
Future Computing and Informatics Journal Future Computing and Informatics Journal 

Volume 2 
Issue 2 (2020) 2017, Volume 2, Issue 2 Article 3 

2017 

A new method to reduce the effects of HTTP-Get Flood attack A new method to reduce the effects of HTTP-Get Flood attack 

Hamid Mirvaziri 
Computer Department, Engineering Faculty, Shahid Bahonar University of Kerman, Iran, 
hmirvaziri@uk.ac.ir 

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/fcij 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Mirvaziri, Hamid (2017) "A new method to reduce the effects of HTTP-Get Flood attack," Future 
Computing and Informatics Journal: Vol. 2 : Iss. 2 , Article 3. 
Available at: https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2/3 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Future Computing and Informatics Journal by an authorized editor. The journal is hosted on Digital 
Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
u.murad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/fcij
https://digitalcommons.aaru.edu.jo/fcij/vol2
https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2
https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2/3
https://digitalcommons.aaru.edu.jo/fcij?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol2%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol2%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2/3?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol2%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo


A new method to reduce the effects of HTTP-Get Flood attack

Hamid Mirvaziri

Computer Department, Engineering Faculty, Shahid Bahonar University of Kerman, Iran

Received 21 August 2016; revised 5 May 2017; accepted 2 July 2017

Available online 29 July 2017

Abstract

HTTP Get Flood attack is known as the most common DDOS attack on the application layer with a frequency of 21 percent in all attacks.
Since a huge amount of requests is sent to the Web Server for receiving pages and also the volume of responses issued by the server is much
more than the volume received by zombies in this kind of attack, hence it could be done by small botnets; in the other hand, because every
zombie attempts to issue the request by the use of its real address, carries out all stages of the three-stage handshakes, and the context of the
requests is fully consistent with the HTTP protocol, the techniques of fake address detection and anomaly detection in text could not be
employed. The mechanisms that are used to deal with this attack not only have much processing overload but also may cause two kinds of “False
Negative” (To realize wrongly the fake traffic as the real traffic) and “False Positive” (To realize wrongly the real traffic as the fake traffic) errors.
Therefore a method is proposed that is able to adapt itself to the traffic by the use of low processing overload and it has less error than the similar
systems and using this way.
© 2017 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: DDOS; HTTP-GET flood attacks; IOSEC

1. Introduction

1.1. Methods of HTTP-GET flood detection

Various methods have been suggested for detection and
intensity reduction of HTTP Get Flood attack by different
people, some of which are listed in the following.

� Using the puzzle CAPTCHA [1];
� Detecting the same sequence of requests [2];
� Detecting the speed of browsing pages [2];
� Predicting the attack by the use of attack rate [3];
� Detecting the relationship between users' requests [4];
� The number of requests in the specific period of time
[5,17];

� Scoring to the connection [6];

� Detecting the pattern of requests [7];
� Determining the extent of the existent risk in accessing to
the pages [8];

� Using the infrastructure of the detection complex of
DDOS (IDDI)1 attacks [17];

� Detecting the abnormality in the requests [9];
� Using several methods sequentially [10];
� Load balancing [11,12,15];
� Using priority queues with different bandwidth [12];
� IP HoppingeMoving target defense mechanism [13];
� Using hidden cache of the browser [14];
� Blocking by use of Access Control Lists (ACL) [14];
� Using hardware methods [16].

Among the above methods, “The number of requests in the
specific period of time” method has a small processing load
and is one of the most practical ways that could reduce the
intensity of this kind of attack. In this method, determining the

E-mail address: hmirvaziri@uk.ac.ir.

Peer review under responsibility of the Faculty of Computers and

Information, Future University in Egypt 1 Integrated DDOS Defense Infrastructure.

Available online at www.sciencedirect.com

ScienceDirect

Future Computing and Informatics Journal 2 (2017) 87e93
http://www.journals.elsevier.com/future-computing-and-informatics-journal/

http://dx.doi.org/10.1016/j.fcij.2017.07.003

2314-7288/© 2017 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Mirvaziri: A new method to reduce the effects of HTTP-Get Flood attack

Published by Arab Journals Platform, 2017

Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hmirvaziri@uk.ac.ir
www.sciencedirect.com/science/journal/23147288
http://dx.doi.org/10.1016/j.fcij.2017.07.003
http://dx.doi.org/10.1016/j.fcij.2017.07.003
http://www.journals.elsevier.com/future-computing-and-informatics-journal/
http://dx.doi.org/10.1016/j.fcij.2017.07.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


number of requests in a pre-determined period of time is taken
into account, and if it exceeds from a specific threshold, then it
is identified as traffic attack and consequently blocked. In this
method, the allowed number of each user's requests is signif-
icantly important as well as the determining of time interval,
so that the extent of accuracy and correct performance of this
method depends completely on these two parameters. For
example, even so the number of 100 requests in 10 s is
mathematically equal to 10 requests in 1 s, but each of them
shows a different performance when it is required to have legal
selection in order to distinguish the real traffic from the fake
one. The system IOSEC uses this method, and in this paper, it
is used as a criterion to measure the extent of accuracy in the
proposed method.

In IOSEC system which is installed as a plug-in on the
context management system Word Press, a request from every
user is identified in every 500 ms which is allowable by
default, and if the number of requests sending by a user ex-
ceeds from the mentioned number in this period of time, a
page like Fig. 5 is displayed to the user. This page is changed
by default after 10 s and the user requested page is displayed.
If the user resends a request before finishing the 10 s then the
mentioned page is shown again for him and the inside timer
will start recounting from 10. In this system, the mentioned
page can be sent unlimitedly to the user, unless the user re-
solves the puzzle at the bottom of the page. The user by
resolving the puzzle that is located at the bottom of the page
introduces him as the legal user, and he will not see such a
page anymore (after he is added to the white list). It is trivial
that if a hacker can success to solve the puzzle for each agent
and put address of that agent in the white list, this system
would not resist against the issued attack from that agent
anymore.

2. Materials and methods

2.1. Discussion about the proposed method

Most of introduced methods dealing with HTTP Get Flood
attack are depend on the analysis of the site's traffic at the
non-attack times; and due to using different parameters, they
have processing and storing overload and do not have much
functionality in the practical environments. Among the
mentioned methods, “the determination of the number of
allowed requests in a specific time” has a small overload and
is usable in the practical environment, but the determination
of the mentioned parameters in this method requires gath-
ering the traffic history for each site; therefore, this method is
not easily movable, and also since traffic of a site in different
times is influenced by the emotions of users during their visit,
so this method does not have high accuracy. Simplicity and
applicability of this method caused that a technique is created
which has high accuracy in addition to have the ability of
implementing by hardware and software. It has also high
portability without any knowledge of content and traffic
history of the site. In this paper, HGFMS method is intro-
duced with portability and traffic adaptability as well as

hardware applicability. The location of this system is shown
in Fig. 1.

HGFMS makes the number of requests automatic and time
interval in different states is consistent with traffic by intro-
ducing a new criterion as server status and by using of random
time delay mechanisms as well as by using of trap link.
Therefore it can be used without having a traffic history to
display more accurate performance.

In HGFMS, we assume the maximum response time of the
server to the requested pages (not components within the page)
is in second unit in the main bottleneck and also the main user
uses at most 40 percent of the server power in the above-
mentioned criterion so the current state of the server can be
divided into normal and abnormal. In other words, if server is
working with more than 40% of its power, the abnormal state
is considered; the traffic of users is suspected and a page is
shown to the user as shown in Fig. 2. In the mentioned page,
there is a button to continue which is activated after the dis-
played time in the button and by pressing it the user is directed
to the requested page.

To deal with intelligent agents, the following cases are
considered in the waiting page shown to the user:

1. The length of delay time is selected randomly in the in-
terval of 30e60 s, and the user is allowed to press the
mentioned button after finishing the mentioned time,
therefore if the time distance between the requests of
participant agents in the attack is more than the specified
amount or less than it, the traffic attack would be detected.

2. The link of requested page is not placed directly in
backside of the button; thus, if a request is sent to the link
in the backside of the button before finishing the appro-
priate time in the page, this indicates that request is issued
by an intelligent agent.

3. Considering that in the worst situations, intelligent agents
act exactly like downloader programs of the site and
attempt to issue a request to the all built-in links within the
page, the trap link has been used at the beginning of all
pages in the site. If there is a request to the trap link, it
immediately put the related IP into the black list and
blocks other requests from that IP.

It should be noted that intelligent agents usually use multi
threads at the same time to issue a request to the links within
the page and therefore the number of available trap links
within the page and even the location of them is effective in
the number of responses the agent receives before being
blocked; for example site downloader software and intelligent
agents with similar behavior can be blocked by placing the
trap link at the beginning and at the end of the first page of
those kinds of sites that have only a few limited links to select
language.

In the flowchart of proposed system which is illustrated in
Fig. 3 the following structures have been used:

1. List of requests to access to the page: all requests to
receive the pages together with the receiving time and the

88 H. Mirvaziri / Future Computing and Informatics Journal 2 (2017) 87e93

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 2, Art. 3

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2/3



IP address of the requester are stored in a table and by the
use of this table the number of requests of every IP at is
calculated a time unit.

2. The table of suspicious IPs: those IPs that are suspicious
and send them waiting page, are kept in this list. Also the
address of requested page as well as a list of suspecting
times is kept in this list. In the proposed system, each IP
could be suspected three times at most; in the other words,
the time-delay page would be shown at most three times
for each IP address and if the related button is not pressed
during these times, that IP address would be moved to the
black list, and its future communication would be blocked.

3. The history list: the suspicious IP addresses and times that
managed to pass the time-delay stage successfully when
the server was in normal state, are placed in this list. This
list will be used to enhance the threshold amount of the
number of requests in the specified time interval.

4. The black list: the IP addresses that are known as unal-
lowable and are not allowed to use the server are kept in
this list.

2.2. Theory of the proposed system

In the beginning, the request sender's address and the ad-
dresses within black list are investigated, and only the ad-
dresses that are not within the black list is allowed to continue;
then the page request is investigated and if a request for the
forbidden page is received, its sender address is placed in the
black list and their specifications are removed from the history
and specious list as shown in Fig. 3.

In the next stage, the speciousness of the sender's address is
investigated, and if it is not in the specious list, there are two
cases:

1. The number of user requests is more than the threshold at
the time unit. In this case, the user is suspected and a time-
wait page will be sent to him. The user who receives the
time-wait page is allowed to be reentered to the site only
by a click on the button inside it. This button, is deacti-
vated for 30e60 s in the beginning and then it is activated
so the user should press the button at most 10 s after

Fig. 1. The location of the proposed system.

Fig. 2. Waiting page to confirm the identity of the requester.

89H. Mirvaziri / Future Computing and Informatics Journal 2 (2017) 87e93

Mirvaziri: A new method to reduce the effects of HTTP-Get Flood attack

Published by Arab Journals Platform, 2017



activating. If, for any reason, the user could not do this, or
he recalls the page or presses the back button of his
browser, this page is shown to him again. In total, if the
page is seen three times by the user, but the user does not
press the button inside it, then that IP address will be
blocked at the next visit. On the other way, if the suspi-
cious user presses the related button at the specified time
and the server was in the normal state, in addition to
sending the considered page to the user and removing his
address from the list of suspicious users, the address and
the time of accepting his request is recorded in the history
list. Then, it is investigated at the defined time interval if
the above user has repeated the above stages more than
once or not. If the user address has been repeated more
than once at the specified length of time, it means that,
probably, the defined threshold for the number of requests
at the time unit is so small that result in this event, so one
unit is added to it. Thus the system detects and applies the
optimal value by increasing and reducing the mentioned
threshold at different times. It should be noted that if the
user presses the button at the specified time but the server
is not in the normal state, then a request page will be
shown to him and his address will not be added to the
history list; therefore the history list includes only the
accepting times and the addresses of the specious users

who have stepped forward the waiting stage correctly
when the server was in the normal state.

2. The number of user requests is less than the threshold at
the time unit. In this case, the server status should also be
investigated and the appropriate behavior should be done
with respect to its status. If the server is in the normal
state, then the requested page is sent to the user but if the
server is not in the normal case, there are another two
cases:

a. The defined threshold for the number of allowed
requests is more than the needed value at the time
unit.

b. The server has been attacked by a large botnet.

To prevent the first possibility, defined threshold is sub-
tracted by one if it is higher than one and in the second case,
send a time-wait page to all the users (all of them are sus-
pected) in order to understand the human nature of the re-
quests issuers (see Table 1).

2.3. Implementation of HGFMS (proposed method):
practical approach

To implement HGFMS, the content management system
Word Press was used to create a site with seven designed pages

The page request happens

Reject request

Is sender’s 
IP in the 

black list?

Is the 
request for 
trap link?

Is IP 
specious?

Has he 
requested 
more than 

three times?

Has the 
address 

under button 
requested?

Has the request 
reach before
finishing wait 

time?

Has the request 
reached after the 

allowed time?

Is the server in 
the normal 

state?

Is the number 
of requests 

more than the 
allowed?

Is the server 
in the normal 

state?

In the recent 5 min, is 
there the user address 
more than one time in 

the history list?

1- Add to the black list
2- Remove from the specious 
list
3- Remove from the history list

1- Add to the black list
2- Remove from the specious 
list
3- Remove from the history list

1- Add to the black list
2- Remove from the specious list
3- Remove from the history list

1- Update the specious list
2- Show the wait page

1- Update the specious list
2- Show the wait page

1- Send the requested page
2- Remove from the specious 
list

Increasing the threshold 
amount of the allowed number 
of the user request at the time 

unit

1- Add to the specious list
2- Send the wait page

Send the answer

1- Send the requested page
2- Remove from the specious 
list
3- Add to the history

1- Reduce the threshold amount of the number of 
the requests at the time unit
2-Add to the specious list
3- Send the wait page

YES

NO

NO

NO NO

NO

YESYES

YES

YES

YES

YES NO

NONO

YES

YES
YES

NO

NO

YES

Fig. 3. Flowchart of the proposed system.

90 H. Mirvaziri / Future Computing and Informatics Journal 2 (2017) 87e93

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 2, Art. 3

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2/3



according to Table 2 and it is installed on a system with the
specifications shown in this Table. Both systems; HGFMS and
IOSEC; are installed as a plug-in on the mentioned content
management system and reaction of them is recorded by
activating each of the mentioned plug-ins separately in every
stage and the attack is performed.

By the use of mentioned content management system and
the addition of the following line in the header file, the trap
link was added to the beginning of all pages. As it is clear
from the html code, to hide the link from the users' eyes, no
text has been written for it. It should be noted that the trap link
is hidden from the users' eyes, but it is visible for the site
download software, such as Teleport, Pro and intelligent
agents that operate within the same way, and they should send
a request to receive them like other links inside the page,

<ahref¼“http://192.168.142.100/?page_id¼BlockMe”></a>
Employed topology to test HGFMS system is shown in

Fig. 4. In this implementation, the operating system is
Linux.BoNeSi and LOIC softwares are used to simulate the
traffic of the HTTP Get Flood attack and F52 attacks respec-
tively. In order to convergence of this system and to obtain an
appropriate value for threshold of allowed number of the
request, a client attempted to send his requests, and on
average, after 5 h and passing 4 times of waiting page, the
threshold value was changed from its initial value to 5. The

information related to this period is presented in Table 3. Also,
the values that are used to implement the proposed system are
given in Table 4.

3. Comparison between proposed and similar systems

To compare the performance of HGFMS with similar sys-
tems, IOSEC HTTP Anti Flood/DoS Security Gateway Mod-
ule, was chosen [5]. Exploiting the mechanism of a number of

Table 1

Specifications of the server system.

Operating System Windows 7 Ultimate x64

CPU AMD Athlon 64 X2 5000

RAM 4 GB

Hard Disk Capacity 320 GB

Speed of the Network Card 100 Mb/s

Launched Version of the Server XAMPP v5.6.11 PHP 5.5.27

MySQL 5.6.25

Apache 2.4.12

Table 2

Specifications of the pages of the test site.

The address of each page The number of the

requests for receiving

the page and its internal

components

http://192.168.142.100/ 15

http://192.168.142.100/?page_id¼74 25

http://192.168.142.100/?page_id¼96 26

http://192.168.142.100/?page_id¼44 18

http://192.168.142.100/?page_id¼23 13

http://192.168.142.100/?page_id¼112 12

http://192.168.142.100/?page_id¼12 14

Fig. 4. Topology used in the implemented environment.

Table 3

Operation of the proposed system and measured time by a typical user.

Operation Time

Initial value of allowed number of the

requests in 30 s

1

Duration of adapting to the traffic 5 h

Average number of requests 1133

The number of times seeing waiting page 4

Final value of the allowed number of

requests in 30 s

5

Table 4

Values in the implementation of the proposed method.

Title Value

The maximum number of the

requests in second

15

Threshold of the normal server

performance

6

Duration to calculate the allowed

number of the user requests

30 s

Initial value for the allowed number

of the user requests

1

Time interval between the requests of

legal users

Randomly between 2 and 30 s

Duration of the wait shown on the

waiting page

Randomly between 30 and 60 s

Allowed duration to press the

available button on the waiting

page

10 s

Time of holding and applying the

history

5 s

2 In attacks F5, the browser, under the effect of the available script inside the

site or through holding the button F5 by user (the Refresh operations in many

browsers is done by the button F5), attempts to send sequential and same

requests to the regarded site.

91H. Mirvaziri / Future Computing and Informatics Journal 2 (2017) 87e93

Mirvaziri: A new method to reduce the effects of HTTP-Get Flood attack

Published by Arab Journals Platform, 2017



requests at the time unit is used to detect the traffic of attack.
This system is available in the form of a plug-in on the content
management system. In this plug-in, the allowed number of
user's requests is calculated in the time unit, and if it exceeds
from the pre-determined specific value, a page is shown to the
user similar to the Fig. 5. The settings and the specifications of
both systems are given in Table 5.

4. Results

In this article two methods, IOSEC and HGFMS (proposed
method) is implemented and after carrying out different at-
tacks on both mentioned methods the results in Table 6 are
achieved. According to these results, HGFMS behave much
more effective than IOSEC dealing with a variety attack

Fig. 5. Time delay page shown by the IOSEC plug-in.

Table 5

Comparison of the proposed method with the method introduced in Ref. [5].

IOSEC HGFMS

The time interval of the calculation

of the requests

500 ms 30 s

The number of requests in the time

interval

2 Variable

The benchmark to calculate the

server capacity

Does not have Request for page in seconds

The way to seal with the suspicious

traffic

Sends the time waiting page

together with the puzzle

CAPTCHA

Sends the wait page

The number of successive

suspiciousness to an address

Infinite At most three times

Permanent removing of the

suspicious traffic

Dose not have By the use of the black list

Adaptability to traffic Does not have Has

The calculation benchmark Number of all requests at time unit Number of the requests to receive the

page at time unit

Criterion of attack detection Exceeds from the defined threshold

for the maximum of user requests

at time unit

Exceeds from the defined threshold

for the maximum of user requests for

the user page at time unit

Ability to deal with the intelligent

agents

Does not have Has (Using the trap link)

The ability to deal with the agents

that have the capability of

adjusting the request rate

Does not have Has

The possibility to introduce the agent

as legal user

using the resolution of the puzzle

CAPTCHA and recording the agent's
address in the white list

Does not have

92 H. Mirvaziri / Future Computing and Informatics Journal 2 (2017) 87e93

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 2, Art. 3

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss2/3



factors and provides conditions for the server to serve its users
even at the time of attack.

5. Conclusion and suggestion

By taking advantage of new features of HGFMS, it is
concluded that it has a better performance comparing with
similar system. The feature of trap link is caused that the
proposed system can block the traffic of the downloader
software of the site and the intelligent agents that have similar
behavior. Also, it has been able to adapt the allowed number of
requests to the traffic and situation of the server by use of a
new parameter called the server status without the need to
have the site's traffic history. Therefore it has the ability to deal
with different rates of attacks and will have fewer errors than
the similar methods. Moreover, using waiting page with var-
iable time instead of CAPTCHA puzzle makes it user-friendly
and natural secure system. It has high portability because of
independency on site content. Hardware implementation is
suggested in order to separate the processing load related to
this system. Also, it is recommended that Tarpitting is used
instead of removing requests of the users who are put in the
black list to reduce processing load of the server and impose
the processing load on the agent which leads them to be
removed.

References

[1] Ko N, Noh S, Park JD, Lee SS, Park HS. An efficient anti-DDoS

mechanism using flow-based forwarding technology. 9th international

conference on optical Internet (COIN), Jeju, July, 1e3. 2010.
[2] Yatagai T, Isohara T, Sasase I. Detection of HTTP-GET flood attack

based on analysis of page access behavior. In: Proceedings of IEEE

Pacific Rim Conference on communications, computers and signal pro-

cessing, Victoria, Auguest; 2007. p. 232e5.
[3] Thapngam T, Yu S, Zhou W, Beliakov G. Discriminating DDoS attack

traffic from Flash Crowd through Packet Arrival patterns. IEEE confer-

ence on computer communications workshops (INFOCOM WKSHPS),

Shanghai, April. 2011. p. 952e7.

[4] XieY, Yu S.A large-scale hidden semi-Markovmodel for anomaly detection

on user browsing behaviors. IEEE/ACM Trans Netw 2008;17(1):54e65.

[5] Muharremoglu G. Web application level approach against the HTTP

Flood attacks IOSEC HTTP Anti Flood/DoS Security Gateway Module.

2012. Available from: http://www.iosec.org [accessed 10.07.14].

[6] Beitollahi H, Deconinck G. Tackling application-layer DDoS attack. The

3rd international conference on ambient systems, networks and tech-

nologies, Canada, Aug. 2012. p. 432e41.

[7] Lu WZ, Yu Sh. An HTTP flooding detection method based on browser

behavior. International conference on computational intelligence and

security, Guangzhou, November. 2006. p. 1151e4.

[8] Lin CH, Lee ChY, Liu JCh, Chen ChR, Huang ShY. A detection scheme for

flooding attack on application layer based on semantic concept. Interna-

tional Computer Symposium (ICS), Tainan, December. 2010. p. 385e9.
[9] Cid D. Analyzing popular layer 7 application DDoS attacks. 6 2014.

Available from: https://blog.sucuri.net/2014/02/layer-7-ddos-blocking-

http-flood-attacks.html.

[10] Giralte LC, Conde C, Diego IM, Cabello E. Detecting denial of service

by modelling web-server behavior. Madrid, Spain: Computer Architec-

ture and Technology Department, Universidad Rey Juan Carlos; October

2013. p. 2252e62.

[11] Eddy W. TCP SYN Flooding attacks and common mitigations: IETF.

RFC 4987. 2007.

[12] Chee WO, Brennan T. Http post. OWASP AppSec DC, Canada, Nov,

15e81. 2010.
[13] Yang-Seo C, Jin-Tae O, Jong-Soo J, Jae-Cheol R. Integrated DDoS attack

defense infrastructure for effective attack prevention. 2nd international

conference on Information Technology Convergence and Services

(ITCS), Cebu, August. 2010. p. 1e6.
[14] Mohamed Ibrahim AK, George L, Govind K, Selvakumar S. Threshold

Based Kernel Level HTTP Filter (TBHF) for DDoS mitigation. Int J

Comput Network and Inf Security (IJCNIS) 2012;4(12):31e9.

[15] Spagna S, Liebsch M, Baldessari R. Design principles of an operator-

owned highly distributed content delivery network. IEEE Commun

Mag April 2013;51(4):132e40.

[16] Jin J, Nodir N, Im C, Nam SY. Mitigating HTTP GET Flooding attacks

through modified NetFPGA reference router. 1-st Asia NetFPGA De-

velopers Workshop, Daejeon, Korea, June, 1e7. 2010.

[17] Choi Y, Oh J, Jang J, Ryou J. Integrated DDoS attack defense infrastructure

for effective attack prevention. 2nd international conference on information

Technology convergence and Services (ITCS), Cebu, Aug ,1e6. 2010.

Table 6

Comparing the performance of the system dealing with the attack of the

intelligent agents.

IOSEC HGFMS

The number of the

received files with 10

threads at the same

time

44 27

Success rate: 29% Success rate: 56%

The number of the

received files with 1

thread in an interval of

1 s

62 29

Success rate: 0% Success rate: 53%

The number of the

received files with 1

thread in an interval of

30 s

62 29

Success rate: 0% Success rate: 53%

The extent of

responsiveness to users

at time of the attack F5

by the use of one agent

0% 100%

False positive 12% 1%

93H. Mirvaziri / Future Computing and Informatics Journal 2 (2017) 87e93

Mirvaziri: A new method to reduce the effects of HTTP-Get Flood attack

Published by Arab Journals Platform, 2017

http://refhub.elsevier.com/S2314-7288(16)30033-2/sref1
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref1
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref1
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref1
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref2
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref2
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref2
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref2
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref2
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref3
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref3
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref3
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref3
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref3
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref4
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref4
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref4
http://www.iosec.org
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref6
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref6
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref6
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref6
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref7
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref7
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref7
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref7
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref8
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref8
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref8
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref8
https://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html
https://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref10
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref10
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref10
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref10
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref10
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref11
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref11
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref12
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref12
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref12
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref13
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref13
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref13
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref13
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref13
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref14
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref14
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref14
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref14
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref15
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref15
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref15
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref15
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref16
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref16
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref16
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref16
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref17
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref17
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref17
http://refhub.elsevier.com/S2314-7288(16)30033-2/sref17

	A new method to reduce the effects of HTTP-Get Flood attack
	Recommended Citation

	A new method to reduce the effects of HTTP-Get Flood attack
	1. Introduction
	1.1. Methods of HTTP-GET flood detection

	2. Materials and methods
	2.1. Discussion about the proposed method
	2.2. Theory of the proposed system
	2.3. Implementation of HGFMS (proposed method): practical approach

	3. Comparison between proposed and similar systems
	4. Results
	5. Conclusion and suggestion
	References


