

Al-Quds University

Deanship of Graduate Studies

Improving Software Security in Software Life Cycle
Models

Ahmad Jamel Fahel

M.Sc. Thesis

Jerusalem – Palestine

1430 / 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Al-Quds University Digital Repository

https://core.ac.uk/display/336842309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Al-Quds University

Deanship of Graduate Studies

Computer Science Department

Improving Software Security in Software Life Cycle
Models

Prepared By:

Ahmad Jamel Fahel

Supervisor:

Dr. Raid AL-Zaghal

Thesis Submitted in Partial fulfillment of requirements for the Master

Degree of Computer Science from Computer Science department of Al-

Quds University

Jerusalem – Palestine

1430 / 2010

Al-Quds University

Deanship of Graduate Studies

Computer Science Department

Thesis Approval

Improving Software Security in Software Life Cycle
Models

Prepared By: Ahmad Jamel Fahel
Registration No: 20714277

Supervisor: Dr. Raid AL Zaghal

Master thesis submitted and accepted. Date: 23/6/2010

The names and signatures of the examining committee members are as
follows:

 1- Head of Committee: Dr. Raid al-Zaghal Signature: ……………..

 2- Internal Examiner: Dr. Nidal Kafri Signature: ……………..

 3- External Examiner: Dr. Osama Marie Signature: …………….

Jerusalem – Palestine
1430 / 2010

i

Declaration

I certify that this thesis submitted for the degree of master of computer

science is the result of my own research, except where otherwise

acknowledged, and that this thesis (or any part of it) has not been submitted

for a higher degree to any other university or institution.

Signature:

Ahmad Jamel Fahel

ii

Acknowledgments

Praises and thanks always are to Allah, The creator, and the teacher.

Then, I would like first of all to state my thanks to my supervisor Dr. Raid

Al-Zaghal for his great support, effort and advice during my study period

and especially the course of my thesis.

Also, I am grateful to all teachers at Al-Quds University/Computer Science

Department. This thesis would not have been possible unless their

encouragement.

Our thanks are also extended to doctor Nidal Kafri, Dr. Osama Amin and all

our academic staff.

And thanks to my mother, brothers and sisters. I will never forget the

support and encouragement from my wife; my great thanks to them for their

love and inspiration.

iii

Dedication

 To my parents, wife, brothers and sister

To all Alquds University friends and colleagues

To all postgraduate students at Al-Quds University

To all those who help me during my study

iv

Abstract

Software security is a major issue in software engineering, and the principles of software

security are very clear to understand, but they are usually hard to implement. This is due

to many security vulnerabilities that deter achieving a high level of security in software

systems.

In this thesis, I have collected information on relevant security vulnerabilities; I described

and classified them into levels according to their risk degrees. To do that, I have built a

model based on different stages: (1) a learning stage to give the system engineer full and

clear information about these security vulnerabilities, (2) a prediction stage that depends

on the collected information to predict the possibility of each vulnerability and its effect

(harm level) on the system, (3) in the scenario stage, the system engineer writes one or

more scenarios to describe the circumstances (how and where) that would lead for each

vulnerability and then suggests a preventive plan to avoid that vulnerability, (4) in the

testing stage, the software is tested with all predictions on spot by running a fuzzy test to

be sure that the software is secure against known vulnerabilities, (5) and in the final

stage, I write the implementation for the system auditor to check the overall security level

of the software.

We have suggested a plan to integrate this model into the four common phases of the

software development lifecycle.

v

 ملخص الرسالة

تعد حماية البرامج من الثغرات من اهم الامور التي تناقش مرارا وتكرارا نتيجة ظهور أنواع متعددة

برامج من الامور الصعبة في بعض الميادين لان بعض من الثغرات, ويعد العمل على حماية ال

البرامج تتعرض لثغرات نتيجة لغة البرمجة المستخدم والبيئة اللتي يستخدم بها البرنامج , اضافة الى

الفهم الصحيح للثغرات الامنية اللتي لا تطرح عادة ضمن مراحل حياة البرنامج على اختلاف

 انواعها.

بجمع الثغرات الامنية وجميع المعلومات عنها من مصادر مختلفة , و قمت إبتدأت في هذه الرسالة

بتصنيف هذه الثغرات بحسب اهميتها ونوع لغات البرمجة اللتي تستطيع هذه الثغرة اختراقها او

 الانظمة المستضيفة للبرامج وكيفية الوقاية من الثغرات او تجنب حدوثها.

مت ببناء نموذج مبسط لتسهيل تجنب الثغرات الامنية ولتعليم وبعد دراسة مستفيضة للثغرات الامنية ق

المستخدم لهذه النموذج الثغرات الامنية التي قد تواجهه اثناء تطويره نظام معين ويتكون هذا النموذج

 من المراحل التالية :

 التعلم : يتم من خلاله المرور على جميع الثغرات الامنية ودراستها جيدا - 1
جميع الثغرات الامنية المتوقع حدوثها بناءً على معطيات البرنامج المنوي التوقع : يتم جمع - 2

 عمله
 كتابة طريقة تجنب حدوث الثغرة - 3
 تطبيق الطريقة المكتوبة في الفقرة السابقة - 4
 فحص البرنامج بناءً على التوقعات المحتملة - 5
 كتابة تقرير بالثغرات اللتي تم التنبه لها - 6

vi

قترحت الية دمجه مع آليات تطوير البرامج المستخدمة من قبل وبعد ان قمت ببناء النموذج ا

المطورين , والية فحص البرنامج من ناحية امان البرنامج , والية قياس النموذج المقترح بناء على

 المراحل اللتي يتم بها تطوير البرنامج.

vii

Structure of Thesis

This research contains six chapters: the first chapter presents an introduction on software

security and gives a short problem description, the second chapter gives a background on

software security and illustrates relevant definitions and concepts, the third chapter

discusses related works and other modules on the security lifecycles, the forth chapter

presents our model and how to test software security and test security models, and also

contains data on how to integrate our model with other software lifecycles models. The

fifth chapter presents a real case on how to use this model with web applications, and the

sixth chapter presents future work.

viii

Table of Contents
Dedication .. i

Declaration.. ii

Acknowledgement ... iii

Abstract .. iv

ةملخص الرسال ... v

Structure of Thesis .. viii

Table of Contents ... viviii

List of Tables .. xi

List of Figures .. xii

Chapter 1 : Introduction ...1

1.1 Purpose Statement ..1

1.2 Thesis Target Audience ...1

1.3 Objectives ..2

1.4 Problem Description ...2

1.5 Need for Secure Software ..4

1.6 Required Qualities Of Security ...4

Chapter 2 : Background ..6

2.1 Background ...6

2.2 General Concepts of Software Security Objectives ...7

2.3 Software Security Definitions ...8

2.4 Resources of Security Vulnerabilities ...9

2.5 A Taxonomy of Software Security Terms ..10

Chapter 3 : Related Work ..15

3.1 Misuse Cases ..15

3.2 Nonfunctional Requirements ...16

3.3 Spiral Model ...17

3.4 Security Model for E-Education Process ...18

3.5 Microsoft Security Development Lifecycle ..19

ix

3.6 Other Research Behaviors ...20

Chapter 4 : Our Model ...21

4.1 Our Contribution ...21

 4.1.1 Learning Stage ...23

4.1.2 Prediction Stage ..23

4.1.2 Writing Scenario ...24

4.1.2 Implementation ...27

4.1.2 Apply All Tests ..28

4.1.2 Documentations ...32

4.1.2 Review of Our Model ..34

4.2 Security Measurements ..35

4.2.1 Software Security Measurable Entities ...35

4.2.2 Security Model Measurable Entities ...36

4.3 Use Security Model with Common Software Lifecycles38

4.2.1 Waterfall Lifecycle ...38

4.3.2 Agile Software Development ..39

4.3.3 Iterative and Incremental Development ...40

4.3.4 XP: Extreme Programming ...42

Chapter 5 : Experiment ..45

5.1 Learning Stage ..46

5.2 Predicting Stage ...48

5.1 Write Scenario ...49

5.1 Implementation ...50

5.1 Apply All Tests ..50

5.1 Documentation ..51

Chapter 6 : Conclusion and Future Work ..53

6.1 Conclusion ...53

x

6.2 Future Works ..56

6.1 Collected Vulnerabilities ..57

6.1 References ...87

xi

List of Tables

No. Table’s Name Page

1.1 Top 10 Security Risk 3

4.1 Writing The Scenario 26

4.2 Result Of The Tests 32

5.1 Case Study Scenario 50

5.2 Apply All Tests 51

6.1 Collected Vulnerabilities 56

xii

List of Figures

No Figure’s Name page

3.1 Misuse Cases 16

3.2 Non Functional Requirements 17

3.3 Spiral Model 18

3.4 Security Model For E-Education Process 19

3.5 Microsoft Security Development Lifecycle 20

4.1 Model Basic Graph 22

4.2 Waterfall Lifecycle 38

4.3 Waterfall With Security Model 39

4.4 Agile Development Lifecycle 40

4.5 AGILE WITH SECURITY MODEL 41

4.6 Iterative And Incremental Development 42

4.7 Iterative And Incremental Development With Security

Model

43

4.8 XP: Extreme Programming 44

4.9 Extreme Programming With Security Model 45

1

1. Introduction

1.1 Purpose Statement

This work aims at giving more focus on software security vulnerabilities and to enable

software engineers and system developers to manage the issue of software security in all

the phases of the software development lifecycle in a systematic way based on concrete

knowledge. Towards that end, I have developed a new model that employs risk analysis

techniques and rigorous testing rather than mere expectation and intuitive decisions.

1.2 Thesis Target Audience

Since software security is relatively a new field, it keeps attracting both researchers and

developers, so this work can benefit system architects, system analysts, programmers,

testers, and quality assurance personnel.

This work is also suitable for academic institutions and software engineering educators,

since it can help them understand the concepts of the software security and be able to

predict security vulnerabilities. It also presents a simple and clear model that enables

software engineers to solve security vulnerabilities during software design and

development.

2

1.3 Objectives

Towards the general aims outlined above, we try to achieve the following objectives:

 Identify the security concepts

 Identify the need for secure software

 Identify the missing parts of related research work

 Identify the types of security vulnerabilities

 Introduce simple security vulnerabilities preventive model

 Integrate this model into the four common software design models (Waterfall,

Agile, Extreme Programming, and Iterative)

 Present a testing measurement for software and security model.

 Give examples of how to use this model with real example

1.4 Problem Description

Usually developers identify the security as an authentication and authorization issue, and

they mix between security needs and system's requirements, and when I started to

identify the security concepts for this thesis and its vulnerabilities, I found that I missed

most of the part regarding security and its meaning.

Software security problems appear in small software applications and even in enterprise

applications. Similar mistakes are repeated by many developers. Most developers use one

of the four common lifecycle models, and yet they have faced buffer overflows for

example, and therefore many scenarios were put to solve this problem.

3

Many developers ignore security requirements since they are hard to describe and

complex to implement, especially when the software becomes very large, and with

distributed systems the problem becomes even more difficult.

Another point to mention is that Security is hard to be measured after the software has

been delivered as a closed box, and it will be difficult to test and modify the software by

another person.

By looking at OWASP “yearly top ten most critical Web application security risks”

report [34], we found that 8 out of 10 are still in the most top 10 and the awareness of

them is not increased. The graph below from this report shows the differences between

2007 to 2010 top 10 most critical web application security risks

OWASP Top 10 - 2007 (Previous Version) OWASP Top 10 - 2010 (Current Version)

A2‐Injection Flaws A1‐Injection

A1‐Cross Site Scripting (XSS) A2‐Cross Site Scripting (XSS)

A7‐Broken Authentication and Session Management A3‐Broken Authentication and Session Management

A4‐Insecure Direct Object Reference A4‐Insecure Direct Object References

A5‐Cross Site Request Forgery (CSRF) A5‐Cross Site Request Forgery (CSRF)

(was T10 2004 A10 ‐ Insecure Configuration
Management)

A6 Security Misconfiguration (NEW)

A8‐Insecure Cryptographic Storage A7‐Insecure Cryptographic Storage

A10‐Failure to Restrict URL Access A8‐Failure to Restrict URL Access

A9‐Insecure Communications A9‐Insufficient Transport Layer Protection

(not in 2007 Top 10) A10‐Unvalidated Redirects and Forwards (NEW)

A3‐Malicious File Execution <dropped from 2010 Top 10>

A6‐Information Leakage and Improper Error Handling <dropped from 2010 Top 10>

Table 1.1 Top 10 security risks

1.5 The Need for Secure Software

Usually system developers, designers, architectures and requirement analysts are unaware

of the concepts of software security and give little or no consideration to security during

4

the development process. This has caused a large number of security problems within the

software.

CERT Coordination Centre [2] mentions that 90% of posted software security problems

took place because of mistakes on the design phase of that software, bad coding style, or

misunderstanding of the environment that the software will be deployed in.

Security problems cause customers a huge loss of data, money and even the trust of the

company for which they have developed the software.

And from my real life experience, I found that any breach in software security causes the

customers a big loss of money that affects the company’s reputation and usually other

related customers as well. I experienced many cases that have occurred due to software

security issues that caused a huge loss and would have been easily avoided if minor

mistakes in deployment were discovered.

1.6 Required Qualities of Security

Secure software can be defined as the “software that is resistant to intentional attack as

well as unintentional failures, defects and accidents” [10].

From this definition we have to be aware that each software should be secure as a means

of prevention from all available kinds of vulnerabilities. And to reach that goal we have

to collect all available information about security vulnerabilities and put forward suitable

plans so as to avoid them and make our software immune against attackers. We have to

keep in mind that the attackers also collect this information and are usually aware of

these vulnerabilities, and our mission is to protect our software against their knowledge.

5

Another quality that we have to take into consideration is the performance of our

software, if security overheads will reduce software performance significantly, then we

are going in the wrong direction! Security measures that are built on concrete knowledge

and planning won’t affect performance significantly, but if we look at the security issue

after the software has been completed and delivered, this will definitely reduce software

performance significantly.

Measurement of security is another key of quality, if we can explain the level that we

reach in building this software this means that we admit that we provide all our best to

protect our software and we don’t hide any information about the level of security we

reach.

Availability in system represents the service or functionality that is available when it is

required, but as for security, it means that it is available every time not just when it is

required, so we can measure the quality of security availability by the following rule: if

security is missed once in the software, then it does not exist at all!

6

2. Background

This chapter presents the concept of software security stated in the literature. This chapter

will serve as a context building for upcoming discussion about improving security in the

next chapters.

2.1 Background:

Software engineers start to think of the importance of the security issue when security

vulnerabilities where found in their software. When customer’s private data is attacked

and stolen by hackers, they blame software engineers for being less educated and cannot

present secure software to their customers. So software engineers start to learn from their

mistakes to avoid attacks and start writing scenarios on how to avoid security

vulnerabilities and keep their customers satisfied with their work in order to keep giving

life to the software development.

The current development lifecycle views security as a useful case, procedures and testing

but not as logical thinking to avoid vulnerabilities. Experts develop checklists, training

programs, how to test manuals that handles few cases of security, but not whole phases

on software lifecycle.

7

2.2 General Concepts of Software Security

Definition of software security is all about Confidentiality, Integrity and Availability

(CIA), in addition to, Authenticity, on-repudiation and Risk management and that stem

from the software security definitions [5]:

 Confidentiality is the property of preventing disclosure of information to

unauthorized individuals or systems.

 Integrity means that data cannot be modified without authorization, and maintain

consistency of data.

 Availability : mean that the information must be available when it is needed

Security Vulnerabilities resources

 Authenticity : mean to ensure that the data, transactions, communications or

documents (electronic or physical) are genuine

 Non-repudiation: implies one's intention to fulfill their obligations to a contract.

It also implies that one party of a transaction cannot deny having received a

transaction nor can the other party deny having sent a transaction.

 Risk management: A comprehensive treatment of the topic of risk management

is beyond the scope of this article. However, a useful definition of risk

management will be provided as well as some basic terminology and a commonly

used process for risk management.

8

2.3 Software Security Definitions

Here we present some of the definitions of software security as they appear in the

literature:

 “Software Security is the ability of the software to resist, tolerate, and recover

from events that intentionally threaten its dependability” [2]

 “Software Security is about building secure software: designing software to be

secure, making sure that software is secure, and educating software developers,

architects, and users about how to build secure things” [3]

 “The idea of engineering software that continues to function correctly under

malicious attack” [5]

 “The process of designing, building, and testing software for security” [8]

 “Defends against software exploit by building software to be secure in the first

place, mostly be getting the design right (which is hard) and avoiding common

mistakes (which is easy)" [5]

 “Software Security is system-wide issue that takes into account both security

mechanisms (such as access control) and design for security (such as robust

design that make software attacks difficult)”[5]

According to all above definitions of software security we can conclude that they all

focus on making the software more robust that can resist attacks, while keeping private

data away from attackers.

9

Therefore we can define software security as follows: “The ability to analyze and measure

the level of security that has been reached during the development lifecycle to avoid any

security vulnerabilities and risks”

2.4 Resources of Security Vulnerabilities

In order to provide a new approach for integrating the security requirement in the

software lifecycle – contrary to what other researchers have been doing in the past few

decades, I have been working for two years trying to collect and identify all kinds of

security vulnerabilities that affect software systems in general. As a result, I was able to

identify 160 different security vulnerabilities in different types and flavors. Most of these

can be considered as deadly (or catastrophic) vulnerabilities! I have included a list of all

these vulnerabilities in the appendix. I summarized below the sources of these

vulnerabilities:

1- CERT (Computer Emergency Response Team) [2]: is considered as an American

governmental institute that is responsible for helping other governmental

organizations on security vulnerabilities.

2- OWASP (Open Web Application Security Project) [6]: Worldwide free and open

community focused on improving the security of application software. I have

obtained most of the security vulnerabilities information from this resource.

3- 19 Deadly Sins of Software Security [36]: a book that contains information

about 19 vulnerabilities. This book had helped me with its idea about discovering

the vulnerabilities before software failures.

10

2.5 A Taxonomy of Software Security Terms

Here I summarize most of the software security terms and vocabulary that are used in this

thesis and in many software security books and the literature in general, and hereby I list

the common ones and their meanings to make them clear and easier for the reader to

understand. [1]

Access Control List (ACL): A data structure or list that is maintained to track what

users or groups have permissions to perform what actions. This is a Windows term.

Attack: A particular instance of an attempted introduction of one or more exploits to a

system.

Attacker: Someone who is trying to bypass the security of one or more pieces of the

software in order to carry out some malicious agenda.

Backdoor: A piece of malicious software that is installed and left running to provide a

way for an attacker to regain system access at a later time.

Cracker: Someone who “cracks” through software security, particularly licensing and

copy protection. It is thought to have its roots in “safe cracker.” This term isn’t often

used, in part because it is more narrowly focused and in part because it is just not as

widely known and the differentiation between a hacker and a cracker is not clear yet.

Cracking: The act of circumventing the copyright protection, licensing, or the

registration functionality of the software.

Daemon: A piece of software running in the background, usually as a process.

Sometimes used interchangeably with “demon” in Unix® (The Open Group, San

Francisco, California) term.

11

Denial of Service (DoS): Where legitimate users are prevented from accessing services

or resources they would normally be able to access.

Distributed Denial of Service (DDoS): Where legitimate users are prevented from

accessing services or resources by a coordinated attack from multiple sources.

Escalation of Privilege: When attackers illegitimately gain more functionality or access

than they are authorized to have.

Ethical Hacker: One that performs penetration tests. Sometimes ethical hackers are also

called “white hats.”

Exploit: A code, a technique, or a program that takes advantage of a vulnerability to

access an asset.

Firewall: An application or hardware appliance designed to diminish the chances of an

attack by limiting specific types of information that can pass into or out of a system or a

network.

Hacker: Someone who “hacks” programs, i.e., writes them in a particularly haphazard or

unorganized manner. This wasn’t originally a term that was specific to attackers, but in

the last few years it has become an often-used synonym for attackers, especially in the

press.

Hijacking: A situation when an attacker takes over control of one side of a two-sided

conversation or connection.

Hub: A networking device that repeats the network packets on the physical network

layer among many devices.

12

Information Disclosure: A situation when an attacker is able to access information he or

she shouldn’t be able to.

Intrusion Detection System: An application that monitors a system or network and

reports if it recognizes that the signs of an attack are present.

Leets peek: The stereotypical sign of a script kiddie where text is written with numbers

substituted for letters. The name comes from “elite.” For example, “leet” is often written

as “1337” or “l33t.” It’s also seen a lot in gaming communities.

Media Access Control (MAC) Address: Also called the Physical Address, it is

physically embedded in every network interface card (NIC) during the manufacturing

process. MAC addresses are often treated as unique, although that is not actually

guaranteed.

OSI Network Model/OSI Seven Layer Model: The Open Systems Interconnection

Reference Model. This is commonly used to explain at what point certain processes are

taking place and how information travels.

Personally Identifiable Information (PII): Information that is private to the user or

machine. Disclosing PII is a violation of user privacy and can be a part of identity theft

problems.

Phishing: Social engineering on a large scale, usually to obtain things like login

information, credit card numbers, etc.

Protocol Stack: A system that implements protocol behavior based on a series of the OSI

Network Model.

13

Reverse Engineering: The act of wholly or partially recreating the algorithms or designs

used in software. This is usually done without source code access.

Rootkit or Root Kit: A set of tools and scripts that an attacker installs after successfully

compromising a system. These are designed to automate additional tasks including

installing additional programs like key loggers, remote administration tools, packet

sniffers, backdoors, etc. Kernel Rootkits are rootkits that hide themselves within the

Operating system’s kernel, making them a lot more difficult to detect.

 Router: A hardware device that routes traffic between two networks. It can also disguise

the traffic from the network behind it to make it appear as if all traffic comes from a

single system.

Script kiddie: The somewhat derogatory term for an attacker who primarily downloads

and uses exploit code designed and written by others. “Script kiddie” tends to be used to

signify a copy-cat type of attacker that is not particularly skilled or creative on his or her

own. A script kiddie is also considered to be young, cocky, and brash.

Social Engineering: The process of tricking or convincing a user into volunteering

information the hacker can later use. This is often focused on things that are either

finance related or material for identity theft.

Spoofing: Impersonating someone or something else — such as another user or machine

— in order to trick software security checks or users.

Switch: A hardware device similar to a hub but which knows the hardware (MAC)

addresses of each machine connected to it. This is so it can transmit packets only to the

14

individual machine it is addressed to. This has the positive side effect of reducing

network traffic and noise.

Threat: A possible path to illegitimate access of an asset.

Trojan Horse: A piece of malicious software designed to deceive the victims by

appearing to be a benign program that they may wish to use and thus are willing to

download or install.

Virus: A piece of malicious software that is capable of spreading itself, typically as part

of a piece of software or a file that is shared between users.

Vulnerability: A bug in the software that would allow an attacker to make use of a threat

to illegitimately access an asset. All vulnerabilities are threats, but only unmitigated

threats are vulnerabilities.

Zero-Day Exploit: A vulnerability that is exploited immediately after its discovery, often

before the software company or the security community is aware of the vulnerability.

15

3. Related Work

3.1 Misuse Cases

The concept was created in the end of the 1990s by Guttorm Sindre of the Norwegian

University of Science and Technology and Andreas L. Opdahl of the University of

Bergen, Norway [35], we found a complete framework; Strategic Modeling Technique,

which covers in details both analysis and modeling in terms of security improvements.

The framework introduces the definition of misuse cases of technique for many

developers. This technique expects developers to be experts in security issues and have

good experience of software development analysis and modeling in order to be used

correctly.

The following graph shows a scenario of misuse case and how the system analyst writes a

scenario to counter attack for each one of the misuse

cases.

16

Figure 3.1 misuse cases

3.2 Nonfunctional Requirements

Another work comes from Chung et al [37], who classifies security requirements as

non-functional requirements and present a general framework to deal with non-

functional requirements to express them explicitly in the software life cycle. Chung

believes that non-functional requirements are often subjective and relative. They

introduced a set of sub-goals in order to satisfy a given security goal where the

relationship between the sub-goals and the goal is either AND or OR

17

relationships.

Figure 3.2 Non Functional requirements

3.3 Spiral Model

This model was proposed by [37], and it is considered an extension of the iterative model

assumes to have 4 phases, the first one is planning, the second is risk management, the

third is development and testing and finally a plan for the next iteration.

This model wants the developer to check in each phase the possible risk that could

happen, without showing the system architecture the potential problem.

18

Figure 1.3 Spiral model

3.4 Security Model for E-Education Process

This research was presented in 2009 by [39], and provided a way of thinking of security

vulnerabilities by using brainstorming to discuss system requirements, and try to figure

out what could attack the system without providing previous knowledge about the

security vulnerabilities.

Another point concerning this model that it depends on tools that are not mentioned in the

model context and here is that what is considered as missing point to the

19

developer.

Figure 3.2 Security Model for E-Education Process

3.5 Microsoft Security Development Lifecycle

Microsoft also provides its own security model to counter attack risk based on core

training phase [28], even Microsoft has a long history in security vulnerabilities that

attacks its products, bud this model is good for Microsoft developers.

This phase focuses on Microsoft products only and discusses the vulnerabilities that may

attack Microsoft products only, and that is ignoring large amount of security

vulnerabilities for other technologies and products.

Another point concerning Microsoft model that does not exist on our model, is that we

create counter attack scenario and test this scenario to investigate these scenarios,

whether it can prevent these vulnerabilities or not.

20

3.6 Other Research Behaviors:

Software security researchers have written books on software security, solutions for many

security problems, how to avoid them and how it could damage the software [8, 10].

Others wrote on how to test the software against security vulnerabilities, on risk

management and how to keep the software in a stable status after being attacked [19, 32].

In my search for security concepts I found many security modules that can be followed to

ensure security in software’s based on good knowledge for security in the developers

minds.

Figure 3.3 Microsoft security development lifecycle

21

4. Our Model

4.1 Our Contribution

The main difference between my work and other works is that I am working first to

collect all available information about security vulnerabilities and study them well, then

start my model with a learning phase that provides the developer with the needed

information about how to start thinking about security seriously and how to be aware of

all possible vulnerabilities then to share information on the last stage to the next

responsible person.

Another difference between my works and other software life cycle models is that I first

focus on the security vulnerabilities and then I evolve my model into another model and I

will explain later how to integrate my six layers into each model of the most known four

models.

Our Model

In this chapter I will introduce my model depending on the works I have done in

analyzing hundreds of security vulnerabilities supported from CERT.

In this thesis we define six stages for the security lifecycle model:

1- Learning stage : in this stage target audience will take the knowledge of the

security Vulnerabilities that may occur in each phase of the software life cycle

2- Predicting: in this stage target audience will predict all possible vulnerabilities

that may occur in each phase.

22

3- Write scenario: in this stage target audience will write the best scenario to

complete this phase in order to completely pass all security vulnerabilities.

4- Implementation: in this part target the audience will do the required work for

this part of work such as analysis or implementation … etc.

5- Apply all tests: in this stage target audience will apply all the related tests for his

stage as I will explain how to get the test from the sheet that contains all security

vulnerabilities.

6- Documentations: writing notes to next stage implementer is very meaningful for

security life cycle since most of vulnerabilities occur due to miss information

between people in each stage.

And in the rest part of this chapter I will write details for each phase of security life

cycle with an example for each.

Figure 4.1 Model basic graph

23

4.1.1 Learning Stage:

In this stage we will take the knowledge and learn about the security vulnerabilities that

may occur in the stage of implementation, this knowledge comes from a complete list of

all security vulnerabilities provided by CERT.

Taking knowledge from the list will make it easy to target audience since this sheet

provides the list with description of each problem and in which stage each vulnerability

may occur, so it needs just to look at your required part and take knowledge of its

information and will study the provided case.

The information listed in the sheet required only one time and then the knowledge is

provided to each time it’s needed.

And if the sheet is updated, it will be easy to target audience to learn the new

vulnerability and to take it into consideration since most of the vulnerabilities are

dependent on the environments that are used.

4.1.2 Prediction Stage

After target audience take the knowledge of all above vulnerabilities it will be easy to

predict what could happened during the work depending on his own style.

Many system architects don’t fall in any of those vulnerabilities without knowing the risk

that may occur if they fail in one of them.

Predicting stage can be included into two stages in the software life cycle: the stage of

writing the system requirements and analysis requirements. So the target audience will

24

take in consideration all the system requirements and analysis in order to predict all the

possible failure.

4.1.3 Writing Scenario

Writing scenario is the core stage of the security life cycle , and this means the how much

we learn from the learning stage ,so the target audience will do the best to pass through

all points in the list above and write complete system requirements and security

requirements to avoid any chance of failure. And if we review the list in the prediction

stage we will find that all of them are of type of warning and all are easy to take in

consideration. Then the target audience will write system analysis and showing more

details in writing each point to clarify to the system implementer all the warning as

points so as to consider them as functional requirements.

Here, the meaning of writing scenario is to write all possible user workflow control and

to insure that all vulnerabilities are prevented and none of them could occur to the system

target that audience working on.

Scenario writer must write security vulnerabilities according to their reference and level,

the reference means where this vulnerability comes from and the level estimates the level

of damage that may occur if this security vulnerability is left without handling.

25

4.1.3.1 Security Vulnerabilities and References:

a. Technology security vulnerabilities
b. Implementation security vulnerabilities
c. Environment security vulnerabilities
d. User security vulnerabilities
e. Third party system security vulnerabilities
f. Integration security vulnerabilities
g. Business rules security vulnerabilities
h. Anonymous user vulnerabilities

4.1.3.2 Security Vulnerability Level:

I choose the name of the vulnerability level based on old phonetic alphabets just because

old communication via radio signal used this name to give the listener the value of thing

they agree on and so I choose the developer that agrees on such name to be common to

the level of vulnerability

1- Delta (Severe) :this is the most dangerous level and this means it will be

hard to restore system or system data after security vulnerabilities are

attacked

2- Charlie (High) : this means that danger could cause loss the data, or either

copy the data where it’s considered as damage the customer business

3- Bravo (Elevated) : high dangerous, could cause stealing the customer

business and make the customer lose money after this vulnerability is being

attacked

4- Alpha (Controlled) : this level means that if these vulnerabilities attacke,

system or data will still be safe but system behavior will not work as expected

26

5- Echo (system workflow hit): this is the least level in this scale and it means

that everything will be kept as expected and there will be no loss of data or

system, and the system behavior will be kept as expected ,but strange behavior

may occurs in third party software or hosting environment.

And from the above specifications scenario writer can use the following template in order

to fill the scenario:

Name Description Scenario steps Reference Level

Table4.1:Writing the scenario

This stage of the security life cycle for the first time seems very hard to the target

audience since he has to think badly, and try to write all bad scenario that may affect the

security of the system. Most system hacker use the knowledge in order to damage any

system, they have to get a clear guess of how the system is built so as to find the system

security vulnerabilities.

There are a lot of books that describe how to attack systems, all of them depend on

knowing the system behavior and if they don’t know how the system is built, they guess

and build in their mind a similar system so they can guess the mistakes that the system

developers failed to prevent.

Any other suggested form or sheet is not bad but I just try to provide applicable form to

the scenario writer and he can write his scenario using his own words , and this means

that the writing phase fully describes the level or education that the writer reach, his

words give us clear vision of what he means, and for another purpose since some cases

27

are different from each other, some of them can be written as notes ,others require full

description and graph to be illustrated like Buffer Overflow and Buffer underwrite.

4.1.4 Implementation

Implementation here means that implementing security requirements are not the software

implementation, and the system developer who works to implement this requirements has

to take care of the written scenario and refer to the predicting scenario and get

vulnerabilities information from the vulnerabilities sheet.

The main goal of this model is to make it easy for the implementer to apply all security

requirements; this goal requires us to provide system developer with all required

information, scenarios, and predicting all information for any vulnerability.

Implementation steps:

 Review all the available vulnerabilities and review that developer is aware of
each one

 Review all predicting vulnerabilities
 Review and Pass through each vulnerabilities scenario
 Start to implements with the knowledge of the above steps

And when developer starts the implementation phase and code writing he will be more

aware of the security vulnerabilities after being predicted and written as scenario from

more than one person or more than one step.

28

4.1.5 Apply All Tests

Software security testing in other models require the tester to have more experience, more

work to do, and to expect the unexpected vulnerabilities. While searching for testing

security in software, many books described the security tester as a long experienced and

very good knowledgeable person, who can discover security vulnerabilities that system

developer is now aware of, but in this model, security tester has to follow the sheet

provided by another phase to generate a list of tests that need to be done, and here the

main advantage of my model is to make it straight forward for each phase in the model

After implementation we have to test whether the implementation blocks any security

vulnerabilities or not, this test must be classified and sorted out so as not to ignore any

vulnerability.

Test phase must be done by a person who must have the knowledge and the ability to

rearrange the entire tests scenario to apply them with the order that does not ignore any

vulnerability.

The meaning of ignoring vulnerabilities is that some vulnerability occurs as a result of

vulnerabilities, such as “Using freed memory” that can cause to “Unintentional pointer

scaling”, and serious tester must be aware of the meaning of vulnerabilities that make

vulnerabilities.

And security test must not be ambiguous that’s to say it must be different from software

test and each one has its own goals and its reference to depends on, even if the same

person does both tests he should separate from the system functional tests.

29

4.1.5.1 Security Testing Requirements

1- Technology knowledge : tester must have a good experience in the technology

used in this system, this is because new technologies are different from each

other and each one has framework and vulnerabilities that can’t be applied to

other technologies

2- Aware of Code Complexity: The more complex the code, the more likely it is to

have security vulnerabilities as well.

3- Code Coverage: this means that tester has to pass over all the code that the

software has, the percentage of code coverage is an important issue to determine

the coverage of test and the security of the software.

4- Test environment :it is similar or close to the production environment

5- Describe your attacker: tester must have a good idea of just who these attackers

are and what their skills and motivations are.

6- Define attacker’s goals: this means that any attackers have a goal to reach in order

to hack your software, and the testers have to identify their goals to prevent them

from attacking your software.

30

4.1.5.2 Testing Plan

As mentioned before, the security testing in this model is completely straightforward and

needs the test just to implement using the available test that comes from our research

about all security vulnerabilities, predicting phase and written scenario and collecting all

these data and exposing them to testing matrix.

Testing matrix is a matrix that combines between the predicting phase of the written

scenario and surely the implementation itself.

So all tests must be available to be done, the tester has to order test and make sure that the

order is meaningful and not to ignore any test because of the order.

4.1.5.3 Time Plane for the Test

Tester must put test plan for the time of the tests so as to determine the time spent for

executing each test in order not to have a conflict between the two tests and not waste the

testing time.

Tester has to determine the required time to investigate each vulnerabilities, and since

this requires the tester to be aware of the vulnerability itself and then to pass through the

software code so as to check whether this vulnerability is handled with the code written

or not.

The time needed for running all tests can be modify according to the test results, if tests

start to succeed one after another then there is no need to stick completely to the time

plan and test can go faster.

31

4.1.5.4 Fuzz Testing (Fuzzing)

The term Fuzz originated from Prof. Barton Miller's student assignment at the University

of Wisconsin in the Fall of 1988, titled "Operating System Utility Program Reliability -

The Fuzz Generator".[40] In quality assurance and testing, the same approach (using

unexpected data or syntax) has been called robustness testing, syntax testing or negative

testing. Even white-noise testing can be thought of as fuzzing.

Fuzz testing is mostly used to test the stability of the software since if you can post the

software entry points data larger than what he expects, that may cause the software to

hang-up and may cause to stop the software from being served to the customer, and this

is considered as security vulnerability since it’s used to prevent the user from accessing

the service.

And to insure that tester has done the fuzz testing in the testing phase, every security

vulnerabilities that may occurs as result of fuzz testing must be included in the learning

phase and during learning phase and expectation phase they can see that it’s available to

be taken into consideration.

4.1.5.5 Result of the Tests

Result of the test should be clear with scenario of the fail, this means that the tester has to

complete the scenario of the test, and write the scenario to the implementer showing how

to do each test.

Result of the test also should have the reference of the test, this means that the tester must

get to know where this test is from, and here in this model; is it from the expected

32

vulnerabilities or from the learning stage and the expectation stage, and here the tester

should be aware of the missing test from the expectation stage.

Table 4.2 describes show a form of the table result sheet.

Test order Test

name

Test

scenario

Test

reference

Test time Test result Test note

Table 4.2 : Result of the tests

4.1.6 Documentations

Writing notes in this security model gives a security auditor or any security test to know

the ability of the level of the security in this software and how to add new vulnerability

blocker to the software.

Writing notes is not the result of the security test; it is the description of what that

software can apply of rules to prevent any security vulnerability that may attack the

software.

4.1.6.1 Documentations Elements

Security notes contains the following elements

1- System description
2- Description of used technology
3- Environment developed on.
4- Environment deploy on.

33

5- Security vulnerability expected
6- Expected Security vulnerability blocker
7- Implementer notes on vulnerabilities
8- Tester notes

System Description
This section contains a description of the system and its aim and this must contain

information on the analysis document that builds the system

Description of Used Technology
Systems may contain several technologies in the same project and the combination

between technologies to build this system, since combining or connecting technologies

presents security vulnerabilities.

Environment Developed On
Describing the development environment is a key issue to describe the changes in the

development environment and deployment environment to keep the auditor aware of the

vulnerabilities that may not checked during development.

Environment Deploy On.
To describe the target environment that the system will be deployed on, and to investigate

the changes between development environment and deployment environment.

Security Vulnerability Expected
List of all expected vulnerabilities in the expectation stage to show the level of

expectation reached during development

Expected Security Vulnerability Blocker
Describe the work done to prevent security vulnerabilities from attacking our software

ability to improve blocker

34

Implementer Notes on Vulnerabilities
Notes of the system developer and system implementer about the security vulnerabilities

that have been expected.

Tester Notes
Notes of the tester and notes about the result of security test, and this is to show to the

auditor the level of acceptance that the tester reached.

4.1.7 Review of Our Model

During this chapter we passed through my model and showed the stage that I assumed

will prevent security vulnerability based on knowledge before implementation.

 Learning is the phase where system engineer explores new information about

security vulnerabilities.

 Prediction is the phase where system engineer expects security vulnerabilities

based on the information.

 Writing scenario is the stage where system engineer describes how many security

vulnerabilities occur.

 Implementation phase shows where prevention and blocking of the security

vulnerabilities are done.

 Applying all test phase makes test to all security vulnerabilities and ensures that

the system is secure for all expected vulnerabilities.

 Writing the note phase is the final stage and here we write to the IT auditor what

we do on each environments and how we do it.

35

The main goal of this model is to facilitate the process of the security testing of software

since most system engineer does not have good knowledge of security vulnerabilities and

its level of danger to the system they develop and what the meaning of hacking system is.

Most people think that the hacker is a genius one who can discover attack, stall and

destroy systems based on his intelligence and here we clear that all security

vulnerabilities occur due to lake of knowledge and attacker got that knowledge.

4.2 Security Measurements

In this section we will discuss security measurement, how to measure my model

according to common security measurement and how to measure any security software

built on this model.

4.2.1 Software Security Measurable Entities

Before starting measure my model, we must agree on the entity to measure security at

any software and then put the entity to measure my security model.

1‐ Provided Level Of Protection: this entity get its information from the result test and

from the notes written on the software.

2‐ Applying Customer Internal Policy: if the security of the software violates the customer

policy this means that this software is not fit for the requirements.

3‐ System Performance: the affected performance due to security of this software.

4‐ Cost: the extra money needed to secure this software against software budget.

36

5‐ Time‐Orientation: needed time to secure the system: the extra time needed to secure

software against the time needed to develop the software.

6‐ Software Modification: this issue reflects the level of security when modification is

applied on the software.

7‐ Integration with Other System: this issue reflects the change on level of security due to

integration of this software with other software’s.

4.2.2 Security Model Measurable Entities

Measuring the model is different from measuring software, here we are talking about

model and we have to measure it against other models, and rank it with models entities,

and for that I listed my own entities that reflect the goals of this models

1- Security Level Reached: the security level reached in this model is high since I

collect all kinds of security vulnerabilities and classified them into categories and

provided them to the developer to help in protecting software.

2- Usability of This Model : as you can see in the next chapter I merged this model

into the four common life cycle and made it usable and meaningful for the

developer

3- Cost Saving: saving money that may be spent on security of the software after

being deployed is greater rather than spending it during development.

4- Time Saving: secure software against all kinds of vulnerabilities is saving time in

consideration to the time needed if software is attacked after being deployed where

37

it’s possible to lose data and customers privacy. and after using this model for the

first time, developer learning time is reduced and after a while it goes to zero time.

5- Portability: this model is portable for all kind of technologies and all kinds of

programming language since it collects information for all kinds of security

vulnerabilities.

6- Documentation : in this model each phase is concluded with documentation that

help other phase until it reaches the last phase where documentation and notes deal

with IT auditor level and represent the level of security that this software reaches.

4.3 Integrating with Common Software Lifecycle Models

In this chapter I will inject the security model in the four software lifecycle that are

mostly used and I will show how to include it in any software lifecycle

4.3.1 Waterfall Lifecycle

The waterfall model is a sequential software development process, in which progress is

seen as flowing steadily downwards (like a waterfall) through the phases of Conception,

Initiation, Analysis, Design, Construction, Testing and Maintenance.

Waterfall life cycle is the most common used way of software engineering process and it

is considered the simplest one in any other software lifecycles.

38

And figure 4.2 shows the steps those bases during this lifecycles

Figure 4.2 waterfall lifecycle

And to inject my model into this lifecycle I do the following:

1- Learning and predicting stages added to the requirements phase
2- Writing scenario added to the design stage
3- Implementation phase added to implementation phase
4- Applying all test added to the verification phase
5- Writing notes added after the software is launched

And graph 4.3 shows the new design of the waterfall that contains my module and each

step inside it, and here I created a new step for software launch where writing notes is

embedded in.

39

Figure 4.3 Waterfall with security model

4.3.2 Agile Software Development

Agile software development refers to a group of software development methodologies

based on iterative development, where requirements and solutions evolve through

collaboration between self-organizing cross-functional teams.

40

Figure 4.4 Agile development lifecycle

Agile processes use feedback, rather than planning so this can make a lot of security

vulnerabilities and resolve them more quickly than waterfall model. And to add my

model to this iterative model I did the following:

1- Learning phase before the iteration start.
2- Prediction and in the requirements and feedback.
3- Write scenario in the analysis stage.
4- Implementation in the coding stage
5- Apply all tests in the Testing stage.
6- Write notes in the delivers increment stage.

And graph 4.5 shows how the security models are embedded into the agile software

lifecycle

41

Figure 4 Agile with security model

4.3.3 Iterative and Incremental Development

Iterative and Incremental development is a cyclic software development process

developed in response to the weaknesses of the waterfall model. It starts with an initial

planning and ends with deployment with the cyclic interaction in between.

42

Figure 5 Iterative and Incremental Development

I found that this model is acceptable to my model more easily in its stage since it does

evaluation phase then goes to another level and here they can apply all test and write

notes to the next iteration.

And I add my model as the following

1- Learning stage comes with the initial planning.

2- Prediction and write scenario in the analysis & design stage.

3- Implementation phase in the implementation phase.

4- Apply all tests in the testing phase.

5- Write notes in the evaluation phase.

43

And graph 4.7 shows how the security models is embedded into the iterative and
incremental

model

Figure 4.7 Iterative and Incremental Development with security model

4.3.4 XP: Extreme Programming

Extreme Programming (XP) is a software development methodology which is intended to

improve software quality and responsiveness to changing customer requirements. As a

type of agile software development, it advocates frequent "releases" in short development

cycles (time boxing), which is intended to improve productivity and introduce

checkpoints where new customer requirements can be adopted.

44

Figure 4.8 XP: Extreme Programming

Extreme programming is the best iterative process to work on continuous work that keeps

and adds new feature and new requirements.

And to add my model into the XP model I do the following:

1- Learning stage comes before the iteration start

2- Prediction in the break down stories to tasks stage

3- Write scenario in the plan release

4- Implementation in the development stage

5- Apply all test comes before release software

6- Write notes comes in the evaluate system.

45

And graph 4.9 shows the XP model with security model embedded into it where you will

find that learning stage is before the iterative start

Figure 4.9 XP: Extreme Programming with security model

46

5. Experiment

Here in this chapter we will pass through real life example, and try to implement our

security model, and explain in some points how to use this model, how to write scenarios

and how to test our products.

We take an example of building Web application using ASP.net with SQL server; this

application is social community web application that enables visitors to contact each

other.

And here are some requirements of this application:

1- Users will have to register in order to create an account

2- After registration, activation of the email will be sent to users account

3- User will have to log in after they creating the account

4- Users can upload their photos, videos to the site

5- User can comment on their photos, videos or their friends.

6- Users can add other users as friends and also they can delete friends

If we look at these customer requirements we will finds that they are simple and common

in web application, and here we will try to break security threat into expected

vulnerabilities.

47

5.1 Learning Stage:

Here after reviewing and learning from the vulnerabilities sheet, we must take knowledge

of the below related vulnerabilities, since they all related to the following area:

1- Web Application

2- ASP.net technologies

3- SQL server

4- Windows environment

5- Amateur users

6- Anonymous users

And we found that the below list is joining these areas:

 Addition of data-structure sentinel
 Allowing password aging
 ASP.NET Misconfigurations
 Business logic vulnerability
 Catch NullPointerException
 Comparing classes by name
 Cross Site Scripting Flaw
 Deserialization of untrusted data
 Empty Catch Block
 Empty String Password
 Failure of true random number generator
 Failure to add integrity check value
 Failure to drop privileges when reasonable
 Failure to encrypt data
 Failure to protect stored data from modification
 Failure to provide confidentiality for stored data
 Failure to validate host-specific certificate data
 Format String
 Hard-Coded Password
 Ignored function return value
 Injection problem
 Insecure Randomness

48

 Insecure Third Party Domain Access
 Insufficient Session-ID Length
 Log Forging
 Missing XML Validation
 Not allowing password aging
 Often Misused: Authentication
 Often Misused: Privilege Management
 Often Misused: String Management
 Open redirect
 Password Management: Weak Cryptography
 Password Plaintext Storage
 Privacy Violation
 Session Fixation
 Storing passwords in a recoverable format
 String Termination Error
 Truncation error
 Trust of system event data
 Trusting self-reported DNS name
 Trusting self-reported IP address
 Uncaught exception
 Unreleased Resource
 Unrestricted File Upload
 Using password systems
 Write-what-where condition

The list seems to be very long and it requires long time to be learned and that’s the point

we need, the target audience needs to know all the potential vulnerabilities before starting

to work on the project, and this knowledge is not needed to be transferred every time the

target audience will develop a new web application, and this will reflect the rest parts in

the application so it becomes easier and more trusted every time it’s checked.

And if we look at the list one more time we see that it is divided into all phases in the

software life cycle, and let’s say to the system analyst that there are 12 points, for

developer there are 19 points, for deployed about 7 points … etc.

49

5.2 Predicting Stage

As a system analysis and system requirements collector, I will write the following

predictions according to the requirements and to the above list:

1- Allowing password aging: since visitor will be able to log in using their own
credentials.

2- Business logic: this is ways of using the legitimate processing flow of an
application in a way that results in a negative consequence to the organization.

3- Empty String Password: this validation should be written in the system analysis
documents.

4- Failure to add integrity check value: this validation should be written in the
system analysis documents.

5- Failure to drop privileges when reasonable: this validation should be written in the
system analysis documents.

6- Failure to provide confidentiality for stored data: this validation should be written
in the system analysis documents.

7- Failure to validate host-specific certificate data: this validation should be written
in the system analysis documents.

8- Hard-Coded Password: this validation should be written in the system analysis
documents.

9- Insecure Third Party Domain Access: this validation should be written in the
system analysis documents.

10- Log Forging: this validation should be written in the system analysis documents.
11- Often Misused: Authentication: this validation should be written in the system

analysis documents.
12- Often Misused: Privilege Management: this validation should be written in the

system analysis documents.
13- Password Management: Weak Cryptography: this validation should be written in

the system analysis documents.
14- Password Plaintext Storage: this validation should be written in the system

analysis documents.
15- Privacy Violation: this validation should be written in the system analysis

documents.
16- Trusting self-reported DNS name: this validation should be written in the system

analysis documents.

The above 16 points are taken from the 45 points in the learning stage where I predict

these fail to occur so I write my system analysis and collect system requirements and take

them all into consideration.

50

5.3 Write Scenario

Let’s take one example of security scenario on our web application and show how this

list help system developer to check their software against security falls.

Name Description Scenario steps Reference Level

1 SQL

Injection

User attempt to log in

using other user accounts

depends on miss apply to

SQL query sent from

web application

Try to offer a

complete string

in the password

field to be

concatenating

with the passed

query

implementation Bravo

2 … … … .. …

Table 5.1: Case study scenario

And after writing all scenarios this will be considered as part of the tests in the test phase,

5.4 Implementation

Here in this part we will skip it in order to avoid writing application in our thesis, but we

just give knowledge of each risk.

51

5.5 Apply All Tests

After finishing implementation, we have to build a test sheet that contains all expected

vulnerabilities and their counter attack scenario.

Test order Test

name

Test scenario Test

reference

Test

time

Test result Test note

1 SQL

injection

Try to pass true

condition value

to the login page

Technologies

(ASP.net)

00:00 Pass Ok

2 Weak

password

Try to update

user password

with the

password

(123456)

Implementatio

n

00:12 System

request to

have solid

password

‐

3 ‐ ‐ ‐ ‐ ‐ ‐

Table 2.2 Apply all Tests

5.6 Documentation

Documentation here will include the following information as an example of the required

entity for this case study

52

1- System description: Web application using ASP.net with SQL server, this

application is social community web application that enables visitor to contact

with other.

2- Description of used technology :

a. ASP.net as presentation layer,

b. SQL server as data layer,

c. .net classes as business logic layer

3- Environment developed on:

a. windows XP service pack 3 as hosted developed environment

b. visual studio 2008 as development IDE

c. SQL server 2005 express edition as database

d. IIS 6

4- Environment deploy on:

a. Windows server 2008

b. IIS 7

c. SQL server 2008

d. .net framework 2,3,3.5,4 all enabled

5- Security vulnerability expected : all the 16 points in the prediction layer

6- Expected Security vulnerability blocker : all the points in the write scenario tables

7- Implementer notes on vulnerabilities : these points come with the implementation

codes

8- Tester notes: the result table of applying all test phase.

53

6. Conclusion and Future Work

6.1 Conclusion

Based on my previous experience in software development, I found that most of the

software lifecycle models and phases lack the necessary mechanisms for software

security, and mainly focuses on the mechanisms to distribute authentication and

authorization information which is far away from the real or genuine meaning of security.

In this work I have collected many security vulnerabilities that I found in trusted

resources, illustrated and classified them in a clear way to create a model that can be used

by software engineers and researchers to predict and resolve security issues during the

software development lifecycle.

The proposed model is applied in 6 stages and starts with a learning stage; this division

provides greater understanding of potential security vulnerabilities in all lifecycle stages

and up to the level of authentication phase (IT auditors). We have followed a

comprehensive approach to better serve the developer, by showing how to integrate the

proposed model into the four common software lifecycles models by including an

appropriate security phase in each model.

The first three stages of the model (Learning, Prediction, and Writing Scenarios) can be

applies in the earlier stages of the software lifecycle such as requirements collection,

analysis, and design stages. This distribution gives the developer the chance to learn

about security vulnerabilities early in the lifecycle and allows him to take the required

measurements to avoid any security risks.

54

The last three stages of the model (Implementation, Applying all tests, and

Documentation), represent the natural place where the security scenarios are applied, and

then test the required functionality of this software and the basic authentication and

authorization for that software. Adding security test to the testing phase will enrich the

testing phase and help testers in formatting their tests according to the provided forms.

Documentation is also a very important phase in delivering the application and collecting

information about what security auditor ask for and how to help security auditors do their

testing.

We have included a simple application scenario that passes through each stage, and show

how the model can applied in a real life application. The example shows what

vulnerabilities we need to take care of, and how to write a scenario to counter attack each

one of them, and last it shows how to document our work for delivery to the end user.

And after this example we arrive to the following conclusions:

1- Software security vulnerabilities occur due to lack of information about them.

2- Software engineering lifecycles should include security risk handling mechanisms

in all phases not only as a risk analysis phase.

3- Work on security vulnerabilities based on concrete and complete knowledge

minimizes the required time to counter attack and avoid serious damage scenarios.

4- Risk management for software security should be the last choice to secure our

software systems—planning for security should start at the first stage of

information collection.

55

5- Writing scenarios on counter attacks can be reused for other similar software

pieces and this minimizes time.

6- Integrating this model into software lifecycle models is easy and manageable and

does not require significant overhead.

7- The documentation to describe software security handling process is an important

and integral part in delivering the software and testing it.

56

6.2 Future Works

Based on the proposed model, we can facilitate a better understanding and awareness

about the many risks and vulnerabilities that can appear in software security. We hope

that this model will provide better protection to software programs and their state of

continuity as a whole.

To move forward in this area of research, I will try to achieve an intelligent working

system based on the analysis data to offer a process-centric system for detecting all

possible security vulnerabilities and providing context-sensitive mechanisms to avoid

them. This can be achieved by doing a thorough examination of each security

vulnerability in advance and according to the program requirements and then submitting

a report on each vulnerability.

Most of security vulnerabilities come from the state of ignorance of relevant security

principles, the lack of knowledge on this area, and the lack of interest on this issue. In

addition, people tend to believe that the running environment or the firewall can secure

their systems from attackers, ignoring the fact that these environments and firewalls

themselves face a lot of security vulnerabilities.

57

6.3 Collected Vulnerabilities

Here in this section we provide the collected vulnerabilities with their description,
software stage and vulnerabilities emergency level for each one of them.

Vulnerabilities description current software
stage

Level

Access control
enforced by
presentation layer

Enforcing access control in the presentation layer
means that the developer does not show buttons and
links for functions and assets that are not authorized
for the user. An attacker, however, is not
constrained by the buttons nd links presented, and
can forge requests for those functions and assets.
Forced browsing is one attack that targets this type
of vulnerability.

Implementation Bravo

Addition of data-
structure sentinel

The accidental addition of a data-structure sentinel
can cause serious programming logic problems.

Design Alpha

Allowing
password aging

Allowing password aging to occur unchecked can
result in the possibility of diminished password
integrity.

Implementation Echo

ASP.NET
Misconfigurations

Debugging messages help attackers learn about the
system and plan a form of attack

Design Alpha

Assigning instead
of comparing

In many languages, the compare statement is very
close in appearance to the assignment statement
and are often confused

Implementation Alpha

Authentication
Bypass via
Assumed-
Immutable Data

Assumed-immutable authentication data can be
modified by attackers to bypass the authentication.
Most of the time, this vulnerability results from
inappropriate session management, i.e., important
data that is used for authentication decisions is sent
to the client side and subject to user modification.
This kind of data should be stored in the server-side
session as much as possible.

Implementation Alpha

Buffer Overflow Buffer overflow is probably the best known form of
software security vulnerability. Most software
developers know what a buffer overflow
vulnerability is, but buffer overflow attacks against
both legacy and newly-developed applications are
still quite common. Part of the problem is due to
the wide variety of ways buffer overflows can
occur, and part is due to the error-prone techniques
often used to prevent them.

Implementation Bravo

58

Buffer underwrite A buffer underwrite condition occurs when a buffer
is indexed with a negative number, or pointer
arithmetic with a negative value results in a
position before the beginning of the valid memory
location.

Implementation Alpha

Business logic
vulnerability

Most security problems are weaknesses in an
application that result from a broken or missing
security control (authentication, access control,
input validation, etc...). By contrast, business logic
vulnerabilities are ways of using the legitimate
processing flow of an application in a way that
results in a negative consequence to the
organization.

Design Bravo

Capture-replay A capture-relay protocol flaw exists when it is
possible for a malicious user to sniff network traffic
and replay it to the server in question to the same
effect as the original message (or with minor
changes).

Installation and
deployment(dep
loyment)

Alpha

Catch
NullPointerExcepti
on

It is generally a bad practice to catch
NullPointerException.

Implementation Alpha

Comparing classes
by name

The practice of determining an object's type, based
on its name, is dangerous since malicious code may
purposely reuse class names in order to appear
trusted.

Implementation Alpha

Comparing instead
of assigning

 Implementation Echo

Comprehensive
list of Threats to
Authentication
Procedures and
Data

 Implementation Bravo

Covert timing
channel

Unintended information about data gets leaked
through observing the timing of events.

Installation and
deployment(dep
loyment)

Bravo

CRLF Injection The term CRLF refers to Carriage Return (ASCII
13, \r) Line Feed (ASCII 10, \n). They're used to
note the termination of a line, however, dealt with
differently in today’s popular Operating Systems.
For example: in Windows both a CR and LF are
required to note the end of a line, whereas in
Linux/UNIX a LF is only required.

Implementation Charlie

59

Cross Site
Scripting Flaw

Cross-Site Scripting attacks are a type of injection
problem, in which malicious scripts are injected
into the otherwise benign and trusted web sites.
Cross-site scripting (XSS) attacks occur when an
attacker uses a web application to send malicious
code, generally in the form of a browser side script,
to a different end user. Flaws that allow these
attacks to succeed are quite widespread and occur
anywhere a web application uses input from a user
in the output it generates without validating or
encoding it.

Implementation Charlie

Dangerous
Function

Functions that cannot be used safely should never
be used.Certain functions behave in dangerous
ways regardless of how they are used. Functions in
this category were often implemented without
taking security concerns into account.

Testing and
debugging
(validation)

Bravo

Deletion of data-
structure sentinel

The accidental deletion of a data structure sentinel
can cause serious programing logic problems.

Implementation Bravo

Deserialization of
untrusted data

Data which is untrusted cannot be trusted to be well
formed.

Design Alpha

Directory
Restriction Error

Improper use of the chroot() system call may allow
attackers to escape a chroot jail.The application
fails to enforce the intended restricted directory
access policy. By using relative paths or other path
traversal attack mechanisms, an attacker can access
unauthorized files outside the restricted directory.

Installation and
deployment(dep
loyment)

Echo

Double Free Double free errors occur when free() is called more
than once with the same memory address as an
argument.Calling free() twice on the same value
can lead to a buffer overflow. When a program
calls free() twice with the same argument, the
program's memory management data structures
become corrupted. This corruption can cause the
program to crash or, in some circumstances, cause
two later calls to malloc() to return the same
pointer. If malloc() returns the same value twice
and the program later gives the attacker control
over the data that is written into this doubly-
allocated memory, the program becomes vulnerable
to a buffer overflow attack.

Implementation Echo

Doubly freeing
memory

Freeing or deleting the same memory chunk twice
may - when combined with other flaws - result in a
write-what-where condition.

Implementation Echo

Duplicate key in
associative list

Associative lists should always have unique keys,
since having non-unique keys can often be

Implementation Echo

60

(alist) mistaken for an error.

Empty Catch
Block

Ignoring an exception can cause the program to
overlook unexpected states and conditions.When an
exception is thrown and not caught, the process has
given up an opportunity to decide if a given failure
or event is worth a change in execution.Just about
every serious attack on a software system begins
with the violation of a programmer's assumptions.
After the attack, the programmer's assumptions
seem flimsy and poorly founded, but before an
attack many programmers would defend their
assumptions well past the end of their lunch
break.Two dubious assumptions that are easy to
spot in code are "this method call can never fail"
and "it doesn't matter if this call fails". When a
programmer ignores an exception, they implicitly
state that they are operating under one of these
assumptions.

Implementation Alpha

Empty String
Password

Using an empty string as a password is insecure.It
is never appropriate to use an empty string as a
password. It is too easy to guess. Empty string
password makes the authentication as weak as the
user names, which are normally public or
guessable. This make a brute-force attack against
the login interface much easier.

Design Bravo

Failure of true
random number
generator

True random number generators generally have a
limited source of entropy and therefore can fail or
block.

Implementation Echo

Failure to account
for default case in
switch

The failure to account for the default case in switch
statements may lead to complex logical errors and
may aid in other, unexpected security-related
conditions.

Implementation Alpha

Failure to add
integrity check
value

If integrity check values or "checksums" are
omitted from a protocol, there is no way of
determining if data has been corrupted in
transmission.

Implementation Echo

Failure to check
for certificate
revocation

If a certificate is used without first checking to
ensure it was not revoked, the certificate may be
compromised.

Implementation Alpha

Failure to check
integrity check
value

If integrity check values or "checksums" are not
validated before messages are parsed and used,
there is no way of determining if data has been
corrupted in transmission.

Implementation Echo

61

Failure to check
whether privileges
were dropped
successfully

If one changes security privileges, one should
ensure that the change was successful.

Implementation Alpha

Failure to
deallocate data

If memory is allocated and not freed the process
could continue to consume more and more memory
and eventually crash.

Implementation Echo

Failure to drop
privileges when
reasonable

Failing to drop privileges when it is reasonable to
do so results in a lengthened time during which
exploitation may result in unnecessarily negative
consequences.

Design Echo

Failure to encrypt
data

The failure to encrypt data passes up the guarantees
of confidentiality, integrity, and accountability that
properly implemented encryption conveys.

Design Bravo

Failure to follow
chain of trust in
certificate
validation

Failure to follow the chain of trust when validating
a certificate results in the trust of a given resource
which has no connection to trusted root-certificate
entities.

Design Alpha

Failure to follow
guideline/specifica
tion

 Implementation Bravo

Failure to protect
stored data from
modification

Data should be protected from direct modification. Design Bravo

Failure to provide
confidentiality for
stored data

Non-final public fields should be avoided, if
possible, as the code is easily tamperable.

Design Bravo

Failure to validate
certificate
expiration

The failure to validate certificate operation may
result in trust being assigned to certificates which
have been abandoned due to age.

Implementation Bravo

Failure to validate
host-specific
certificate data

The failure to validate host-specific certificate data
may mean that, while the certificate read was valid,
it was not for the site originally requested.

Implementation Echo

File Access Race
Condition:
TOCTOU

The window of time between when a file property
is checked and when the file is used can be
exploited to launch a privilege escalation attack.

Implementation Alpha

62

Format String Allowing an attacker to control a function's format
string may result in a buffer overflow.Format string
vulnerabilities occur when:Data enters the
application from an untrusted source.The data is
passed as the format string argument to a function
like sprintf(), FormatMessageW(), or
syslog().Format string problems occur when a user
has the ability to control or write completely the
format string used to format data in the printf style
family of C/C++ functions.

Implementation Alpha

Guessed or visible
temporary file

On some operating systems, the fact that the temp
file exists may be apparent to any user.

Implementation Bravo

Hard-Coded
Password

A hard-coded password vulnerability occurs when
usernames and passwords are included in HTML
comments. Because HTML comments are not
displayed, it was often the mentality that normal
users would not see them. It can also occur when a
specific username (usually unique) does not require
a password.

Design Charlie

Heap Inspection Do not use realloc() to resize buffers that store
sensitive information.Heap inspection
vulnerabilities occur when sensitive data, such as a
password or an encryption key, can be exposed to
an attacker because they are not removed from
memory.The realloc() function is commonly used
to increase the size of a block of allocated memory.
This operation often requires copying the contents
of the old memory block into a new and larger
block. This operation leaves the contents of the
original block intact but inaccessible to the
program, preventing the program from being able
to scrub sensitive data from memory. If an attacker
can later examine the contents of a memory dump,
the sensitive data could be exposed.

Implementation Bravo

Heap overflow A heap overflow condition is a buffer overflow,
where the buffer that can be overwritten is allocated
in the heap portion of memory, generally meaning
that the buffer was allocated using a routine such as
the POSIX malloc() call.

Implementation Alpha

63

Ignored function
return value

If a functions return value is not checked, it could
have failed without any warning.Ignoring a
method's return value can cause the program to
overlook unexpected states and conditions.
Just about every serious attack on a software
system begins with the violation of a programmer's
assumptions. After the attack, the programmer's
assumptions seem flimsy and poorly founded, but
before an attack many programmers would defend
their assumptions well past the end of their lunch
break.Two dubious assumptions that are easy to
spot in code are "this function call can never fail"
and "it doesn't matter if this function call fails".
When a programmer ignores the return value from
a function, they implicitly state that they are
operating under one of these assumptions.

Implementation Alpha

Illegal Pointer
Value

This function can return a pointer to memory
outside of the buffer to be searched. Subsequent
operations on the pointer may have unintended
consequences.This function can return a pointer to
memory outside the bounds of the buffer to be
searched under either of the following
circumstances:An attacker can control the contents
of the buffer to be searched,An attacker can control
the value for which to search

Implementation Alpha

Improper cleanup
on thrown
exception

Causing a change in flow, due to an exception, can
often leave the code in a bad state.

Implementation Alpha

Improper Data
Validation

 Implementation Alpha

Improper error
handling

Sometimes an error is detected, and bad or no
action is taken.

Implementation Echo

Improper string
length checking

Improper string length checking takes place when
wide or multi-byte character strings are mistaken
for standard character strings.

Implementation Echo

Improper temp file
opening

Tempfile creation should be done in a safe way. To
be safe, the temp file function should open up the
temp file with appropriate access control. The temp
file function should also retain this quality, while
being resistant to race conditions.

Implementation Alpha

Incorrect block
delimitation

In some languages, forgetting to explicitly delimit a
block can result in a logic error that can, in turn,
have security implications.

Implementation Alpha

64

Information
Leakage

Revealing system data or debugging information
helps an adversary learn about the system and form
a plan of attack. An information leak occurs when
system data or debugging information leaves the
program through an output stream or logging
function.

Requirements
specification
(AKA
Verification)

Alpha

Information leak
through class
cloning

Cloneable classes are effectively open classes since
data cannot be hidden in them.

Implementation Alpha

Information leak
through
serialization

Serializable classes are effectively open classes
since data cannot be hidden in them.

Implementation Alpha

Injection problem Injection problems span a wide range of
instantiations. The basic form of this flaw involves
the injection of control-plane data into the data-
plane in order to alter the control flow of the
process.

Implementation Bravo

Insecure Compiler
Optimization

Improperly scrubbing sensitive data from memory
can compromise security.
Compiler optimization errors occur when:
Secret data is stored in memory.
The secret data is scrubbed from memory by
overwriting its contents.
The source code is compiled using an optimizing
compiler, which identifies and removes the
function that overwrites the contents as a dead store
because the memory is not used subsequently.

Maintenance Alpha

65

Insecure
Randomness

Standard pseudo-random number generators cannot
withstand cryptographic attacks.
Insecure randomness errors occur when a function
that can produce predictable values is used as a
source of randomness in security-sensitive context.
Computers are deterministic machines, and as such
are unable to produce true randomness. Pseudo-
Random Number Generators (PRNGs) approximate
randomness algorithmically, starting with a seed
from which subsequent values are calculated.
There are two types of PRNGs: statistical and
cryptographic. Statistical PRNGs provide useful
statistical properties, but their output is highly
predictable and forms an easy to reproduce numeric
stream that is unsuitable for use in cases where
security depends on generated values being
unpredictable. Cryptographic PRNGs address this
problem by generating output that is more difficult
to predict. For a value to be cryptographically
secure, it must be impossible or highly improbable
for an attacker to distinguish between it and a truly
random value. In general, if a PRNG algorithm is
not advertised as being cryptographically secure,
then it is probably a statistical PRNG and should
not be used in security-sensitive contexts.

Implementation Bravo

Insecure
Temporary File

Creating and using insecure temporary files can
leave application and system data vulnerable to
attacks.
Applications require temporary files so frequently
that many different mechanisms exist for creating
them in the C Library and Windows® API. Most of
these functions are vulnerable to various forms of
attacks.

Implementation Alpha

Insecure Third
Party Domain
Access

Occurs when an application contains content
provided from a 3rd party resource that is delivered
without any type of content scrub.
Environments Affected
Web servers
Application servers
Client Machines

Integration

66

Insecure Transport The application configuration should ensure that
SSL is used for all access controlled pages.
If an application uses SSL to guarantee confidential
communication with client browsers, the
application configuration should make it impossible
to view any access controlled page without SSL.
However, it is not an uncommon problem that the
configuration of the application fails to enforce the
use of SSL on pages that contain sensitive data.
There are three common ways for SSL to be
bypassed:
A user manually enters the URL and types "HTTP"
rather than "HTTPS".
Attackers intentionally send a user to an insecure
URL.
A programmer erroneously creates a relative link to
a page in the application, failing to switch from
HTTP to HTTPS. (This is particularly easy to do
when the link moves between public and secured
areas on a web site.)

Installation and
deployment(dep
loyment)

Bravo

Insufficient
Entropy

When an undesirably low amount of entropy is
available. Psuedo Random Number Generators are
susceptible to suffering from insufficient entropy
when they are initialized, because entropy data may
not be available to them yet.

Implementation Alpha

Insufficient
entropy in pseudo-
random number
generator

The lack of entropy available for, or used by, a
PRNG can be a stability and security threat.

Implementation Alpha

Insufficient
Session-ID Length

Session identifiers should be at least 128 bits long
to prevent brute-force session guessing attacks.

Implementation Alpha

Integer coercion
error

Integer coercion refers to a set of flaws pertaining
to the type casting, extension, or truncation of
primitive data types.

Implementation Alpha

Integer overflow An integer overflow condition exists when an
integer, which has not been properly sanity
checked, is used in the determination of an offset or
size for memory allocation, copying, concatenation,
or similarly. If the integer in question is
incremented past the maximum possible value, it
may wrap to become a very small, or negative
number, therefore providing a very incorrect value.

Implementation Alpha

Invoking untrusted
mobile code

This process will download external source or
binaries and execute it.

Implementation Alpha

67

J2EE
Misconfiguration:
Unsafe Bean
Declaration

Entity beans that expose a remote interface become
part of an application's attack surface. For
performance reasons, an application should rarely
use remote entity beans, so there is a good chance
that a remote entity bean declaration is an error.

Implementation Alpha

Key exchange
without entity
authentication

Performing a key exchange without verifying the
identity of the entity being communicated with will
preserve the integrity of the information sent
between the two entities; this will not, however,
guarantee the identity of end entity.

Implementation Alpha

Least Privilege
Violation

The elevated privilege level required to perform
operations such as chroot() should be dropped
immediately after the operation is performed.When
a program calls a privileged function, such as
chroot(), it must first acquire root privilege. As
soon as the privileged operation has completed, the
program should drop root privilege and return to
the privilege level of the invoking user.

Implementation Alpha

Leftover Debug
Code

Debug code can create unintended entry points in a
deployed web application.
A common development practice is to add "back
door" code specifically designed for debugging or
testing purposes that is not intended to be shipped
or deployed with the application. When this sort of
debug code is accidentally left in the application,
the application is open to unintended modes of
interaction. These back door entry points create
security risks because they are not considered
during design or testing and fall outside of the
expected operating conditions of the application.

Implementation Alpha

68

Log Forging Writing unvalidated user input to log files can
allow an attacker to forge log entries or inject
malicious content into the logs.
Log forging vulnerabilities occur when:
Data enters an application from an untrusted
source.
The data is written to an application or system log
file.
Applications typically use log files to store a
history of events or transactions for later review,
statistics gathering, or debugging. Depending on
the nature of the application, the task of reviewing
log files may be performed manually on an as-
needed basis or automated with a tool that
automatically culls logs for important events or
trending information.
Interpretation of the log files may be hindered or
misdirected if an attacker can supply data to the
application that is subsequently logged verbatim. In
the most benign case, an attacker may be able to
insert false entries into the log file by providing the
application with input that includes appropriate
characters. If the log file is processed
automatically, the attacker can render the file
unusable by corrupting the format of the file or
injecting unexpected characters. A more subtle
attack might involve skewing the log file statistics.
Forged or otherwise, corrupted log files can be used
to cover an attacker's tracks or even to implicate
another party in the commission of a malicious act
[1]. In the worst case, an attacker may inject code
or other commands into the log file and take
advantage of a vulnerability in the log processing
utility .

Implementation Echo

Log injection Log injection problems are a subset of injection
problem, in which invalid entries taken from user
input are inserted in logs or audit trails, allowing an
attacker to mislead administrators or cover traces of
attack. Log injection can also sometimes be used to
attack log monitoring systems indirectly by
injecting data that monitoring systems will
misinterpret.

Implementation Alpha

69

Member Field
Race Condition

Servlet member fields may allow one user to see
another user's data.
Many Servlet developers do not understand that,
unless a Servlet implements the
SingleThreadModel interface, the Servlet is a
singleton; there is only one instance of the Servlet,
and that single instance is used and re-used to
handle multiple requests that are processed
simultaneously by different threads.
A common result of this misunderstanding is that
developers use Servlet member fields in such a way
that one user may inadvertently see another user's
data. In other words, storing user data in Servlet
member fields introduces a data access race
condition.

Implementation Alpha

Memory leak A memory leak is an unintentional form of memory
consumption whereby the developer fails to free an
allocated block of memory when no longer needed

Implementation Echo

Miscalculated null
termination

Miscalculated null termination occurs when the
placement of a null character at the end of a buffer
of characters (or string) is misplaced or omitted.

Implementation Alpha

Misinterpreted
function return
value

If a function's return value is not properly checked,
the function could have failed without proper
acknowledgement.

Implementation Alpha

70

Missing Error
Handling

A web application must define a default error page
for 404 errors, 500 errors, and to catch java.lang.
Throwable exceptions prevent attackers from
mining information from the application container's
built-in error response.
When an attacker explores a web site looking for
vulnerabilities, the amount of information that the
site provides is crucial to the eventual success or
failure of any attempted attacks. If the application
shows the attacker a stack trace, it relinquishes
information that makes the attacker's job
significantly easier. For example, a stack trace
might show the attacker a malformed SQL query
string, the type of database being used, and the
version of the application container. This
information enables the attacker to target known
vulnerabilities in these components.
The application configuration should specify a
default error page in order to guarantee that the
application will never leak error messages to an
attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good
security practice, and a good configuration will also
define a last-chance error handler that catches any
exception that could possibly be thrown by the
application.

Implementation Alpha

Missing parameter If too few arguments are sent to a function, the
function will still pop the expected number of
arguments from the stack. Potentially, a variable
number of arguments could be exhausted in a
function as well.

Implementation Alpha

71

Missing XML
Validation

Failure to enable validation when parsing XML
gives an attacker the opportunity to supply
malicious input.
Most successful attacks begin with a violation of
the programmer's assumptions. By accepting an
XML document without validating it against a
DTD or XML schema, the programmer leaves a
door open for attackers to provide unexpected,
unreasonable, or malicious input. It is not possible
for an XML parser to validate all aspects of a
document's content; a parser cannot understand the
complete semantics of the data. However, a parser
can do a complete and thorough job of checking the
document's structure and therefore guarantee to the
code that processes the document that the content is
well-formed.

Implementation Alpha

Mutable object
returned

Sending non-cloned mutable data as a return value
may result in that data being altered or deleted by
the called function, thereby putting the class in an
undefined state.

Implementation Alpha

Non-cryptographic
pseudo-random
number generator

The use of Non-cryptographic Pseudo-Random
Number Generators (PRNGs) as a source for
security can be very dangerous, since they are
predictable.

Implementation Bravo

Not allowing
password aging

If no mechanism is in place for managing password
aging, users will have no incentive to update
passwords in a timely manner.

Implementation Alpha

Not using a
random
initialization
vector with cipher
block chaining
mode

Not using a random initialization vector with
Cipher Block Chaining (CBC) Mode causes
algorithms to be susceptible to dictionary attacks.

Implementation Alpha

72

Null Dereference The program can potentially dereference a null
pointer, thereby raising a NullPointerException.
Null pointer errors are usually the result of one or
more programmer assumptions being violated.
Most null pointer issues result in general software
reliability problems, but if an attacker can
intentionally trigger a null pointer dereference, the
attacker might be able to use the resulting exception
to bypass security logic or to cause the application
to reveal debugging information that will be
valuable in planning subsequent attacks.
A null-pointer dereference takes place when a
pointer with a value of NULL is used as though it
pointed to a valid memory area.

Implementation Alpha

Object Model
Violation: Just
One of equals()
and hashCode()
Defined

This class overrides only one of equals() and
hashCode().
Java objects are expected to obey a number of
invariants related to equality. One of these
invariants is that equal objects must have equal
hashcodes. In other words, if a.equals(b) == true
then a.hashCode() == b.hashCode().
Failure to uphold this invariant is likely to cause
trouble if objects of this class are stored in a
collection. If the objects of the class in question are
used as a key in a Hashtable or if they are inserted
into a Map or Set, it is critical that equal objects
have equal hashcodes.

Implementation Alpha

Often Misused:
Authentication

Attackers can spoof DNS entries. Do not rely on
DNS names for security.
Many DNS servers are susceptible to spoofing
attacks, so you should assume that your software
will someday run in an environment with a
compromised DNS server. If attackers are allowed
to make DNS updates (sometimes called DNS
cache poisoning), they can route your network
traffic through their machines or make it appear as
if their IP addresses are part of your domain. Do
not base the security of your system on DNS
names.

Implementation Bravo

73

Often Misused:
Exception
Handling

The _alloca() function can throw a stack overflow
exception, potentially causing the program to crash.
The _alloca() function allocates memory on the
stack. If an allocation request is too large for the
available stack space, _alloca() throws an
exception. If the exception is not caught, the
program will crash, potentially enabling a denial of
service attack.
_alloca() has been deprecated as of Microsoft
Visual Studio 2005®. It has been replaced with the
more secure _alloca_s().

Implementation Alpha

Often Misused:
File System

Passing an inadequately-sized output buffer to a
path manipulation function can result in a buffer
overflow.
Windows provides a large number of utility
functions that manipulate buffers containing
filenames. In most cases, the result is returned in a
buffer that is passed in as input. (Usually the
filename is modified in place.) Most functions
require the buffer to be at least MAX_PATH bytes
in length, but you should check the documentation
for each function individually. If the buffer is not
large enough to store the result of the manipulation,
a buffer overflow can occur.

Implementation Bravo

Often Misused:
Privilege
Management

Failure to adhere to the principle of least privilege
amplifies the risk posed by other vulnerabilities.
Programs that run with root privileges have caused
innumerable Unix security disasters. It is
imperative that you carefully review privileged
programs for all kinds of security problems, but it is
equally important that privileged programs drop
back to an unprivileged state as quickly as possible
in order to limit the amount of damage that an
overlooked vulnerability might be able to cause.
Privilege management functions can behave in
some less-than-obvious ways, and they have
different quirks on different platforms. These
inconsistencies are particularly pronounced if you
are transitioning from one non-root user to another.
Signal handlers and spawned processes run at the
privilege of the owning process, so if a process is
running as root when a signal fires or a sub-process
is executed, the signal handler or sub-process will
operate with root privileges. An attacker may be
able to leverage these elevated privileges to do
further damage.

Implementation Alpha

74

Often Misused:
String
Management

Functions that convert between Multibyte and
Unicode strings encourage buffer overflows.
Windows provides the MultiByteToWideChar(),
WideCharToMultiByte(), UnicodeToBytes, and
BytesToUnicode functions to convert between
arbitrary multibyte (usually ANSI) character strings
and Unicode (wide character) strings. The size
arguments to these functions are specified in
different units – one in bytes, the other in characters
– making their use prone to error. In a multibyte
character string, each character occupies a varying
number of bytes, and therefore the size of such
strings is most easily specified as a total number of
bytes. In Unicode, however, characters are always a
fixed size, and string lengths are typically given by
the number of characters they contain. Mistakenly
specifying the wrong units in a size argument can
lead to a buffer overflow.

Implementation Alpha

Omitted break
statement

Omitting a break statement so that one may fall
through is often indistinguishable from an error,
and therefore should not be used.

Implementation Alpha

Open forward An open forward is an application that takes a
parameter and forwards a user to another part of the
application without any validation or access control
checks. This may allow an attacker to bypass
access control checks, especially those enforced
externally, such as by a web server.

Implementation Alpha

Open redirect An open redirect is an application that takes a
parameter and redirects a user to the parameter
value without any validation. This vulnerability is
used in phishing attacks to get users to visit
malicious sites without realizing it.

Implementation Alpha

Overflow of static
internal buffer

A non-final static field can be viewed and edited in
dangerous ways.

Implementation Echo

75

Overly-Broad
Catch Block

The catch block handles a broad swath of
exceptions, potentially trapping dissimilar issues or
problems that should not be dealt with at this point
in the program.
Multiple catch blocks can get ugly and repetitive,
but "condensing" catch blocks by catching a high-
level class like Exception can obscure exceptions
that deserve special treatment or that should not be
caught at this point in the program. Catching an
overly broad exception essentially defeats the
purpose of Java's typed exceptions, and can become
particularly dangerous if the program grows and
begins to throw new types of exceptions. The new
exception types will not receive any attention.

Implementation Alpha

Overly-Broad
Throws
Declaration

The method throws a generic exception making it
harder for callers to do a good job of error handling
and recovery.
Declaring a method to throw Exception or
Throwable makes it difficult for callers to do good
error handling and error recovery. Java's exception
mechanism is set up to make it easy for callers to
anticipate what can go wrong and write code to
handle each specific exceptional circumstance.
Declaring that a method throws a generic form of
exception defeats this system.

Implementation Alpha

Passing mutable
objects to an
untrusted method

Sending non-cloned mutable data as an argument
may result in that data being altered or deleted by
the called function, thereby putting the calling
function into an undefined state.

Implementation Echo

Password
Management:
Hardcoded
Password

Hardcoded passwords may compromise system
security in a way that cannot be easily remedied.
It is never a good idea to hardcode a password. Not
only does hardcoding a password allow all of the
project's developers to view the password, it also
makes fixing the problem extremely difficult. Once
the code is in production, the password cannot be
changed without patching the software. If the
account protected by the password is compromised,
the owners of the system will be forced to choose
between security and availability.

Implementation Bravo

76

Password
Management:
Weak
Cryptography

Obscuring a password with a trivial encoding does
not protect the password.
Password management issues occur when a
password is stored in plaintext in an application's
properties or configuration file. A programmer can
attempt to remedy the password management
problem by obscuring the password with an
encoding function, such as base 64 encoding, but
this effort does not adequately protect the
password.

Implementation Bravo

Password Plaintext
Storage

Storing a password in plaintext may result in a
system compromise.
Password management issues occur when a
password is stored in plaintext in an application's
properties or configuration file. A programmer can
attempt to remedy the password management
problem by obscuring the password with an
encoding function, such as base 64 encoding, but
this effort does not adequately protect the
password.
Storing a plaintext password in a configuration file
allows anyone who can read the file access to the
password-protected resource. Developers
sometimes believe that they cannot defend the
application from someone who has access to the
configuration, but this attitude makes an attacker's
job easier. Good password management guidelines
require that a password never be stored in plaintext.

Implementation Bravo

PHP File Inclusion PHP, as many other languages, allows the inclusion
of files in order to provide or extend the
functionality of the current file.

Implementation Bravo

Poor Logging
Practice

 Implementation Echo

Portability Flaw Functions with inconsistent implementations across
operating systems and operating system versions
cause portability problems.
The behavior of functions in this category varies by
operating system, and at times, even by operating
system version. Implementation differences can
include:
Slight differences in the way parameters are
interpreted, leading to inconsistent results.
Some implementations of the function carry
significant security risks.
The function might not be defined on all platforms.

Implementation Alpha

77

Privacy Violation Mishandling private information, such as customer
passwords or social security numbers, can
compromise user privacy, and is often illegal.

Implementation Bravo

PRNG Seed Error The incorrect use of a seed by a Psuedo Random
Number Generator. A seed error is usually brought
on through the erroneous generation or application
of a seed state.

Implementation Alpha

Process Control Executing commands from an untrusted source or
in an untrusted environment can cause an
application to execute malicious commands on
behalf of an attacker.
Process control vulnerabilities take two forms:
An attacker can change the command that the
program executes: the attacker explicitly controls
what the command is.
An attacker can change the environment in which
the command executes: the attacker implicitly
controls what the command means.
We will first consider the first scenario, the
possibility that an attacker may be able to control
the command that is executed. Process control
vulnerabilities of this type occur when:
Data enters the application from an untrusted
source.
The data is used as or as part of a string
representing a command that is executed by the
application.
By executing the command, the application gives
an attacker a privilege or capability that the attacker
would not otherwise have.

Implementation Bravo

Publicizing of
private data when
using inner classes

Java byte code has no notion of an inner class;
therefore inner classes provide only a package-level
security mechanism. Furthermore, the inner class
gets access to the fields of its outer class even if
that class is declared private.

Implementation Alpha

Race Conditions A race condition occurs when a pair of routine
programming calls in an application do not perform
in the sequential manner that was intended per
business rules. It is a timing event within software
that can become a security vulnerability if the calls
are not performed in the correct order.

Implementation Alpha

Reflection attack
in an auth protocol

Simple authentication protocols are subject to
reflection attacks if a malicious user can use the
target machine to impersonate a trusted user.

Implementation Alpha

78

Reflection
injection

Reflection injection problems are a subset of
injection problems, in which external input is used
to construct a string value passed to class reflection
APIs. By manipulating the value an attacker can
cause unexpected classes to be loaded, or change
what method or fields are accessed on an object.

Implementation Alpha

Relative path
library search

Certain functions perform automatic path
searching. The method and results of this path
searching may not be as expected. Example:
WinExec will use the space character as a
delimiter, finding "C:\Program.exe" as an
acceptable result for a search for "C:\Program
Files\Foo\Bar.exe".

Implementation Alpha

Reliance on data
layout

Assumptions about protocol data or data stored in
memory can be invalid, resulting in using data in
ways that were unintended.

Implementation Echo

Relying on
package-level
scope

Java packages are not inherently closed; therefore,
relying on them for code security is not a good
practice.

Implementation Alpha

Resource
exhaustion

Resource exhaustion is a simple denial of service
condition which occurs when the resources
necessary to perform an action are entirely
consumed, therefore preventing that action from
taking place.

Implementation Alpha

Return Inside
Finally Block

Returning from inside a finally block will cause
exceptions to be lost.
A return statement inside a finally block will cause
any exception that might be thrown in the try block
to be discarded.

Implementation Alpha

Reusing a nonce,
key pair in
encryption

Nonces should be used for the present occasion and
only once.

Implementation Alpha

79

Session_Fixation Authenticating a user without invalidating any
existing session identifier gives an attacker the
opportunity to steal authenticated sessions.
Session fixation vulnerabilities occur when:
A web application authenticates a user without first
invalidating the existing session ID, thereby
continuing to use the session ID already associated
with the user.
An attacker is able to force a known session ID on
a user so that, once the user authenticates, the
attacker has access to the authenticated session.
In the generic exploit of session fixation
vulnerabilities, an attacker creates a new session on
a web application and records the associated
session identifier. The attacker then causes the
victim to authenticate against the server using the
same session identifier, giving the attacker access
to the user's account through the active session.

Implementation Alpha

Sign extension
error

If one extends a signed number incorrectly, if
negative numbers are used, an incorrect extension
may result.

Implementation Alpha

Signed to unsigned
conversion error

A signed-to-unsigned conversion error takes place
when a signed primitive is used as an unsigned
value, usually as a size variable.

Implementation Alpha

Stack overflow A stack overflow condition is a buffer overflow
condition, where the buffer being overwritten is
allocated on the stack (i.e., is a local variable or,
rarely, a parameter to a function).

Implementation Alpha

State
synchronization
error

State synchronization refers to a set of flaws
involving contradictory states of execution in a
process which result in undefined behavior.

Implementation Alpha

Storing passwords
in a recoverable
format

The storage of passwords in a recoverable format
makes them subject to password reuse attacks by
malicious users. If a system administrator can
recover the password directly, or use a brute force
search on the information available to him, he can
use the password on other accounts.

Implementation Bravo

String Termination
Error

Relying on proper string termination may result in a
buffer overflow.
String termination errors occur when:
Data enters a program via a function that does not
null terminate its output.
The data is passed to a function that requires its
input to be null terminated.

Implementation Alpha

80

Symbolic name
not mapping to
correct object

A constant symbolic reference to an object is used,
even though the underlying object changes over
time.

Implementation Alpha

Truncation error Truncation errors occur when a primitive is cast to
a primitive of a smaller size and data is lost in the
conversion.

Implementation Alpha

Trust Boundary
Violation

Commingling trusted and untrusted data in the
same data structure encourages programmers to
mistakenly trust unvalidated data.
A trust boundary can be thought of as line drawn
through a program. On one side of the line, data is
untrusted. On the other side of the line, data is
assumed to be trustworthy. The purpose of
validation logic is to allow data to safely cross the
trust boundary--to move from untrusted to trusted.
A trust boundary violation occurs when a program
blurs the line between what is trusted and what is
untrusted. The most common way to make this
mistake is to allow trusted and untrusted data to
commingle in the same data structure.

Implementation Alpha

Trust of system
event data

Security based on event locations are insecure and
can be spoofed.

Implementation Alpha

Trusting self-
reported DNS
name

The use of self-reported DNS names as
authentication is flawed and can easily be spoofed
by malicious users.

Implementation Alpha

Trusting self-
reported IP address

The use of IP addresses as authentication is flawed
and can easily be spoofed by malicious users.

Implementation Alpha

Uncaught
exception

Ignoring an exception can cause the program to
overlook unexpected states and conditions.
When an exception is thrown and not caught, the
process has given up an opportunity to decide if a
given failure or event is worth a change in
execution.
Just about every serious attack on a software
system begins with the violation of a programmer's
assumptions. After the attack, the programmer's
assumptions seem flimsy and poorly founded, but
before an attack many programmers would defend
their assumptions well past the end of their lunch
break.
Two dubious assumptions that are easy to spot in
code are "this method call can never fail" and "it
doesn't matter if this call fails". When a
programmer ignores an exception, they implicitly
state that they are operating under one of these

Implementation Alpha

81

assumptions.

Unchecked array
indexing

Unchecked array indexing occurs when an
unchecked value is used as an index into a buffer.

Implementation Echo

Unchecked Return
Value: Missing
Check against Null

Ignoring a method's return value can cause the
program to overlook unexpected states and
conditions.
Just about every serious attack on a software
system begins with the violation of a programmer's
assumptions. After the attack, the programmer's
assumptions seem flimsy and poorly founded, but
before an attack many programmers would defend
their assumptions well past the end of their lunch
break.
Two dubious assumptions that are easy to spot in
code are "this function call can never fail" and "it
doesn't matter if this function call fails". When a
programmer ignores the return value from a
function, they implicitly state that they are
operating under one of these assumptions.

Implementation Alpha

Undefined
Behavior

The behavior of this function is undefined unless its
control parameter is set to a specific value.
The Linux Standard Base Specification 2.0.1 for
libc places constraints on the arguments to some
internal functions [1]. If the constraints are not met,
the behavior of the functions is not defined.

Implementation Alpha

Uninitialized
Variable

Using the value of an unitialized variable is not
safe.

Implementation Bravo

Unintentional
pointer scaling

In C and C++, one may accidentally refer to the
wrong memory due to the semantics of when math
operations are implicitly scaled.

Implementation Alpha

Unreleased
Resource

The program can potentially fail to release a system
resource.
Most unreleased resource issues result in general
software reliability problems, but if an attacker can
intentionally trigger a resource leak, the attacker
might be able to launch a denial of service attack by
depleting the resource pool.
Resource leaks have at least two common causes:
Error conditions and other exceptional
circumstances.
Confusion over which part of the program is
responsible for releasing the resource.

Implementation Echo

82

Unrestricted File
Upload

Uploaded files represent a significant risk to
applications. The first step in many attacks is to get
some code to the system to be attacked. Then the
attack only needs to find a way to get the code
executed. Using a file upload helps the attacker
accomplish the first step.
The consequences of unrestricted file upload can
vary, including complete system takeover, an
overloaded file system, forwarding attacks to
backend systems, and simple defacement. It
depends on what the application does with the
uploaded file, including where it is stored.
There are really two different classes of problems
here. The first is with the file metadata, like the
path and filename. These are generally provided by
the transport, such as HTTP multipart encoding.
This data may trick the application into overwriting
a critical file or storing the file in a bad location.
You must validate the metadata extremely carefully
before using it.
The other class of problem is with the file content.
The range of problems here depends entirely on
what the file is used for. See the examples below
for some ideas about how files might be misused.
To protect against this type of attack, you should
analyze everything your application does with files
and think carefully about what processing and
interpreters are involved.

Implementation Bravo

Unsafe function
call from a signal
handler

There are several functions which - under certain
circumstances, if used in a signal handler - may
result in the corruption of memory, allowing for
exploitation of the process.

Implementation Bravo

Unsafe JNI Improper use of the Java Native Interface (JNI) can
render Java applications vulnerable to security
flaws in other languages.
Unsafe JNI errors occur when a Java application
uses JNI to call code written in another
programming language.

Implementation

83

Unsafe Mobile
Code

Mobile code, such as a Java Applet, is code that is
transmitted across a network and executed on a
remote machine. Because mobile code developers
have little if any control of the environment in
which their code will execute, special security
concerns become relevant. One of the biggest
environmental threats results from the risk that the
mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of
the popular web browsers execute code from
multiple sources together in the same JVM, many
of the security guidelines for mobile code are
focused on preventing manipulation of your objects'
state and behavior by adversaries who have access
to the same virtual machine where your program is
running.

Implementation Alpha

Unsafe Reflection An attacker may be able to create unexpected
control flow paths through the application,
potentially bypassing security checks.
If an attacker can supply values that the application
then uses to determine which class to instantiate or
which method to invoke, the potential exists for the
attacker to create control flow paths through the
application that were not intended by the
application developers. This attack vector may
allow the attacker to bypass authentication or
access control checks or otherwise cause the
application to behave in an unexpected manner.
This situation becomes a doomsday scenario if the
attacker can upload files into a location that appears
on the application's classpath or add new entries to
the application's classpath. Under either of these
conditions, the attacker can use reflection to
introduce new, presumably malicious, behavior into
the application.

Implementation Bravo

Unsigned to signed
conversion error

An unsigned-to-signed conversion error takes place
when a large unsigned primitive is used as an
signed value - usually as a size variable.

Implementation

Use of hard-coded
password

The use of a hard-coded password increases the
possibility of password guessing tremendously.

Implementation Alpha

84

Use of Obsolete
Methods

The use of deprecated or obsolete functions may
indicate neglected code.
As programming languages evolve, functions
occasionally become obsolete due to:
Advances in the language
Improved understanding of how operations should
be performed effectively and securely
Changes in the conventions that govern certain
operations
Functions that are removed are usually replaced by
newer counterparts that perform the same task in
some different and hopefully improved way.
Refer to the documentation for this function in
order to determine why it is deprecated or obsolete
and to learn about alternative ways to achieve the
same functionality. The remainder of this text
discusses general problems that stem from the use
of deprecated or obsolete functions.

Implementation Echo

Use of sizeof() on
a pointer type

Running sizeof() on a malloced pointer type will
always return the wordsize/8.

Implementation Echo

Using a broken or
risky
cryptographic
algorithm

Attempting to create non-standard and non-tested
algorithms, using weak algorithms, or applying
algorithms incorrectly will pose a high weakness to
data that is meant to be secure.

Implementation Alpha

Using a key past
its expiration date

The use of a cryptographic key or password past its
expiration date diminishes its safety significantly.

Implementation Alpha

85

Using freed
memory

Referencing memory after it has been freed can
cause a program to crash.
The use of heap allocated memory after it has been
freed or deleted leads to undefined system behavior
and, in many cases, to a write-what-where
condition.
Use after free errors occur when a program
continues to use a pointer after it has been freed.
Like double free errors and memory leaks, use after
free errors have two common and sometimes
overlapping causes:
Error conditions and other exceptional
circumstances
Confusion over which part of the program is
responsible for freeing the memory
Use after free errors sometimes have no effect and
other times cause a program to crash. While it is
technically feasible for the freed memory to be re-
allocated and for an attacker to use this reallocation
to launch a buffer overflow attack, we are unaware
of any exploits based on this type of attack.

Implementation Alpha

Using password
systems

The use of password systems as the primary means
of authentication may be subject to several flaws or
shortcomings, each reducing the effectiveness of
the mechanism.

Implementation Delta

Using referer field
for authentication
or authorization

The referrer field (actually spelled 'referer') in
HTTP requests can be easily modified and, as such,
is not a valid means of message integrity checking.

Implementation Bravo

Using single-factor
authentication

The use of single-factor authentication can lead to
unnecessary risk of compromise when compared
with the benefits of a dual-factor authentication
scheme.

Implementation Echo

Using the wrong
operator

This is a common error given when an operator is
used which does not make sense in context.

Implementation Bravo

Validation
performed in client

Performing validation in client side code, generally
JavaScript, provides no protection for server-side
code. An attacker can simply disable JavaScript,
use telnet, or use a security testing proxy such as
WebScarab to bypass the client side validation.

Implementation Alpha

Wrap-around error Wrap around errors occur whenever a value is
incriminated past the maximum value for its type
and therefore "wraps around" to a very small,
negative, or undefined value.

Implementation Echo

86

Write-what-where
condition

Any condition where the attacker has the ability to
write an arbitrary value to an arbitrary location,
often as the result of a buffer overflow.

Implementation Alpha

Table 3.1: Collected Vulnerabilities

87

6.4 References

1- Der Linde, M. (2007): Testing Code security. 1st edition. Auerbach Publications

2- Goertzel, K. M. (2009): Introduction to Software Security. 2nd edition.

3- McGraw, G. (2004): Software Security IEEE Security & Privacy, volume 2, issue

2, Mar-Apr, 2004, Page(s): 80-83.

4- Abu-Sheikh. (2007): Reviewing and Evaluating Techniques for Modeling and

Analyzing Security Requirements, Master Thesis. Blekinge Institute of

Technology.

5- Ahmed S. R.(2007) :,Secure Software Development - Identification of Security

Activities and Their Integration in Software Development Lifecycle, Master

Thesis, Blekinge Institute of Technology.

6- - Masalin S.(2007): Software Security Design and Testing, 2nd edition.

7- Schumacher m., Ackermann r., Steinmetz r. (2009): towards security at all stages

of a system’s life cycle.

8- Howard M. and LeBlanc D.(2009): Writing Secure Code ,Microsoft press.

9- Howard M. (2006): Process of Performing Security Code Reviews - - Security &

Privacy Magazine, IEEE magazine.

10- - Dustin E. (2006): The Secure Software Development Lifecycle, 1st edition.

11- Howard M. (2004): Mitigate Security Risks by Minimizing the Code You Expose

to Untrusted Users, November MSDN Magazine.

12- Lipner S., Howard M. (2005): The Trustworthy Computing Security Development

Lifecycle, Microsoft Corporation.

88

13- Sindre G., Opdahl A. L. (2004): Eliciting Security Requirements by Misuse

Cases, Springer-Verlag London Limited.

14- Carlsson B. , Baca, D. (2005): Software Security Analysis, Execution Phase

Audit, School of Engineering, Blekinge Institute of Technology.

15- Crispin C., Wagle P., Calton P. (2005): Buffer Overflows: Attacks and Defense

for the Vulnerability of the Decade, 1st edition.

16- Howard M.(2005): “A Look Inside the Security Development Lifecycle at

Microsoft”, MSDN Magazine.

17- Kenneth R. (2005): Bridging the Gap between Software Development and

Information Security, Security & Privacy Magazine, IEEE, volume 3, issue 5,

Sep-Oct, 2005.

18- Mark E. (2006): The Open Vulnerability and Assessment Language (OVAL)

Initiative, 1st edition, MITRE Corporation.

19- Martin, R. A.(2005) Transformational Vulnerability Management Through

Standards, The Journal of Defense Software Engineering, May, 2005,

20- Martin A. (2006): The Common Attack Pattern Enumeration and Classification

(CAPEC) Initiative, 1st edition , MITRE Corporation.

21- Kenneth G. (2007) :The Consensus Audit Guidelines (CAG), 2nd edition, SANS

Institute.

22- Grimes R. (2004):The true extent of insider security threats, 1st edition

23- Chase S.G. and Thompson H.H. (2005): The Software Vulnerability Guide.

Charles River Media, Hingham, MA.

89

24- Erickson, J. Hacking (2003): The Art of Exploitation. No Starch Press, San

Francisco, CA.

25- Fadia A. (2006): The Unofficial Guide to Ethical Hacking, 2nd edition. Thomson

Course Technology, Boston, MA.

26- Gallagher T., Jeffries B., Landauer, L.(2006) : Hunting Security Bugs, Microsoft

Press, Redmond, WA.

27- McGraw, G. Software Security: Building Security In . Pearson Education, Boston,

MA, 2006.

28- Swiderski, F.,Snyder, W.(2004): Threat Modeling. Microsoft Press, Redmond,

WA.

29- SAN L. (1995): Standard for Developing Life Cycle Processes. IEEE magazine.

Issue 1074.

30- Schneider B. (2000): The Process of Security. ICSA Information Security

Magazine, April 2000.

31- Schneier B.(2004) : Software Complexity and Security. 1st edition.

32- Kuloor C.,Eberlein A.(2003): Aspect-oriented requirements engineering for

software product lines, Engineering of Computer-Based Systems, IEEE, 2003.

33- Jürjens J.(2002):Using UMLsec and goal trees for secure systems development,

Proceedings of the 2002 ACM, ACM Press, 2002

34- Owasp (2010): Top 10 the ten most critical web application security risks, 2010

annual report.

35- Sindre G.(2001) :Capturing Security Requirements through Misuse Cases, 1st

edition.

90

36- Howard M., LeBlanc D., Viega J. (2005):19 Deadly Sins of Software Security:

Programming Flaws and How to Fix Them (Security One-off), 1st edition.

37- Ruth Malan and Dana Brede Meyer - Defining Non-Functional Requirements-

2001 – 1st edition

38- Sommerville I.(2006): Software Engineering- 8th edition.

39- Al-Shalabi R., Al-aani S., Titi A., Khader M.(2007) : Security Model For E-

Education Process, MIT Learning International Networks Consortium,2007,

Amman, Jordan.

40- Takanen A., DeMott J., Miller C. (2007) : Fuzzing for Software Security Testing

and Quality Assurance (Artech House Information Security and Privacy) – 1st

edition.

	thesis1
	thesis2-new
	thesis3-new2

