
Future Computing and Informatics Journal Future Computing and Informatics Journal 

Volume 2 
Issue 1 2017, Volume 2, Issue 1 Article 6 

2017 

Enersave API: Android-based power-saving framework for mobile Enersave API: Android-based power-saving framework for mobile 

devices devices 

Y Beeharry 
Department of Computer Science and Engineering, University of Mauritius, Réduit, Mauritius, 
y.beeharry@uom.ac.mu 

A.M Muharum 
Department of Computer Science and Engineering, University of Mauritius, Réduit, Mauritius, 
mohammad.muharum@umail.uom.ac.mu 

V Hurbungs 
Department of Computer Science and Engineering, University of Mauritius, Réduit, Mauritius, 
v.hurbungs@uom.ac.mu 

vershley joyejob 
Department of Computer Science and Engineering, University of Mauritius, Réduit, Mauritius, 
vershley.joyejob@umail.uom.ac.mu 

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/fcij 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Beeharry, Y; Muharum, A.M; Hurbungs, V; and joyejob, vershley (2017) "Enersave API: Android-based 
power-saving framework for mobile devices," Future Computing and Informatics Journal: Vol. 2 : Iss. 1 , 
Article 6. 
Available at: https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Future Computing and Informatics Journal by an authorized editor. The journal is hosted on Digital 
Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
dr_ahmad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/fcij
https://digitalcommons.aaru.edu.jo/fcij/vol2
https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1
https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6
https://digitalcommons.aaru.edu.jo/fcij?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol2%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol2%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6?utm_source=digitalcommons.aaru.edu.jo%2Ffcij%2Fvol2%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20dr_ahmad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20dr_ahmad@aaru.edu.jo


Enersave API: Android-based power-saving framework for mobile devices

A.M. Muharum, V.T. Joyejob, V. Hurbungs, Y. Beeharry*

Department of Computer Science and Engineering, University of Mauritius, R�eduit, Mauritius

Received 9 September 2016; revised 15 May 2017; accepted 2 July 2017

Available online 29 July 2017

Abstract

Power consumption is a major factor to be taken into consideration when using mobile devices in the IoT field. Good Power management
requires proper understanding of the way in which it is being consumed by the end-devices. This paper is a continuation of the work in Ref. [1] and
proposes an energy saving API for the Android Operating System in order to help developers turn their applications into energy-aware ones. The
main features heavily used for building smart applications, greatly impact battery life of Android devices and which have been taken into
consideration are: Screen brightness, Colour scheme, CPU frequency, 2G/3G network, Maps, Low power localisation, Bluetooth and Wi-Fi. The
assessment of the power-savingAPI has been performed on real Android devices and also compared to themost powerful power-saving applications
e DU Battery Saver and Battery Saver 2016 e currently available on the Android market. Comparisons demonstrate that the Enersave API has a
significant impact on power saving when incorporated in android applications. While DU Battery Saver and Battery Saver 2016 help saving 22.2%
and 40.5% of the battery power respectively, the incorporation of the Enersave API in android applications can help save 84.6% of battery power.
© 2017 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Mobile; Android; Energy consumption; API

1. Introduction

Mobile devices have become an integral part of people's
lives [1,2]. The reason for them being given the name of smart
devices is essentially due to the fact that they are used to
perform several important tasks. Along with the unprece-
dented evolution of mobile devices, comes those applications
which magnify their services but at the same time increase the
average power consumption leading to shorter and less
anticipated battery life [3]. Thousands of applications are
developed on a daily basis with continuous improvements and
novel features but very often, the power consumption factor is

overlooked. It is therefore necessary to study the usage pattern
for proposing better power saving solutions.

The current most popular operating systems are Google's
Android, Microsoft's Windows Mobile and Apple's IOS. Fig. 1
shows an indication of the market share of these operating
systems as at 2015 [4]. Clearly, Android has the highest
market share of approximately 83%. Android is an open
source mobile operating system developed by Google [5]. The
Android marketplace continues to grow at an aggressive rate,
and a great number of powerful applications are uploaded on a
daily basis. According to Statista, there are more than 1.5
million applications on the Android Market [6].

Android has not been spared against the difficulties
involving the battery life of its devices. Despite being equipped
with various and powerful functionalities, the battery life of the
mobile devices is very often neglected. Prolonged use of those
features limits the battery life to only a few hours. The authors
of Ref. [7] argued that in spite of many improvements in low-
power hardware design and battery life, there is now growing

* Corresponding author.

E-mail addresses: mohammad.muharum@umail.uom.ac.mu (A.M.

Muharum), vershley.joyejob@umail.uom.ac.mu (V.T. Joyejob), v.hurbungs@

uom.ac.mu (V. Hurbungs), y.beeharry@uom.ac.mu (Y. Beeharry).

Peer review under responsibility of Faculty of Computers and Information

Technology, Future University in Egypt.

Available online at www.sciencedirect.com

ScienceDirect

Future Computing and Informatics Journal 2 (2017) 48e64
http://www.journals.elsevier.com/future-computing-and-informatics-journal/

http://dx.doi.org/10.1016/j.fcij.2017.07.001

2314-7288/© 2017 Faculty of Computers and Information Technology, Future University in Egypt. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mohammad.muharum@umail.uom.ac.mu
mailto:vershley.joyejob@umail.uom.ac.mu
mailto:v.hurbungs@uom.ac.mu
mailto:v.hurbungs@uom.ac.mu
mailto:y.beeharry@uom.ac.mu
www.sciencedirect.com/science/journal/23147288
http://dx.doi.org/10.1016/j.fcij.2017.07.001
http://dx.doi.org/10.1016/j.fcij.2017.07.001
http://www.journals.elsevier.com/future-computing-and-informatics-journal/
http://dx.doi.org/10.1016/j.fcij.2017.07.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


awareness that a strategically viable approach to energy man-
agement must include higher levels of the system. The authors
of Ref. [8] stated that energy should be considered as a first-
class resource together with the traditional OS perspective of
performance maximization. Despite of the works produced,
most of them gather and model data using benchmark statistics
without taking much consideration of the users' behaviour on
the device. A study along this line has been conducted in Ref.
[9]. The first attempt to building a personalized power model in
this direction was performed in Ref. [10].

In order to cope with the power-hungry mobile phones,
researchers are actively looking for ways to improve not only
energy density but also longevity, self-discharge and opera-
tional costs. The two most widely used battery types are the
Lithium-Ion (Li-ion) and Lithium-Polymer (Li-Po) batteries.
The use of Li-ion battery system in mobile phones has taken
an upward trend during the recent years. The fact that this
battery provides high-energy density and is light in terms of
weight makes it very suitable for mobile phones. The power
density of the battery is 126 Wh/kg [11]. Renowned com-
panies like Samsung, LG and Apple make use of Li-ion bat-
teries to power their mobile phones. The average charging
time is 2 h [11]. The power density of Li-Po batteries is
185 Wh/kg [12], which is more than Li-ion batteries. Apple's
iPhone 5 which is fuelled by this type of battery takes
approximately slightly more than 2 h to fully charge according
to [13]. The battery of the Apple's iPhone 5 can last up to 10 h
when making voice call over 3G network [14].

The power consumption may be broken into the following
main subsystems which have been collected by measurements
from the operating system derived from Refs. [15,16]. These
components consume more power than other ones in mobile
devices.

Power
used ¼ display þ CPU þ audio þ GPS þ Bluetooth þ Wi-Fi.

During normal operation of a mobile phone, it is the display
and the GSM network which utilize the most power [17].

Table 1 shows the screen power consumption of the Samsung
Galaxy S5 from Ref. [18]. Some of the common tasks using a
smart mobile device together with the corresponding average
energy usage excluding backlight is shown in Table 2 [18].

The research carried out in Ref. [15], showed that browsing
the internet through Wi-Fi or 3G-network can consume up to
about 1500 mW of power at brightness level of 36 while
watching YouTube videos at brightness level of 102 can
exhaust up to 1800 mW. These figures give an idea of how
much power is required to carry out some tasks on smart-
phones. Additionally, researchers at CNET and AVG, made a
list of android applications that are resource intensive and
which can even bring the latest smartphones to their knees.
The compiled list from Refs. [19,20] of the applications that
CNET and AVG have found to negatively impact the battery
life are: Facebook App, AllShareCast (Samsung), ChatON
Voice and Video Chat (Samsung), Instagram, and Sportify
Music. According to Refs. [21,22], the Facebook Android
application by itself consumes about 58% of the battery when
used in Wi-Fi mode for about half a day. This demonstrates
that even with the well-known applications present on the
market, developers very often do not put the extra effort into
the energy-saving factor. Some power consumption facts about
smart mobile devices are described next.

1.1. Screen brightness and Colour scheme

In Ref. [16], the authors determined that screen brightness
is one of the battery depleting features. Therefore, the more
the screen stays on, the more energy is being drained. The only
way to minimize its power usage is to reduce the brightness

Fig. 1. Android OS market share [4].

Table 1

Screen power consumption of Samsung Galaxy S5 [18].

Average

brightness/mW

Maximum

brightness/mW

Backlight 820 1500

49A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



level as demonstrated in the paper. Applications which require
the screen to stay on as long as the user is using the phone
need to have efficient ways to deal with the long power drain.
According to technicians at Howtogeek.com [23], black pixels
do not produce any light compared to white pixels, and
therefore use less power in AMOLED screen devices.

1.2. CPU frequency

As noted by developers at ajqi.com [24], “The higher the
CPU clock, the more power is used.” Extra frequency implies
higher voltage power from the battery. On the other hand, low
CPU frequency is synonymous to slow running of CPU
intensive applications. But small applications that do not
require much CPU usage can afford to run on reduced CPU
frequency. As explained in Ref. [25], the CPU clock and
voltage scaling is a major technique used to reduce power
consumption. They described namely 2 types of CPU fre-
quency profiles or governor types as shown in Table 3 [26].

1.3. Network

A fair Wi-Fi signal on average with an Android device
utilizes less power when compared to a 3G or 2G network
connection. Nevertheless this is not ideal in all situations,
since according to [27], the power consumption of the mobile
data and Wi-Fi would vary depending on the signal strength
and there may be times where switching to a 3G or 2G
network may be more efficient than accessing internet through
Wi-Fi.

1.4. Maps

Google Map API provides different types of maps, and
each one utilizes different amounts of power depending on the
volume of data required. The maps are as described in Table 4.
It has been shown in Ref. [28] that how the longer the data
takes to download, the longer the wireless radio needs to stay
in full power thereby draining more battery power. The fre-
quency at which an application updates the location can also

cause heavy battery consumption [28]. However, this can be
lowered to achieve better battery efficiency in applications
which do not require continuous location updates.

Another feature from the Maps module is the location
frequency update which determines the interval at which the
current location is updated. This frequency impacts the battery
consumption heavily. A list pertaining to the details about how
the different intervals can affect battery life is shown in Table
5 [28]. It can be inferred from Table 4 that less power is
consumed with low update frequency at the expense of loca-
tion accuracy.

1.5. Low power localization

There are 3 ways of obtaining the current location in an
Android smartphone which are shown in Table 6. The most
power consuming option is the GPS option followed by the
network and finally the passive option which takes the least
battery power. According to Ref. [29], GPS is the most ac-
curate network provider despite having the most power usage.
Applications which do not require high accuracy could switch
to more efficient alternatives in view to save battery power.

1.6. Bluetooth

Very often mobile users tend to forget turning off the
Bluetooth option after using it. It stays active even when not
connected to any Bluetooth devices and continues to scan
other Bluetooth enabled devices every few second until it is
successfully connected to one. This process of continuous
searching causes significant battery power depletion [30]. The
different power modes of the Bluetooth module have been
shown in Ref. [30]. It also demonstrates the power consump-
tion of each of these Bluetooth modes in a regular smartphone.
They demonstrate that an active Bluetooth takes a significant
amount of battery power during different phases. Allowing
continuous scanning for Bluetooth devices require consider-
able resources and can have a negative effect on the battery
level if Bluetooth is not turned off.

1.7. Wi-Fi

According to Ref. [31], turning off the Wi-Fi radio when it
is active and not connected is an efficient way for saving

Table 2

Average energy usage [18].

Task Power consumed/mW

57 s GSM phone call 1054

Sending a text message 302

Sending/Receiving email over mobile network 610

Sending/Receiving email over Wi-Fi 432

Table 3

CPU governors [26].

CPU governor Details

Powersave This governor sets the CPU at a minimum

frequency.

Interactive/OnDemand This governor dynamically sets the CPU

frequency depending on the workload being

executed by the processor.

Table 4

Map types [28].

Map type Details

RoadMap The roadmap type displays a simple

roadmap view with the

corresponding road names.

Satellite The satellite type displays Google

Earth satellite images.

Hybrid The hybrid type is a combination of

the roadmap and satellite types.

Terrain The Terrain type displays a physical

map from terrain information.

50 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017

http://Howtogeek.com
http://ajqi.com


battery life by preventing continuous scanning for access
points by the wireless radio.

In this work, an API which is an application-level library is
developed for battery-life optimisation of mobile devices
running Android operating system. The power-saving API
intends to help developers improving the battery life of any
Android device running any application with the library inte-
grated. The efficiency of the API has been tested by imple-
menting it on a RSS-Feed-Reader and a Weather application.
The system model is described in Section 2. Section 3 gives
the results which have been observed from the tests performed.
Section 4 concludes the work together with some future works.

2. System model

The API is designed to be non-intrusive with the main al-
gorithms of the applications. The features monitored and
regulated are shown in Fig. 2.

The approaches for battery saving techniques are explained
in the following sub-sections.

2.1. Screen brightness & colour scheme

Screen brightness is a major battery issue in applications
such as the RSS-Feed-Reader and Weather provider where the
device's screen needs to stay on as long as the user is using the
application. The API works in such a way that whenever the
battery level falls below a 30%, the screen dims itself and the
dark theme is automatically applied to the application. A
special feature is implemented to determine whether it is
daytime or nighttime by using the system clock and thus
adjusting the screen brightness accordingly. It uses the idea
from Ref. [23] where dark pixels use less power. The API
applies a semi-transparent overlay on the screen to darken the
screen pixels thus reducing the power required by the mobile
phone. It also reduces the screen timeout to turn of the display
earlier when the user is not using the phone. The colour
scheme module changes the theme of the application from
light to a dark, in order to further help consuming less power at
pixel level. The screen brightness module dims the display by
applying a semi-transparent overlay on the screen as shown in
Fig. 3. The transparency of the overlay depends on the time of
the day for a better user experience. The overlay values and
time intervals can be modified by the developer to fit a
particular brightness profile. The screen timeout is also
reduced to 15 s to prevent the screen from staying on when not
in use. An example for a brightness profile can be as shown in
Table 7 [23].

2.2. CPU frequency

The weather application or the RSS-Feed-Reader do not
require constant high CPU speed to function properly. Thus

Table 5

Frequency update intervals [28].

Time interval Details

Every 5 s This provides high location accuracy but

require heavy battery power.

Every 1 min This is the default setting, and provides a

better balance between battery power and

location accuracy.

Every 30 min This provides better battery efficiency but

relatively poor location accuracy.

Table 6

Location providers [29].

Accuracy Battery usage Technology

20 ft High GPS:

� Uses GPS chip on the device

� Line of sight to the satellites

� Need about 7 time units to get a fix

� Takes a long time to get a fix

� Does not work around tall

buildings

200 ft MediumeLow Assisted GPS, Network:

� Uses both GPS chip on device, and

network to provide a fast initial fix

� Very low power consumption

� Very accurate

� Works without any line of sight to

the sky

� Depends on carrier and phone

supporting this (even if phone

supports it, and network does not

then this does not work)

5300 ft/1 mile Low Network, Wi-Fi:

� Very fast lock, and does not

require GPS chip on device to be

active

� Requires no extra power at all

� Has very low accuracy; sometimes

can have better accuracy in popu-

lated and well mapped areas that

have a lot Wi-Fi Aps, and people

who share their location with

Google.

Fig. 2. Power-saving API diagram.

51A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



the API implemented on both these applications automatically
switches the CPU profiles of the Android device between the
previously mentioned governors depending on the battery
level of mobile phone. For instance, the API may apply the
‘Powersave’ governor whenever the battery level drops below
a particular level. This greatly helps extending the use of the
mobile phone for a longer period with low battery level.

The power-saving API consists of a CPU frequency module
which allows the modification of the device's CPU governor. It
can switch between two governors, namely onDemand and
PowerSave. The onDemand governor is the default CPU
governor on most Android devices. This dynamically allocates
CPU clock speed to the current workload. This governor is set
when the application is closed. Whenever the battery levels
falls below the 15%, the power-saving API switches the CPU
governor PowerSave mode. This allows the CPU to run at a
minimum frequency and thus reduces power consumption.
When the application is closed, the default CPU governor is
reset.

2.3. Network

Wireless connectivity, Wi-Fi and mobile data can be made
to use less battery based on their signal strengths. The power-
saving API allows the RSS-Feed-Reader and the weather ap-
plications to switch between 2G, 3G and Wi-Fi connectivity. It
also turns off any wireless connections during low-power or
when not in use and turns it back on again when needed. This
module also allows data to be downloaded automatically to the
applications and cached locally whenever an internet
connection is available. The API implements two features:
Auto-Download and Network Switching as explained next.

2.3.1. Auto-Download
The API implements a feature which allows any application

using the framework to capture internet connectivity and start
downloading data even if none is running. This data is locally
cached and used when required by the application. In the case
of the RSS-Feed-Reader, the API pre-fetches and caches data
every 4 h when connected to the internet and for the weather
application this is done every 6 h.

2.3.2. Network Switching
The other feature which the wireless connectivity module

consists of is that the power-saving API automatically chooses
the most efficient way to allow the application to connect to
the internet. Whenever the battery level falls below 30%, and
the Android application is connected to the internet, the API
switches between Wi-Fi, 3G or 2G connectivity as shown in
Table 8 [32].

2.4. Low power localization

The feature implemented in the API uses the ‘Network
Provider’ to get the current location of the Android device.
The Wi-Fi connection uses the efficient capabilities of the
Low-Power-Localisation, to connect to known hotspots which
are saved to a database. When the location of a known access-
point is found in a radius of 2.5 km from the current location,
the power-saving API is automatically turned on and connects
to the access point.

2.5. Wi-Fi

The power-saving API implements a module whereby Wi-
Fi is automatically turned off when not connected to any ac-
cess point and turned back on when a known Wi-Fi access
point is available by using the Low-power Localization mod-
ule. It constantly learns where the hotspots are located. The

Fig. 3. Screen brightness.

Table 7

Brightness profile [23].

Time intervals Transparency level

6 ame12 pm Low

12 pme4 pm Very Low

4 pme7 pm Medium

7 pme9 pm Relatively high

9 pme6 am High

Table 8

Network Switching [32].

Current network Condition Switching network

Wi-Fi <�70 dB (~35%) 3G/2G

3G <�110 dB (~55%) 2G/Wi-Fi

2G <�125 dB (~30%) Wi-Fi

52 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017



Wi-Fi module intelligently gives the user 5 min to connect to
an access point before turning it off if it is still not connected.

2.6. Maps

The power-saving API provides efficient ways to display
the maps. Reducing the map details decreases the amount of
data needed and thus the time for the wireless radio to stay
active. This method helps reducing power consumption.
Another feature from the Maps module is the location fre-
quency update which determines the interval at which the
current location is updated. The two features implemented in
the API are described next.

2.6.1. Low-bandwidth maps
This module provides developers with energy-efficient Map

utilities. The API consists of a map that consumes/downloads
less data as compared to normal maps. This is achieved by
using RoadMap.

2.6.2. Custom update frequency of maps
This feature allows modification of the update frequency of

applications using location updates. Applications like the
weather application which require regular location updates
may use such feature to save battery. This value is changed
through the Shared Preference Screen interface as shown in
Table 9.

2.7. Bluetooth

The power-saving API automatically detects whether the
Bluetooth radio is active and not connected to any devices, and
turns it off to prevent the battery drainage. The Bluetooth
module turns off the Bluetooth radio whenever it is not in use.
This occurs when the Bluetooth is initially active and has not
been connected to any devices for a period of 5 min.

2.8. Graphical user interface

The power-saving API implements a Shared Preference
menu which allows the user to change or disable some features
set by the power-saving API. The proposed design of the
Shared Preference menu is shown in Fig. 4.

3. Results

In this work, the power saving API has been tested using
two routed Android smartphones equipped with Bluetooth,

Wi-Fi, mobile data and GPS. Some of the features of the API
work only for Android API 22 and above. The specifications
of the mobile devices used are as shown in Table 10.

The efficiency measurement of the power-saving API and
the monitoring of the battery usage have been performed using
three power profiling Android applications: Trepn Profiler
from Qualcomm Inc (for CPU and wireless power profiling),
Power Tutor (for screen power) and Little Eye Labs (for
network, wireless and CPU analysis). The Enersave modules
in the API have been tested separately to measure and

Table 9

Update frequency.

Frequency location update Efficiency

30 min Very efficient

10 min Relatively efficient

3 min Not efficient

1 min Not efficient, drains battery

faster

Fig. 4. Shared preference screen.

Table 10

Mobile devices specifications.

LG L70 Samsung A8

Processor Dual-core 1.2 GHz Quad-core 1.8 GHz & Quad-

core 1.3 GHz

RAM 1 GB 2 GB

Screen IPS LCD capacitive 4.5

inches

Super AMOLED 5.7 inches

Resolution 480 � 800 pixels 1080 � 1920 pixels

Wi-Fi Wi-Fi 802.11 b/g/n Wi-Fi 802.11 a/b/g/n/ac

Bluetooth v 4.0 V 4.1

GPS Yes, with A-GPS Yes, with A-GPS

Network

support

2G, 3G 2G, 3G, 4G

Battery Li-Ion 2100 mAh Li-Ion 3050 mAh

Operating

system

Android OS, v 5.1.1 Lollipop Android OS, v 5.1.1 Lollipop

53A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



compare the efficiency of the proposed Framework. The re-
sults obtained for each aspect is described in the following
sub-sections.

3.1. Results for the screen brightness module

The Screen Brightness test is performed by setting the
following features on the Android device to allow more ac-
curate results:

1. Screen brightness is set to maximum.
2. Android mobile devices are charged to maximum and

unplugged.
3. Colour Scheme is set as default, light.
4. All wireless radios (Wi-Fi, Network, Bluetooth, and GPS)

are turned off.
5. Overlay transparency is at its lowest value when per-

forming tests (6 ame12 pm).

The tests have been performed on the Weather application
using the Power Tutor android application. Readings have
been taken 3 times with both devices and averaged to produce
better accuracy. The readings have been taken at an interval of
3 min for 15 min long. The graphical representation of how
using the Enersave power-saving API consumes less Screen
Power than the normal application without power-saving
features is shown in Fig. 5.

Table 11 shows the average values when measuring the
effectiveness of the Enersave power-saving API for the Screen
Brightness module.

A slight difference is noticed when integrating the Enersave
power-saving API with the Android application. This is due to
dimming the pixels present in the AMOLED display of the
phone. It is observed that after 15 min only 0.64% battery
power is saved. It can be inferred that the screen brightness
module alone does not have a significant impact on the battery
consumption.

3.2. Results for the colour scheme module

The Colour Scheme test is performed by setting the
following features on the Android mobile devices to allow
more accurate readings:

1. Screen brightness is set to maximum and disable all other
power-saving features.

2. Android mobile phones are charged to maximum and
unplugged.

3. All wireless radios (Wi-Fi, Network, Bluetooth, and GPS)
are turned off.

The tests have been performed on the Weather application
using the Power Tutor android application. Readings have
been taken 3 times with both devices and averaged to produce
better accuracy. They were taken at an interval of 3 min for
15 min long. The graphical representation of how using the
Enersave power-saving API consumes less power than the
normal application without power-saving features is shown in
Fig. 6.

Table 12 shows the average values when measuring the
effectiveness of the Enersave power-saving API for the
Colour Scheme module.

A better value for the screen energy saved is noticed using
the Dark Theme for the Colour Scheme module. This is
because, compared to the Screen Brightness module which
only dims the pixels on the screen, the Colour Scheme
module turns them off in places of black colour. A save of
1.41% battery power is compiled for this feature.

Fig. 5. Graph e Screen Brightness.

Table 11

Screen Brightness e Average Power.

Average Screen Power without API (mW) 891.9

Average Screen Power with API (mW) 886.1

Average Screen Power saved (mW) 5.6

54 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017



3.3. Results for the screen timeout module

The Screen Timeout test is performed by setting the
following features on the Android mobile devices to allow
more accurate readings:

1. Screen brightness is set to maximum.
2. Android mobile phones are charged to maximum and

unplugged.
3. All wireless radios (Wi-Fi, Network, Bluetooth, and GPS)

are turned off.

4. All default settings are set to the mobile device (No other
power-saving features enabled).

Fig. 7 shows a cumulative graph of the amount of power
which is used by the screen at different screen timeout
values. It can be observed that the larger the screen timeout
value the more power is consumed by the screen. Setting the
Screen timeout to 15 or 30 s is a safe way of preserving
battery life.

3.4. Results for the Bluetooth module

The Bluetooth test is performed by setting the following
features on the Android mobile devices to allow more accurate
readings:

1. Android mobile phones are charged to maximum and
unplugged.

Fig. 6. Graph e Colour Scheme.

Table 12

Colour Scheme e Average Power.

Average Screen Power without API (mW) 877.8

Average Screen Power with API (mW) 865.4

Average Screen Power saved (mW) 12.4

Fig. 7. Graph e Colour Scheme.

55A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



2. All wireless radios (Wi-Fi, Network, Bluetooth, and GPS)
are turned off.

Measurements have been taken from the RSS-Feed-Reader
application using the Little Eye Labs power analysis applica-
tion. Readings have been taken 3 times with both devices and
averaged to produce better accuracy. The readings are taken at
an interval of 3 min for 15 min long. Fig. 8 shows the power
profile with the Bluetooth test.

At time t1 and t2, the Bluetooth radio performs searching to
connect to a Bluetooth device. This process continues until the
device is successfully connected or Bluetooth turned off. At

time t3, the Enersave power-saving API detects that the
Bluetooth radio is active and not connected and thus turns it
off. Table 13 shows the average values when measuring the
effectiveness of the Enersave power-saving API for the
Bluetooth module.

A significant power save of 25.92% is noticed with this
feature. Preventing further searching of Bluetooth devices
when the Bluetooth radio is enabled is an efficient way of
saving battery power.

3.5. Results for the CPU frequency module

The CPU test is performed by setting the following features
on the Android mobile device to allow more accurate readings:

1. Android mobile phones are charged to maximum and
unplugged.

2. All wireless radios (Wi-Fi, Network, Bluetooth, and GPS)
are turned off.

Fig. 8. Graph e Bluetooth.

Table 13

Bluetooth e Average Power.

Average Screen Power without API (mW) 840.4

Average Screen Power with API (mW) 622.5

Average Screen Power saved (mW) 217.9

Fig. 9. Graph e CPU.

56 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017



3. All default settings are set (Brightness, colour scheme,
CPU governor).

Measurements have been taken from the Weather applica-
tion using the Little Eye power analysis application. Readings
have been taken 3 times with both devices and averaged to
produce better accuracy. Readings are taken for 20 s. Fig. 9
shows the power profile with the CPU test.

Table 14 shows the average values when measuring the
effectiveness of the Enersave power-saving API for the CPU
module.

A substantial power save of 82.28% is noticed using this
feature. Lowering the CPU frequency is a great way for small
applications to prolong battery life.

3.6. Results for the Low Power Localization frequency
module

The Low-Power Localization test is performed by setting
the following features on the Android mobile device to allow
more accurate readings:

1. Android mobile phones are charged to maximum and
unplugged.

2. All default settings are set (Brightness, colour scheme,
CPU governor).

Measurements have been taken from the Weather applica-
tion using the Little Eye power analysis application. Readings
have been taken 3 times with both devices and averaged to

Table 14

CPU e Average Power.

Average Screen Power without API (mW) 201.99

Average Screen Power with API (mW) 35.79

Average Screen Power saved (mW) 166.20

Fig. 10. Graph e Low-Power Localisation.

Table 15

Low-Power Localization e Average Power.

Average Screen Power without API (mW) 175.0

Average Screen Power with API (mW) 66.1

Average Screen Power saved (mW) 108.9

Fig. 11. Graph e Auto Turn off Low Signal.

57A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



produce better accuracy. Readings are taken for 20 s. Fig. 10
shows the power profile with the Low-Power Localisation test.

At time t1, to retrieve the current location, the GPS is used.
It uses a constant amount of power to be able to obtain the
required coordinates. At time t2, to retrieve the current loca-
tion, the Network Provider is used. It only uses a high burst of
power to retrieve the current coordinates of the user. Table 15
shows the average values when measuring the effectiveness of
the Enersave power-saving API for the CPU module.

A considerable power save of 62.2% is noticed using this
feature. For applications which do not require accurate loca-
tion, the Low Power Localization is a battery efficient way of
saving battery power.

3.7. Results for the Wi-Fi module

The Wi-Fi test is performed by setting the following fea-
tures on the Android mobile device to allow more accurate
readings:

1. Android mobile phones are charged to maximum and
unplugged.

2. All default settings are set (Brightness, colour scheme,
CPU governor).

The tests are performed in two parts: Auto Turn off during
Low Wi-Fi Signal and Low Power Localisation Wi-Fi/Auto
Connect/Disconnect to Access points. The two tests are
shown in the following sub-sections.

3.7.1. Auto Turn off during low Wi-Fi Signal
Fig. 11 shows the power profile with the Auto Turn off

during low Wi-Fi Signal test.
At time t1, the Enersave power-saving API detects that the

Wi-Fi signal is low and automatically turns off the Wi-Fi

radio. Without the API, more power is required to stay con-
nected to the access point during low signal strength. Table 16
shows the average values when measuring the effectiveness of
the Enersave power-saving API for the Auto Turn off Wi-Fi
module.

A significant power save of 30.4% is noticed using this
feature. Turning off the Wi-Fi radio during low signal strength
can be of great benefit for the battery life.

3.7.2. Low Power Localization Wi-Fi/Auto Connect/
Disconnect to access points

Fig. 12 shows the power profile with the Low Power
Localization Wi-Fi/Auto Connect/Disconnect to Access Points
test.

At time t1, the Enersave power-saving API detects that the
mobile device is in a known hotspot location and turns on the
Wi-Fi radio to automatically connect to the access point. At
time t2, the API automatically turns off the Wi-Fi when the
mobile devices move away from the location of the access
point. Without the API, the mobile device keeps using the
mobile data to access the Internet even if the user can con-
nect to a known Wi-Fi access point. Table 17 shows the
average values when measuring the effectiveness of the
Enersave power-saving API for the Auto Turn off Wi-Fi
module.

A power save 42.6% is observed when using this feature.
Using Wi-Fi rather than the mobile data when a known hotspot
is available can be efficient.

3.8. Results for the Map module

The Map test is performed by setting the following features
on the Android mobile device to allow more accurate readings:

Table 16

Auto turn off Wi-Fi e Average Power.

Average Screen Power without API (mW) 1120.8

Average Screen Power with API (mW) 780.2

Average Screen Power saved (mW) 340.6

Fig. 12. Graph e Low Power Localisation Wi-Fi.

Table 17

Low Power Localisation Wi-Fi e Average Power.

Average Screen Power without API (mW) 971.6

Average Screen Power with API (mW) 557.8

Average Screen Power saved (mW) 413.8

58 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017



1. Android mobile phones have been charged to maximum
and unplugged.

2. All default settings are set (Brightness, colour scheme,
CPU governor).

3. The ‘Network Provider’ is used to get location.

The tests are performed in two parts: Low Bandwidth Map
and One-time location update. Measurements have been taken
from the Weather application using the Little Eye and the
Trepn power analysis application. The two tests are described
in the following two subsections.

3.8.1. Low Bandwidth Map
Figs. 13 and 14 show the graphs for Power (mW) and Data

Consumed (bytes) with the Low Bandwidth Map feature.

Table 18 shows the average values when measuring the
effectiveness of the Enersave power-saving API for the Low
Bandwidth Map module.

A power save of 34.2% is observed using this feature. Low
detailed maps are found to be very battery efficient.

At time t1 and t2, the high peaks indicate large data which is
being downloaded for the maps whereas at time t3, the peaks
are lower indicating smaller data which is being downloaded.

3.8.2. One-time location update
Fig. 15 shows a graphical representation of how using the

Enersave power-saving API consumes less power than the
normal application without power-saving features.

At time t1, t2 and t3, the application continuously updates
the location of the mobile device. With the Enersave API, the

Fig. 13. Graph e Low Bandwidth Map e power consumption.

Fig. 14. Graph e Low Bandwidth Map e Data Consumption.

Table 18

Low Bandwidth Map e Average Power.

Average Screen Power without API (mW) 269.7

Average Screen Power with API (mW) 177.6

Average Screen Power saved (mW) 92.1

Table 19

One-time update e Average Power.

Average Screen Power without API (mW) 844.7

Average Screen Power with API (mW) 622.7

Average Screen Power saved (mW) 222.0

59A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



location update is done only once at time t4. Table 19 shows
the average values when measuring the effectiveness of the
Enersave power-saving API for the One-time update module.

A power save 26.3% is observed when using this feature.
Applications which do not require continuous update of the
current location, similar to the Weather application, can use
the One-time update feature for battery usage efficiency.

3.9. Results for the network module

The Network test is performed by setting the following
features on the Android mobile device to allow more accurate
readings:

1. Android mobile phones are charged to maximum and
unplugged.

2. All default settings are set (Brightness, colour scheme,
CPU governor).

3. The test is conducted in a low signal network area.

The tests are performed in two parts: Network Switching
and Auto-Download. A description of the two aspects is given
next.

3.9.1. Network Switching
Measurements are taken from the Weather application

using the Little Eye power analysis application. Fig. 16 shows
a graph when the mobile devices are connected to the internet
initially using 3G network and at low signal the API switches
the connection to 2G network. At very weak network signal,
the API switches to Wi-Fi to connect to the internet.

At time t1, the Enersave API automatically switched from
the 3G network to the 2G network to connect to the internet.
At time t2, the API switches from the mobile data to Wi-Fi to
connect to the internet. Table 20 shows the average values
when measuring the effectiveness of the Enersave power-
saving API for the Network-Switching module.

A power save 54.73% is observed when using the API to
switch to the most efficient wireless connection rather than
continuously using the 3G network in a low signal area.

Fig. 15. Graph e One time Location Update.

Fig. 16. Graph e Network Switching.

Table 20

Network Switching e average power.

Average 3G Network Power without API (mW) 578.3

Average 2G Network Power without API (mW) 239.2

Average Wi-Fi Network Power without API (mW) 96.2

Average Network Power with API (mW) 261.8

60 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017



3.9.2. Auto-Download
Measurements are taken from the RSS-Feed-Reader using

the Little Eye power analysis application. Fig. 17 shows a
graph when the data from the RSS feed is updated each time
the application is launched and another one where the API

automatically auto download and cache data when internet
connection is available.

Table 21 shows the average values when measuring the
effectiveness of the Enersave power-saving API for the Net-
workeAutoDownload module.

A power save 18.72% is observed when using this feature.
Preventing data to be downloaded every time the application is
launched can have great impact on battery life for applications
similar to the RSS-Feed-Reader or the weather applications.

3.10. Evaluation of the complete system

In this section, tests performed on the complete Enersave
API system for the measurement and comparison of efficiency
of the framework are described. The Enersave API is tested
using the Weather Application and the Little Eye Labs Anal-
ysis tools with the parameters shown in Table 22. The results
obtained with and without using the Enersave API are shown
in Figs. 18 and 19 respectively.

The comparisons for the tests with and without the Ener-
save API are shown in Table 23.

Fig. 17. Graph e Auto-Download.

Table 21

Network Auto Download e Average Power.

Average Power without API (mW) 529.06

Average Power with API (mW) 430.04

Average Power saved (mW) 99.02

Table 22

Test Plan e Enersave Testing.

With Enersave API Without Enersave

Brightness 50% Brightness 50%

Colour Scheme No Colour Scheme

Overlay No Overlay

CPU Frequency down-clock No CPU Frequency down-clock

Low Bandwidth Map High/Normal Bandwidth Map

Low-Power Localisation (Network) High/Normal Power

Localisation (GPS)

Fig. 18. Result e with Enersave API.

61A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6



The results above indicate a significant save of 84.56% in
terms of power consumption is obtained when using the
Enersave API.

In order to assess the efficiency of the proposed framework,
similar tests have been performed with existing systems to
compare with the Enersave API. The results obtained with

Battery Saver 2016 are shown in Fig. 20, and the results obtained
with DU Booster are shown in Fig. 21. Table 24 summarizes all
the tests performed. The reason for making the comparisons
between these two existing energy serving applications (DU
Booster and Battery Saver 2016) for Android devices in this way
is to perform a fair comparison and that we have to the best of
our knowledge not come across any work which has considered
all of the features: (Screen brightness, Colour scheme, CPU
frequency, 2G/3G network, Maps, Low power localisation,
Bluetooth and Wi-Fi) together in a single application.

The comparison table shows that the Enersave API is much
better at saving battery life than the regular power saving
Android applications.

Fig. 19. Result e Without Enersave API.

Table 23

Test Plan e Enersave Testing.

With Enersave API/mAh Without Enersave/mAh

CPU 0.80 4.91

Network 1.18 3.82

GPS 0.00 4.09

Total 1.98 12.82

Fig. 20. Result e Battery Saver 2016.

Fig. 21. Result e DU Booster.

62 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017



4. Conclusion

The work presented in this paper proposes a power-saving
framework (Enersave API) for Android based mobile devices.
Enersave is an API which can be integrated effortlessly to any
Android application by the developer. The API allows for
undesired features to be disabled through the Shared Prefer-
ence Screen in order to save on battery power consumption.
Tests performed demonstrate that the proposed framework
helps saving 84.56% of battery power consumption as
compared to 22.15% and 40.48% when using DU Booster and
Battery saver 2016 respectively which are current energy
saving applications available for Android devices.

Several future works can be envisaged from the proposed
framework. A direct extension would be to have battery power
consumption profiles sent over to a cloud platform where
pattern analysis could be performed and signals could be sent
to the mobile devices so that the settings are automatically
adjusted to the most optimum and battery power saving set-
tings. Another more challenging future work would be to
develop a cross-platform API which would be used in
conjunction with a cloud platform so as to aid towards low
power consumption of mobile sensor nodes being used in the
Internet of Things context.

Acknowledgement

The authors would like to acknowledge the University of
Mauritius for the necessary facilities provided towards the
completion of this work.

References

[1] Hurbungs V, Beeharry Y, Calkee AK, Ahotar G. An energy efficient

android application. ADBU J Eng Technol 2016;5(2016):1e10.

[2] Lundquist AR, Lefebvre EJ, Garramone SJ. Smartphones: fulfilling the

need for immediacy in everyday life, but at what cost? Int J Human Soc

Sci 2014;4(2):80e9.
[3] Korhonen K. Predicting mobile device battery life. Espoo, Finland: Alto

University, School of Engineering; 2011.

[4] I. -. A. t. Future. IDC: smartphone OS market share. 2015 [Online].

Available: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[accessed 11.09.15.].

[5] Source.android.com. Source.android.com. 2015 [Online]. Available:

http://source.android.com [accessed 01.09.15.].

[6] Statista. Android e Statistics & facts j Statista. 2015 [Online]. Available:

http://www.statista.com/topics/876/android/ [accessed 06.09.15.].

[7] Raadschelders J, Jansen T. Energy sources for the future dismounted

soldier, the total integration of the energy consumption within the soldier

system. J Power Sources 2001;96(1):106e66.
[8] Zeng H, Lebeck C, Vahdat A. ECOSystem. ACM SIGOPS operating

systems Review, vol. 31 (5); 2002. p. 123.

[9] Narseo V, Hui P, Crowcrott J, Rice A. Exhausting battery statistics: un-

derstanding the energy demands on mobile handsets. In: Proceedings of

the second ACM SIGCOMM workshop on Networking, systems, and

applications on mobile handhelds, New York; 2010.

[10] Kang J, Seo S, Hong J. Personalised battery lifetime prediction for

mobile devices based on usage patterns. J Comput Sci Eng 2011;5(4):

338e45.

[11] Batteryuniversity.com. Charging lithium-ion batteries. 2015 [Online].

Available: http://batteryuniversity.com/learn/article/charging_lithium_

ion_batteries [accessed 20.09.16.].

[12] Jason T,MohamedM.How long does it take to fully charge the batteries?e

Apple. Apple.com. 2010 [Online]. Available: http://www.apple.com/shop/

question/answers/product/MC500LL/A/how-long-does-it-take-tofully-

charge-the-batteries/QPYA7AUXXXTCYPYPU [accessed 29.09.15.].

[13] Lin M, Gong M, Lu B, Wu Y, Wang D, Guan M, et al. “An ultrafast

rechargeable aluminium-ion battery. Nature 2015;520(7547):324e8.
[14] Gsmarena. Apple iPhone 5s e full phone specifications. Apple 2015

[Online]. Available: http://www.gsmarena.com/apple_iphone_5s-5685.

php [accessed 28.09.15.].

[15] Zhang L. Power, performance modelling and optimisation for mobile

system and applications. Michigan: University of Michigan; 2013.

[16] Caroll A, Heiser G. An analysis of power consumption in a smartphone.

In: Proceedings of the 2010 USENIX conference on USENIX, USA;

2010.

[17] Network QD. Mobile apps and power consumption e basics, part 1. 2015

[Online]. Available: https://developer.qualcomm.com/blog/mobile-apps-

and-powerconsumption-basics-part-1 [accessed 30.09.15.].

[18] Hruska J. OLED finally triumphant: the Galaxy S5 has the best smart-

phone display on the market j ExtremeTech. 2015 [Online]. Available:

http://www.extremetech.com/electronics/179464-oled-finally-trium-

phant-the-galaxy-s5-has-thebest-smartphone-display-on-the-market

[accessed 30.09.15.].

[19] CNET. What's killing your battery? Android's top 10 performance-

scapping apps. 2015 [Online]. Available: http://www.cnet.com/news/

whats-killing-your-battery-androids-top-10- [accessed 07.10.15.].

[20] AVG. Are these the world's greediest apps?. 2015 [Online]. Available: http://
now.avg.com/are-these-the-worlds-greediest-apps [accessed 07.10.15.].

[21] Malik MY. Power consumption analysis of a modern smartphone. Cor-

nell University Library; 2013.

[22] Forums.androidcentral.com. Facebook battery DRAIN e android Forums

at AndroidCentral.com. 2014 [Online]. Available: http://forums.

androidcentral.com/t-lg-g2/358723-facebook-battery-drain.html

[accessed 10.10.15.].

[23] Howtogeek.com. HTG explains: does plain black wallpaper save battery

on mobile devices?. 2015 [Online]. Available: http://www.howtogeek.

com/131823/htg-explains-does-blackwallpaper-save-battery-on-your-

mobile-devices/ [accessed 12.10.15.].

[24] Google. AJQI. 2015 [Online]. Available: http://ajqi.com/ [accessed

30.10.15.].

[25] Hwang H, Suh H. “Personal behavior-based dynamic governor switching

an android system. Adv Sci Technol Lett 2014;66:4e7.

[26] Icrontic. Android CPU governors and you! (SetCPU, systemTuner, TegraK).

2014 [Online]. Available: http://icrontic.com/discussion/95140/android-cpu-

governors-and-you-setcpusystem-tuner-tegrak [accessed 14.01.16.].

[27] Ding N, Wagner D, Chen X, Hu Y, Rice A. Characterising and modelling

the impact of wireless signal strength on smartphone battery drain. ACM

SIGMETRICS Perform Eval Rev 2013;41(1):29.

Table 24

Results e comparison.

With Enersave

API/mAh

Battery Saver

2016/mAh

DU Booster/mAh Without

Enersave/mAh

CPU 0.80 4.22 4.32 4.91

Network 1.18 3.41 3.18 3.82

GPS 0.00 0.00 2.48 4.09

Total 1.98 7.63 9.98 12.82

% Save 84.56 40.48 22.15 0.00

63A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Future Computing and Informatics Journal, Vol. 2 [2017], Iss. 1, Art. 6

https://digitalcommons.aaru.edu.jo/fcij/vol2/iss1/6

http://refhub.elsevier.com/S2314-7288(16)30041-1/sref1
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref1
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref1
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref2
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref2
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref2
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref2
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref3
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref3
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://source.android.com
http://www.statista.com/topics/876/android/
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref7
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref7
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref7
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref7
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref8
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref8
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref9
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref9
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref9
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref9
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref10
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref10
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref10
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref10
http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries
http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries
http://www.apple.com/shop/question/answers/product/MC500LL/A/how-long-does-it-take-tofully-charge-the-batteries/QPYA7AUXXXTCYPYPU
http://www.apple.com/shop/question/answers/product/MC500LL/A/how-long-does-it-take-tofully-charge-the-batteries/QPYA7AUXXXTCYPYPU
http://www.apple.com/shop/question/answers/product/MC500LL/A/how-long-does-it-take-tofully-charge-the-batteries/QPYA7AUXXXTCYPYPU
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref13
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref13
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref13
http://www.gsmarena.com/apple_iphone_5s-5685.php
http://www.gsmarena.com/apple_iphone_5s-5685.php
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref15
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref15
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref16
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref16
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref16
https://developer.qualcomm.com/blog/mobile-apps-and-powerconsumption-basics-part-1
https://developer.qualcomm.com/blog/mobile-apps-and-powerconsumption-basics-part-1
http://www.extremetech.com/electronics/179464-oled-finally-triumphant-the-galaxy-s5-has-thebest-smartphone-display-on-the-market
http://www.extremetech.com/electronics/179464-oled-finally-triumphant-the-galaxy-s5-has-thebest-smartphone-display-on-the-market
http://www.cnet.com/news/whats-killing-your-battery-androids-top-10-
http://www.cnet.com/news/whats-killing-your-battery-androids-top-10-
http://now.avg.com/are-these-the-worlds-greediest-apps
http://now.avg.com/are-these-the-worlds-greediest-apps
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref21
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref21
http://forums.androidcentral.com/t-lg-g2/358723-facebook-battery-drain.html
http://forums.androidcentral.com/t-lg-g2/358723-facebook-battery-drain.html
http://www.howtogeek.com/131823/htg-explains-does-blackwallpaper-save-battery-on-your-mobile-devices/
http://www.howtogeek.com/131823/htg-explains-does-blackwallpaper-save-battery-on-your-mobile-devices/
http://www.howtogeek.com/131823/htg-explains-does-blackwallpaper-save-battery-on-your-mobile-devices/
http://ajqi.com/
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref25
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref25
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref25
http://icrontic.com/discussion/95140/android-cpu-governors-and-you-setcpusystem-tuner-tegrak
http://icrontic.com/discussion/95140/android-cpu-governors-and-you-setcpusystem-tuner-tegrak
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref27
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref27
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref27


[28] G. Developers. Map types. 2015 [Online]. Available: https://developers.

google.com/maps/documentation/javascript/maptypes?

hl¼en#BasicMapTypes [accessed 14.01.16.].

[29] Nazmul I. Android location providers e gps, network, passive e tutorial.

2010 [Online]. Available: http://developerlife.com/tutorials/?p¼1375

[accessed 13.01.16.].

[30] Lindh J, Lee C. Measuring Bluetooth smart power consumption. 2015

[Online]. Available at: http://www.ti.com/lit/an/swra478a/swra478a.pdf

[accessed 20.10.15.].

[31] Technology II. Simple ways to boost your smartphone's battery life. 2011

[Online]. Available: http://www.intel.com/content/dam/doc/bestpractices/

technology-tips-boost_battery_life_handhelds.pdf [accessed 03.02.16.].

[32] Hyun J, Won Y, Nahm DS-C, Hong JW-K. Measuring auto switch be-

tween Wi-Fi and mobile data networks in an urban area. 12th Interna-

tional Conference on Network and Service Management (CNSM),

Montreal, QC, Canada. 2016.

64 A.M. Muharum et al. / Future Computing and Informatics Journal 2 (2017) 48e64

Beeharry et al.: Enersave API: Android-based power-saving framework for mobile dev

Published by Arab Journals Platform, 2017

https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#BasicMapTypes
https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#BasicMapTypes
https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#BasicMapTypes
https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#BasicMapTypes
http://developerlife.com/tutorials/?p=1375
http://developerlife.com/tutorials/?p=1375
http://www.ti.com/lit/an/swra478a/swra478a.pdf
http://www.intel.com/content/dam/doc/bestpractices/technology-tips-boost_battery_life_handhelds.pdf
http://www.intel.com/content/dam/doc/bestpractices/technology-tips-boost_battery_life_handhelds.pdf
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref32
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref32
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref32
http://refhub.elsevier.com/S2314-7288(16)30041-1/sref32

	Enersave API: Android-based power-saving framework for mobile devices
	Recommended Citation

	Enersave API: Android-based power-saving framework for mobile devices
	1. Introduction
	1.1. Screen brightness and Colour scheme
	1.2. CPU frequency
	1.3. Network
	1.4. Maps
	1.5. Low power localization
	1.6. Bluetooth
	1.7. Wi-Fi

	2. System model
	2.1. Screen brightness & colour scheme
	2.2. CPU frequency
	2.3. Network
	2.3.1. Auto-Download
	2.3.2. Network Switching

	2.4. Low power localization
	2.5. Wi-Fi
	2.6. Maps
	2.6.1. Low-bandwidth maps
	2.6.2. Custom update frequency of maps

	2.7. Bluetooth
	2.8. Graphical user interface

	3. Results
	3.1. Results for the screen brightness module
	3.2. Results for the colour scheme module
	3.3. Results for the screen timeout module
	3.4. Results for the Bluetooth module
	3.5. Results for the CPU frequency module
	3.6. Results for the Low Power Localization frequency module
	3.7. Results for the Wi-Fi module
	3.7.1. Auto Turn off during low Wi-Fi Signal
	3.7.2. Low Power Localization Wi-Fi/Auto Connect/Disconnect to access points

	3.8. Results for the Map module
	3.8.1. Low Bandwidth Map
	3.8.2. One-time location update

	3.9. Results for the network module
	3.9.1. Network Switching
	3.9.2. Auto-Download

	3.10. Evaluation of the complete system

	4. Conclusion
	Acknowledgement
	References


