean SD CV

C(MHBFA, BFA) 0.52256 0.026406 5.05 0.600944 0.032743 5.45 0.69 0.04 5.32

C(MHBFA, GA) 0.426 0.021516 5.05 0.4899 0.02668 5.45 0.56 0.03 5.32

C(BFA, MHBFA) 0.35358 0.025591 7.24 0.406617 0.031733 7.80 0.47 0.04 7.62

C(BFA, GA) 0.50694 0.025428 5.02 0.582981 0.031531 5.41 0.67 0.04 5.28

C(GA, MHBFA) 0.40896 0.02445 5.98 0.470304 0.030318 6.45 0.54 0.03 6.30

C(GA, BFA) 0.32944 0.019071 5.79 0.378856 0.023648 6.24 0.43 0.03 6.10

C(GA, PSO) 0.27974 0.026895 9.61 0.321701 0.03335 10.37 0.37 0.04 10.12

C(PSO, GA) 0.2769 0.025917 9.36 0.318435 0.032137 10.09 0.37 0.04 9.86

Table 9

Wilcoxon test in the scheduling problem.

5 Task unit 10 Task unit 15 Task unit

Z-value P-value Z-value P-value Z-value P-value

C(MHBFA,GA) vs. C(GA,

MHBFA)

14.31 (p < 0.00001) 17.4582 (p < 0.00019) 18.4902 (p < 0.00013)

C(MHBFA,BFA) vs. C(BFA,

MHBFA)

2.145 (p < 0.0319) 2.6169 (p ¼ 0.04985) 3.6489 (p ¼ 0.02786)

C(BFA, GA) vs. C(GA, BFA) 17.35 (p ¼ 0.00001) 21.167 (p ¼ 0.000021) 23.199 (p ¼ 0.000011)

C(GA, PSO) vs. C(PSO, GA) 1.216 (p < 0.2238) 1.48352 (p < 0.3657) 3.51552 (p < 0.2113)

C(BFA, PSO) vs. C(PSO,

BFA)

13.35 (p ¼ 0.000001) 18.167 (p ¼ 0.000017) 21.199 (p ¼ 0.000012)

C(MHBFA, PSO) vs. C(PSO,

MHBFA)

2.216 (p < 0.5507) 1.48352 (p < 0.233657) 3.51552 (p < 0.29875)

Table 10

Results of performance comparisons of MHBFA, GA, BFA, PSO terms of SP, D, and HA.

5 PM 10 PM 15 PM

MHBFA GA BFA PSO MHBFA GA BFA PSO MHBFA GA BFA PSO

5 Task unit SP avg. 0.0458 0.0485 0.0518 0.0557 0.0347 0.0374 0.0407 0.0446 0.0287 0.0314 0.0347 0.0386

sd 0.0375 0.0382 0.0390 0.0398 0.0264 0.0271 0.0279 0.0287 0.0204 0.0211 0.0219 0.0227

D avg. 0.7195 0.7052 0.6633 0.6132 0.7084 0.6941 0.6522 0.6021 0.7024 0.6881 0.6462 0.5961

sd 0.0452 0.0457 0.0467 0.0497 0.0341 0.0346 0.0356 0.0386 0.0281 0.0286 0.0296 0.0326

HA avg. 0.9243 0.9036 0.8555 0.8339 0.9132 0.8925 0.8444 0.8228 0.9072 0.8865 0.8384 0.8168

sd 0.0379 0.0377 0.0375 0.0375 0.0268 0.0266 0.0264 0.0264 0.0208 0.0206 0.0204 0.0204

10 Task unit SP avg. 0.0578 0.0605 0.0638 0.0677 0.0467 0.0494 0.0527 0.0566 0.0407 0.0434 0.0467 0.0506

sd 0.0495 0.0502 0.0510 0.0518 0.0384 0.0391 0.0399 0.0407 0.0324 0.0331 0.0339 0.0347

D avg. 0.7315 0.7172 0.6753 0.6252 0.7204 0.7061 0.6642 0.6141 0.7144 0.7001 0.6582 0.6081

sd 0.0572 0.0577 0.0587 0.0617 0.0461 0.0466 0.0476 0.0506 0.0401 0.0406 0.0416 0.0446

HA avg. 0.9363 0.9156 0.8675 0.8459 0.9252 0.9045 0.8564 0.8348 0.9192 0.8985 0.8504 0.8288

sd 0.0499 0.0497 0.0495 0.0495 0.0388 0.0386 0.0384 0.0384 0.0328 0.0326 0.0324 0.0324

15 Task unit SP avg. 0.0598 0.0625 0.0658 0.0697 0.0487 0.0514 0.0547 0.0586 0.0427 0.0454 0.0487 0.0526

sd 0.0515 0.0522 0.0530 0.0538 0.0404 0.0411 0.0419 0.0427 0.0344 0.0351 0.0359 0.0367

D avg. 0.7335 0.7192 0.6773 0.6272 0.7224 0.7081 0.6662 0.6161 0.7164 0.7021 0.6602 0.6101

sd 0.0592 0.0597 0.0607 0.0637 0.0481 0.0486 0.0496 0.0526 0.0421 0.0426 0.0436 0.0466

HA avg. 0.9383 0.9176 0.8695 0.8479 0.9272 0.9065 0.8584 0.8368 0.9212 0.9005 0.8524 0.8308

sd 0.0519 0.0517 0.0515 0.0515 0.0408 0.0406 0.0404 0.0404 0.0348 0.0346 0.0344 0.0344

228 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

three recent and state of the art algorithm. Simulation results
show that using the proposed strategy, the convergence speed
to the cost function, makespan and energy consumption have
been optimized significantly. A comparative analysis with
other strategies shows that the proposed strategy is comparable
with multiobjective algorithm.

Possible topics for future works include: (1) Examining the
role of each factor related to the similarity function, that is, task
type, dependency relationship between tasks and input and
output data sizes of task; (2) Although MHBFA does speed up
the convergence rate, it incurs extra timing for crossover and
mutation and chemotaxis and reproduction process, this
process need to be further studied; (3) To further improve the
algorithm's performance, it is necessary to explore the
respective influence of operators and parameters in GA,
develop into the mathematical theory on MOO, develop new
analysis tools, and establish more effective evaluation and
termination criteria; and (4) To improve the proposed method
and use it in service-oriented manufacturing or industry system
such as cloud manufacturing system.

References

[1] Mezmaz M, Melab N, Kessaci Y, Lee YC, Talbi E-G, Zomaya AY, et al.

A parallel bi-objective hybridmetaheuristic for energy-aware scheduling for

cloud computing systems. J Parallel Distr Comput 2011;71(11):1497e508.

[2] Ullman JD. NP-complete scheduling problems. J Comput Syst Sci 1975;

10(3):384e93.

[3] Chen Z-G, Du K-J, Zhan Z-H, Zhang J. Deadline constrained cloud

computing resources scheduling for cost optimization based on dynamic

objective genetic algorithm. In: Evolutionary computation (CEC), 2015

IEEE congress on. IEEE; 2015. p. 708e14.

[4] Shuja J, Madani SA, Bilal K, Hayat K, Khan SU, Sarwar S. Energy-

efficient data centers. Computing 2012;94(12):973e94.

[5] Kim DH, Cho JH. Intelligent control of AVR system using GA-BF. In:

International conference on knowledge-based and intelligent information

and engineering systems. Springer; 2005. p. 854e9.

[6] Singh S, Kalra M. Scheduling of independent tasks in cloud computing

using modified genetic algorithm. In: Computational intelligence and

communication networks (CICN), 2014 international conference on.

IEEE; 2014. p. 565e9.

[7] Singh S, Chana I. Cloud resource provisioning: survey, status and future

research directions. Knowl Inform Syst 2016;49(3):1005e69.

[8] Hagras T, Jane�cek J. A high performance, low complexity algorithm for

compile-time task scheduling in heterogeneous systems. Parallel Comput

2005;31(7):653e70.
[9] Qiu M, Sha EH-M. Cost minimization while satisfying hard/soft timing

constraints for heterogeneous embedded systems. ACM Trans Des

Autom Electron Syst 2009;14(2):25.

[10] Germain-Renaud C, Rana OF. The convergence of clouds, grids, and

autonomics. IEEE Internet Comput 2009;13(6):9.

[11] Passino KM. Biomimicry of bacterial foraging for distributed optimi-

zation and control. IEEE Contr Syst Mag 2002;22(3):52e67.
[12] Liu Y, Passino K. Biomimicry of social foraging bacteria for distributed

optimization: models, principles, and emergent behaviors. J Optim Theor

Appl 2002;115(3):603e28.

[13] Abraham A, Biswas A, Dasgupta S, Das S. Analysis of reproduction

operator in bacterial foraging optimization algorithm. In: Evolutionary

computation, 2008. CEC 2008 (IEEE world congress on computational

intelligence). IEEE congress on. IEEE; 2008. p. 1476e83.

[14] Tamilselvan L, Anbazhagi, Shakkeera. Qos based dynamic task sched-

uling in iaas cloud. In: Recent trends in Information Technology (ICR-

TIT), 2014 International Conference on. IEEE; 2014. p. 1e8.

[15] Tao F, Feng Y, Zhang L, Liao TW. CLPS-GA: a case library and Pareto

solution-based hybrid genetic algorithm for energy-aware cloud service

scheduling. Appl Soft Comput 2014;19:264e79.

[16] Netto MA, Buyya R. Offer-based scheduling of deadline-constrained

bag-of-tasks applications for utility computing systems. In: Parallel &
distributed processing, 2009. IPDPS 2009. IEEE international sympo-

sium on. IEEE; 2009. p. 1e11.

[17] Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing.

Future Generat Comput Syst 2012;28(5):755e68.

[18] Fern�andez-Baca D. Allocating modules to processors in a distributed

system. IEEE Trans Software Eng 1989;15(11):1427e36.
[19] Gelenbe E, Lent R, Douratsos M. Choosing a local or remote cloud. In:

Network cloud computing and applications (NCCA), 2012 second

symposium on. IEEE; 2012. p. 25e30.

[20] Kong J, Choi J, Choi L, Chung SW. Low-cost application-aware DVFS

for multi-core architecture. In: Convergence and hybrid information

technology, 2008. ICCIT'08. Third international conference on, vol. 2.

IEEE; 2008. p. 106e11.
[21] Kolpe T, Zhai A, Sapatnekar SS. Enabling improved power management

in multicore processors through clustered DVFS. In: Design, automation

& test in Europe conference & exhibition (DATE), 2011. IEEE; 2011.

p. 1e6.
[22] Maurer M, Emeakaroha VC, Brandic I, Altmann J. Costebenefit analysis

of an SLA mapping approach for defining standardized cloud computing

goods. Future Generat Comput Syst 2012;28(1):39e47.

[23] Omara FA, Arafa MM. Genetic algorithms for task scheduling problem.

J Parallel Distr Comput 2010;70(1):13e22.

[24] Balin S. Non-identical parallel machine scheduling using genetic algo-

rithm. Expert Syst Appl 2011;38(6):6814e21.
[25] Deb K. Multi-objective optimization using evolutionary algorithms, vol.

16. John Wiley & Sons; 2001.

[26] Niu B, Wang H, Wang J, Tan L. Multi-objective bacterial foraging

optimization. Neurocomputing 2013;116:336e45.
[27] Chana I, Rajni. Bacterial foraging based hyper-heuristic for resource

scheduling in grid computing. Future Generat Comput Syst 2013;29(3):

751e62.

[28] Okaeme NA, Zanchetta P. Hybrid bacterial foraging optimization strat-

egy for automated experimental control design in electrical drives. IEEE

Trans Ind Inform 2013;9(2):668e78.

[29] Nayak SK, Padhy SK, Panigrahi SP. A novel algorithm for dynamic task

scheduling. Future Generat Comput Syst 2012;28(5):709e17.
[30] Kim DH, Abraham A, Cho JH. A hybrid genetic algorithm and bacterial

foraging approach for global optimization. Inform Sci 2007;177(18):

3918e37.
[31] Li D, Li M, Shen Y, Wang Y, Wang Q. GA-BFO based signal recon-

struction for compressive sensing. In: Information and automation

(ICIA), 2013 IEEE international conference on. IEEE; 2013. p. 1023e8.

[32] Lin X, Ke S, Li Z, Weng H, Han X. A fault diagnosis method of power

systems based on improved objective function and genetic algorithm-

Tabu search. IEEE Trans Power Deliv 2010;25(3):1268e74.

[33] Noman N, Iba H. Accelerating differential evolution using an adaptive

local search. IEEE Trans Evol Comput 2008;12(1):107e25.
[34] Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M. Implementation of

an effective hybrid ga for large-scale traveling salesman problems. IEEE

Trans Syst Man Cybernet, Part B (Cybernetics) 2007;37(1):92e9.
[35] Li S, Tan M, Tsang IW, Kwok JT-Y. A hybrid pso-bfgs strategy for global

optimization of multimodal functions. IEEE Trans Syst Man Cyber-

netics, Part B (Cybernetics) 2011;41(4):1003e14.

[36] Zhan Z-H, Zhang J, Li Y, Chung HS-H. Adaptive particle swarm opti-

mization. IEEE Trans Syst Man Cybernetics Part B (Cybernetics) 2009;

39(6):1362e81.

[37] Hsieh S-T, Sun T-Y, Liu C-C, Tsai S-J. Efficient population utilization

strategy for particle swarm optimizer. IEEE Trans Syst Man Cybernet

Part B (Cybernetics) 2009;39(2):444e56.

[38] Yen GG, Leong WF. Dynamic multiple swarms in multiobjective particle

swarm optimization. IEEE Trans Syst Man Cybern Syst Hum 2009;

39(4):890e911.

229S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 8

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/8

http://refhub.elsevier.com/S2314-7288(17)30057-0/sref1
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref1
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref1
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref1
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref2
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref2
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref2
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref3
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref3
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref3
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref3
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref3
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref4
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref4
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref4
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref5
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref5
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref5
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref5
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref6
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref6
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref6
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref6
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref6
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref7
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref7
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref7
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref8
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref8
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref8
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref8
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref8
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref9
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref9
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref9
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref10
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref10
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref11
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref11
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref11
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref12
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref12
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref12
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref12
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref13
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref13
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref13
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref13
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref13
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref14
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref14
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref14
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref14
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref15
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref15
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref15
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref15
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref16
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref16
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref16
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref16
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref16
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref17
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref17
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref17
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref17
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref18
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref18
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref18
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref18
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref19
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref19
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref19
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref19
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref20
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref20
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref20
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref20
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref20
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref21
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref21
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref21
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref21
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref21
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref21
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref22
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref22
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref22
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref22
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref22
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref23
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref23
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref23
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref24
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref24
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref24
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref25
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref25
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref25
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref26
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref26
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref26
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref27
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref27
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref27
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref27
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref28
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref28
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref28
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref28
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref29
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref29
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref29
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref30
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref30
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref30
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref30
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref31
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref31
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref31
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref31
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref32
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref32
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref32
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref32
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref33
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref33
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref33
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref34
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref34
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref34
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref34
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref35
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref35
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref35
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref35
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref36
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref36
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref36
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref36
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref37
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref37
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref37
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref37
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref38
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref38
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref38
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref38

[39] Bakwad KM, Pattnaik SS, Sohi B, Devi S, Panigrahi BK, Das S, et al.

Hybrid bacterial foraging with parameter free PSO. In: Nature & bio-

logically inspired computing, 2009. NaBIC 2009. World congress on.

IEEE; 2009. p. 1077e81.

[40] Mishra S, Panigrahi B, Tripathy M. A hybrid adaptive-bacterial-foraging

and feedback linearization scheme based D-STATCOM. In: Power sys-

tem technology, 2004. PowerCon 2004. 2004 international conference

on, vol. 1. IEEE; 2004. p. 275e80.
[41] Zhou Y, Hu H, Luo B. Workflow scheduling in grid based on bacterial

foraging optimization. Proc Aware Syst 2015:21.

[42] Jena R. Multi objective task scheduling in cloud environment using

nested PSO framework. Proc Comput Sci 2015;57:1219e27.
[43] Tsai J-T, Fang J-C, Chou J-H. Optimized task scheduling and

resource allocation on cloud computing environment using improved

differential evolution algorithm. Comput Oper Res 2013;40(12):

3045e55.
[44] Ali S, Siegel HJ, Maheswaran M, Hensgen D, Ali S. Representing task

and machine heterogeneities for heterogeneous computing systems.

J Appl Sci Eng 2000;3(3):195e207.

[45] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a compara-

tive case study and the strength Pareto approach. IEEE Trans Evol

Comput 1999;3(4):257e71.

[46] Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG.

Performance assessment of multiobjective optimizers: an analysis and

review. IEEE Trans Evol Comput 2003;7(2):117e32.

[47] Zitzler E, Knowles J, Thiele L. Quality assessment of Pareto set

approximations. Multiobj Optim 2008:373e404.

[48] Coello CC, Lamont GB, Van Veldhuizen DA. Evolutionary algorithms

for solving multi-objective problems. Springer Science & Business

Media; 2007.

[49] Okabe T, Jin Y, Sendhoff B. A critical survey of performance indices for

multi-objective optimisation. In: Evolutionary computation, 2003.

CEC'03. The 2003 congress on, vol. 2. IEEE; 2003. p. 878e85.

[50] Bandyopadhyay S, Pal SK, Aruna B. Multiobjective gas, quantitative

indices, and pattern classification. IEEE Trans Syst Man Cybernetics,

Part B (Cybernetics) 2004;34(5):2088e99.

[51] Araújo DR, Bastos-Filho CJ, Barboza EA, Chaves DA, Martins-Filho JF.

A performance comparison of multi-objective optimization evolutionary

algorithms for all-optical networks design. In: Computational intelli-

gence in multicriteria decision-making (MDCM), 2011 IEEE symposium

on. IEEE; 2011. p. 89e96.

[52] Hsu C-H, Tsou C-S, Yu F-J. Multicriteria tradeoffs in inventory control

using memetic particle swarm optimization. Int J Innov Comput Inform

Control 2009;5(11):3755e68.

[53] ReddyMJ, Kumar DN.Multiobjective differential evolution with application

to reservoir system optimization. J Comput Civ Eng 2007;21(2):136e46.

[54] Santana-Quintero LV, Coello CAC. An algorithm based on differential

evolution for multi-objective problems. Int J Comput Intell Res 2005;

1(1):151e69.
[55] Tsou C-S, Chang S-C, Lai P-W. Using crowding distance to

improve multi-objective PSO with local search. In: Swarm

intelligence, focus on ant and particle swarm optimization. InTech;

2007.

[56] García S, Molina D, Lozano M, Herrera F. A study on the use of non-

parametric tests for analyzing the evolutionary algorithms' behaviour: a
case study on the CEC' 2005 special session on real parameter optimi-

zation. J Heuristics 2009;15(6):617e44.

[57] Wilcoxon F. Individual comparisons by ranking methods. Biometrics

Bull 1945;1(6):80e3.

[58] Liu C, Wang J, Leung JY-T, Li K. Solving cell formation and task

scheduling in cellular manufacturing system by discrete bacteria foraging

algorithm. Int J Prod Res 2016;54(3):923e44.

Srichandan Sobhanayak is currently working as an

Assistant professor in Department of Computer Sci-

ence and Engineering, International Institute of In-

formation Technology (IIIT), Bhubaneswar, Odisha,

India. His current research interests include Internet of

Things, Cloud and Grid Computing, Wireless

Network, Network Security, Mobile Computing,

Embedded System and Distributed System. He has

published more than 15 papers in international jour-

nals and conferences in these areas.

Ashok Kumar Turuk is currently working as an

Associate Professor in Department of Computer Sci-

ence and Engineering, National Institute of Technol-

ogy, Rourkela, Odisha, India. He received his PhD in

Computer Science and Engineering in the year 2005

from the Indian Institute of Technology, Kharagpur,

India, and BTech and MTech in Computer Science and

Engineering in the year 1992 and 2000 respectively

from National Institute of Technology, India. His

current research interests include Optical Network,

Wireless Network, Network Security, Mobile

Computing, Embedded System and Distributed System. He has published

more than 50 papers in international journals and conferences in these areas.

Bibhudatta Sahoo is an Assistant Professor in the

Department of Computer Science and Engineering at

the National Institute of Technology, Rourkela, India

where he has been a faculty member since 2000. He is

a member of the Communication and Computing

Research Group, and Professor in charge of Cloud

Computing Research Laboratory. He received his

Ph.D. Degree in computer science from National

Institute of Technology, Rourkela for his dissertation

on ”Dynamic load balancing strategies in heteroge-

neous distributed system”. His research interests lie in

the area of Parallel and Distributed Systems, Cloud Computing, Sensor

Network, Algorithms for VLSI Design, Internet of Things, Software defined

networks, Multicore Architecture, 5g Networks and Algorithmic Engineering.

Dr. Sahoo is a Life Member of the Institution of Electronics and Telecom-

munication Engineers (IETE), the Computer Society of India (CSI), the Indian

Society for Technical Education (ISTE), the Indian Science Congress Asso-

ciation (ISCA), and the Orissa Science Academy. Dr. Sahoo is also a member

of IEEE, and professional member of ACM, and the author or co-author of

over 100 publications and book chapters. For more information, visit https://

scholar.google.co.in/citations?hl¼en&user¼ffg_LoYAAAAJ.

230 S. Srichandan et al. / Future Computing and Informatics Journal 3 (2018) 210e230

Srichandan et al.: Task schedul ing for cloud computing using multi-objective hybrid

Published by Arab Journals Platform, 2018

http://refhub.elsevier.com/S2314-7288(17)30057-0/sref39
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref39
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref39
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref39
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref39
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref39
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref40
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref40
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref40
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref40
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref40
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref41
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref41
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref42
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref42
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref42
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref43
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref43
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref43
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref43
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref43
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref44
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref44
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref44
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref44
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref45
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref45
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref45
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref45
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref46
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref46
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref46
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref46
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref47
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref47
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref47
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref48
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref48
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref48
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref48
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref49
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref49
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref49
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref49
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref50
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref50
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref50
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref50
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref51
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref51
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref51
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref51
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref51
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref51
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref52
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref52
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref52
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref52
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref53
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref53
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref53
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref54
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref54
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref54
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref54
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref55
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref55
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref55
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref55
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref56
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref56
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref56
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref56
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref56
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref57
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref57
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref57
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref58
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref58
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref58
http://refhub.elsevier.com/S2314-7288(17)30057-0/sref58
https://scholar.google.co.in/citations?hl=en&user=ffg_LoYAAAAJ
https://scholar.google.co.in/citations?hl=en&user=ffg_LoYAAAAJ
https://scholar.google.co.in/citations?hl=en&user=ffg_LoYAAAAJ
https://scholar.google.co.in/citations?hl=en&user=ffg_LoYAAAAJ
https://scholar.google.co.in/citations?hl=en&user=ffg_LoYAAAAJ

	Task schedul ing for cloud computing using multi-objective hybrid bacteria foraging algorithm
	Recommended Citation

	Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm
	1. Introduction
	2. Framework of task scheduling algorithm
	3. System models and definition
	3.1. Definitions
	Definition 1. User request (TD)
	Definition 2. Task type (TS)
	Definition 3. Task dependency (D)
	Definition 4. Input data (Min)
	Definition 5. Output data (Mout)
	Definition 6. Physical machines (PS)
	Definition 7. Computing power (ES)
	Definition 8. RAM in PM (R)
	Definition 9. Computing energy (CE)
	Definition 10. Bandwidth (Nbw)
	Definition 11. Communication energy (Ecom)
	Definition 12. Mapping variable (χ)
	3.2. Models
	3.2.1. Makespan model
	3.2.2. Energy model

	4. Problem formulation
	4.1. A priori analysis
	4.2. Problem objective
	4.3. Objective functions
	4.4. Constraints
	4.5. Intractability of MHBFA problem

	5. Multiobjective approach
	5.1. Preliminaries and background

	6. Principle of HBFA
	7. Proposed MHBFA for scheduling problem
	7.1. Initial position generation
	7.2. Bacterial representation
	7.3. Hybrid chemotaxis
	7.3.1. Tumble
	7.3.2. Move
	7.3.3. Swim

	7.4. Hybrid-reproduction
	7.4.1. Selection
	7.4.2. Crossover
	7.4.3. Mutation

	7.5. Elimination-dispersal
	7.6. Termination

	8. Simulation results
	8.1. Experimental results
	8.2. Statistical analysis of results
	8.3. Scalability of the proposed MHBFA

	9. Conclusions and future work
	References

