
Future Computing and Informatics Journal Future Computing and Informatics Journal 

Volume 3 
Issue 1 (2018) Volume 3, Issue 1, 2018 Article 5 

2018 

Depth-based human activity recognition: A comparative Depth-based human activity recognition: A comparative 

perspective study on feature extraction perspective study on feature extraction 

Heba Hamdy Ali 
Beni-Suef University, Cairo, Egypt, heba.h.ali@fcis.bsu.edu.eg 

Hossam M. Moftah 
Faculty of Computers and Information, Beni Suef University, Egypt, hossamm@gmail.com 

Aliaa A.A. Youssif 
Helwan University, Cairo, Egypt, aliaay@fci.helwan.edu.eg 

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/fcij 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Ali, Heba Hamdy; Moftah, Hossam M.; and Youssif, Aliaa A.A. (2018) "Depth-based human activity 
recognition: A comparative perspective study on feature extraction," Future Computing and Informatics 
Journal: Vol. 3 : Iss. 1 , Article 5. 
Available at: https://digitalcommons.aaru.edu.jo/fcij/vol3/iss1/5 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Future Computing and Informatics Journal by an authorized editor. The journal is hosted on Digital 
Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
u.murad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/fcij
https://digitalcommons.aaru.edu.jo/fcij/vol3
https://digitalcommons.aaru.edu.jo/fcij/vol3/iss1
https://digitalcommons.aaru.edu.jo/fcij/vol3/iss1/5
https://digitalcommons.aaru.edu.jo/fcij?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/fcij/vol3/iss1/5?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol3%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo


Depth-based human activity recognition: A comparative perspective study
on feature extraction

Heba Hamdy Ali a,*, Hossam M. Moftah a, Aliaa A.A. Youssif b

a Beni-Suef University, Cairo, Egypt
b Helwan University, Cairo, Egypt

Received 5 September 2017; revised 18 November 2017; accepted 26 November 2017

Available online 21 December 2017

Abstract

Depth Maps-based Human Activity Recognition is the process of categorizing depth sequences with a particular activity. In this problem,
some applications represent robust solutions in domains such as surveillance system, computer vision applications, and video retrieval systems.
The task is challenging due to variations inside one class and distinguishes between activities of various classes and video recording settings. In
this study, we introduce a detailed study of current advances in the depth maps-based image representations and feature extraction process.
Moreover, we discuss the state of art datasets and subsequent classification procedure. Also, a comparative study of some of the more popular
depth-map approaches has provided in greater detail. The proposed methods are evaluated on three depth-based datasets “MSR Action 3D”,
“MSR Hand Gesture”, and “MSR Daily Activity 3D”. Experimental results achieved 100%, 95.83%, and 96.55% respectively. While combining
depth and color features on “RGBD-HuDaAct” Dataset, achieved 89.1%.
Copyright © 2017 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Human activity recognition has an incredible significance
in computer vision field. The human activity recognition
objective is to examine and characterization progressing ac-
tivities automatically from an unknown video. The advantages
of recognizing human activities from videos are efficient in
several critical applications. Such as automated surveillance
systems [1] in public places, such as metro stations and air
terminals require detection and of abnormal and normal
activities.

There are different sorts of human activities [2] according to
their complexity; these activities are divided into four types:

“Gestures”, “Actions”, “Interactions”, and “Group Activities”.
“Gestures” are simple motion of a part of a body. For example,
“raising an arm and moving a leg.” Actions will be exercises
performed by one individual that might be made out of various
gestures organized in a time order, “strolling”, “waving”, and
“punching” are examples of “Actions”. “Interactions” are
human activities that involve at least two individuals or objects.
As an example, “two persons checking hands” is an interaction
between two individuals and “somebody pushing table” is an
interaction includes one persons and an object. Finally, “Group
activities” are that activities played by group composed of in-
dividuals or objects: “A group of people playing football” and
two groups fighting” are typical examples.

Monitoring of changes in an actor's behavior is an impor-
tant process in activity recognition. This task is in charge of
acquiring applicable relevant data for activity recognition
systems to recognize an activity. The two main activity
recognition approaches are “vision-based” and “depth map-
based”.
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“Vision-based” activity recognition utilizes computer
vision methodologies to analyze visual observations for ac-
tivity recognition using visual sensing facilities, e.g., camera,
and infra-red sensor, to capture activity [3e5] There has been
significant work made on vision-based activity recognition [6],
however, because of the multifaceted nature of true settings.
These methodologies experience from issues related to reus-
ability and scalability, such as highly variation of activities in
the natural environment.

“Depth Maps-based” activity recognition depends mostly
on features, either local or global, extricated from depth map
images [6]. Depth maps give metric estimations of the ge-
ometry while visual information gives projective one that is
invariant to lighting. Moreover, depth sequence representa-
tions for action recognition have a few difficulties. Above all
else, depth map images may contain occlusions, which make
the global features unsettled. Additionally, contrasted with
color images, the depth images do not have texture but it
difficult to apply local differential operators like gradients on
because they are generally too noisy in both spatial and tem-
poral cases.

The majority of vision-based systems are developed to
work on normal visual information. There have been incred-
ible reviews research [7e9]. There are inherent limits to the
sort of image acquisition source. It is delicate to color, shading
and illumination light variations, occlusions, and background
clutters. In spite of great effort, the accuracy of recognizing
actions is still a challenging research point. Due to the finan-
cially cost-effective “Kinect”, depth cameras have gotten
significant consideration from researchers in the vision and
robotics community. The depth camera has two main benefits.
Firstly, the depth sensor supplies information about 3D
structure of the image to recover postures and recognize the
activity. Secondly, the depth sensor can sense in darkness. This
benefit is used for animal monitoring systems. These advan-
tages are utilized in interesting research points like skeleton
human detection from a depth map [10]. The skeletons
measured from depth maps are precise and bring advantages to
numerous applications including action and gesture recogni-
tion. Depth-map human activity recognition can be considered
in its simplest form as a sequence of image representation,
feature extraction process, and recognition of these activities.

The paper is organizes as, we first illustrate related work
and discuss the key features and challenges of the human
activity recognition as these motivate the different methodol-
ogies that detailed in the literature. We discuss images repre-
sentation and feature extraction in Section 2. Many works will
be depicted and examined in more detail in Section 3. In
Section 4, we introduce the most well-known datasets. Then,
we talk about impediments of state of the art approaches and
outline future directions.

2. Feature extraction approaches

In this section, we debate various feature extraction tech-
niques from depth map sequences. Ideally, these should be gen-
eral over little varieties in appearance, background, perspective,

and activity performing. In the meantime, the descriptor must be
adequately generous to take into consideration powerful char-
acterization of the activity. The temporal order is important in
real life action performance. Several of the image representations
approaches expressly consider the temporal order; others extract
only image features for each image of the sequence. In this sit-
uation, the temporal variations are needed to be handled in the
recognition phase.

2.1. 3D points (BOPs) features

Interest points provide an image content representation by
depicting local parts of the image thus consider robustly so-
lution to clutter, occlusions, and intra-class variations [11].
“Interest points” extracted from 2D-images can be employed
for applications like image retrieval, and video classification.
The extraction of the points on the outlines of the planar
projections of the 3D depth-map is the simplest way to sample
3D point's representation. Regards to projection to projection
planes number utilized, however, the number of points can still
be significant. To address the issue; the idea of “bag of point”
[12] is utilized. A sampling task which comprises of “pro-
jection”, “contour sampling”, and finally “retrieval” of the 3D
points that are close to the sampled 2D points as shown in
Fig. 1. BOPs features encode the activities in the expandable
graphical model framework [13]. A static posture is repre-
sented as node in action graph which depicted by a little
arrangement of sampled 3D points.

One limitation of 3D points (BOPs) features approach is the
missing of space features between the interest points. In
addition, it may not be reliable because of noise and occlu-
sions in the depth maps, the silhouettes perspectives from the
top, and the side views. It is hard to sample the interest points
robustly given the geometry and movement varieties over
various people. To address these issues, authors presented in
[14] feature representation, defined as “Space Time Occu-
pancy Patterns: STOP”. The depth map sequence introduces in
a “4D space-time grid”. Saturation method is applied to
improve the roles of the silhouettes points of the body parts
movements. An action of Forwarding Kick depth sequence
formed in space-time cells shown in Fig. 2. The sequence
divided into three segments, and every portion contains about
twenty depth-frames. The empty cells are not displayed, and
the points in red color are the cells that have pointes greater
than a defined level of points. A “STOP” feature vector is very
scanty, that is, the most of its data are zero-elements.
“Orthogonal Class Learning (OCL)” [15] is a modified
version of “Principal Component Analysis (PCA)” [16] to
perform a dimensionality reduction. OCL obtained for every
“STOP” feature vector. A small feature vector is generated by
reduce dimensions that called “PCA-STOP”.

2.2. Spatialetemporal cuboid descriptors

The extension of interest points from 2D images into 3D is
Space-Time Interest Points (STIP) [17] which is mostly used for
action or activity recognition. The popular “STIP” descriptors

52 H.H. Ali et al. / Future Computing and Informatics Journal 3 (2018) 51e67

Future Computing and Informatics Journal, Vol. 3 [2018], Iss. 1, Art. 5

https://digitalcommons.aaru.edu.jo/fcij/vol3/iss1/5



include the “cuboid detector” [18], “HOGHOF” [19], “HOG3D”
[20] and “extended SURF” [21].

The filtering method is presented in [11] to extricate
“STIPs” from depth recordings named as “DSTIP” that
adequately suppress the noise estimations. Extra, new “depth
cuboid similarity feature (DCSF)” to represent the local 3D
depth cuboid around the DSTIPs” with adjustable size is built.
The “cuboid codebook” is produced using K-means algorithm
to cluster the “DCSF” as an outline in Fig. 3.

Another descriptor of the depth action analysis presented in
[22] called Comparative Coding Descriptor (CCD). Small
cuboids can be generated from the spatiotemporal of depth
map with centers. That reference points (center) can be

selected similarly as the corners of spatiotemporal or salient
points for action representation. Cuboid with the side size of
three is used as cuboid, dependent upon which “CCD” com-
ponents is concentrated. The value of the center is compared
with that of the other 26 points respectively, and the differ-
ences are coded. Fig. 4 illustrates the creation of “CCD”
feature descriptor. Colored slices display depth frames in time,
and the red vertex indicates the reference point.

2.3. Random Occupancy Pattern (ROP) features

The authors in [23] also studied activity distinguish issue
from depth sequences acquired by a one depth sensor. They

Fig. 1. Sampling process of 3D points representative from a depth image [12].

Fig. 2. Depth sequence Space-time cells for ‘Forward Kick’ action [14].
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introduced “Random Occupancy Pattern (ROP)” features,
which extracted from sampled 4D sub-volumes with various
sizes and at various locations in Fig. 5.To handle the issues of
noise and occlusion, depth-maps are represented in 4D sub-
stitute of a three-dimensional movement succession. The ROP
features are robust to noise when they are extricated at a bigger
scale. Meanwhile, since they encode majority of the data
starting with the regions that are most discriminative for those
provided for an action, they are less conscious to occlusion.
They also introduced a sampling method to represent the large
space of sample in efficient way. Sparse coding [24] is applied
further to enhance the proposed technique.

2.4. Depth silhouette

Motivated by the large success of silhouette that provides
the shape information of human activities. “Depth silhouettes”
demonstrate discernable parts besides to the shape information
while “Binary silhouettes” contain less information because of
its pixel intensity values distribution over the human body just
shape information is available as demonstrated in Fig. 6a.
While depth silhouette images for sample of rushing activity
shown in Fig. 6b.

Fig. 7 shows method developed in [25] for utilizing “Depth
silhouettes” to generate feature descriptors. The main concept
is to employee “R transform” [26] on the depth silhouette to
obtain compact shape representation rejecting time-sequential
problems. In R transformation, a 2-D directional shape feature
is calculated first through Radon transform of every depth
silhouette, and then a 1-D feature profile, that is translation
and scaling invariant, gets computed through R transform.

Fig. 3. Extracting DCSF from depth video [11].

Fig. 4. “CCD” extraction process [22].

Fig. 5. Occupancy Pattern framework proposed in [23].
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Finally PCA is used for dimension reduction for a set of the “R
transform” profiles of different activities, and then it applies
“Linear Discriminant Analysis” [27] to extract prominent ac-
tivity feature descriptor which are more minimized and robust.
Finally, the features are feed into “Hidden Markov Model
(HMM)” for activity classification. “Linear Discriminant
Analysis” is modified to get discriminate vectors as in [28] like
HMM, the most used sequential methods for visual data. “R-
transform” extracts scale, periodic, and translation invariant
features from the group of activities also used in [29]. The
authors use the “kernel discriminate analysis (KDA)” [30] to
improve the high postures resemblance of various actions.
KDA is significant increases discrimination among the various
categories of actions by using non-linear techniques.

In an example of real-time systems proposed [31] in for
dynamic hand gesture recognition. The authors developed two
sorts of visual features: cell occupancy features and silhouette
features as demonstrated in Fig. 8 respectively. With the large
dimensionality of both shape descriptors, PCA to reduce the
dimensionality. This approach based on action graph, which
similar to standard HMM with their robust properties but by
allowing states share among different gestures, they require
less training data. To deal with hand orientations, the authors
have implemented a new method for hand segmentation and
orientation normalization.

2.5. Surface normals features

Another depth-based descriptor introduced in [32], the
authors has used a histogram to capture the distribution of the
normal surface in the 4D volume of depth to represent the
depth video sequence, time, and spatial coordinates. To obtain
the remarked structure, “Histogram of oriented 4D surface
normals (HON4D)” computed for depth sequence. A quanti-
zation process is applied in 4D space normal polychoron to

construct HON4D, Afterward, refining the quantization to
become more discriminative Fig. 9 outlines the different steps
engaged with computing the HON4D descriptor.

Rather than using depth maps only, 4d local Spa-
tioetemporal features proposed in [33] used to represent
human activities. They utilize a weighted straight of a visual
and geometric features combinations. The approach at that
point concatenate the elements and their gradients using a
spatialetemporal window into one vector is about more than
105 element features. K-means clustering [34] is implied on
all vectors to decrease the high dimensionality. Feature vectors
are grouped from a training subset with 600 vocabularies they
utilized six movement classifications. “Latent Dirichlet Allo-
cation (LDA)” [35] model used to anticipate activities from
input recordings; this methodology address this issue with
respect to six activities classes are considered as “topics” and
feature computed from 4D feature space are considered as
“words”. Because of the efficiency of this sampling schema, it
applied for approximate estimation.

Some work based on hypersurface normals presented in
[36], by cluster a depth maps to generate the “polynormal”
which is used jointly to represent both movements and shape.
To extract the spatial features and temporary orders, the
Adaptive “Spatio-temporal pyramid” is implied to a depth
sequence to subdivide into a set of “space-time grids” as
shown in Fig. 10. A new method of gathering the low level
“polynormals” into the one “supernormal vector (SNV)”
which considered as a modified Fisher kernel descriptor [37].

Another using of normals is the “polynormal” which pre-
sented in [37] to distinguish human activities from video depth
sequences. It gathers hypersurface normals of local neigh-
boring from a depth video to generate the “polynormal” that
jointly represent shape cues and local motion. “Polynormal”
Fisher Vector is the aggregation of the low-level “polynormals”
using Fisher vector. The “Spatio-temporal pyramid” subdivides

Fig. 6. Depth sequences of (a) “binary silhouette” and (b) “depth silhouettes” [25].

Fig. 7. The Flow of Depth Silhouettes and < Transformation method proposed by [25].
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a depth video into a set of space-time cells to extract the spatial
information and temporal order; “Polynormal” Fisher Vectors
from these cells are aggregated as the one feature descriptor of
a depth-map sequence illustrated in Fig. 11.

2.6. Depth motion maps

The “Depth Motion Maps (DMM)” developed to capture
the combined temporal movement energies. More spastically,
the depth map is projected using “orthogonal Cartesian
planes” and then normalized. By computing the difference
between two successive frames and thresholding for every
projected depth-map, a binary depth map is created. Then
summed the binary maps to obtain the “DMM” for every
projective view [39]. “Histogram of Oriented Gradients
(HOG)” [40] is then applied to every perspective view to
extracting the features. “DMM-HOG” descriptors generated
by concatenating three aspects together as shown in Fig. 12.

An approach for human actions recognition is proposed in
[41] using depth images. The motion of the object are
computed by both depth image average and the depth differ-
ence image. They use hierarchical structure of the silhouette
bounding box to get the features from space-time depth dif-
ference images. The temporal feature of the action represented
using motion history of depth images. The author uses the
scale, translation, and Hu moments to describe the features of
the average depth image and the motion history image. Then
using SVM to classify human actions.

Real-time action recognition presented in [42], DMMs
from three projection views (front, side, and top) are used to

Fig. 8. Feature extraction (a) Occupied area of each cell, for cell occupancy features, (b)Fan-like sectors are divided, For silhouette feature [31].

Fig. 9. The HON4D descriptor computing steps [32].

Fig. 10. The joint trajectory volume, “polynormals” proposed in [36].
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describe motion and use PCA for dimensionality reduction as
shown in Fig. 13. To recognition an action, an “l2-regularized
collaborative representation classifier” using a distance-
weighted “Tikhonov” matrix is then utilized. The developed
algorithm efficient computationally allowing it to run in real-
time. To gain a compacted feature representation. The authors
extend their work [43] and presented new methodology in
[44]. Fig. 14 shows two sorts of fusions composed of feature-

level decision-level fusions. In the feature level, “LBP fea-
tures” are merged from three depth motion maps to gain a
compact feature descriptor while in the decision level; a soft
decision merged rule is used to aggregate the classification
outputs.

A compact and discriminative action representation repre-
sented at [44]. The proposed feature extraction and action
classification framework are shown in Fig. 15. Firstly, it

Fig. 11. Spatio-temporal example [38].

Fig. 12. Depth motion maps-based HOG framework proposed by [39].
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creates a side-viewed depth map from the input front-viewed
depth map to capture additional information. Then by accu-
mulating a series of depth, the framework create Depth Motion
Appearance (DMA) and an extended version of motion history
image called “Depth Motion History (DMH)”. “DMH” has
dynamic information of the sequence of the movement.
Finally, “DMAs” and “DMHs” are merged into one single
HOG descriptor. The linear SVM categorizes the “HOG”
feature vector which yields the action class of the testing
video.

The prior depth map-based approach does not consider
dynamic movement of the body. On the other hand, the
method in [45] combines both appearance and temporal fea-
tures that extracted by an extended version of motion history
image.

An another framework for recognize human activity based
on depth maps proposed in [46]. It employs the “local gradient
auto-correlations (GLAC)” [47] to extract shift-invariant
image features from DMMs of depth map images. The
“GLAC” descriptor is relying on the 2nd order of gradients. It

can extract rich information from images. This work based on
the “extreme learning machine (ELM)” [46,48] is introduced
to concatenate the GLAC features from DMMs to recognize
human actions. “ELM” is “single hidden layer feed-forward
neural networks (SLFNs)”. It has been effectively utilized in
different applications [49,50]. Although DMMs obtained using
all depth image sequence can represent the motion and shape
of a depth sequence, the temporal information could not be
captured in a subdivision of depth images. Therefore, the au-
thors introduce a new framework [49,51] based 2D and 3D
auto-correlation of gradients features to extend their work in
[46]. Fig. 16 summarizes the proposed action recognition
method. They use another feature extraction method named
“space-time autocorrelation of gradients (STACOG) [52]. The
“STACOG” feature is an adopted version of “GLAC” in 3D
space and was developed for RGB video. Finally, a weighted
fusion combines the “GLAC-STACOG” features based on
“ELM” in order to recognize actions.

Depth motion maps (DMMs) have demonstrated viability
in human action recognition; but, they lose the temporal

Fig. 13. Real-time action recognition [42].

Fig. 14. The Pipeline of the developed action recognition method [44].
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information and suffer from intra-class varieties caused by
movements speed varieties. To address these difficulties, for
human action recognition using depth map sequences, a
framework introduced in called “Hierarchical Depth Motion
Maps (HDMM)” and “Convolutional Neural Networks
(3ConvNets)” [53]. They rotate the original depth data in 3D
point clouds to mimic the rotation of cameras so that it can
deal with variation cases. Next, to extract effectively the body
shape and movement information weighted “DMM” is
generated at several temporal scales which referred as
“HDMM”. Then, three channels of ConvNets are trained on
the “HDMMs” from three projected orthogonal planes
independently.

The most recent descriptor for human action recognition
proposed in [54], it called Adaptive Hierarchical Depth

Motion Maps (AH-DMMs). Fig. 17 is a specific example of
generating AHDMMs. The AH-DMMs are calculated over
multi-size temporal hierarchical windows of a video sequence;
therefore they encode more details of motion and shape in-
formation which lost in DMMs. Meanwhile, by using motion
energy based segmentation strategy, adaptive windows and
steps are generated, making the AH-DMMs robust to action
speed variations. Then, Gabor features encoding the texture
information of AH-DMMs are extracted to improve the
discriminative ability of the descriptors further. Third, after
reducing dimensions by PCA, the final representations are
classified by l2-regularized CRC. Compared with DMMs, the
AH-DMMs encode temporal information of action sequences,
more details of motion and more discriminative shape clues
can be involved.

Fig. 15. The proposed framework in [45].

Fig. 16. Action recognition method based gradients features [51].
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2.7. Depth and color features

Color data provide the visual appearance of actions, while,
depth data supply the structural information. Work demon-
strated in [55] combine depth and color data. It presents a
successful model for tracking the association among a human
hand and equipment in kitchen, for example, blending with
water and cleaning vegetables. It studies both object and ac-
tion recognition using object tracking techniques. The
framework utilizes the “SIFT feature” from color and depth
images. These features are considered as input to train SVM.
They use PCA on the gradients of 3D hand trajectories to
extract the global features. A hand is tracked using skin color,
local feature is represented as “bag-of-words” of gradients.

Authors in [56] also, uses both depth and color images they
have used various extracting interest points methods and made
accuracy comparison of it. Finally, their work showed that the
best results achieved when combining interest points extracted
from the RGB channel and depth map features as illustrated in
Fig. 18.

In [57], proposed a home activities benchmark dataset
named as “RGBD-HuDaAct”, using both a color video camera

and a depth sensor. Two state-of-the-art image representation
methodologies for action recognition are combined. “Spatio-
temporal interest points (STIPs)” color image and “motion
history images (MHIs)” are extracted from color and depth
images respectively shown in Fig. 19.

An adaptive learning approach [58] automatically extract
“Spatio-temporal features,” and also combines the RGB and
depth features, from RGBD video. The outline of this method
illustrated in Fig. 20. “Graph-based genetic programming
(RGGP)” methodology is presented, a set of primitive 3D
operators is first randomly constructed as combinations and
then grew generation by generation by assessing on a collec-
tion of RGBD video sequences.

Most recently framework combines depth and color cues
exhibited in [59] and calculation to break down RGBD re-
cordings caught from the robot interfacing with people. Four
unique descriptors that have appeared to perform well in
movement in activity recognition tasks: “3D optical flow”,
“Spatioetemporal interesting points” inRGBdata, “depth data”,
and “body posture descriptors”. By combining those features
aims at generating a mechanism like when humans experience
identified activities. Then a “Bag-of-Words” histogram for each

Fig. 17. The generation progress of AH-DMMs with three levels from depth sequence [54].
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sort of feature has been created. SVM classifier is intended to
incorporate every one of the descriptors effectively, in particular
conditions, to privilege a descriptor concerning another one. A
hopeful approach intending to assign different weights to
different types of features is the “multi-channel kernel”.

Recent work in [60,61] have applied the deep learning
concept. An extensive scale dataset for RGB þ Depth actions
with more than 56 thousand video tests are presented [60] in.
Their dataset contains 60 distinctive activity classes. A tem-
poral features for each body part is modeled using recurrent
neural network, and achieved better classification results.

3. Experiments and discussions

In this study, we aimed at showing a comparative perspec-
tive between different feature extraction techniques as shown in
Table 1 that utilized in-depth map based activity recognition.

These techniques are local interest points, occupancy patterns,
depth silhouette, surface normal and depth motion maps.

3.1. 3D points (BOPs) and spatialetemporal features

“Bag of 3D Points” [12]; to represent the 3D structure of
every posture in a salient state, it utilizes few number of 3D
points beside uses a graph to characterize the main postures in
actions. This approach suffered from losing of spatial context
information between interest points. Depth Cuboid Similarity
Feature “DCSF” [11] where a filtering technique extricate
“STIPs” from depth sequence (called “DSTIP”) that sup-
presses the noise. It may not be to view the silhouettes from
side-view and top-view reliable because of noise and occlu-
sions in depth images. That makes it hard to sample the in-
terest points given the geometry and movement varieties
crosswise over various people.

Fig. 18. The framework of combining both the RGB- and depth-map descriptor [56].
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3.2. Random Occupancy Pattern (ROP) features

“STOP” feature [14], it maintains both spatial and temporal
contextual relation among space-time cells while being
adaptable enough to handle intra-action varieties. Random
Occupancy Patterns [23], where the depth maps are randomly
sampled then the commonly characterized samples are picked
and used as a descriptor. It also utilizes a sparse coding
approach to encoding these features. The occupancy features
are utilized in “a real-time system for a dynamic hand gesture”
[31]. Although the silhouette features usually work better than
cell occupancy features in hand gesture recognition because
the most discriminative information about the hand shape is
encoded in the outline of the hand.

3.3. Depth silhouette

Methods based depth silhouette [25,26,31]; for a binary
human silhouette, “R transform” [26], is utilized to describe

low-level features. The complexity benefit of the “R-trans-
form” in both computation and geometric invariance is
obvious. Although, the binary silhouettes only provide the
shape information of actions. 2D directional shape feature map
is calculated first through Radon transform of every depth
silhouette [25], and then a 1D feature profile, that is translation
and scaling invariant, gets calculated using “R transform”.
Action Graph based on Silhouette [31] presented a real-time
recognition system by a depth camera.

3.4. Surface normals features

Descriptors depending on the surface normal. Histogram of
oriented 4D normal represented in [32], it describes the depth
sequence based on the histogram to catch the distribution of
the surface in “time, depth, and spatial coordinates” space.
SNV [36] which cluster hypersurface normals to generate the
“polynormal” which is used to represent the local motion and
shape information jointly. To capture the global spatial and

Fig. 19. The generation process of DLMC-STIP representation in [57].

Fig. 20. The main flowchart for our proposed method [58].
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temporal orders, an adaptive spatiotemporal pyramid is used to
extract set of space-time grids by subdivided a depth video.
PFV [38] also follows this direction. It assembles local
neighboring hypersurface normals from a depth sequence to
form the “polynormal” which jointly represents movement and
shape features. Fisher vector is applied to combine the low-
level “polynormals” into the one feature descriptor.

3.5. Depth motion maps

The “depth motion maps (DMMs)” generated by gathering
motion energy of projected depth maps are used as feature de-
scriptors. “DMMs” are 2D images that supply an encoding of
movement attributes of an action. Depth Motion Maps
[39,41,44], where motion maps are acquired by summation the
subtraction result of the depth frames. This descriptor in [41]
utilized “DMMs” to capture the motion cues of activities,
whereas “LBP” histogram features were utilized to accomplish
minimized representation of “DMMs”. Both feature level and
decision-level fusion approaches were considered which
included “kernel-based extreme learning machine (KELM)”
classification. “Hierarchical Depth Motion Maps (HDMM)”
[52] is present a weighted depth motion maps at several tem-
poral scales. “AH-DMMs” [53] can capture more details of
motion and shape clues by preserving the temporal information
of actions. Meanwhile, the “AH-DMMs” are adaptive to action
speed variations for using energy-based hierarchical structure.
Gabor filter is then adopted to encode texture information of
AHDMMs and generates more compact action representations.

The “DMMs-based GLAC” [46] features are utilized to
capture the rich surface data from the DMMs of a sequence of
depth images. The “STACOG” [51], which is a 3D adopted

version of the “GLAC” feature descriptor, describes the space-
time motion shape of a depth sequence. It likewise bring more
depth sequence temporal features that it has been lost in the
“DMMs”. A weighted combination method based on “ELM”

was introduced in [50] to give greater adaptability in grouping
the two sets of features.

4. State-of-art datasets results

In this section, the main benchmark depth sequence data-
sets for action, gesture and activity recognition are depicted.
All of these datasets included here are a large and different
repertoire of different actions or activities that can be applied
to different contexts or situations.

4.1. MSR action 3D dataset

“MSR Action 3D” dataset [12] is an depth action dataset of
acquired by a depth camera. The depth map images are well-
segmented, there are no objects in the background, and the
person appears at the same distance to the camera. It includes
twenty actions are “horizontal arm wave”, “high arm wave”,
“two hand wave”, “hand catch”, “hammer”, “forward punch”,
“high throw”, “draw x”, “draw circle”, “draw tick”, “hand clap”,
“side-boxing”, “bend”, “sidekick”, “forward kick”, “jogging”,
“tennis swing”, “tennis serve”, “golf swing”, “pick up” and
“throw”. Every action was played by ten persons for 3 times.
The video resolution is 640 � 480, and the frame rate is 15
frames/second. Fig. 21 demonstrates the example of the dataset.

“Polynormal Fisher Vector” [38] achieved 92.73%, results
show the recognition advantages from the global temporal
context. The approaches relying on joints are exposed to joints

Table 1

Comparison between feature extraction techniques.

Methods based on Method Features Representation Classifier

Interest points DCSF [13] Depth cuboid similarity “DCSF” PCA þ kmeans clustering SVM

DCSF þ joint [11] DCSF þ joint position feature PCA þ kmeans clustering SVM

Bag of 3D points [12] 3D points 2d projection Action graph

Occupancy features “STOP” feature [14] STOP PCA Action graph

ROPs [23] ROP PCA SVM

ROPs [23] ROP þ Haar feature PCA SVM

ROPs [23] ROP Sparse coding SVM

Action graph on

occupancy features [31]

Occupancy features PCA Action graph

Silhouettes Binary silhouettes [25] LDA on PCA- R features LBG algorithm HMM

Depth silhouettes [25] PCA- R feature LBG algorithm HMM

Surface normals HON4D þ Ddisc [32] HON4D Histogram SVM þ discriminative

density Ddisc

HON4D [32] HON4D Histogram SVM

SNV [36] A joint trajectory Fisher kernel Gaussian mixture model (GMM)

Polynormals [38] PFV Polynormal Fisher vector Gaussian mixture model

Depth motion

maps 'DMMs'
DMM-HOG [39] DMM HOG SVM

DMM-l2-regularized [41] DMM PCA l2-regularized CRC

DMM-LBP-FF [44] LBP PCA KELM classifier

DMM-LBP-DF [44] LBP PCA KELM classifier

DMA þ DMH þ HOG [45] DMA þ DMH HOG SVM

DMMs-based GLAC [46] DMM GLAC ELM classifier

DMM- STACOG þ GLAC [51] DMM STACOG, GLAC ELM classifier

HDMM þ 3CONVNETS [53] DMM Sampling þ HDMM ConvNets-Neural Network

AH-DMMs þ Gabor [54] DMM Gabor filter þ PCA l2-regularized CRC
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errors regarding to severe self-occlusions. The approaches in
[14,33] still enhance the accuracy in [12] because cloud points
are more stable and present extra shape characteristics. SNV
[36] achieved an accuracy of 93.09% which significantly
outperforms all methods that depend on surface normals.
Although SNV and HON4D methods are based on hypersur-
face normals, SNV outperforms HON4D [32] by 4.20%.
“DMM-HOG” [39] achieved an accuracy 94.6% which out-
performs all previous methods. The accuracy goes down to
93% in Depth Motion Maps-based Local Binary Patterns [44].
It is easy to see that using both GLAC and STACOG features
in [51] shows over 4% higher accuracy than using GLAC
features in [46] only. Finally, deep convolution neural net-
works [51,52] achieved an accuracy 100%; it outperforms all
the previous approaches; this is mostly because it can easily
segment subject by thresholding the depth values, generating
HDMM without much noise; also Pre-trained models can
initialize the image-based deep neural networks well.

4.2. MSR gesture 3D dataset

The “MSR Gesture3D” dataset [31] is a depth sequences
dataset for hand gestures. This dataset contains group of
“American Sign Language (ASL)” gestures. There are twelve
different gestures: “finish”, “green”, “milk”, “hungry”, “past”,
“blue”, “pig”, “store”, “where”, “letter j”, “letter z”, and
“bathroom”. Some depth sequences example are demonstrated
in Fig. 21. Notice that despite the fact that this dataset includes
the depth and color sequences, the deph images only are uti-
lized as a part of the experiments. There are ten subjects, each
playing out each motion 2e3 times. The dataset consists of
336 depth sequences totally. The self-occlusion is generally
common with ASL dataset.

“Polynormal” Fisher Vector [38] achieved an accuracy of
95.83% which outperforms all compared approaches as

demonstrated in Table 2. “DMM-GLAC-ELM” [46] also
achieved high accuracy of 95.5%. The accuracy goes down to
94.74% in SNV [36]. PFV outperforms methods that depend
on Occupancy features [23,31] by 7.33%, “DMM-LBP-DF”
[44] by 1.23%. PFV [38] outperforms SNV by 1.09%. PFV
and SNV hypersurface normals based methods achieve these
results because “polynormals” obtain more discriminative
local motion and shape information; in addition, Fisher vector
is utilized to concatenate the low-level “polynormals” into the

Fig. 21. Example depth frames from “MSRAction3D” dataset [12], “MSRH and Gesture” dataset [31], and “MSRDailyActivity3D” [33].

Table 2

Accuracy of Compared feature extraction techniques.

Method “MSR Action

3D dataset”

“MSR Hand

gesture

dataset”

“MSR Daily

activity 3D

dataset”

DCSF [13] 89.30% � 83.60%

DCSFþJoint [11] � � 88.20%

Bag of 3D points [12] 74.70% � �
“STOP feature [14] 84.80% � �
ROPs [23] 85.92% 86.80% �
ROPs [23] 86.50% � �
ROPs [23] 86.20% 88.50% �
Action graphon

occupancy features [31]

� 88.50% �

Binary silhouettes [25] � � 85.75%

Depth silhouettes [25] � � 96.55%

HON4D þ Ddisc [32] 88.89% 92.45% �
HON4D [32] 85.85% 87.29% �
SNV [36] 93.09% 94.74% 86.25%

Polynormals [38] 92.73% 95.83% �
DMM-HOG [39] 94.60% � �
DMM-l2-regularized [41] 90.50% � �
DMM-LBP-FF [44] 91.90% 93.40% �
DMM-LBP-DF [44] 93% 94.60% �
DMA þ DMH þ HOG [45] 90.45% � �
DMMs-based GLAC [46] 90.48% 95.50% �
DMM- STACOG þ GLAC [51] 94.87% 98.50% 81.88%

HDMM þ 3CONVNETS [53] 100% �
AH-DMMs þ Gabor [54] 94.18% � �
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“Polynormal Fisher Vector”. It is observed that, by using
convolution neural network [53], the overall recognition ac-
curacy beats all comparison methods, leading to almost 2.67%
growth over the next best result 95.83% in PFV [38].

4.3. MSR daily activity 3D dataset

The “MSR Daily Activity 3D” dataset [30,33] is a depth
sequences dataset contains daily activities. The dataset is sur-
roundings objects, and humans show up at various distances to
the camera. The most of activities is “humaneobject interac-
tion”. There are sixteen different activities: “drink”, “eat”, “read
a book”, “cell phone call”, “write on paper”, “use a laptop”,
“cheer up”, “sit still”, “toss paper”, “play a game”, “lie down on
the sofa”, “walking”, “play guitar”, “stand up” and “sit down”.
There are ten different persons, and each person plays each
activity two times in two situations, “standing” and the “sitting”
positions. The activity player in this dataset presents significant
variations in spatial and scaling. Furthermore, most activities in
this dataset include interactions with objects. Fig. 21 shows a
sample of the dataset.

The accuracy result of Depth Silhouettes [25] shows
96.55% in the mean recognition rate over 10 typical home
activities whereas using binary silhouettes the system achieved
only 85.75%; binary silhouettes only provide the shape in-
formation of activities. The system should be useful as a smart
HAR system for smart homes. “Spatioetemporal Depth

Cuboid Similarity Feature” [11] makes accuracy 88.2%. It
accomplishes an accuracy of 88.2% which is greater than SNV
[36] archives 86.25% SNV descriptor describes both local
movements and shape features in “polynormals” which in the
high level encode the motion of hand and shape of the object.

4.4. RGBD-HuDa act dataset

“RGBD-HuDaAct” [57] is dataset for activities captured by a
“Kinect” shown in Fig. 22. This database includes twelve ac-
tivities: “stand up”, “sit down”, “make a phone call”, “enter the
room”, “exit the room”, “mop the floor to bed”, “get up”, “drink
water”, “eat a meal”, “put on the jacket”, and “take off the
jacket”. This dataset organized into 14 daily activities, 30 per-
sons are performing. Every activity video is about 30e150 s
repeated at maximum 4 times by every person. There are 1189
labeled video samples in this dataset.

In the depth map, more bright pixels means more depth
values. As a result of surface reflections, some black regions
cause depth measurement errors [55].

When gathering RGB and depth features [56], the various
method performances of extracting interest points are
compared. Also, it shows that the best accuracy is accom-
plished when extracting when combine the “RGB-based” in-
terest points with the “depth-based” descriptor.

The accuracy comparison is in Table 3. .It shows various
sorts of combinations of “RGB” and “depth-map” descriptors;

Fig 22. Color and depth frames examples [57].
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The “DLMC (STIPs)” is 81.5% recognition accuracy. It can be
seen that accuracy of “Depth (LDP)” is higher than “Depth-
(HOGHOF)”. It also shows that the accuracy of “RGB(IP)” is
higher than “Depth (IP)”, thus “RGB(IP), RGB(HOGHOF),
RGB(IP), Depth (LDP)” has the higher accuracy achieved an
accuracy of 89.1%.

5. Conclusion

Recently, depth data has been received attention in the
human activity recognition field. The main benefits of devel-
oping applications using depth map based compared to vision-
based are; it is more robust to lighting changes, especially in
indoor situations and it has resolved the scale-distance of 2d
sensors, making it simpler to create ongoing real-time systems.

This paper studied the different approaches in depth-map
activity recognition. Also, it focused on detailed literature
about various image representation and feature extraction
techniques as a part of activity recognition. The results have
been discussed the feature descriptions for human activity
recognition using public datasets. For action recognition, the
depth motion maps are most effective feature representation
technique. Inspired by the great achievement of deep classi-
fication model for action recognition using depth map se-
quences, By rotation and temporal scaling, the volume of
training data can be artificially enlarged, from which the
convolutional neural networks benefit and obtain better results
than training on primitive. The way of pre-trained and fine-
tuning is adopted to train ConvNets on small datasets, which
achieved best results in most cases. While in gesture recog-
nition, an extra “space-time auto-correlation of gradients”
features are also extracted from depth image sequence as
corresponding features to cope the loss of the temporal in-
formation in the generating of DMMs which achieved best
results. The “Polynormal” fisher vector also achieved effective
results. Otherwise, PCA and LDA of depth silhouette is a
practical approach in daily activity recognition.
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Accuracy comparison on “RGBD-HuDaAct”.

RGB-Depth Method Accuracy

“RGB(IP, HOGHOF), Depth (LDP)” [56] 89.1%

“RGB (IP, HOGHOF), Depth (HOGHOF)” [56] 83.3%

“[Depth (IP), RGB(HOGHOF)], Depth (HOGHOF)” [56] 81.8%

“DLMC(STIPs)” [57] 81.5%
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