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Abstract

High code coverage is measured by the process of software testing typically using automatic test case generation tools. This standard
approach is usually used for unit testing to improve software reliability. Most automated test case generation tools focused just on code coverage
without considering its cost and redundancy between generated test cases. To obtain optimized high code coverage and to ensure minimum cost
and redundancy a Multi-Objectives Evolutionary Algorithm approach (MOEA) is set in motion. An efficient approach is proposed and applied to
different algorithms from MOEA Frame from the separate library with three fitness functions for Coverage, Cost, and Redundancy. Four MEOA
algorithms have been proven reliable to reach above the 90 percent code coverage: NSGAII, Random, SMSEMOA,v and ε-MOEA. These four
algorithms are the key factors behind the MOEA approach.
Copyright © 2018 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

“Software testing is used as a procedure to ensure that the
programs are free from bugs and to improve their function
performance. In other words, it is used to determine and
improve the quality of the software”. Before starting the
testing process, it is necessary to choose a test adequacy cri-
terion to evaluate whether a suite is adequate concerning the
test goals [1]. A test adequacy criterion defines properties that
must be observed by the test suite (e.g., code coverage,
functional requirements’ coverage, among others).

Code coverage [9] is considered a way to guarantee that
tests are testing the code. When testers run those tests, they are
presumably checking that the expected results obtained.
Coverage measurement is useful in many ways; it improves
the testing process, gives the information to the user about the
status of the verification process, and helps to find areas that
are not covered. Several tools are ranging from manual and
automated generation test cases to facilitate the software
testing process. The future lies in the automated approach to
generate test cases; however, it is prone to errors and is time-
consuming. This entails a rise in the cost of the testing process.

We introduce, in our research paper, a new approach to
optimize the test cases generation process to decrease the cost
of running the unit tests. This process eliminates redundancies;
thus, it increases efficiency. As a result, code coverage is
maximized. We have incorporated four MEOA algorithms.

MOEA is a significant topic that requires careful heed when
addressing real-world problems. Most real-world MOPs
(Multi-Objective Problems) have constraints that need to be

* Corresponding author.

E-mail addresses: samarel-agouz@student.aast.edu (S.A. Abdallah),

ramdan.mowad@fue.edu.eg (R. Moawad), essam.elfakharany@aast.ed (E.E.

Fawzy).

Peer review under responsibility of Faculty of Computers and Information

Technology, Future University in Egypt.

Available online at www.sciencedirect.com

ScienceDirect

Future Computing and Informatics Journal 3 (2018) 178e190
http://www.journals.elsevier.com/future-computing-and-informatics-journal/

https://doi.org/10.1016/j.fcij.2018.02.004

2314-7288/Copyright © 2018 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abdallah et al.: An optimization approach for automated unit test generation tools

Published by Arab Journals Platform, 2018

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:samarel-agouz@student.aast.edu
mailto:ramdan.mowad@fue.edu.eg
mailto:essam.elfakharany@aast.ed
www.sciencedirect.com/science/journal/23147288
https://doi.org/10.1016/j.fcij.2018.02.004
https://doi.org/10.1016/j.fcij.2018.02.004
http://www.journals.elsevier.com/future-computing-and-informatics-journal/
https://doi.org/10.1016/j.fcij.2018.02.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


incorporated into our search engine to avoid convergence
towards infeasible solutions. Constraints can be “hard” (i.e.,
they must be satisfied) or “soft” (i.e., they can be relaxed), and
addressing them properly has been a matter of research within
single-objective EAs [2,3].

MOEA is particularly effective at finding solutions to
elusive problems while another MOEA is effective at solving
non-uniform Pareto fronts. If one does not know the phenotype
space of the problem, using multiple MOEAs with distinctive
strengths may prove better than using just one. The MOEAs
could then coevolve in such a way that individuals pass from
one algorithm to another in an attempt to seed the algorithms
with good solutions [2].

In our research paper, we select four different algorithms:
NSGAII, Random, SMSEMOA, and ε-MOEA from different
libraries with different behavior to provide efficient solutions.

The paper is organized as follows. The next section, some
of the related work to our research. In Section 3, we pro-
pose the approach to select test cases for automated test
cases Generation tools. In Section 4, the different used
datasets are presented. In section 5 the brief different al-
gorithms are used in our research. Finally, the experiments
and results are discussed in section 6.

2. Related work

Luciano S. de Souza, Pericles B. C. de Miranda, Ricardo B. C.
Prudencio and Flavia de A. Barros presented in Ref. [3] a method
that uses Particle Swarm Optimization (PSO) to solve multi-
objective Test Case selection problems. In contrast to single-
objective difficulties, Multi-Objective Optimization (MOO) opti-
mize more than one objective at the same time. They developed a
mechanism for functional Test Case selectionwhich considers two
objectives simultaneously: maximize code coverage while mini-
mizing cost in of Test Case execution effort based on Particle
SwarmOptimization (PSO). They implement twomulti-objective
versions of PSO (BMOPSO and BMOPSO-CDR). During this
work developed aBinaryMulti-Objective PSO (BMOPSO), as the

solutions of the TC selection problemwhich represented as binary
vectors; and (2) the MOPSO algorithm to work with multi-
objective problems. Also, implemented the BMOPSO-CDR al-
gorithm by adding the Crowding Distance and Roulette Wheel
mechanism to the BMOPSO to select functional tests.

Luciano S. de Souza, Pericles B. C. de Miranda, Ricardo B.
C. Prudencio and Flavia de A. Barros presented enhancement
to previous work in Ref. [4] added the so-called catfish effect
into the multi-objective selection algorithms to enhance their
results. The use of the so-called “catfish” effect, for instance,
has shown to improve the performance of the single objective
version of the binary PSO. The catfish effect derives its name
from an effect that Norwegian fishermen observed when they
introduced catfish into a holding tank for caught sardines. The
introduction of a catfish, which is different from sardines, into
the tank resulted in the stimulation of sardine movement, so
keeping the sardines alive and therefore fresh for a longer
time. Similarly, the catfish effect was developed to the PSO
algorithm in such way that we introduce “catfish particles” to
stimulate a renewed search by the rest of the swarm's particles.
Hence, these catfish particles help to guide the particles, which
can be trapped in a local optimum, to new regions of the
search space and thus leading to possible better areas.

Chandraprakash Patidar presented in Ref. [5] approach for
test case generation algorithms using Sequence Diagram
Based Testing with discrete particle swarm optimization al-
gorithm. The approach presented automated test case gener-
ation from UML sequence diagram using discrete Particle
Swarm Optimization Algorithm. In his approach introduced an
algorithm that automatically creates a dependency then it
generated a dependency graph from which test cases can
generated test cases. Also, generating dynamic test cases by
using sequence diagram as a base element for generating test
cases using sequence diagram dynamic actions like interaction
among objects can be taken into consideration when gener-
ating test cases. Finally, present optimization using discrete
particle swarm optimization algorithm. Apply on the test cases
generated by dependency graph generated by extracted in-
formation from sequence diagram.

Fig. 1. Proposed approach.
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3. Proposed approach

In this paper, we proposed a new approach that adopts four
different algorithms and three fitness functions to solve multi-
objective test cases selection problems in many automated test
cases generation tools. Which is facing the challenge of
generating duplicated test cases and ineffective within the cost
of execution time furthermore give lower coverage percentage
also the redundancy among test cases. Where customers
search for high-quality products, the software testing activity
has grown in importance, aiming to assure quality and reli-
ability to the product under development. Also generating a
massive number of test cases is costly, reaching up to 40% of
final software development cost. Thus, it is of central impor-
tance to improve the efficiency and effectiveness of the whole
testing process.

In the testing process, it is necessary to choose a test ade-
quacy criterion defines properties that must be observed by the
test suit. The most important metrics we must concern about it

Table 1

eMOEA For Dataset #1.

Redundancy Coverage Cost

Sol #1 27% 80.96% 196.5

Sol #2 27% 81.66% 199.1

Sol #3 28% 82.66% 203.0

Sol #4 28% 81.65% 199.1

Sol #5 27% 78.55% 193.1

Sol #6 25% 81.22% 200.5

Sol #7 25% 79.32% 193.4

Sol #8 25% 81.44% 202.2

Sol #9 25% 80.27% 192.5

Sol #10 28% 82.31% 203.2

Sol #11 25% 79.24% 194.4

Sol #12 28% 83.91% 214.6

Sol #13 27% 80.96% 194.2

Sol #14 28% 82.06% 201.7

Sol #15 25% 80.07% 192.3

Sol #16 27% 80.10% 196.3

Sol #17 25% 79.87% 197.4

Sol #18 27% 82.17% 204.8

Sol #19 27% 80.59% 193.2

Sol #20 27% 80.71% 196.9

Sol #21 28% 82.01% 203.3

Sol #22 27% 79.84% 200.1

Sol #23 28% 81.85% 201.8

Sol #24 27% 79.57% 194.0

Sol #25 27% 82.29% 208.9

Sol #26 25% 79.85% 195.4

Sol #27 27% 80.35% 197.8

Sol #28 25% 79.96% 194.0

Sol #29 27% 79.91% 197.9

Sol #30 27% 77.90% 188.2

Sol #31 24% 79.10% 193.0

Sol #32 24% 77.58% 191.8

Sol #33 25% 80.23% 195.4

Sol #34 28% 81.96% 202.7

Sol #35 25% 78.66% 192.6

Sol #36 25% 78.82% 188.2

Sol #37 28% 81.32% 201.9

Sol #38 23% 75.94% 188.3

Sol #39 25% 79.90% 194.1

Sol #40 28% 82.63% 204.7

Sol #41 25% 80.30% 195.4

Sol #42 27% 79.68% 192.6

Sol #43 27% 80.41% 197.8

Sol #44 27% 80.27% 195.3

Sol #45 28% 79.79% 192.6

Sol #46 25% 79.41% 196.4

Sol #47 28% 83.33% 208.2

Sol #48 27% 81.31% 198.9

Sol #49 27% 80.14% 190.2

Sol #50 27% 80.30% 198.4

Sol #51 25% 77.21% 188.8

Sol #52 29% 84.00% 209.8

Sol #53 27% 81.10% 196.1

Sol #54 27% 79.95% 190.7

Sol #55 27% 79.82% 197.0

Sol #56 27% 80.38% 194.4

Sol #57 27% 79.77% 197.0

Sol #58 27% 81.61% 211.4

Sol #59 27% 77.41% 195.2

Sol #60 25% 79.27% 196.5

Sol #61 27% 79.99% 193.4

Sol #62 28% 83.03% 205.7

Sol #63 25% 77.46% 193.9

Table 1 (continued )

Redundancy Coverage Cost

Sol #64 28% 80.32% 200.5

Sol #65 27% 79.12% 195.2

Sol #66 25% 78.82% 193.0

Fig. 2. ε-MOEA Coverage and Redundancy Rel. for Dataset #1.

Fig. 3. ε-MOEA Coverage and Cost Rel. for Dataset #1.
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is the critical objective which is Code Coverage and the
constraints which are the cost of execution time and redun-
dancy between generated test cases. The cost and redundancy
are the critical constraints to cut down these suits, to fit the
available resources, without severely settling the coverage of
the test fitness criterion signifying recognized. Reduce the
generated test suite based on some selection criterion is known
as “Test Case Selection” process.

3.1. Proposed structure

Our approach as in Fig. 1 we use two different datasets of
test suits which have a different number of test cases to cover
the same program and the number of requirements. Each test
suit has different behavior in the total cost and redundancy
between test cases. We develop encoder by java programming
language to encode the different metrics in each dataset
(coverage, cost, and redundancy) for each test case. As said,
three fitness functions were adopted. The requirements
coverage objective (to be maximized) represents the amount
(in percentage) of requirements covered by a solution d in
comparison to the number of requirements present in D which
is the selected test case from the dataset. Formally, let
X ¼ {X1, …, Xr} be a given set of X requirements of the
original suite D. Let F(Dj) be a function that returns the subset

Table 2

NSGAII for Dataset #1.

Redundancy Coverage Cost

Sol #1 27% 78.78% 191.5

Sol #2 25% 79.25% 191.0

Sol #3 25% 80.71% 195.5

Sol #4 27% 82.41% 203.4

Sol #5 27% 82.18% 204.8

Sol #6 27% 81.76% 198.8

Sol #7 27% 78.97% 189.7

Sol #8 28% 82.76% 202.8

Sol #9 27% 81.06% 196.3

Sol #10 27% 80.55% 197.2

Sol #11 28% 82.54% 201.7

Sol #12 27% 80.76% 200.2

Sol #13 28% 82.73% 204.4

Sol #14 27% 78.99% 194.9

Sol #15 28% 82.52% 204.4

Sol #16 25% 80.38% 194.3

Sol #17 28% 80.79% 198.4

Sol #18 25% 80.54% 196.8

Sol #19 25% 80.66% 199.6

Sol #20 24% 79.18% 193.1

Sol #21 27% 80.69% 193.0

Sol #22 28% 81.29% 203.3

Sol #23 27% 80.09% 193.1

Sol #24 27% 80.80% 194.8

Sol #25 25% 79.42% 192.7

Sol #26 27% 78.85% 194.4

Sol #27 28% 82.05% 198.3

Sol #28 28% 81.93% 202.9

Sol #29 28% 83.11% 210.7

Sol #30 25% 80.67% 195.6

Sol #31 28% 82.05% 202.5

Sol #32 25% 78.63% 189.2

Sol #33 25% 80.06% 193.8

Sol #34 27% 82.27% 204.6

Sol #35 27% 81.07% 194.8

Sol #36 27% 81.70% 204.8

Sol #37 28% 79.65% 197.7

Sol #38 27% 80.42% 197.2

Sol #39 27% 80.45% 197.6

Sol #40 25% 80.43% 192.7

Sol #41 28% 83.13% 205.4

Sol #42 24% 77.03% 190.2

Sol #43 28% 80.79% 200.4

Sol #44 28% 83.11% 205.4

Sol #45 27% 79.77% 192.3

Sol #46 27% 79.30% 193.5

Sol #47 27% 80.21% 198.3

Sol #48 29% 80.12% 201.3

Sol #49 27% 80.42% 193.7

Sol #50 27% 78.57% 186.9

Sol #51 27% 79.87% 196.8

Sol #52 28% 82.04% 204.1

Sol #53 28% 80.84% 202.4

Sol #54 25% 78.57% 190.5

Sol #55 25% 77.96% 192.6

Sol #56 27% 77.71% 191.4

Sol #57 27% 81.98% 204.1

Fig. 4. NSGAII coverage and redundancy Rel. for dataset #1.

Fig. 5. NSGAII coverage and cost Rel. for dataset #1.
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of requirements in X covered by the individual test case: Dj for
each one.

Then, the requirements coverage of a solution d as given:

CoverageðdÞ ¼ 100 � jUd¼1fDigj
x

Unit : ð%Þ
The Cost fitness function calculated as the summation of

run time in milliseconds of each test cases selected in provided
solution d from dataset D as given:

CostðdÞ ¼
Xi

i¼0
Ci Unit : ðmsÞ

Redundancy fitness function which is more complicated
because of redundancy indicator that retrieves the test cases
with redundant coverage of requirements. The fitness function
is the total number of redundant test cases divided by the total
number of test cases selected in provided solution d.

RedðdÞ ¼
P

RðDiÞ
d

Unit : ð%Þ
After that, the evaluation functions run with the multi-

objective algorithms to find an efficient Preto front regarding
the fitness functions Coverage, Cost, and Red.

3.2. Proposed preprocesses

In this section, we will provide our standard tuning to all
selected algorithms that are running the above fitness functions

Table 3

SMSEMOA for Dataset #1.

Redundancy Coverage Cost

Sol #1 27% 79.85% 198.4

Sol #2 28% 82.65% 203.0

Sol #3 27% 80.32% 194.9

Sol #4 27% 81.60% 199.6

Sol #5 27% 80.22% 196.9

Sol #6 27% 80.41% 200.5

Sol #7 27% 79.71% 195.6

Sol #8 25% 78.51% 194.1

Sol #9 27% 79.14% 194.3

Sol #10 25% 80.09% 195.1

Sol #11 25% 80.16% 195.9

Sol #12 28% 82.38% 202.4

Sol #13 27% 80.59% 195.9

Sol #14 25% 80.22% 195.0

Sol #15 25% 80.23% 195.9

Sol #16 28% 82.59% 204.0

Sol #17 27% 80.29% 198.3

Sol #18 27% 80.35% 198.3

Sol #19 25% 79.50% 202.1

Sol #20 28% 81.56% 200.7

Sol #21 25% 79.80% 197.9

Sol #22 27% 79.95% 197.8

Sol #23 27% 80.95% 197.0

Sol #24 27% 81.93% 202.6

Sol #25 27% 81.67% 203.5

Sol #26 25% 80.52% 196.1

Sol #27 29% 83.08% 216.5

Sol #28 25% 80.26% 193.5

Sol #29 24% 79.76% 197.7

Sol #30 27% 81.31% 199.7

Sol #31 25% 79.26% 193.5

Sol #32 29% 81.58% 202.1

Sol #33 28% 82.56% 205.2

Sol #34 28% 81.89% 203.2

Sol #35 25% 79.83% 194.6

Sol #36 28% 81.88% 204.9

Sol #37 24% 78.83% 189.8

Sol #38 27% 80.59% 201.0

Sol #39 28% 79.69% 197.2

Sol #40 28% 80.25% 201.0

Sol #41 25% 80.51% 199.6

Sol #42 25% 79.88% 198.1

Sol #43 27% 81.72% 203.7

Sol #44 28% 79.60% 195.9

Sol #45 25% 80.48% 194.9

Sol #46 28% 81.77% 203.6

Sol #47 25% 79.50% 190.4

Sol #48 25% 78.39% 193.8

Sol #49 24% 79.01% 193.9

Sol #50 27% 78.07% 188.4

Sol #51 25% 80.90% 197.5

Sol #52 28% 80.91% 200.9

Sol #53 25% 79.35% 196.9

Sol #54 25% 80.20% 193.0

Sol #55 27% 83.01% 213.3

Sol #56 25% 79.21% 197.0

Sol #57 27% 82.30% 204.5

Sol #58 28% 80.32% 200.4

Fig. 6. SMSEMOA coverage and redundancy Rel. for dataset #1.

Fig. 7. SMSEMOA coverage and cost Rel. for dataset #1.
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Table 4

Random for Dataset #1.

Redundancy Coverage Cost

Sol #1 22% 47.76% 180.0

Sol #2 25% 53.87% 184.9

Sol #3 31% 54.46% 185.7

Sol #4 29% 63.28% 193.9

Sol #5 25% 51.42% 182.5

Sol #6 13% 49.22% 155.8

Sol #7 22% 53.76% 163.4

Sol #8 31% 58.10% 199.6

Sol #9 24% 47.89% 158.5

Sol #10 20% 49.14% 154.7

Sol #11 20% 50.64% 156.1

Sol #12 20% 49.22% 178.2

Sol #13 17% 46.97% 160.0

Sol #14 29% 59.57% 187.4

Sol #15 30% 57.33% 194.5

Sol #16 24% 41.31% 144.5

Sol #17 22% 33.96% 134.0

Sol #18 20% 47.30% 167.1

Sol #19 24% 59.61% 178.4

Sol #20 29% 57.34% 199.0

Sol #21 28% 60.01% 185.8

Sol #22 27% 52.93% 171.0

Sol #23 19% 49.31% 143.9

Sol #24 23% 46.85% 167.7

Sol #25 24% 45.63% 160.1

Sol #26 29% 66.96% 216.1

Sol #27 30% 46.48% 155.2

Sol #28 31% 57.11% 195.2

Sol #29 24% 42.87% 159.5

Sol #30 27% 55.56% 188.3

Sol #31 27% 52.19% 174.0

Sol #32 25% 43.16% 163.9

Sol #33 17% 51.34% 160.7

Sol #34 19% 51.09% 151.9

Sol #35 29% 61.35% 182.8

Sol #36 28% 63.33% 218.0

Sol #37 23% 56.88% 178.0

Sol #38 28% 60.67% 208.8

Sol #39 18% 46.12% 151.9

Sol #40 28% 55.61% 167.0

Sol #41 22% 40.43% 133.0

Sol #42 28% 53.80% 186.3

Sol #43 27% 57.61% 206.1

Sol #44 22% 41.31% 130.3

Sol #45 25% 43.49% 154.2

Sol #46 27% 47.13% 161.0

Sol #47 29% 58.09% 191.3

Sol #48 25% 54.90% 172.1

Sol #49 27% 47.81% 149.9

Sol #50 24% 46.45% 155.7

Sol #51 22% 48.50% 165.3

Sol #52 22% 55.63% 180.2

Sol #53 25% 51.75% 170.3

Sol #54 24% 53.47% 179.0

Sol #55 24% 41.76% 162.7

Sol #56 14% 42.15% 152.1

Sol #57 19% 44.08% 154.7

Sol #58 24% 39.01% 147.2

Sol #59 25% 54.39% 180.3

Sol #60 27% 56.68% 185.5

Sol #61 24% 54.72% 172.9

Sol #62 23% 49.39% 161.6

Sol #63 19% 51.34% 155.0

Sol #64 24% 50.25% 167.9

Sol #65 27% 54.54% 189.7

Table 4 (continued )

Redundancy Coverage Cost

Sol #66 24% 45.24% 165.8

Sol #67 27% 59.63% 190.4

Sol #68 20% 44.12% 145.1

Sol #69 19% 43.15% 141.1

Sol #70 23% 47.50% 179.6

Sol #71 19% 46.97% 165.7

Sol #72 24% 50.40% 186.0

Sol #73 25% 48.70% 166.0

Sol #74 22% 49.70% 174.1

Sol #75 18% 43.07% 152.7

Sol #76 28% 57.15% 198.2

Sol #77 24% 52.34% 183.5

Sol #78 20% 48.64% 155.4

Sol #79 23% 51.83% 178.5

Sol #80 30% 57.23% 197.2

Sol #81 23% 48.64% 155.4

Sol #82 18% 51.17% 152.8

Sol #83 27% 58.33% 182.6

Sol #84 22% 51.54% 158.7

Sol #85 24% 62.10% 198.3

Sol #86 24% 46.99% 131.2

Sol #87 25% 47.71% 172.5

Sol #88 25% 50.44% 171.0

Sol #89 23% 53.97% 182.7

Sol #90 24% 42.75% 147.3

Sol #91 29% 55.05% 172.3

Sol #92 20% 45.82% 165.1

Sol #93 33% 50.45% 175.2

Sol #94 19% 55.23% 187.8

Sol #95 23% 55.33% 185.4

Sol #96 20% 52.81% 152.2

Sol #97 22% 52.43% 171.7

Sol #98 22% 51.43% 167.4

Sol #99 27% 55.10% 198.4

Sol #100 23% 47.18% 165.1

Sol #101 25% 50.13% 162.1

Sol #102 20% 51.65% 161.0

Sol #103 25% 61.18% 195.1

Sol #104 24% 53.42% 173.7

Sol #105 18% 46.94% 147.9

Sol #106 20% 45.32% 161.4

Sol #107 27% 59.38% 192.2

Sol #108 25% 49.17% 185.6

Sol #109 23% 42.96% 155.9

Sol #110 28% 58.32% 180.5

Sol #111 22% 52.95% 190.1

Sol #112 23% 49.96% 165.9

Sol #113 23% 49.24% 180.4

Sol #114 24% 61.20% 189.8

Sol #115 23% 49.66% 168.5

Sol #116 23% 55.21% 173.8

Sol #117 22% 43.34% 149.0

Sol #118 25% 49.70% 165.4

Sol #119 25% 43.34% 149.2

Sol #120 20% 40.81% 144.7

Sol #121 20% 45.71% 166.0

Sol #122 29% 62.80% 210.6

Sol #123 20% 47.76% 160.4

Sol #124 30% 55.02% 173.9

Sol #125 27% 55.93% 169.2

Sol #126 28% 59.73% 189.4

Sol #127 25% 49.09% 168.0

Sol #128 22% 42.37% 149.5

Sol #129 25% 55.26% 184.2

Sol #130 27% 50.32% 174.4
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on our two datasets. Each algorithm has parameters include
the population size, the simulated binary crossover (SBX) rate
and distribution index, and the polynomial mutation (PM) rate
and distribution index and Max Evaluations. We are tuning
each algorithm by the same value to all parameters So that we
can measure the efficiency of each algorithm. The tuning pa-
rameters values as following:

1) populationSize ¼ 1000
2) sbx.rate ¼ 0.9

Fig. 8. Random coverage and redundancy Rel. for dataset #1.

Fig. 9. Random coverage and cost Rel. for dataset #1.

Fig. 10. Code coverage of all algorithms for dataset #1.

Table 5

ε-MOEA for Dataset #2.

Redundancy Coverage Cost

Sol #1 23% 90.49% 199.9

Sol #2 23% 88.68% 192.0

Sol #3 23% 90.08% 200.7

Sol #4 23% 87.22% 205.8

Sol #5 23% 89.24% 198.1

Sol #6 23% 87.70% 192.7

Sol #7 23% 89.48% 199.4

Sol #8 21% 87.16% 189.1

Sol #9 23% 90.71% 202.7

Sol #10 23% 88.92% 193.0

Sol #11 23% 88.60% 193.0

Sol #12 24% 90.66% 204.8

Sol #13 23% 89.94% 198.6

Sol #14 23% 88.74% 192.8

Sol #15 23% 88.42% 197.6

Sol #16 21% 88.15% 192.5

Sol #17 23% 87.62% 199.1

Sol #18 23% 89.15% 196.7

Sol #19 21% 89.72% 199.3

Sol #20 21% 86.04% 185.0

Sol #21 24% 90.95% 208.6

Sol #22 23% 88.24% 196.9

Sol #23 23% 90.77% 203.9

Sol #24 21% 86.93% 198.3

Sol #25 23% 88.04% 204.8

Sol #26 23% 89.18% 196.3

Sol #27 23% 90.56% 201.5

Sol #28 23% 85.68% 191.4

Sol #29 21% 87.15% 195.2

Sol #30 24% 91.48% 208.0

Sol #31 23% 90.27% 199.5

Sol #32 21% 87.51% 197.8

Sol #33 23% 88.45% 190.0

Sol #34 21% 88.98% 193.3

Sol #35 23% 88.42% 196.6

Sol #36 21% 88.72% 192.5

Sol #37 21% 89.44% 197.2

Sol #38 24% 89.48% 206.9

Sol #39 23% 91.31% 206.1

Sol #40 23% 87.53% 194.3

Sol #41 23% 91.83% 207.8

Sol #42 23% 90.07% 198.3

Sol #43 21% 87.34% 185.5

Sol #44 21% 86.43% 189.3

Sol #45 21% 89.10% 196.8

Sol #46 23% 88.60% 194.2

Sol #47 21% 85.38% 189.6

Sol #48 23% 89.20% 198.9

Sol #49 21% 88.62% 198.2

Sol #50 20% 86.67% 189.8

Sol #51 24% 90.77% 207.9

Sol #52 24% 88.61% 207.2

Sol #53 21% 84.92% 185.2

Sol #54 21% 89.27% 197.7

Sol #55 21% 88.06% 199.0

Sol #56 21% 88.69% 197.0

Sol #57 23% 88.50% 192.1

Sol #58 23% 88.65% 197.6

Sol #59 24% 89.24% 199.0

Sol #60 24% 91.27% 203.9

Sol #61 23% 87.73% 198.4

Sol #62 23% 90.61% 203.4

Sol #63 26% 92.08% 211.4
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3) sbx.distributionIndex ¼ 15.0
4) pm.rate ¼ 0.1
5) pm.distributionIndex ¼ 20.0
6) MaxEvaluations ¼ 1000

4. Data selection

We have two different datasets for implemented program
with 745 line of code which is mean we have 745 re-
quirements to covered by our datasets of test cases. The
first dataset has 83 test cases with total code coverage 100%
and total run time cost 337.6 ms, and total redundancy 40
between test cases. The second dataset have 70 test cases
with total code 100% and total run time cost 299.9 ms,
and total redundancy 25 between test cases. We select that

Table 5 (continued )

Redundancy Coverage Cost

Sol #64 23% 89.52% 195.4

Sol #65 23% 91.61% 205.1

Sol #66 23% 86.01% 195.1

Sol #67 24% 91.06% 202.4

Sol #68 21% 86.16% 190.6

Fig. 11. ε-MOEA Coverage and Redundancy Rel. for Dataset #2.

Fig. 12. ε-MOEA Coverage and Cost Rel. for Dataset #2.

Table 6

NSGAII for Dataset #2.

Redundancy Coverage Cost

Sol #1 24% 90.59% 199.8

Sol #2 24% 88.34% 196.8

Sol #3 24% 89.52% 194.4

Sol #4 24% 91.56% 204.3

Sol #5 24% 88.13% 192.3

Sol #6 21% 86.64% 194.4

Sol #7 24% 90.71% 203.3

Sol #8 24% 91.41% 206.0

Sol #9 24% 88.03% 199.6

Sol #10 23% 83.23% 185.6

Sol #11 26% 90.78% 202.9

Sol #13 23% 89.54% 197.0

Sol #15 24% 87.72% 199.0

Sol #16 23% 88.60% 192.2

Sol #17 24% 89.34% 198.0

Sol #18 26% 90% 199.3

Sol #19 23% 86.61% 189.4

Sol #20 24% 88.11% 196.1

Sol #21 23% 89.37% 197.6

Sol #22 23% 88.25% 192.4

Sol #23 23% 87.86% 196.7

Sol #25 26% 91.58% 207.9

Sol #26 24% 87.80% 192.6

Sol #27 24% 91.10% 205.8

Sol #28 23% 90.63% 202.0

Sol #29 24% 88.84% 192.7

Sol #30 23% 88.79% 196.9

Sol #32 24% 90.87% 203.8

Sol #33 21% 88.93% 195.7

Sol #34 24% 91.54% 207.6

Sol #36 24% 88.56% 194.0

Sol #37 24% 89.38% 202.5

Sol #38 26% 90.87% 207.8

Sol #39 23% 87.64% 191.9

Sol #40 23% 84.54% 181.3

Sol #41 26% 91.24% 205.3

Sol #42 24% 89.12% 196.7

Sol #43 23% 89.81% 195.8

Sol #44 24% 88.18% 192.4

Sol #45 24% 91.93% 207.7

Sol #46 24% 89.30% 198.8

Sol #49 24% 90.10% 198.7

Sol #51 23% 83.57% 184.7

Sol #52 23% 90.02% 197.3

Sol #53 24% 88.85% 205.8

Sol #54 26% 88.46% 195.7

Sol #55 23% 88.72% 198.0

Sol #56 24% 88.60% 191.9

Sol #57 24% 88.94% 199.1

Sol #58 23% 86.75% 189.9

Sol #61 24% 88.92% 193.3

Sol #62 24% 87.82% 196.8

Sol #65 24% 88.70% 199.3

Sol #66 26% 91.52% 210.8

Sol #70 24% 88.78% 191.9

Sol #71 24% 87.81% 192.7

Sol #72 26% 91.99% 207.2

Sol #73 23% 88.09% 191.4

Sol #74 23% 88.82% 192.4

185S.A. Abdallah et al. / Future Computing and Informatics Journal 3 (2018) 178e190

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 2, Art. 5

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss2/5



two datasets to prove our concept of select efficient test
cases with high code coverage and minimum cost and
redundancy.

5. Algorithms selection

Our selected algorithms are implemented within the MOEA
Framework and thus support all functionality provided by the
MOEA. The four algorithms selected from two different li-
brary Native Algorithms and JMetal Algorithms. The NSGAII,
ε-MOEA and Random Search are from Native Algorithms
library. SMSEMOA from JMetal Algorithms library. Each
algorithm of them has different behavior to generate many
solutions. We will provide a brief about each of them as
follows:

5.1. ε-MOEA

ε-MOEA is a steady-state MOEA that uses ε-dominance
archiving to record a diverse set of Pareto optimal solutions
[6]. ε-MOEA algorithm the search space is divided into a
number of hyper-boxes or grid and the diversity is maintained
by ensuring that a hyper-box occupied by only one solution.
There are two co-evolving populations: (i) an EA population
P(t) and (ii) an archive population E(t) where t is the iteration

Fig. 13. NSGAII coverage and redundancy Rel. for dataset #2.

Fig. 14. NSGAII coverage and cost Rel. for dataset #2.

Table 7

SMSEMOA Dataset 2.

Redundancy Coverage Cost

Sol #1 23% 87.47% 92.3

Sol #2 23% 90.25% 199.4

Sol #3 21% 89.16% 197.7

Sol #4 23% 89.65% 204.2

Sol #5 24% 91.03% 203.4

Sol #6 21% 87.58% 192.6

Sol #7 21% 87.52% 196.2

Sol #8 24% 88.27% 199.7

Sol #9 24% 85.51% 198.1

Sol #10 23% 88.36% 193.7

Sol #11 21% 89.48% 198.8

Sol #12 23% 88.58% 192.9

Sol #13 23% 89.28% 194.9

Sol #14 21% 88.55% 193.2

Sol #15 21% 89.03% 197.1

Sol #16 23% 89.16% 198.3

Sol #17 24% 88.72% 199.1

Sol #18 23% 89.24% 198.9

Sol #19 23% 89.76% 198.3

Sol #20 23% 88.53% 196.1

Sol #21 23% 87.48% 196.4

Sol #22 24% 90.53% 207.4

Sol #23 23% 87.46% 192.2

Sol #24 23% 90.47% 202.2

Sol #25 23% 91.20% 207.2

Sol #26 23% 87.49% 197.8

Sol #27 24% 88.51% 203.0

Sol #28 24% 90.17% 202.0

Sol #29 23% 87.69% 199.2

Sol #30 21% 89.25% 199.9

Sol #31 23% 87.75% 202.2

Sol #32 24% 89.99% 205.7

Sol #33 23% 91.59% 207.3

Sol #34 21% 87.82% 198.5

Sol #35 23% 87.38% 198.5

Sol #36 23% 88.68% 192.5

Sol #37 24% 90.90% 204.8

Sol #38 24% 91.76% 206.0

Sol #39 23% 88.50% 192.3

Sol #40 20% 85.12% 190.6

Sol #41 21% 88.45% 196.5

Sol #42 23% 88% 196.3

Sol #43 24% 91.24% 207.5

Sol #44 26% 92.61% 219.0

Sol #45 21% 89.89% 201.1

Sol #46 23% 88.94% 195.7

Sol #47 23% 88.91% 196.1

Sol #48 21% 89.20% 196.6

Sol #49 24% 91.33% 207.1

Sol #50 23% 90.54% 203.2

Sol #51 21% 88.38% 197.6

Sol #52 23% 85.09% 194.5

Sol #53 23% 90.32% 201.0

Sol #54 23% 88.44% 191.5

Sol #55 23% 87.79% 191.9

Sol #56 21% 87.12% 193.7

Sol #57 23% 85.01% 184.8

Sol #58 24% 91.06% 206.9

Sol #59 23% 87.88% 193.8

Sol #60 21% 85.83% 190.6

Sol #61 23% 88.62% 201.7

Sol #62 21% 88.48% 192.0

Sol #63 23% 90.53% 203.4

186 S.A. Abdallah et al. / Future Computing and Informatics Journal 3 (2018) 178e190

Abdallah et al.: An optimization approach for automated unit test generation tools

Published by Arab Journals Platform, 2018



counter. The archive population stores the nondominated so-
lutions and is updated iteratively with the e-dominance
concept. Moreover, the EA population is updated iteratively
with the usual domination [7].

5.2. NSGAII

The NSGA proved to be relatively successful during
several years. However, it was an inefficient algorithm due to
the way in which it classified individuals. Recent research has
proposed an improved version of the NSGA algorithm, called
NSGA-II. The non-dominated sorting algorithm-II (NSGA-II)
is a generic non-explicit BB MOEA applied to multi-
objective problems (MOPs)ebased on the original design of
NSGA [2].

5.3. SMS-EMOEA

SMSEMOA is an indicator-based MOEA that uses the
volume of the dominated hypervolume to rank individuals.
The SMS-EMOA has been designed to cover a maximal
hypervolume with a finite number of points. The SMS- EMOA
combines ideas borrowed from other EMOA, like the well-

Fig. 15. SMSEMOA coverage and redundancy Rel. for dataset #2.

Fig. 16. SMSEMOA coverage and cost Rel. for dataset #2.

Table 8

Random for Dataset #2.

Redundancy Coverage Cost

Sol #1 16% 48.34% 141.9

Sol #2 23% 56.57% 167.9

Sol #3 20% 59.85% 166.9

Sol #4 16% 55.96% 163.4

Sol #5 11% 42.18% 117.8

Sol #6 17% 52.38% 122.9

Sol #7 19% 52.65% 157.1

Sol #8 23% 53.06% 161.4

Sol #9 19% 52.90% 145.8

Sol #10 14% 52.62% 153.1

Sol #11 17% 44.97% 129.1

Sol #12 16% 53.12% 183.3

Sol #13 11% 41.22% 140.7

Sol #14 21% 54.83% 192.7

Sol #15 24% 60.92% 173.0

Sol #16 19% 49.61% 164.1

Sol #17 14% 54.72% 136.2

Sol #18 17% 45.94% 137.9

Sol #19 21% 46.30% 141.4

Sol #20 19% 60.12% 152.6

Sol #21 16% 40.83% 142.1

Sol #22 24% 55.61% 185.9

Sol #23 16% 38.41% 98.3

Sol #24 20% 52.03% 143.6

Sol #25 20% 52.74% 143.8

Sol #26 19% 62.57% 173.7

Sol #27 20% 47.31% 134.5

Sol #28 13% 48.56% 137.8

Sol #29 17% 50.73% 136.7

Sol #30 24% 58.24% 182.3

Sol #31 20% 50.98% 148.5

Sol #32 20% 59.60% 173.5

Sol #33 21% 46.12% 142.7

Sol #34 17% 55.16% 156.9

Sol #35 16% 47.07% 150.4

Sol #36 21% 54.95% 170.9

Sol #37 19% 55.67% 154.5

Sol #38 16% 41.54% 116.7

Sol #39 16% 60.07% 168.2

Sol #40 19% 61.59% 166.5

Sol #41 17% 40.59% 130.9

Sol #42 16% 52.57% 160.6

Sol #43 21% 50.86% 163.5

Sol #44 11% 45.46% 139.6

Sol #45 19% 48.99% 140.0

Sol #46 13% 50.09% 135.2

Sol #47 14% 46.90% 154.1

Sol #48 23% 48.85% 127.4

Sol #49 14% 48.92% 148.1

Sol #50 14% 51.19% 135.3

Sol #51 17% 37.42% 112.5

Sol #52 20% 44.31% 162.5

Sol #53 16% 58.43% 176.9

Sol #54 19% 38.55% 133.0

Sol #55 20% 46.61% 152.0

Sol #56 21% 55.14% 183.2

Sol #57 16% 43.35% 129.5

Sol #58 19% 54.09% 166.6

Sol #59 16% 47.27% 122.9

Sol #60 16% 51.21% 154.7

Sol #61 16% 48.39% 152.6

(continued on next page)
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established NSGA-II and archiving strategies. It is a steady-
state algorithm founded on two pillars: (1) non-dominated
sorting is used as a ranking criterion and (2) the hyper-
volume is applied as a selection criterion to discard that in-
dividual, which contributes the least hypervolume to the
worst-ranked front [8].

5.4. Random

The random search algorithm randomly generates new
uniform solutions throughout the search space. It is not an
optimization algorithm but is a way to compare the perfor-
mance of other MOEAs against random search. If an opti-
mization algorithm cannot beat random search, then
continued use of that optimization algorithm should be que-
stioned [6].

6. Results and analysis

Multiple experiments are performed to improve code
coverage and reduce the cost and redundancy of the selected
program that has 745 lines of code for each dataset. Our pri-
mary objective to maximize the coverage of 745 line of code
we have with a concern about the runtime cost of running the
test cases of each dataset we have. In this section, we will
present the results of our experiments for each dataset running
with the selected four algorithms (ε-MOEA, NSGAII,
SMSEMOA, and Random) using our approach and fitness
function. We will provide the tables all solutions generated
from each algorithm with each dataset. Also, we present a
Scatter Chart to show the relation between Coverage and
Redundancy, and Coverage and Cost to all provided solutions.
In Scatter Char each point in the chart represents a suite of test
cases presented in each solution. The Final chart is to show the
coverage of best solution for each algorithm per dataset.

In Table 1: we present all results generated from ε-MOEA
running on dataset #1 which has 83 test cases. ε-MOEA
generates 66 different solutions with the best coverage 84%.

In Fig. 2 and Fig. 3 the Scatter Charts shows the relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from the ε-MOEA algorithm.

In Table 2: we present all results generated from NSGAII
running on dataset #1. NSGAII generate 57 different solutions
with the best coverage 83.13%.

In Fig. 4 and Fig. 5 the Scatter Charts shows the relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from NSGAII algorithm.

Table 8 (continued)

Redundancy Coverage Cost

Sol #62 24% 61.43% 188.6

Sol #63 20% 50.11% 159.5

Sol #64 16% 52.46% 136.3

Sol #65 23% 65.31% 193.7

Sol #66 17% 46.54% 136.5

Sol #67 17% 54.11% 163.2

Sol #68 26% 53.71% 148.2

Sol #69 14% 46.87% 130.9

Sol #70 19% 54.81% 146.1

Sol #71 20% 58.78% 187.8

Sol #72 19% 43.67% 141.2

Sol #73 10% 50.18% 156.2

Sol #74 26% 64.33% 188.5

Sol #75 14% 45.85% 142.3

Sol #76 17% 58.10% 157.7

Sol #77 14% 53.32% 133.5

Sol #78 26% 60.64% 188.4

Sol #79 11% 43.75% 136.6

Sol #80 14% 54.42% 145.8

Sol #81 21% 57.62% 174.2

Sol #82 14% 46.91% 118.0

Sol #83 20% 48.53% 147.3

Sol #84 19% 59.59% 176.0

Sol #85 10% 50.97% 147.0

Sol #86 19% 53.94% 135.7

Sol #87 20% 53.45% 139.4

Sol #88 24% 55.37% 155.5

Sol #89 10% 50.15% 126.0

Sol #90 19% 49.96% 146.3

Sol #91 20% 40.35% 98.4

Sol #92 19% 57.19% 144.6

Sol #93 17% 50.96% 153.9

Sol #94 20% 50.17% 148.9

Sol #95 20% 45.63% 131.9

Sol #96 17% 48.31% 147.8

Sol #97 20% 64.23% 181.1

Sol #98 13% 48.27% 159.1

Sol #99 14% 57.27% 172.7

Sol #100 14% 48.82% 156.2

Sol #101 23% 55.07% 162.9

Sol #102 16% 47.54% 108.9

Sol #103 21% 54.78% 160.8

Sol #104 10% 56.22% 129.4

Sol #105 19% 60.49% 152.3

Sol #106 20% 41.28% 143.5

Sol #107 13% 50.48% 143.6

Sol #108 17% 53.40% 132.6

Sol #109 26% 67.43% 211.2

Sol #110 20% 64.44% 153.8

Sol #111 24% 52.58% 162.5

Sol #112 19% 53.37% 176.2

Sol #113 19% 52.38% 140.7

Sol #114 20% 52.26% 171.4

Sol #115 21% 61.85% 194.5

Sol #116 20% 52.67% 166.9

Sol #117 16% 48.39% 149.8

Sol #118 19% 46.12% 135.4

Sol #119 21% 65.15% 191.1

Sol #120 11% 42.26% 118.8

Sol #121 23% 62.02% 167.4

Sol #122 16% 51.02% 163.6

Sol #123 11% 34.33% 118.7

Sol #124 16% 49.91% 131.0

Sol #125 24% 59.30% 172.3

Table 8 (continued )

Redundancy Coverage Cost

Sol #126 23% 52.47% 157.4

Sol #127 14% 59.70% 168.7

Sol #128 14% 55.09% 161.1

Sol #129 17% 60.31% 161.6
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In Table 3: we present all results generated from SMSE-
MOA running on dataset #1. SMSEMOA generate 58 different
solutions with the best coverage 83.08%.

In Fig. 6 and Fig. 7 the Scatter Charts shows the relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from SMSEMOA algorithm.

In Table 4: we present all results generated from Random
running on dataset #1. Random algorithm generates massive
number of solution which is 130 solutions with the best
coverage 66.96%.

In Fig. 8 and Fig. 9 the Scatter Charts shows the relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from the Random algorithm.

Finally, in Fig. 10. The comparison code coverage chart
between the four algorithms. Here we notice that small dif-
ferences between the first three algorithms ε-MOEA, NSGAII,
and SMSEMOA and the worst coverage from the Random
algorithm. The random algorithm is the indicator for selection
algorithms which is mean if you choose an algorithm and his
results are worse than the effects of Random algorithms you
should exclude it. The best code coverage is provided by
ε-MOEA algorithm with 84%.

In Table 5: we present all results generated from ε-MOEA
running on dataset #2 which have 70 test cases. ε-MOEA
generates 68 different solutions with the best coverage 92.08%.

In Fig. 11 and Fig. 12 the Scatter Charts shows the relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from the ε-MOEA algorithm.

In Table 6: we present all results generated from NSGAII
running on dataset #2. NSGAII generate 74 different solutions
with the best coverage 91.99%.

In Fig. 13 and Fig. 14 the Scatter Charts shows relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from NSGAII algorithm.

In Table 7: we present all results generated from SMSE-
MOA running on dataset #2. SMSEMOA generate 63 different
solutions with the best coverage 92.61%.

In Fig. 15 and Fig. 16 the Scatter Charts shows the relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from SMSEMOA algorithm.

In Table 8: we present all results generated from Random
running on dataset #2. Random algorithm generates a huge
number of solution which is 129 solutions with the best
coverage 69.43%.

In Fig. 17 and Fig. 18 the Scatter Charts shows relation
between the Code Coverage and Redundancy and Cost for
solutions that generated from the Random algorithm.

Finally, in Fig. 19. The comparison code coverage chart
between the four algorithms for dataset #2. Also, here we
notice that small differences between the first three algorithms
ε-MOEA, NSGAII, and SMSEMOA and the worst coverage
from the Random algorithm. The best code coverage is pro-
vided by ε-MOEA algorithm with 92.61%. In the second
dataset, we notice the better solution of code coverage from
the first dataset that's because of the second dataset despite
having the less number of test case but with less than runtime
cost and redundancy between the test cases.

7. Conclusion

An efficient approach is proposed and applied to different
four algorithms from MOEA Frame from the separate library
with three fitness functions for Coverage, Cost, and Redun-
dancy. Our Solution provides an efficient selection of test
case for automated test cases generation tools that are
suffering from low code coverage and the massive cost of the
runtime of test cases cost. The experimental results demon-
strate the accurate and efficient selection of test suits pro-
vided in each dataset with high code coverage percentage of

Fig. 17. Random coverage and redundancy Rel. for dataset #2.

Fig. 18. Random coverage and cost Rel. for dataset #2.

Fig. 19. Code coverage of all algorithms for dataset #2.
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92.61%. We apply two different datasets of a different
number of test cases to prove our concept of efficient se-
lection of test cases considering the three objectives of
maximizing Code Coverage and reducing the Cost and
Redundancy.
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