

Deanship of Graduate Studies

Al-Quds University

XMLBB: XML Builder for Blind Programmers

Abeer Abdel-Hamid El-Haj Ali

M.Sc. Thesis

Jerusalem – Palestine

1432 / 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/336842198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deanship of Graduate Studies

Al-Quds University

XMLBB: XML Builder for Blind Programmers

Abeer Abdel-Hamid El-Haj Ali

M.Sc. Thesis

Jerusalem – Palestine

1432 / 2011

Deanship of Graduate Studies

Al-Quds University

XMLBB: XML Builder for Blind Programmers

Prepared By:

Abeer Abdel-Hamid El-Haj Ali

B.Sc from Birzeit University, Palestine

Supervisor:

Dr. Badie Sartawi

A thesis submitted in partial fulfillment of requirements for the degree of

masters of computer science from computer science department of Al-Quds

University

1432 / 2011

Deanship of Graduate Studies

Al-Quds University

Thesis Approval

XMLBB: XML Builder for Blind Programmers

Prepared by: Abeer Abdel-Hamid El-Haj Ali

Registration No: 20714038

Supervisor: Dr. Badie Sartawi

Master thesis submitted and accepted. Date: ……………………..…………………………

Names and signatures of the examination committee members:

1- Head of Committee: …………….…………...……. Signature: …………...……..

2- Internal Examiner: …………………..………..…... Signature: ………………….

3- External Examiner:. ………………………..………. Signature: ………………….

4- Committee Member: ….…………………..…….….. Signature: ………………….

Jerusalem – Palestine

1432 / 2011

DEDICATION

This thesis is dedicated to my parents and my family who missed

me at home while working at my thesis, but never stopped

supporting me. And for sure to all blind people in this world who

illuminated the way of challenges to us to follow them without fear

of darkness or stumble.

Signed……………………

Abeer Abdel-Hamid El-Haj Ali

Date: ……………………

i

Declaration

I certify that this thesis submitted for the degree of Master is the result of my own research,

except where otherwise acknowledged, and that this thesis (or any part of the same) has not

been submitted for a higher degree to any other university or institution.

Signed……………………

Abeer Abdel-Hamid El-Haj Ali

Date: ……………………

ii

Acknowledgement

First of all I want to thank Allah for giving me the strength and patience to finish this thesis.

Second, I want to express my gratitude to all the people who have given me their support,

especially Dr. Badie Sartawi, and to all computer science department staff; Dr. Nidal Kafri,

Dr. Raed El Zaghal, Dr. Rasheed Jayousi and Dr. Wael Hassoneh.

And Last but not least many thanks to Samia Harab who gave me a lot of her time testing

and evaluating the tool

iii

" XML ,"

" Speech-Driven "Dialog"

iv

Abstract:

The evolution of software applications from Text mode to GUI, "point-and-click" and

"drag-and-drop" interface simplifies and facilitates the usage of computer systems by

sighted people. However, and unfortunately, GUI adds lots of restrictions for blind people

and prevents them from using many capabilities and advantages of computer software; and

they find themselves divested of using computer software and applications. In fact, this

issue becomes more complicated when blind people try to use programming languages,

especially when developing applications interfaces, which in turn affects negatively the

numbers of blind programmers in the world.

The development of programming language for blind programmers is a motivating issue in

computer science. Most programming languages focused on sighted users. Even the

current blind-oriented programming languages can't be used for professional issues; they

are mainly used to help novice blind programmers to start learning programming.

Our preliminary objective is to help blind people to develop their own application, but

obviously, this tool can be easily used by sighted people as well.

In this research, we have developed a tool (XMLBB: XML builder for blind

programmers) that enables blind programmer to build a complete web application (forms,

reports & database) using XML technology.

XMLBB is a speech-driven tool that can be used by blind programmers to execute

commands by speech. Using XMLBB, a blind programmer can develop a complete

application that can also be used by blind users.

v

Table of Contents

Title Page No

Cover

Thesis Title

Declaration

Thesis Approval

Dedication i

Acknowledgement ii

Abstract (Arabic) iii

Abstract (English) Iv

Table of Content V

List of Figures v

List of abbreviations vii

Chapter 1: Introduction 1

 1.1 Objectives 2

 1.2 Research Concepts 3

 1.2.1 Speech Recognition 3

 1.2.2 XML 4

 1.3 Paper Organization 5

Chapter 2: Background 6

 2.1 Related Work 6

 2.2 Why XML 8

Chapter 3: XMLBB Structure and Principles 10

 3.1 XMLBB Model 11

 3.1.1 XMLBB Accessible Interface Design 12

 3.1.2 XMLBB Interface 15

 3.1.3 XML Schema 15

 3.1.3.1 Creating XML Schema Flowchart Diagram 16

 3.1.3.2 Diagram Description 17

 3.1.4 XForms 23

 3.1.4.1 Creating XForms Diagram 25

 3.1.4.2 Creating XForms Diagram Description 27

 3.1.4.3 XForms Generation 28

 3.3.4.4 Generating Simple Element and Attributes 30

 3.1.4.5 Generating Complex Type Element 33

 3.1.4.6 Pseudo code of XForms Generation 76

 3.1.4.7 Xform Submission 42

 3.1.4.8 XForms Actions and Events 42

 3.1.4.9 Manipulating User Data 45

 3.1.5 XML Document 47

 3.1.6 XQuery 47

Chapter 4: Development & Implementation 51

 4.1 System Requirement 52

 4.1.1 Development Requirement 52

 4.1.2 Deployment Requirement 52

 4.2 Database Structure 53

vi

 4.3 System Libraries 57

 4.4 Application Interfaces 60

Chapter 5: XMLBB Training ,Testing and Evaluation 65

 5.1 Training 64

 5.2 Testing 67

 5.2.1 Proposed Testing methodology 67

 5.2.2 XMLBB Testing 68

 5.3 Evaluation 69

Chapter 6: Conclusion and Future Work 70

References 72

Appendix A: Source Code 73

List of Figures

Figure No Figure Description Page No

3.1 XMLBB Model 11

3.2 Creating Schema Flowchart 16

3.3 Creating Schema Element Flowchart 17

3.4 Creating Schema Attribute Flowchart 18

3.5 Creating Schema Simple Type Flowchart 19

3.6 Creating Schema Complex Type Flowchart 21

3.7 Creating XForms Flowchart 26

3.8 XForms Generation Pseudo code 37

3.9 Simple Type XForms Generation Pseudo code 38

3.10 Complex Type XForms Generation Pseudo code 41

3.11 XForms Control Creation Pseudo code 41

3.12 XForms Trigger Generation Pseudo code 46

3.13 XQuery Creation Flow Chart 48

3.14

XQuery-to-XML Flow Chart 49

3.15 XQuery-to-XHTML Flow Chart 50

4.1 Messages.xml document snapshot 53

4.2 Shortcut.xml document snapshot 53

4.3 Forms_Access document snapshot 54

4.4 Forms_Notification.xml document snapshot 55

 4.5 User_Projects.xml document snapshot 56

 4.6 XMLBB Interface 61

 4.7 New Project Configuration 61

 4.8 Creating/Deleting or Modifying Project Component 62

5.1 List of Shortcuts, Speech Commands & Hotkeys 66

vii

 List of abbreviations

Abbreviation Full Name Page No

WHO World Health Organization 1

GUI Graphical User Interface 2

XML EXtensible Markup Language 2

XMLBB XML Builder for Blind programmers 2

TTS Text To Speech 3

HTML Hyper Text Markup Language 4

XQuery Extensible Markup Language Query 4

XFORM Extensible Markup Language Forms 4

XHTML Extensible Hyper Text Markup Language 4

APL Audio Programming Language 6

DLL Dynamic Link Library 7

W3C World Wide Web Consortium 8

CSS Cascading Style Sheet 10

XPath XML Path 10

XML DOM XML Document Object Model 10

ASP Active Server Pages 10

PHP Hypertext PreProcessor 10

XSD XML Schema Definition 15

HTTP Hyper Text Transfer Protocol 24

VAT Value Added Tax 44

FLWOR For, Let, Where, Order by and Return 46

SALT Speech Application Language Tags 51

RDF Resource Description Framework 71

OWL Web Ontology Language 71

http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/Web_Ontology_Language

1

Chapter 1

Introduction:

“I have disability but I am not incapable” said Noor Ahmad, an eight year old child from

“Helen Keller School” for blinds in Palestine. This is the worst problem faces most of

blind people in the world; the lack of opportunity but not the ability. Actually, employers

do not believe in blinds‟ capabilities and rarely even try to examine them. This attitude

contributes in the increasing number of unemployed blinds in the world and consequently

increases the poverty percentage within this group of people.

According to World Health Organization (WHO) statistical report in October 2009, 314

million people are visually impaired around the world; and 45 million of them are totally

blind. These numbers indicates the dire need to pay more attention and solicitude for the

blind people

To help blind people to incorporate and interact with community, to make them more

independent and to ease their lives, a lot of facilities have been developed and enhanced in

many areas. This includes adapted environment, tools, equipments, techniques, trained

animals, robots, etc..., where some of are cheap while others are very expensive.

Computers technology is one of the areas that have undergone a considerable development

and improvement, mainly because it is an easily-reached huge source of information and

represents essential skills for many positions. These facilities vary from adapted hardware

such as special keyboard, synthesizer, Braille display devices and printers, and other

software aids such as screen readers, screen magnifies, voice recognition and many others.

Initially these facilities were efficient enough to help blinds to use computers as easily as

sighted do, which enabled several blind people to compete in many computer-related

professions such as programming and system analysis.

2

However, the evolution of computer software from text mode to GUI interface such as

icons, buttons, links and other visual elements has emerged serious barrier in computer

accessibility by blind users. This issue affects negatively in the numbers of computer blind-

users in the world and consequently blind programmers.

1.1 Objective:

The main objective of this research is to assist blind people to regain their rights in

working in programming-related professions. Many researches pursue the rehabilitation

and adaptation of blind people to recur to this field. Some have developed systems and

workshops in order to help novice blind learners to enhance their capabilities in problem

solving and thinking skills, and to attract them to this field of jobs, and mainly to prove

their qualifications and capabilities. Others started to enhance available programming

languages by enabling blinds to create forms and interfaces through a text-based form

scripting language, but the development of these scripting languages does not get to the

level of the development of the programming language itself. While some other

researchers proceed with developing blind oriented programming languages that aim to

help blind learners to construct their abilities and represent their understanding of

programming logic by creating programs, but also these programming languages were very

modest and primitive and not up to the evolution of other programming languages.

Therefore it can‟t be used for professional issues.

The aim of this research is to handle the shortcoming of the previous approaches, by

providing blinds with a tool that enable them to build a complete application independently

and consequently improving their programming skills. We offer integrated model for our

approach; the XML Builder for Blind programmers (XMLBB) tool. XMLBB is a speech-

driven tool where the user can execute a task simply by pronouncing it, along with

providing users with the capability of using the keyboard shortcuts, mouse and other

accessibility methods to accomplish the same task. In this approach; the blind

programmers can easily create, search, append, modify, truncate, traverse and validate

XML documents. In addition, programmers can create and maintain complete integrated

user-applications (i.e. forms, reports and database) easily and efficiently. These user-

applications are enhanced by speech recognition & synthesize technology so it can be used

by blind users too.

3

Our objective is achieved through analyzing four main programming languages based on

XML technology; XML documents, XML Schema, XForms and XQuery; and then

identify the structure, syntax and semantic of the essentials objects of theses languages.

Each of these languages will represent a major component in XMLBB, and then we

identify how to integrate between these languages, and how to generate one component

from the other according to specific criteria, taking into consideration all essentials parts of

the language that accomplish our goal, while giving the user the opportunity to set his

preferences and modify the automatically generated components according to the

application requirement. And since most of these languages are not a stand alone, we

augmented our tool with other programming languages such as XHTML, and XPath that

enable the user to build integrated web application easily and efficiently.

By using XMLBB, a blind programmer can develop a complete web-based application that

can be accessed via most web browsers. Developing a web-based application eases the

software deployment process and facilitates the distribution of new versions of this

application. In addition, it enables users to access these applications anytime and

anywhere.

1.2 Research Concepts:

1.2.1. Speech Recognition & Synthesizer:

Speech recognition is an active field of research from decades. In [5] "Speech recognition

is the process of automatically extracting and determining linguistic information conveyed

by a speech wave using computers or electronic circuits". While Speech synthesizer, is a

text-to-speech (TTS) technology that converts normal language text into speech by using a

database of recorded speech of language words.

In [11], the authors realize the role of speech recognition in supporting universal access for

communication and learning. Speech recognition provides an active interface for a human

to interact with machines more easily; such a technology has a significant enhancement for

blind and disabled peoples in using computer software, where it enables them to use a lot

of computer facilities saving their time and effort in communication and integration with

others.

4

In [1], Multimodal user interface was suggested to improve the communication of the

disabled people with machine, where user can use more than the traditional keyboard and

mouse, such as voice, gestures and body movement, haptic interaction, facial expressions,

and others. The author of this paper relies on sound recognition tools to improve

accessibility for both blind and deaf people by using text-to-speech and speech-to-text

services.

Our model depends on speech recognition and synthesizer technology as one of essential

accessibility method, in order to facilitate blinds interaction with computers. It enables

methods for converting text to speech, speech to events and in-line phonic help.

1.2.2. XML:

XML is an Extensible Markup Language designed to store, structure, describe and

transport information. Also, it provides an open standard format for defining both data and

metadata. It's an easily extensible; user can use his own tag, self-describing and easy

readable by both human and machine. It became the most widely used format for data

exchanging and integration between different databases particularly via internet. Most

databases nowadays support storing, validating and retrieving XML documents; and so it

can be the most appropriate database model for blind programmers to create and develop a

complete application.

XML is a platform-independent programming language. It provides a file format for

representing data, a schema for describing data structure, and a mechanism for extending

and annotating HTML with semantic information.

The main components of our proposed model are: XML Schema, XML document, XQuery

and XForms. And since XForm and XQuery are not stand-alone languages, we embed

them within XHTML document. Each component has its own specific purpose, and all

participates in composing the whole application. More details about these components are

below:

 XML document: it contains the user application data. XML documents are

supplied with tags to represent and recognize each field of data. It is widely used

for data exchanging between heterogeneous systems, particularly in web and

5

distributed applications. This approach will use the XML document as a data

storage, it models user application database in XMLBB

 XML Schema: it is the description of XML document. It is used to define the

structure and contents of the XML document, and to ensure that the XML

document is valid. XML schema represents the user database schema in our model.

 XQuery: it is the language that can be used to extract and manipulate XML

document. It is equivalent to query language in conventional databases, and also

allows users to construct a new XML documents. This model will use XQuery to

select, order, filter and manipulate data in XML documents. By using XQuery we

can return XML documents partially or completely, that can be used in forms and

reports according to application requirements.

 XForms: XML forms are the new generation of HTML forms. It uses a more

flexible, secure and platform independent way to input data from a user. It uses

XML for data definition and XHTML for data display. It consists of three parts:

models to describe form data, interface to identify form control and styling criteria

to display form layout. In XMLBB model the end-user can use XForms to construct

the user application Interface.

 XHTML: it is a well-formed HTML document (i.e. An XHTML document has

one root element, and properly nested XHTML elements, which are always closed,

and all attributes in lowercase between double quotations). It can be used to create

the application web pages.

1.3 Paper Organization:

The rest of this paper is organized as follows: The 2
nd

 chapter shows the background,

the 3
rd

 chapter illustrates our XMLBB model and the 4
th
 chapter elaborates on the

development and implementation phase. The 5
th

 chapter explains the testing and

evaluation process, while the 6
th

 chapter suggests future work and conclusion.

6

Chapter 2

Background:

The evolution of software applications from text mode to GUI "point-and-click" interface

simplifies and facilitates the usage of computer systems by sighted people. But,

unfortunately, it added more restrictions for blind people and prevented them from using

many capabilities and advantages of computer software. For those people who are totally

blind, there sight inability must be replaced with other sense as a mean of input.

GUI limits the number of blind programmers in the world as in [4, 9, 10]. Since then, many

researchers and organizations have started to develop or submit solutions for this group of

people. One solution was the use of Braille output devices, which convert text that is

displayed on the screen into Braille characters on a 'touch-pad'. The user then 'feels' what is

on the screen. Another approach is through the use of text-to-speech synthesizers working

together with screen reader software such as in the multimodal interface described in [1].

Such solution is useful for using available software or application, but it's not enough for

blind programmer to be able to develop their own programs. Blinds still face many

obstacles in working in programming-related professions.

2.1 Related Work:

When reviewing the previous literatures that discuss approaches for developing a

programming language for blind people, we found several suggested solutions. Following

are some of these approaches:

In [3,8], authors developed a system that can assist novice blind programmer to start

learning programming. They aim to enhance problem solving and thinking skills of novice

blind learners in order to increase the number of blind programmers. In [8], the authors

designed a model of a programming language (APL) for blind people with audio interface;

which is not an alternative to conventional programming languages. It is just a tool that

aims to motivate blind learners to start programming. It is a basic programming language,

7

but with a significant enhancement, that implements unconventional variable of "sound" to

be manipulated by blind users. However, when tested by experts and end users, it was

found that APL needs more improvement and enhancement in both grammar and

functionality. By using APL, blind learners can construct new skills in programming,

problem solving and logic thinking.

In [3], the authors led a workshop to encourage blind students to start learning

programming; "We wanted this workshop to be not only exciting but also illustrative of the

problem solving and creativity that is the core of computer science". This is achieved by

using a project designed to be completely accessible by blind students, named instant

messaging chatbots. Creation & customizing of this project requires from students

qualification in both programming skills and artificial intelligent. By the end of this

workshop, students proved their abilities in programming when a suitable environment and

tool are provided.

Papers [4, 9] present the feedback of the blind programming community about APL and

other blind-oriented programming languages. It is believed that blind programmers do not

need a separate programming language; they need to be able to use the conventional

programming language. Authors in [4,9,10] find that the barrier that blind programmers

faced in using conventional programming language is in the designing stage of the

applications interface, while using a text files can be sufficient to write their code and

create their classes, methods, function and DLL's. So they developed a scripting language

that enables blind programmers to build application forms (i.e. the part that request vision)

in a simple and maintainable way, and then blind programmer can use the conventional

programming language such as visual basic to write application code (i.e. business logic).

In [2], authors developed a tool that enables blind people to build a web presentation by

using dialogs and wizards. The user will be instructed by sound for what type of

information to insert according to the template he chooses. This web presentation is also

accessible by blind.

The above mentioned solutions for blind programmer were not efficient enough; according

to authors in [8], APL is a basic language with limited capabilities, where a user can only

define variables, input & output variables, and use condition & loop statements. It can't be

used for professional purpose (i.e. it says nothing about accessing a databases, data type

8

casting, text manipulation, Modular programming, etc...). While other approaches that

propose a special-purpose scripting language for building user interface also have limited

usefulness; only a small set of controls are defined (e.g. forms, command buttons, text

boxes, combo boxes, frames, and check boxes as in [9]). However, they lack rich controls

such as grids, calendars, reports, menus, etc. In addition, the scripting language is not

synchronized with the programming language itself. Eventually the tool developed in [2] is

only concerned about specific domain; how to present data, but it says nothing about

manipulating, storing and transforming data.

Nowadays creating and maintaining databases has become an important issue for most

enterprises and corporations. Many organizations have vital data that need to be

manipulated, secured, maintained, retained and backed up constantly. The previous

discussed approaches do not have interest in this area. In our approach we associate

between the application development and database creation processes, mainly in order to

provide blinds with integrated tool that enable them to build complete applications.

XMLBB is a tool that is oriented for blind programmers. It enables them to build XML

database to retain application data, XML schema to define database structure and

constraints, build forms to insert, edit or delete data using XForms, query a collection of

data using XQuery and display and view it in several format using XHTML. XMLBB is a

speech-driven tool that enables blind programmers to execute commands by speech. It is

intended to facilitate the process of building applications that can be used by both blind

and sighted people.

2.2 Why XML?

In our approach, we choose XML format rather than any other data format, because it is

more suitable for blind programmer. It provides a file format for representing data, a

schema for describing data structure and constraint, and a mechanism for extending data

and annotating it with semantic information. Following are more details that explain

characteristics of XML, and how it can be useful for blind peoples:

 XML is accessible (Accessibility): XML can be used to decrease barriers of web

accessibility for disabled people. By following XML accessibility guidelines

provided by W3C, a developer can design a web application that is accessible by

blind people smoothly and efficiently. While using HTML for example can't satisfy

9

our goal since it lacks the way to define data elements. In the following chapter we

will discuss some recommended accessibility guidelines in details.

 XML is Readable by both human and machine (Readability): any sighted

person who can view XML document can easily recognize what is meant by each

data element. The same is valid for the computer. A readable document by machine

can be converted easily into speech, and consequently can be accessed easily by

blind people.

 Data is structured (hierarchical): XML data resides in a hierarchical traversable

structure; where a user can easily reach and edit any element in XML document.

Also data in the real world is usually having hierarchical characteristics, which can

be easily represented by XML document; consequently user can have enough

visualization about his data structure, which enables Him to build a database

schema easily.

 XML became the standard format for data exchanging (Interoperability):

when divers systems or organization needs to work together, most probably each

will have different databases schema or vender and platform. The easiest way to

exchange data is by converting it into XML standardized format, since XML

document structures behave consistently and can be serialized and encoded. A user

will be able to import and export XML data from and into heterogeneous databases.

 XML is extensible (Extensibility): The user can effectively create 'extendible' tag

sets that can be used for multiple applications; where each tag has a unique name,

defined in XML schema, a user can easily extend XML schema with additional tags

according to his application requirement.

 XML database provides both data storage and representation (Self-Existent):

in XML document, user can easily append, truncate and search data; or even view

data in different format using XHTML.

 XML support international languages (Multilingual): XML support multilingual

documents; Language tag is used to indicate the language of text in XML

document. Any XML document may contain several languages in its data content.

 XML is open (Openness): XML standard is completely open and free software.

10

Chapter 3

XMLBB Structure and Principles:

To enable blind programmers to build integrated web application and to release them from

the complexities of using GUI; we try to follow the accessibility guidelines of building

user interface that are recommended in many papers and sites. We enhance XMLBB

interface with several accessibility methods; the user can access any field in the interface

by using speech, keyboard or mouse.

Developing a web application requires the knowledge of several programming languages.

In XMLBB model, four components are included to facilitate the process of creating an

integrated web application based on the XML technology; the structure of the database can

be defined using XML schema, the end-user data can be retained in XML documents, the

application interface can be built using XHTML and XForms, and the reports can be

generated by using XQuery. Actually, these languages are not enough, as the developer

may define the format of his document using CSS style sheet. He needs to traverse the

XML document using XPath language. In order to insert, update or delete XML nodes, he

has to use XML DOM language. And he may trigger specific action using XML Events, in

addition to execute client-side script using any scripting language such as JavaScript, and

finally, execute server-side script using ASP or PHP code for example. Most of

programmers can‟t memories all of these languages syntax. In our research we study the

structure of a set of these languages, and determine the minimal syntax that has to be used

to achieve our desired goal of building an integrated web application, and then we

transform this syntax into wizards. Blind developer can use these wizards to create any

piece of code, without the concern about missed comma‟s or incorrect number of

parentheses, or any other syntax error.

Building the application interface is not an easy process; it requires sighting ability in

many aspects. To facilitate this process for the developer, we enhance the XMLBB tool by

11

the option of automatically generating application interface according to the selected

schema objects that the developer wants to include in his form, and provide the developer

with the capability of modifying the generated form according to his requirement unless it

contradict with the structure of database as defined in the XML schema.

Our objective of building XMLBB tool is not only to enable blind programmer to build a

complete integrated web application, but also to enhance this web application with the

accessibility method that enables blind users to use it easily without the requirement of a

third-party tools such as reader and magnifiers. This is done through creating an

accessibility package that can be attached in any web page automatically using XForms

actions and client-side scripting language.

3.1 XMLBB Model:

As shown in the above diagram, figure 3.1, the XMLBB tool interface can be accessed via

mouse, keyboard or speech. Any user project may include several components, the XML

schema which defines the XML document structure, the end-user data which is retained in

XML document and based on the structure as defined in XML schema, the XForms for

building the user interface, and the XQuery to view the whole or subset of end-user data in

specific format for reporting issues.

Figure (3.1): XMLBB Model

12

Using XMLBB, the developer has the option to create, modify or delete any project.

Modification of application schema objects is permitted until it may affect the already

built-in forms or reports, also modification of forms is permitted if there is no contradiction

with XML data, while modifying reports using XQuery is possible in any case since it is

built based on XML document.

3.1.1 XMLBB Accessible Interface Design:

Many references that are found in the internet discusses the accessibility guidelines for

designing a user interface in order to ensure that it can be used by a wide range of users.

Most of these references recommended the separation of data from presentation using

XML documents specifically in designing web applications interface. In XMLBB interface

design, we try to follow-up some of these guidelines that fit our objectives.

We consolidate XMLBB interface with many features, specifically some described in

paper [7], and follow-up the separation rule by applying XML concepts in the user web

application. More details about each of these features are below:

 Speech-Driven Interface:

A speech-driven interface is an interface that a developer speech can control the

flow of the program; Actions are executed according to speech command, e.g.

when a developer says "Schema", a schema interface is opened and the developer is

informed by speech whether his command is executed successfully or not. A

speech driven command can be enabled or disabled according to user‟s request by

pressing "Ctrl"+"S"

 Keyboard Shortcut:

Shortcuts can be used as another mean for execution systems commands. Some

people may lack the ability to pronounce some words in foreign or even mother

language correctly; some prefer to use keyboard than speech, or they lack of a

microphone. In such cases, the developer can press the special character "Ctrl" +

some other keys to execute specific commands e.g. "Ctrl" + "P" can be used to

enable or disable pronouncing any pressed character.

13

 Access Key:

For blind person, it may be annoying if he needs to access a particular control by

passing all previous controls using “TAB” key or by saying “Next” especially for

crowded interface. By pressing the special character "Alt" + some specific

character, this enables the user to jump to specific control on the page without

using a mouse, e.g. "ALT" + "N" can be used to jump to Name text control in the

interface in spite of its order or location in the interface.

 Wizards:

To facilitate the application development process, wizards are intensively used in

XMLBB tool. Creating, modifying or even deleting any document of user

application done through a sequence of forms, where a dialogue occurs between the

system and the developer is in order to help Him to insert the correct input as

requested, and to enable Him to follow the process sequence correctly, and enable

the developer to go back and forward within the related forms easily.

 Pronouncing Characters:

For novice computer users, memorizing the location of all keyboard characters for

different languages is uneasy task. At first, the user needs enough time to get used

of this. By enabling character pronouncing a user can ensure that he is pressing the

correct character. This facility can be enabled or disabled according to user‟s

request by pressing "Ctrl" + "P".

 In-Line Help:

In any part of the system development, a developer can ask for help in different

stages according to the active interface and control. This enables the blind

developer to get enough visualization about every part of the system. The developer

can get In-Line help either by saying “Help” or pressing “Ctl+H”, which provides

Him with the active control description, or even he can request form level help by

saying “Form Help” or pressing “F1”.

 Text-to-Speech:

A sighted user can ensure the correctness of his typed data by reading it, while a

system can do the same task for blind users. Also he can get the spelling of any text

14

character by character. The user can read any control text by saying “Read Text” or

press “Ctl+T”, or “Spell Text” or press “Ctl+S” to validate his input.

 Speech-to-Text :

Inserting data by using microphone is a technology that has a lot of studies and

tools that aims to make this applicable. But this technology is still facing a lot of

obstacles. This facility is disabled by default, but can be enabled by either pressing

“Ctrl”+”T” or by saying “Enable Typing” according to the developer‟s request, but

it‟s not recommended to be used, since it gives a law percentage of correctness and

requires a training.

 Screen Enlarge :

Visually impaired people may prefer enlarging text rather than using any other

facility. This can help them to check any part of information they need without

necessarily waiting for the system to read for them, knowing that the process of

reading by eye is faster than hearing a speech. A user can enlarge his interface

several times according to his request by saying “Enlarge” or pressing “Ctl+E”, or

to view the interface in its maximum size by saying “Enlarge Maximum” or

pressing “Ctl+‟+‟”.

 Mouse :

Visually impaired and sighted people maybe prefer to use the mouse to access any

control on the screen especially that most GUI nowadays depend on using mouse

intensively, so many users are accustomed in using mouse more than keyboard. We

enabled this facility to provide every user with the accessibility tool that is comfort

and convenient.

 Default Action :

Ordinary, a page in any application is developed mainly to execute a special action,

e.g. the default action in a report is viewing it, and in a wizard is to run “next”

button action. Such actions can be executed as default actions, either by pressing

the "PageUp" Key or by saying "Execute”.

15

3.1.2 XMLBB Interface:

XMLBB interface is the main page of XMLBB tool; it includes all components required to

create an integrated web project using XML technology. The user can create forms using

XForms, construct database structure using XML schema, build data repository using

XML document, create queries using XQuery and design reports using XHTML and

styling sheet.

When XMLBB tool is initialized, the listener started automatically in order to recognize

the developer speech, and the XMLBB main interface is opened with all accessibility

features previously illustrated. In order to enable the blind programmer to access XMLBB

tool interface, multiple alternative accessibility methods are available to a developer to

execute a command. He may either click the command icon by mouse, or press keyboard

shortcuts, or even pronounce the command. The same command speech or shortcut may be

carried out in different ways according to the context.

3.1.3 XML Schema:

The initial phase for building the end-user web application is to define its database

structure. By using XMLBB schema builder component, the developer can create the XML

Schema Definition (XSD) easily. It provides a mean for defining the structure, content and

semantics of a schema-valid XML documents, a developer can define his schema elements,

attributes and types, and set their hierarchy, order, data type, default values, data

restriction, etc …

XML schemas are extensible; where the developer can reuse his schema within another

schema, or define multiple schemas for the same XML document, or one schema for

multiple XML document, or even create his own data type which is derived from a built-in

data type. We will use XML schema as the building block of the end-user application, after

creating XML schema, the developer can generate the user interface automatically. Also,

he can design the application reports and queries, based on the XML Schema and XML

documents.

16

3.1.3.1 Creating XML Schema Flowchart Diagram:

The following diagram illustrates the flowchart diagram for creating a new schema using

XMLBB tool:

Figure (3.2): Creating Schema Flowchart

Start

XMLBB

Schema

New

Close
Schema

Close

Database

Name

XMLBB

Interface Opened

Schema

Interface Opened

Insert Schema Name

New Schema

Created

Edit

Element

Edit

Attribute
Edit Simple

Type

Edit Complex

Type

Confirm Editing Object

Build XML

Schema

Attribute

Add

Name

Add

Attribute

Add

Simple

Add

Element

Add

Complex

Element Type

Complex Simple

Insert Schema
Object Name

Schema Object Added

Delete

Schema

Object
Notify Object

Deleted successfully

Delete
Select Schema

Object

Object

Name

Edit Select Schema
Object

Object
Name

17

3.1.3.2 Diagram Description:

As illustrated in the above diagram, figure 3.2, when the developer runs the XMLBB tool,

the speech listener starts automatically in order to recognize the developer‟s speech, and

the XMLBB main page is opened. The developer has the option to create a new project,

modify or even delete an existing one. When creating a new project, the first step is to

create the database structure, which is determined by analyzing the system needs and

requirements, and then define it using XML schema. The above diagram shows the stages

of creating a new XML schema by using XMLBB tool. In order to open the schema

interface, the developer has to say “Schema” or press “Alt+S”, then he may say “Create”

or Press “Alt+C” to create a new schema document, then the schema document creation

wizard is initiated, and the developer is prompted to insert the schema name and path,

which have to be unique in the project level. Then an empty schema is created, and the

developer is prompted to create the schema objects. First he has to insert the schema object

name, which has to be unique within the schema, and then he has to select the kind of the

schema object he wants to create. He can either create element, attribute, simple or

complex type.

According to [12,13,14], schema element defines an element of XML document that

contains text and has a type of built-in, simple or complex data type; but it can‟t contain

other elements or attributes; and its parent element is the “Schema” root element. To create

a schema element, the developer may say “Element”, press „E‟ or select element form the

list; then a new wizard will start, and the developer is prompted to insert the new element

attributes. More details about creating a new schema element are illustrated in the diagram

below:

Figure (3.3): Creating Schema Element Flowchart

type

Add

Element
Element Data Type

If type! =

complex

Yes

No

Element

Created

Simple Element Created

Successfully

fixed default

Default or Fixed

Value

nillable

18

As illustrated in the above diagram, figure 3.3, initially the developer is prompted to

choose the element data type, which may be a built-in data type or user-defined named data

type. Named data type can be either simple or complex data types. If the element data type

is not complex type then the developer is prompted to insert either the default attribute

value for the element, or the fixed attribute value or none. Finally he has to specify whether

the element value may be null or not by setting the nillable attribute, then he is notified

whether the new schema element has been created successfully or not, and the schema

definition is modified and retained.

Within the Schema root “schema” a simple attribute also can be created. But since simple

attributes is not a stand-alone objects; it can‟t be used directly in the XML document, it has

to be identified inside another element by using complex type. The following diagram

shows more details about creating a new schema attribute:

Adding a new attribute as illustrated in figure 3.4 is very similar to adding a new element

in process, but here the data type can‟t be a complex type. It can be only simple or built-in

data type. The developer has to set either a default or fixed value, or none, then he can set-

in the use attribute, which can by either “required” to indicate that the attribute is required,

or “optional” to indicate that attribute value may be left empty.

In addition to elements and attributes, the developer can also create a type object. Schema

type object can be either simple or complex; a simple type can be used to define acceptable

values for XML elements or attributes, where the developer can set one or more restriction

on the built-in data types according to his requirement which then can be applied to either

an element or attribute. While defining a complex type can be used to set the hierarchy of

the XML document, and to define which element may contain other elements or attributes,

it can be used to define the XML document root element, its child‟s elements, their order,

Figure (3.4): Creating Schema Attribute Flowchart

Attribute

Created

Simple Attribute
Created Successfully

Add

Attribute

default

Base type

fixed

use

Select Attribute

Data Type

Insert Default or
Fixed Value

19

occurrence times, if child‟s elements are required or not, and if it‟s allowed to extend the

XML document with elements or attributes that are not specified by the current schema.

The following diagram shows the process the developer can follow to create a schema

simple type object:

Initially the developer has to select the base built-in data type of the simple type he wants

to create, then he has to specify how can the whitespaces in the XML document be handled,

which may take the value of “preserve” to keep all Whitespace characters, or “replace” to

No

Simple

Type

Select Base Data

Type

How to Deal with

Whitespace
Base type

Restrict to

List of

Values

Yes

Yes No

whitespace

If Base is
Numeric

enumeration

length pattern max & min digits

Simple Type Created
Successfully

Simple Type

Created

Figure (3.5): Creating Schema Simple Type Flowchart

20

replace all kinds of Whitespace characters (e.g. line feeds, tabs, spaces, and carriage

returns) with spaces, or “collapse” which reduces multiple spaces into a single space. Then

he may add the enumeration restriction, which could be used to define a list of object

acceptable values, by restricting the data to a list of values, all other types of restriction

will be disabled, since they become meaningless, but if the developer did not set

enumeration restriction, two tracks are available to him according to the base data type

selected.

If the base data type is numeric then the developer can set upper and lower bounds of the

numeric value, where these values can be inclusive or exclusive that is to include or

exclude the maximum value or minimum value. This is done by setting the maxExclusive,

maxInclusive, minExclusive and minInclusive attributes, also the user has the option to set

the number of digits allowed in float data types. He can set the fractionDigits value, which

is the maximum number of decimal places allowed and totalDigits value to define the

exact number of digit allowed. Whether the data type is numeric or not, more data

restrictions are available; “Length” restriction can be used to set the value length, which is

the exact number of characters allowed. Also the developer can set the values of

maxLength and minLength attributes, to set the maximum and minimum number of

characters allowed.

Finally, the developer can specify the data pattern to set the exact sequence of acceptable

characters and patterns that are used to define a regular expression, it can be used to define

character set, e.g. the developer can use square brackets “[]”to mach one character between

several characters in a character set, or use hyphen”-“character inside a character set to

specify one or more range of characters, while typing a caret “^” character after the

opening square bracket will negate the character class, the result is that the character class

will match any character that is not in the character class, the developer also may use

character set shortcut; use “\d” for digits , “\s” for whitespace character, and “\w” for word

character . if user need to repeat a character set , he can follow it by star “*” character to

indicate zero or more occurrence , plus “+” to indicate one or more occurrence , or set the

exact number between curly brackets”{}” , or even set the minimum and maximum

occurrence number “{min,max}”.also pattern attribute can be used to subtract character

set from another one using hyphen character followed by the character set [class set -

[subtract set]] , the subtract set itself also can be another subtracted character set , dot “.”

21

Character can be used also to reference any single character except newline character,

vertical bar “|” can be used to set alternative of list of values, round brackets “()”can be

used to group a character set, which allow the user to use the repeating character for a

group of characters, other pattern also are available, but we will not discuss them in this

thesis.

Another object that the developer creates in the XML Schema document is the complex

type, which can be used to define type which may contains either elements, attributes or

both. The below diagram shows the process of creating complex type in more details:

As illustrated in the diagram above, the developer can create complex type element that

consists of attributes only, in this case the developer can add as many attributes as he needs,

Add

Element

Complex Type

Created

Add

Attribute

Add More

Attribute

Yes

No

Complex Type

Created

Add

Attribute

No

Add more

Objects

Yes

Insert Order

Indicator

order
Insert Mixed

Indicator

Complex

Type

Select Object to
Insert

Attribute
Only

Yes No

Set mixed=false

Extend exist

complex

Type

Select Base Type Yes

base

No

Figure (3.6): Creating Schema Complex Type Flowchart

22

then the complex type will be created in the XML Schema. Adding attribute process can be

done from scratch as illustrated in the diagram 3.4, or by referring to already created

attribute using ref attribute. In this case the user has the option to reset the use attribute

according to his requirement at this level. If the user needs to create a complex type that

may contain elements and/or attributes, then the developer is prompted to insert the order

indicator of his elements, order indicator may have the value of “all” to indicate that all

sub elements and attributes are required, and they can occur only one time, but can appear

in any order, “sequence” to indicate that the order of elements is important, or “choice” if

the XML document can contain only one of these elements.

Within the order indicator element, the developer can set the maxOccurs and minOccurs

attributes, which indicate that all complex type sub-elements can be repeated the same

number of times. Next, the system will automatically set the mixed indicator attribute to

“false”, mixed indicator can be used to enable the character data to appear between the

child-elements of XML document, so it is not applicable in XMLBB; since we need to

refer to every part of the data in either element or attribute so that we can retrieve it easily.

In addition to the indicator level, the maxOccurs and minOccurrs attributes can be set-in

within the complex type sub-elements, which specify whether this sub-element can be

repeated, and it‟s minimum and maximum occurrence, which also can be unbounded,

knowing that the default value is one for both attributes.

Previous discussed criteria show how the developer can add a new object into his XML

Schema. Initially, editing and deleting schema objects are not allowed, until at least one

schema object is created. As illustrated in diagram 3.2, the developer can delete schema

object just by selecting the abject name he wants to delete. Deleting any object requests

user confirmation, if confirmed, the developer is notified if the selected object is deleted

successfully or not. Deleting a schema object is not allowed if it used by any XML

document, until either the XML document modified or deleted. In addition to creating, and

deleting a schema object, the developer has the option to edit an existing schema object,

after selecting the schema object to edit; the developer is prompted to modify each attribute

according to his request. Modifying schema object also has to be valid, that is not to

contradict with an existing XML document that is based on this schema object, after

modifying the schema object attributes, the developer is notified that the process is

completed successfully.

23

After creating XML Schema, the developer can build his XML Schema; that is to create

XML Schema document in the user project working area as defined in the project level, a

new schema is created with the default processing instruction parameters; which is

intended to supply some information to the application that is processing the XML

document such as version and character set encoding. Processing instructions are enclosed

in a pair of "<?" and "?> ", then the processing instruction is followed by the Schema root

element “<schema>” ”</schema>”, which defines the namespace parameter. Namespaces

are used for providing uniquely named elements and attributes in an XML document

instance, and their prefix, the default and target namespace are added to the schema from

the project definition, in addition to the XML Schema namespace to indicates that the

elements and data types used in the schema come from the following namespace:

xmlns:xs=http://www.w3.org/2001/XMLSchema, and then set the elementFormDefault

attribute to qualified to indicate that any elements used by the XML instance document

which were declared in this schema must be namespace qualified. Then all schema objects

created by the user are generated in the schema document; this includes attributes,

elements, simple types and complex types.

Creating XML Schema is a very essential part of developing a web application, since it

identifies the data structure of the end-user database, and consequently used to validate the

XML document, in addition, project forms, queries and reports in the XMLBB tool can be

generated based on the XML Schema, and consequently it requires attention and accuracy

from the developer.

3.1.4 XForms:

The XForms component can be used to define the end-user application interface; it enables

the developer to build a web applications interface using XHTML and XForms easily and

efficiently, via speaking-dialogs or keyboard shortcuts. The end-user interface will be

enhanced with features that enable a multimodal accessibility; that is, the end-user can use

keyboard, mouse or even speech to access any control in the interface, and consequently it

can be used easily by disabled people, and particularly by blind people.

According to [16], with XForms, the data displayed in a form are stored in an XML

document, and the data submitted by the form, can be transported over the internet using

http://en.wikipedia.org/wiki/XML

24

XML. Consequently, it will be more suitable to be used in our model than conventional

HTML forms. In addition, XForms is a platform and device independent language; it

separates data from presentation.

 XForms consists of two major parts, the user interface, and the XForm model. The user

interface is used to define the form controls‟, how they should be displayed, while the

XForm model itself consists of several parts; the XForm instance which holds the skeleton

of the XML document, the bind elements, which is used to define several constraints in the

node-set and to bind between the model and interface, and the submission element which

defines the target and method of form submission.

The XForm controls is used to set the control type, e.g. input, secrete, select, trigger …etc,

and it‟s label, hint, alert and help message, in addition to control action, which initiates

some process in a given event. For example, it shows a message to the user if his input is

invalid, or insert or delete node-set from the XForm instance data. XML instance serves as

place-holders of the XML structure. It may have “id” attribute for identifying the

referenced model when multiple models are used in the same document, and the schema

name using “schema” attribute. The bind elements can be used to set instance element or

attribute data types, whether their value are optional or required, read only or updatable,

and how their value may be relevant to others node-set value, in addition to the constraints

that can be added to the node-set through applying simple type restrictions defined on the

basis schema, or to set the calculate value of the content of the node.

The Submission element has several attributes; the form identification name, the form

action which specifies the URL to where the form should be submitted, and the submitting

method; which specifies how the form data are submitted to through web server.

Submission method can be either get or post method. In the get method, the form data is

appended to the URL in name, value pairs, so it‟s not suitable to pass sensitive data such as

passwords or keys, while the post method sends the form data as HTTP post transaction, in

addition to instance or portion of the instance to be submitted.

Several issues have to be taken into consideration when creating a web application using

XForms and XHTML; the first is whether the end-user form will be used to collect, view,

or manipulate the form data. When the end-user form is submitted; it may insert, update or

25

delete form data instance according to the context and user request, so we need a standard

way to access and manipulate XML document content, in our XMLBB tool, we will use

XML Dom for this purpose. The XML DOM is standard for how to get, change, add, or

delete XML elements, it presents an XML document in a tree-structure format, and defines

the objects and properties of all XML document elements and attributes, and how to access

them. The second issue is how to bind between XForms interface controls and data

instance, this is done in XForms through the bind element nodeset attribute, which is set-in

according to the related nodeset using XPath language. XPath is a language for finding

information in XML document, it is used to navigate through elements and attributes in an

XML document. The third issue is how to respond to XForm event through actions, the

XForm events track events in a form to enable the user to trigger an action in a specific

event, the fourth issue that is where to set the system action, then what server-side script

will be used to execute some action in the web server e.g. ASP or PHP, and consequently

which web server will be used to parse and execute the server-side script such as IIS or

Apache web servers, the fifth and the last issue is to automatically enhance the user

interface with accessibility method that enables the blind people to use it easily without the

need for a third-party software such as readers and magnifiers.

As proposed in [6]; in order to facilitate the process of creating a web form, the developer

can build the end-user interface based on his XML Schema. The form controls follow the

structure of the schema elements, and the user data that can be entered into the form based

on the schema objects data types used. So the schema validates the user data as it's entered

into the form, preventing invalid data. The developer has to set the skeleton of the XML

instance, by selecting the elements to be included, then the system will generate the end-

user interface automatically, while giving the developer the option to customize his

interface later on to fit his application requirement; he may choose different built-in or

custom styling sheet and layout or template, the developer also has the option to display

the whole schema elements or a part of them. In addition, he may add some custom non-

schema objects to his form such as current date and user ID or even objects from other

schemas, in addition to links of others forms and reports.

The process of generating XForms based on XML Schema is discussed in details in the

next section.

26

3.1.4.1 Creating XForms Diagram:

The following diagram illustrates the process of creating user interface using XForms

component:

 Figure (3.7): Creating XForms Flowchart

Exit

XForm

Exit

DB

Start

XMLBB

Form

New

Name

Xforms
Interface Opened

Insert Form

Name

New Form
Created

XMLBB

Interface Opened

XML Name

Insert XML

Name

Document Name

Generate Manipulation

Script Automatically

DML Options

Set Data

Manipulation options

Options

Add Custom

/System

Fields?

Add Custom
Field to Form

Form has

More

Fields?

Yes

No

 Yes

Modify

Default fields

properties?

No

Modify Field

properties

Form generated
successfully

No

 Yes

Schema has

more

elements?

Add element to

Form

 Yes

No

Include Schema

element?
No

Schema Name

Include All

Schema

Elements

 No

Yes

Based on
Schema?

Yes

Select Schema

 No

Yes

Generate Form

Automatically

27

3.1.4.2 Creating XForms Diagram Description:

The above diagram show the sequence of creating new application interface; initially the

developer has to pronounce “Forms” or press “Alt+F” in order to open the XForms

interface, then he may say “New” or press “Alt+N” to create a new form, subsequently he

is prompted to insert the form name which has to be unique in project level, in addition to

the form title and description. Also, he is informed to decide whether to build his form

based on an existing schema or not; there are some cases where the developer needs to

create a web page that does not manipulate with XML data. For example, a main page that

has links to other forms or pages in the application, in this case, he needs not to create his

page based on XML schema, if the developer decides to build his form based on an

existing schema document then he can specify which schema element to include in the

end-user form, which can be all or subset of schema elements.

Only schema object of type element (simple or complex) can be included in the form, since

attributes, simple types or complex types can‟t be defined directly within the XML

instance, for each element included in the XForm, a new instance will be generated.

Schema instance can be either primary instance which holds the user data, or secondary

which will be used as a temporary storage. For example to carry out lookup data in a list, in

some cases, the developer needs to have some control such as select or select1 controls,

which is filled-out by existing XML document. In this case, he can set a reference to

existing XML document in his instance instead of referring to schema element.

For each object (sub-element or attribute) in the selected schema element, the developer is

given the option to include or exclude it in the end-user interface, for example, he can hide

some sensitive data from specific users. Whether the form is built based on existing

schema or from scratch, the developer has the option to include a system and custom fields

into his forms.

System fields may be current date, user name, page number, links to other pages or reports,

or hyperlink to any related documents or websites, while custom field includes fields from

other schemas, calculated values, aggregate functions, sequence numbers, etc…, after

identifying all form field‟s and elements , for each child node in the instance; sub-element

or attribute, a new field will be created in the XForm, and the developer can modify any

28

form field presentation property according to his preferences, provided that his

modification does not conflict with the based schema definition.

For each primary instance in the model, the developer has to set the XML document name

that will hold the end-user data; by default it will be set-in to the instance element name,

which creates a new XML document. also he may select an existing XML document, in

this case, developer has to set the path of where to add the new portion of instance data,

taking into consideration that the modified XML document has to be a schema-valid; the

user is not allowed to append new data to XML document that affects its validation, that is

ensured by comparing the schema definition with the XML document definition after

appending the new instance.

For schema based XForms, the developer has to identify how XML instance data will be

manipulated in his form; is it for view only, or user can insert, update or delete any portion

of its content, according to his requirement, the system will automatically generate XFrom

element syntax that achieve the user requirement, all operation can be done locally using

XForm instance, but to apply these operation back to server, XML DOM library & server

side script language will be used. And in the final step; the developer can build his form,

which create a new web page into his project working area.

3.1.4.3 XForms Generation:

After specifying the form source elements‟ from the basis schema, the system will generate

the end-user interface automatically, giving the option to the developer to update it later

according to his request. Since XForms can‟t work alone; it have to run inside another

stand-alone document; in our case we will use XHTML since our aim is to create a web

application.

Some generic setting of XHTML document and XForms are generated automatically

regardless of the page content; such as the XML declaration part which includes version

and encoding attributes “<?xml version="version number" encoding= "character set"?>”,

a cascading style sheet reference “<link rel=”StyleSheet” href="stylesheey name" >”, the

<html> tag which includes a reference to XForms, Schema, XML Events and XHTML

default namespaces, and their prefixes “<html xmlns="http://www.w3.org/1999/xhtml"

29

xmlns:xf="http://www.w3.org/2002/xforms" xmlns:ev="http://www.w3.org/2001/xml-

events” xmlns:xsd =http://www.w3.org/2001/ XMLSchema xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"></html>. In addition to <head>,

<body> HTML tags, and <model> XForm tag, which includes the name of the basis

schema “<xf:model schema="#schema">”. Many of these elements attributes‟ can be

defined by developer in the project level, such as the document character set and default

cascading style sheet.

As defined in the XForms reference by W3C in [16], ten kinds of XForms Controls are

available: input, textarea, secret, range, upload, output, select, select1, trigger and submit.

Input control can be used to input one line of text ; while textarea can be used to input

multiple lines of text, secrete control can used to input passwords or any other hidden

information. range control can be used to select a numeric value from range of values, but

since in most XForms processor, range control is rendered into a control that can be

accessed via mouse only; end users can‟t use keyboard to select a value from the range

control, so we will neglect it from our process since it contrast with the accessibility

method defined in our model. While upload control can be used to input a file name to be

uploaded to server, output control can be used as label , select and select1 controls may be

used as a list of values, where select1 allows user to choose one value from the list, while

select allows user to select multiple values. Trigger control can be used to create a button

that execute an action, e.g. to insert and delete elements from XML document. Finally

submit control can be used to submit the instance data to server. XForm controls have

additional support of declarative child‟s elements such as, help, label, hint and alert

elements which are common for all controls, while mediatype, and filename can be only

used for upload control. Choices, item and value elements for select and select1 controls.

In our process of XForms generation we will automatically create the appropriate XForms

control according to the source element included in the user form, while giving the

developer the option to modify the type of the control, its child‟s elements, and its attribute

according to the application requirement.

The data type of the source element determines the kind of the control to be generated, in

addition to its value restriction, constraint, the corresponding data instance and the bind

element. Since any schema element data type can be one of the following, either a built-in

data type, simple type name, or complex type name. The generation of a form control of

http://www.w3.org/TR/xforms/#ui-upload-mediatype

30

simple instance element with built-in or simple type name data types follows the same

process, while elements having a complex type name data type follow a different criterion,

since they are treated as a group of elements and attributes. The following sections discuss

in details the process of generating user interface from both simple and complex elements.

3.3.4.4 Generating Simple Element and Attributes:

The following is the syntax of a simple element which has either a built-in or a simple type

name data type:

<element name="any_element" type="Built-in|simple type name" default=”Default_value”

fixed =”true|false” nillable=”true|false” minOccurs=”000” maxOccurs=”999” />

For a simple type element, when generating its corresponding control, by default it will be

created as input, output or select control, but the developer has the option to modify it later

according to the context and nature of the data he needs to insert or display. If element type

is built-in or the value to be inserted is not restricted to the list of values then input control

is generated and the developers can modify it to either textarea, secrete, output or even

upload control to input a file name. But, in case that the source schema element data type

is simple type name, and having enumeration restriction to a list of values then select

controls can be created as default control, and can be modified later by user to select1

control. If the developer wants to display user-data without allowing any modification, that

is when element has a fixed attribute is set-in to true, then output control will be created.

Label, help, alert and hint child elements for each XForm control will set-in by default to

the element name concatenated with the control type, and can be modified later by the

developer to set more declarative information.

The XForms elements have some attributes that can be devised from other schema

attributes; most of these attributes can be set-in using the bind element. Following is the

syntax of the XForm bind element:

<bind id=”xxx” nodeset=” instance („instance-id‟)/element_path” required=”true|false”

type="aaa" readonly =”true|false” calculate =” expression” relevant=”XPath reference”

constraint=”boolean function|logical condition”/>

31

The nodeset attribute is used to set the reference to the instance element using XPath, and

will be set-in automatically according to the instance id and the element path. Most data

type values in XML are applicable in XForms, but in XForms, other built-in and derived

data types are available to the user, and can be modified by developer later on. But if the

schema data type is not applicable in XForms by default a string data type will be used.

When the schema element data type is a simple type name then most restrictions defined in

the schema are applied to the XForms control automatically, i.e. the developer can apply

several kinds of restriction in his schema using simple type and it will be applied

automatically to the XForm control when setting its data type to the restricted simple type

name. For example; the maxExclusive and minExclusive attributes can be applied

automatically to XForms, if defined in the simple schema type. In order to make these

restrictions clear to end-user, a default hint message will be added to the form control

showing the type of the restriction used, i.e. if the simple type restriction is used to set the

minimum and maximum value of the element then the hint and help messages will include

a notification message that this value can‟t be less or greater than a specific value.

readonly in XForms has the same purpose of fixed in Schema, while required attribute if

set-in to true in XForms means that this control can‟t be empty, which can be matched by

nillable=false in XML Schema.

The default schema element attribute can be set-in within the instance element „Template‟

in the model part as text of the element; or element attribute value; its syntax look like the

following:

<model> <instance>

 <any_element any_attribute =”default_attribute_value”>

 default_element_value

</any_element>

 </instance> </model>

Other attributes are available in the bind element and can be set-in by developer later when

necessary. Calculate attribute can be used to compute an expression such as value added

tax, relevant attribute used to show that an instance element or attribute are related to other

32

one, i.e. it have no meaning if the other piece of information is not set-in, and consequently

does not appear in the user form, while the constraint attribute can be used to add more

constraint in controls. For example, it can be used to check that that the user did not enter

his birth date in future.

Finally the minOccurs and maxOccurs attributes of XML schema simple element that have

no directly related attribute in XForms. This is logical since this property has to be

manipulated in server level not in client level, unless the developer is manipulating a local

XML file. Actually, since simple elements parent is the “schema” as root element,

specifying the maximum and minimum occurrence attribute is not applicable since XML

document can have only one root element. The usage of these attribute is applicable only

for complex elements, but we will address it in this section since complex element may

consist of several simple elements or attributes, and each will follow the same simple

element generation process. If control minOccurs and maxOccurs have a value to more

than one, then one or more controls can be created according to access level defined in the

form level; insert, delete, edit and view. If only insert operations is permitted, then one

instance of the control is created. While if viewing, editing or deleting is allowed; then one

column table with multiple rows will be created using the repeat run-time element which

generate a group element implicitly that contains the run-time control, and retrieve its

contents form the data instance.

On the contrast of simple elements, simple attributes can‟t be added directly to XForm

instance, since it has to be inside other elements, but it follows a very similar process of

simple element generation, so we will address it here too, while taking into consideration

the few differences. The syntax of schema attribute is as following:-

<attribute name="attribute_nme" type="Built-in|simple type name" fixed =”fixed_value”

default =”Default_value” use=”optional|required” />

Syntax of simple attribute is very similar to simple element, both have name, type, fixed

and default attributes with the same purpose. While minoccurs and maxoccurs attributes

are not applicable in attribute element only it can have zero or one value, and required

attribute in simple elements is replaced by use attribute in simple attribute, which has the

33

same purpose. If use is set-in to optional then required bind attribute will be set-in to false,

else it will be set-in to true.

3.1.4.5 Generating Complex Type Element:

Generating elements of complex data types requires more attention to some details. Since

complex elements consist of one or more child elements and attributes, and any child

element itself can be either simple or complex type element. If child element is complex

then the process of generating XForm components will be executed recursively, starting

from the root element, and terminating by the leaves, i.e. the inner-most sub-elements.

For each source element included in the user form, two instances are created automatically;

one data instance and one template instance. in addition to one variable instance in the

XForm level. The data instance holds the user data, which either instantly inserted or

retrieved from user database. A template instance is created to hold the complex element

structure for new records to be inserted. Both data and template instance follow naming

convention in order to retrieve the name of one from the other, which is the schema source

element name concatenated by “-data” or “-template” respectively. And finally variables

instance called “variables” is created to hold the hidden variables in the XForm model. The

variable instance will be used to hold the instance name and record index within the repeat

element, and consequently refer to the correct instance when manipulating data; if multiple

instances are used. also it may contain other information such as maximum and minimum

occurrence of sub-elements.

The layout of the form to be generated depends on the developer preferences. For each

complex element the developer is prompted to input the format of the section to be defined

in the user interface; he can either present controls sections in form format, or in tabular

format. In a form format, a borderless table of one column and multiple rows will be

created; one row for each non-complex child element. If user wishes to view his data in

tabular format, then the number of columns will be set-in according to the number of non-

complex child elements and attributes. And the developer will prompted to insert the

minimum number of rows to be displayed, which by default is equal to the minimum

occurrence of the complex element, or he can specify the height and width of the table to

be created using the <div> tag. If number of records in user-data is more than table size,

34

then scrollbars are automatically created and the user can scroll up and down within the

table to view all instance data. The element name will be used as a column header, and the

complex element name will be set-in as table header. Whether the developer wants to

present his controls in tabular or form format, he can modify the order of the controls in his

interface, by setting the indexes of the controls. Note that the modifying indexes of a

control will not affect the order of the elements within the XForm instance, and

consequently it will be applicable for any order indicator attribute in the complex element.

Not all forms are intended be used for inserting, deleting, editing and viewing user data.

When generating end user form the developer is prompted to specify what operations are

permitted in his form. A menu bar will be included for each form with several triggers;

new, insert, search, edit and delete, clear, next, previous, last and first, if operation is non-

permitted then it will be disabled. All operations are done locally on the instance data of

the XForm, and when submitting the form instance modifications are applied back to the

database server.

When any section of the user-data is displayed in tabular format, all rows will be generated

in run mode using repeat element by looping through instance data, i.e. a new row will be

created for each record of the instance data, while in form format, pressing next or

previous keys in the menu will display data to user according to repeat element index. In

case any of the child elements has its local occurrence attribute is set-in to more than one,

then the child element itself will be displayed in nested table of one column and the value

of minimum occurrence rows, in this case sub-elements are viewed as bulleted list of

output controls as illustrated previously in simple element generation, or in using input

controls if modification is allowed. Pressing new button in menu in any table will create a

new row in the table, given that the number of rows does not exceed the maximum

occurrence number permitted. The maximum and minimum occurrence of the element will

be validated automatically by using while or if attribute compound with the node-set count

function to ensure that the number of elements are within the permitted range of the

occurrence of the element in each table as defined in the “variables” instance.

Generating the simple element or attribute child‟s of the complex elements will follow the

same process of generating simple element illustrated in previous section. All sub elements

35

of the complex element will be generated as a group of controls; surrounded by XHTML

frame element, and preceded by a header title.

In complex elements, the order and occurrence indicators affects the way of presenting its

child controls; If all indicators are specified, then the complex element child‟s can‟t occur

more than one time but in any order, consequently these child elements are optional, unless

specified explicitly that their minOccurs attributes equal one, and the user has the option to

rearrange the elements indexes when necessary. Since sub-element can‟t occur more than

one time, in this case if user chooses to present his elements in tabular format only one row

will be created.

If “choice” indicator is specified then only one of the child elements can occur, but all

others can‟t. If user fills-out any of the child elements or attributes value, then all others

become disabled, in this case by default we will generate a list box of all child elements

names using “select1” control, and followed by one input control. The input control type

and value is defined according to the selected child element to be inserted. The user has the

option to modify the presentation of complex element of choice indicator by generating an

input control to each child element in user interface, then the readonly attribute will be set-

in automatically to true when the user edits the value of any element or attribute of the

grouped controls, and consequently the user can‟t modify any of the others child elements.

In case of sequence indicator is used then the child elements have to be in the correct order

and can occur zero or more times, whether the occurrence indicator is defined on the

complex element level or not, then all child elements are treated as group, unless any has a

local occurrence indicator.

If any child of the complex element is complex, then it will follow the same process of

generating complex elements, but in separated nested section. All sections data are related;

i.e. the data in each section concerned with information linked to its parent section. The

form operations defined in the menu bar are also applied to all sections; insertion, deletion

or edition can be done in each section. For example, the user has the option to search for

specific data in any section, and the retrieved data in all section will be under the same

node-set of the XML document, e.g. searching for an author of any name will retrieve all

books written by the same author.

36

After generating the XForm components; the bind elements , the XForm instance, and the

XForm actions, the end-user interface becomes ready to be used, and the developer has the

option to modify some of its component attributes and elements, or even add new one .e.g.

section format; tabular or form, the format of elements having choice order indicator, the

format of child-elements having a local occurrence attribute, the type of control to be

created, the styling attributes such the color, size and font of the control , other bind and

action attribute such as calculate, constraint , relevant , and help, hint, label and alert sub-

elements in addition to other notification and error messages, and any default settings of

form generation provided that it will not cause any conflict with the schema definition.

37

3.1.4.6 Pseudo Code of XForms Generation:

The following pseudo code illustrates the process of generating XForms components based

on schema elements in more details:

//procedure generate XFORM

Procedure Generate_Xform(Insert as Boolean, Delete as Boolean, Edit as Boolean, View as

Boolean)

Set Global_Allow_Insert= Insert

Set Global_Allow_Delete= Delete

Set Global_Allow_Edit= Edit

Set Global_Allow_View=View

Input Edit_Default_Settings in {true|false}

If (Edit_Default_Settings) then //if the user want to edit default settings of Xform elements

 For each child_element in instance

 Modify default_attribute(input new_attribute, attribute_name)

 End For

End if

For Each Xform_Instance In XForm //loop within instances in the Xform

If (Xform_Instance is template) then //only template instance used to generate the interface?

 Read instance_id

If (Instance_Root_Element(instance_id) is simple_element) then

 // simple element or attribute generation

 Generate_Simple (Instance_Root_Element(instance_id),true)

 Else // complex element generation

Include menu-bar (new, insert, delete, edit, search, clear, next, previous, last, first)

Disable non-permitted-operation (menu-bar, Global_Allow_Insert,

Global_Allow_Delete, Global_Allow_Edit)

Set parent_element= Root_Element(instance_id)

Generate_Complex (parent_element)

 End If //Instance_Root_Element

End If //Xform_Instance

End For

End //procedure

Figure (3.8): XForms Generation Pseudo code

38

//generate_simple procedure

Procedure Generate_Simple(Simple as element| attribute, add_bind_element as boolean)

Begin

 Read_schema_attribute maxOccurs, minOccurs ,type ,name

 If (maxOccurs is null) then maxOccurs=1 // if user did not set a value then the default is one

 If (minOccurs is null) then minOccurs=1

 If (maxoccurs> 1) or ((minoccurs> 1)) then // control can be repeated several times

Create_table(id= simple.name) in XForm_UI

If (Global_allow_insert) then //if insert is allowed

Add_row_table(id=simple.name)

Add_Column_table(simple.name, header= simple.name)

create_simple_control (Global_allow_insert, Global_allow_edit,

attribute_value) //built-in or simple type value

End If // Global_allow_insert

If (Global_allow_edit) or (Global_allow_delete) or (Global_allow_view) then

 Add XForm Repeat_Element //run-time element

 Add_row_table(simple.name)

Add_Column_table(simple.name, header= simple.name)

Create_simple_control(Global_allow_insert, Global_allow_edit,

attribute_value)

//for each element in the XForm that have maxOccurs or minOccurs > 1 we need to add

setvalue action to set the id and index of the repeated element and instancein variable instance

Add_action(setvalue, Instance_Name_variable,simple_name)

Add_action(setvalue,Repeat_index_variable, null)

 End if

Else //control needs not to be repeated

Create_simple_control(Global_allow_insert, Global_allow_edit, attribute_value)

End if

Set control.attribute(”label”) =attribute_value

 Set control.attribute (“bind”) = simple.name + “bind”

 If(add_bind_element) then // if the control already have a bind element, do not create bind

 Create _bind(new bind_element)

Set bind_element.attriubute (“id”) = simple.name + “bind”

Set bind_element.attriubute (“nodeset”) =xpath(simple)// the element path instance

39

For Each defined-attribute in the simple element

 Select attribute_name

 Case =”type”

Set bind_element.attriubute (“type”) = attribute_value

If (attribute_value is Built_In) then

Add control.sub_element (”hint”) =name

 Add control.sub_element (”alert”) = name

Add control sub_element (”help”) =name

Else if (attribute_value is Simple_Type) then

Add control.sub_element (“hint”) =

declarative_message(restriction_type+name)

Add control.sub_element (”alert”) =

declarative_message(restriction_type+name)

 Add control.sub_element (”help”) =

declarative_message(restriction_type+name)

 End if //type value

Case =”fixed”

 Set bind_element.attriubute (“readonly”) = attribute_value

Case =”nillable”

 Set bind_element.attriubute (“required”) = not(attribute_value)//opposite

Case =”use”

 If attribute_value =”required” then

Set bind_element attriubute (“required”) = true

 Else // optional or prohibited

Set bind_element attriubute (“required”) = false

 End if

Case =”default”

 Set element_value in the XForm instance (instance_id) to attribute_value

 Case Else

 Do_nothing

 End Select

End if // add bind

End For

End //procedure

Figure (3.9): Simple Type XForms Generation Pseudo code

40

//generate_complex

Procedure Generate_Complex (complex as complex_element) // recursive process

Begin

Set simple_child_count= 0 // number of child elements that are simple

Create_frame (“title”) = complex.name

Create_table (“border”) =0

Input section_format in {form|tabular} // input from user

Read order_indicator

For each child in element.childs (sorted-by-simple-elements-first)

 If (child is complex) then // complex child

Generate_complex(child) // for complex child call the procedure recursively

Else // simple child

Set simple_child_count=0

 simple_child_count= simple_child_count= +1

If (order_indicator=”all”) or (order_indicator=”sequance”) then

If (section_format is form) then // one column table, header and control

Add_row_table(complex.name)

Add_column_table (complex.name , Generate_simple (child,true))

//generate simple & bind element

Else //one row consist of multiple columns,

If (simple_child_count =1) Add_row_table(complex.name)

Add_column_table(complex.name, header=child.name)

Generate_simple (child,true) //generate simple & bind element

 End if //section format

Else // choice indicator {only one of the child’s are possible to be inserted}

 If (simple_child_count =1) then // just for the first child element ad select1 control else add items

 Add XForm Control (of type=”select1”, label=complex.name)

 Add XForm Control (of type=”input”, label=complex.name)

 End if //simple_child

 Add XForm_Control sub_element(“item”,label=child.name,value=child.value)

End if //order indicator

41

// create_simple_control

Procedure create_simple_control (allow_insert as Boolean , allow_edit as Boolean , type as

built_in|simple)

Begin
If (Allow_Edit) or (Allow_Insert) then // insert or edit allowed

 If type is Built_In then

 Add XForm Control (“kind”=”input”)

 Else if type is Simple_Type

 If (Simple_type_restriction is Enumeration) then

 Add Control (“kind”) =”select”

 End If

 End If

Else //view or delete only allowed

Add XForm Control (“kind”) =”output”

End If

//set bind attribute to bind element id

Set control.attribute (“node”) = simple.name + “bind”

End

If (Global_allow_Edit)or (Global_allow_Delete) then

Add XForm Repeat_Element // according to number of records in nodeset(run-time mode)

Add_row_table(complex.name)

 Add_Column_table(complex.name,header=child.name)

Add_action(setvalue, instance_name_variable)

Add_action(setvalue, repeat_index)

If (section_format is tabular) then

Generate_simple (child,false)

End if//section format is tabular

End if//global_allow_edit

End if //child is complex

End for

End //procedure

Figure (3.10): Complex Type XForms Generation Pseudo code

Figure (3.11): XForms Control Creation Pseudo code

42

3.1.4.7 Xform Submission:

<submission method=”get|post|delete|put” Resource|Action="URI" ref =”Xpath”

encoding=”Character-set” Validate =”true|false” />

 <message event="xforms-event">

 Message-to-be-displayed

 </message>

 </submission>

As shown above, the submission element within the XForm model can be used to set a

collection of attributes that guide how to deal with the data to be submitted through the

web server; whether to validate it first using validate attribute, how to transport the data

using method attribute, and what to do with the returned results. Initially the developer has

to specify the destination URI for submitting instance data using resource or action

attribute, which can be either a web page http://www.any_site/any_webpage, email address

using mailto:any_mail@any_site.com?subject=any_subject or a local file file:file_name&

path, set the ref attribute to submit a portion of the instance data using XPath, then the user

may specify whether and how to serialize XML data when submitting a form. It can be set-

in to none, if developer is not interested in serializing the form data, also the developer can

specify which protocol to use for transmitting data, this can be defined by setting the

method attribute to either post, get, delete or put, post and put serialize instance data into

xml , while get and delete method deliver data as a part of the requested URI. Several

events are related to XForms submission and can be defined in this level; xforms-submit,

xforms-submit-done and xforms-submit-error events. By default xforms-submit-error is

set-in to show error message that notify the user if the form is not submitted successfully.

3.1.4.8 XForms Actions and Events:

In XForms, several common actions can be invoked in response to event; action, dispatch,

rebuild, recalculate, revalidate, refresh, setfocus, setindex, load, setvalue, send, reset,

insert, delete, toggle and message. Each action has a different purpose, such as submitting

the form, and inserting or deleting records from form instance, action action can be used to

group multiple actions within one event, dispatch action can be used to dispatch some form

event such as submitting or resetting the form, rebuild, recalculate, revalidate and refresh

actions are run by XForm processor automatically when required, rebuild causes the form

43

to rebuild its instance data, recalculate action used to recalculate instance data that has a

calculate attribute, revalidate action causes the form to check the validity of instance data,

refresh action causes the user interface controls to reflect the instance data, setfocus action

is used to jump to specific control in the form, while setindex can be used to jump to

specific row in repeating element, load action can be used to load a link to external

resource, setvalue action can be used to set the value of an instance node, send action

initiates a form submission, reset action resets the form to its initial values when form

opened, insert action can be used to insert a new record to a table , while delete action can

be used to delete one or more record from table, toggle action can be used to select one

possible action from several cases according to specific condition ,and message action can

be used to display a message to the user.

The XML Events provides a way to execute actions that should be performed under certain

conditions, such as a button click or form submission. When these events occur, they are

registered by the XForms processor. According to [16], XForms Events are classified into

four categories according to its occurrences condition; initialization, interaction,

notification and error indication.

Initialization events are dispatched to each model when initialized by the XForm

processor. Four type of initialization events are dispatched in model level; xforms-model-

construct, xforms-model-construct-done, xforms-ready and xforms-model-destruct. Which

notify the user if his form is constructed and ready to be used.

Interaction events happen according to user interaction with the form, they can be used to

notify the user that an action happened, xforms-rebuild, xforms-recalculate, xforms-

revalidate, xforms-refresh, xforms-reset and xforms-focus events are dispatched in

response to rebuild, recalculate, revalidate, refresh, reset in model level and setfocus action

in control level. Xforms-previous and xforms-next dispatched in repose to user navigation

in form controls forward or backward. xforms-help and xforms-hint are dispatched in

response of user request for help or hint by pressing f1 or setting the focus in the control.

xforms-submit and xforms-submit-serialize dispatched when pressing submit button, and

starting submission serialization of XML data.

44

Notification events notify the user that something happened, xforms-insert and xforms-

delete events are dispatched in form instance level according to successful insertion or

deletion of a record in XForm instance data, xforms-value-changed event is dispatched in

control level according to modification of control value , xforms-valid and xforms-invalid

are dispatched in control level if the control value becomes valid or invalid, xforms-

readonly, xforms-readwrite, xforms-required, xforms-optional, xforms-enabled and

xforms-disabled control level events are dispatched when instance data attributes are

changed and become readonly , readwrite, required, optional enabled or disabled ,

DOMActivate is dispatched in control level when the default action of the control is

executed , such as pressing a button for trigger control, DOMFocusIn, DOMFocusOut

dispatched when a form control receive or lose the focus, xforms-select, xforms-deselect

used when selecting or deselecting items in select and select1 controls, xforms-scroll-first

and xforms-scroll-last events are dispatched when setindex action are set-in to an index

outside the repeat control index and xforms-submit-done dispatched on successful

completion of submit process.

Error indication events are dispatched when error condition happens in the XForm

processor; xforms-binding-exception occurs when error happens when processor fails to

bind form element such as bind, submission and model elements referencing invalid id‟s,

xforms-compute-exception happens when an error occurs when evaluating xpath

expression, xforms-version-exception dispatched when a version check failed , xforms-

link-exception happens when a failure on traversing a link occurs, xforms-output-error

happens if output element fails to render its content and finally xforms-submit-error is

dispatched according to any failure causes the form not to submit successfully.

When generating the XForm, several actions will be generated automatically in specific

events in order to inform user with every important action happened in the form. A

message action will be triggered in Xform-ready event in order to notify the user that the

opened form is initialized and ready to be used, and as a setfocus action also will be created

to set the cursor focus in the first control of the user interface. For each control in the form,

a message action will be created to notify the user of the name of the control and will be

displayed in DOMFocusIn event, and another message action will be added to “required”

controls in the DOMFocusOut event to notify the user that the control value can‟t be

empty. For each control that has a constraint on the data to be inserted, and have to be

45

validated according to these constraints, a message action will be added in the xform-

invalid event to notify the user of invalid data is entered, a request for confirmation

message also will be added automatically in xform-delete event to warn the user before

doing deletion, At form submission, a message action will be added to notify the user when

xforms-submit-error event occurs.

For each element in the XForm, the developer has the option to add more actions in any

event, or even to edit automatically created actions. For example, the developer can add a

new trigger control that when clicked calculates the VAT amount in the invoice, or to edit

the message shown to the user when invalid data is entered.

3.1.4.9 Manipulating User Data:

Manipulating user-data is an essential process in any form; it can be used to insert, edit or

delete user-data. Within the form menu bar, three triggers are generated automatically to

facilitate this process, while giving the developer the option to modify it later according to

his requirement.

If permitted as configured by developer, insert, delete and edit actions are generated

automatically. As illustrated previously in the form generation, for every instance data-

instance in the XForm model, a template instance named template_instance is created to

hold the instance structure and default values. This template instance is used to create form

controls that can be used to insert user-data, while the data-instance used to holds, view,

edit or delete user data. To enable data insertion, a trigger element is created within the

menu-bar, executed in DOMActivate event, and an action element is created as sub

element of it, as a sub-element of the action trigger, the insert action will be created, with

nodeset refer to instance data, that is where to insert the new data, and origin refers to

template; which specifies from where to get the new data, followed by message sub-

element to notify the user whether his record has been inserted successfully or not and a

setvalue sub-element to clear user entered data, and reset form back to its initial state.

Editing deleting user-data triggers are also created automatically within menu-bar, using

the user-data instance. To generate a process for deleting a nodeset from data instance, a

trigger is created, lunched in DOMActivate event, with delete label, and action sub-element

46

// Create_Insert_Trigger

Procedure Create_Insert_Trigger(User_Form as Xform)

For each instance in User_Form model

 If (Global_allow_insert) then

Add XForm Control (type=”trigger”, id=”insert”)

Add sub_element control (parent=“insert”, type=”label” , value=”insert”)

Add sub_element control (parent=“insert”, id=”insert_action”, type=”action” ,

event=” DOMActivate”)

// note that child element is the first single sub-element of the instance root

Add sub_element action (parent=“insert_action”, type=”insert”, nodeset=

“instance („instance’) /child”, origin=”instance(„template_instance’)/child”)

Add sub_element action (“insert_action”, type=”message”, value= “ok”,

level=”modal”)

For each sub_element of child in template_instance

If default(sub_element)<>”null”

Add sub_element action (“insert_action”, type=”setvalue”, value= “”)

Else

Add sub_element action (“insert_action”, type=”setvalue”, value=

default (sub_element))

End if ; End for

 End If ;End for

End //procedure

is created, and a delete sub-element also created inside action element, followed a gain by

confirmation message, and whether the deletion done successfully message or not.

Finally editing a user-data trigger is actually an insertion of new record and deletion of the

old one, and consequently it is done in a process similar to the deletion process, but a two

action element is created, one to insert the new data, and the other to delete old data.

Note that the whole operation is done in client memory. Unless submitting the form, all

manipulation of user data will be done locally only, and the end-user will lose all

modification if he closes the form before submitting.

The following pseudo code, illustrates the process of creating insert trigger in details:

Figure (3.12): XForms Trigger Generation Pseudo code

47

3.1.5 XML Document:

The user data is retained in XML document; it models the database for the user application.

Actually XMLBB user needs not to create an XML document. When creating the user

form the system will automatically create or modify the structure of XML document. The

user has the option to retain multiple form data in the same XML document; every form

can be used to insert different portions of XML document data, for example a form can be

used to insert company staff details, and another one can be used to insert new babies or

dependent, health insurance details, salary and allowance and many others. Since the

structure of the XML document is built on one or more basis forms, a complete structure of

XML document is actually built from several schema objects which are retained in the

XMLBB database, so this document structure will be used to build the XQuery and

XHTML documents.

3.1.6 XQuery:

According to [15], XQuery is the language used to retrieve XML document data, it can be

used to generate XHTML document and summary reports, or to search for specific

elements and attributes from the XML document that satisfies some conditions, and

follows a defined order. XQuery language is based on FLWOR expression, FLOWR is an

acronym for "for, let, where, order by and return". The "for" clause can be used to set a

variable, the "let" clause is used to declare a variable and set its value, the "where" clause

defines the criteria used when selecting elements, the "order by" clause defines the sort-

order of the result list and the "return" clause specifies the element to be returned. The user

can build the XQuery based on the XML document structure specified using XForms

component. Also he has the option to retrieve data joined from multiple XML documents

and view the results in either XHTML or XML document. The following diagram

illustrates the process of creating XQuery:

48

As shown in the previous diagram, creating XQuery process starts by setting the document

name to be created. The document name includes the path and the extension of the file.

The developer has the option to replace or create a new file; the file type can be either

XML or XHTML of extension “.xml” or “.xhtml” respectively. After setting the file name,

the user is prompted to specify the XML source document, and the node-set to be defined

using the “for” or “let” clause, “for” tag can be used to define a variable to iterate within

the list of nodes, while let return a list of all nodes to the variable, multiple node-sets can

be set-in separated by vertical bar “|”, where all specified nodes are retrieved. To enable

the user to join data from several XML documents, one or more xml document can be

selected within the same XQuery, then the user is prompted to set the join criteria between

each two XML documents; in order to join the shared key for each two XML documents.

Next step is to set the “where” clause; the criteria used to retrieve the data , one or more

No

Select node-sets to

return

Create

XQuery

Select XML
document

doc

Add another

XML

document

Yes

for/let

Set the join criteria If

Counter >1

Increment

Counter by1

Decrement

Counter by1

Set the where
criterion

Set order clause

Join
criterion

where
criteria

 order
clause

Retrieve

more data
Select the document

format of retrieved data

Set
template

format

XQuery

Created
Successfully

Set document name

Set
XHTML

document

Yes

No

Yes

No Select the object to
retrieve

Figure (3.13): XQuery Creation Flow Chart

49

condition can be set-in using the where clause, separated by logical operator, the where

condition is a Boolean expression of two comparative operands and operator such as

“and”, “or” , “<”,“>”,”<=”,”<=” , “!=“, …etc, each operands can be either element name,

attribute name, constant value, calculated value or even XQuery function. Then the user is

prompted to set the “order” clause, which also can be element name, attribute name,

constant value, calculated value or even XQuery function, followed by the sorting criteria

which can be either ascending or descending. Multiple objects can be set-in in the order

clause, separated by commas. The next step is to specify the result of the XQuery

statements, by setting its “return” clause, one or more data element, attribute or function

can be specified in this portion, separated by commas , or even another FLOWR

expression can be returned, in order to create nested queries, nested quires can be useful to

create hierarchal xml document. Finally, the user has to select the document format of the

retrieved data which can be either in XML or XHTML document. The following diagram

shows the criterion used to return the result of the XQuery in XML document:

As shown in the above diagram, the XQuery results can be retrieved in either an XML or

XHTML document, if the user wants to retrieve the results in XML Document, then for

each FLOWR expression, the user has to insert the parent element name and value and

attributes or elements list that will identify the returned data items, by default the elements

and attributes names are set-in as defined in the original XML document, but user can

modify it if needed. Only one parent element can be selected for each query level, if any of

the returned data is another FLOWR expression, then it will be inserted as nested node

No

Start formatting

XQuery to

XML

Yes Is any of the

returned data items

is a FLOWR exp.

Insert the name and

value of the remain

retrieved data

Create XML element

children and attributes‟

Insert the name & value

for the parent element
of retrieved data

Generate XML

Read FLOWR

exp.

Move to next nested

FLOWR expression

Figure (3.14): XQuery-to-XML Flow Chart

50

within the parent element, and will have its own attribute and elements the same way as its

parent.

As illustrated in the following diagram , Retrieving XQuery results in XHTML format is

also applicable, the <html>, <head>, <title>, <body> tags are added automatically, then the

user is prompted to insert the title of the page, then the user is prompted to set the referred

styling sheet in the “href” attribute of the link tag <link> or to set the format of each

returned data item, whether to show data in bold , italic <i>, underlined <u>or

header<h1>...<h6> format, in addition to its font type and size and color. Then he has the

option to retrieve the XQuery results as either a paragraph using <p> tag , or in a table

using <table> tag or as ordered or unordered list using or tags , and he can insert

a result title, in addition he can insert a header or label for each returned data item. For

each query in the XQuery document, the user can present the results in different format

according to his request, for example a table can have nested list or paragraph with

different color or font. Our report now is ready and can be referenced from any application

through button, hyperlink or when submitting a form.

No

Start formatting

XQuery to

XHTML

Yes

Is any of the

returned data items

is a FLOWR exp.

Set retrieved

data items

format

Generated

XHTML

Page title

Move to next nested
FLOWR expression

Add all required tags
of XHTML document

Insert Page Title

link href

Insert Style sheet

name and path

Return results
as paragraph

Select result format

Read

FLOWR exp.

Return results
as List

Return results
as Table

Figure (3.15): XQuery-to-XHTML Flow Chart

51

Chapter 4

Development & Implementation:

In our development and implementation of the pilot project of XMLBB tool, we build it

using the visual basic dot net programming language, under the visual studio 2008 suite,

framework 3.5. We create blind_accessibility package that can be imported from any

windows form to automatically apply the accessibility methods previously discussed in

section 3.2 such as enlarging form and speech-driven commands. Also we create a

template_form that can be inherited in any form to apply others accessibility methods such

as keyboard shortcut to access specific form control.

To retain the system and user data, we use XML documents. And to enable multi-lingual

capability in our application, none of the interaction data, messages, error or control

properties that may displayed to the developer are hard-coded; all are retained in XML

documents.

This pilot project is a desktop application that can be used by blind programmers to create

XML schema document, which identifies the structure of the XML database, and the data

type of database elements and attributes, and their restriction and hierarchy. It‟s built over

dialog forms, and speech-driven commands.

when all XMLBB component are implemented, The proposed output of this tool is

XHTML web page, that includes XForms to input user data, JavaScript to validate user

input and play speech messages to the end user in a specific events, SALT to define the

prompt elements of speech text to the end-user, XPath to traverse through the XML

document, form actions that are executed in specific XML events. In addition to summary

52

reports in XML or HTML format to provide user with specific information according to his

request.

4.1 System Requirement:

XMLBB requirement differs according to the production stages. Whether we are in

implementation or deployment stage; also the deployment stage itself can be either the

XMLBB tool deployment or the end-user XMLBB-generated application deployment. The

following subsections illustrate the system requirement for implementing and deploying all

XMLBB components.

4.1.1 Development Requirements:

Several software are used in the development of the XMLBB tool; the application, and

accessibility package are created using Visual Studio 2008 suite, under either windows 7 or

Vista operating system. IIS web server and windows speech recognition feature need to be

installed and enabled. And “System.Speech.dll” (version 3) library is used to create

speech-enabled desktop application.

While for the testing the XMLBB-generated web application, speech software

development kit SpeechSDK 1.1 is required. This package is used to test the speech

technology in the generated web pages which is augmented with Speech Application

language tag (SALT). Since XForms processor are not yet supported in web browsers,

FormsPlayer plug-in can be used to process the XForm. The XMLBB is developed using

VB.NET, XML documents, speech library, SALT, XHTML and JavaScript.

4.1.2 Deployment Requirements:

The deployment of XMLBB tool requires several services and software‟s to be installed in

both client side and server side. In client side, windows speech recognition feature have to

be enabled, XForms processor plug-in have to be installed, in addition to Microsoft .Net

framework 3.5.

 In the server side IIS web server, and speech server 2004 are required. We suggest speech

server 2004 since latest version of speech server does not support the development of

multi-model application. Only the development of telephony applications is possible.

53

<?xml version="1.0" encoding="utf-8"?>

<shortcuts>

 <shortcut>

 <id> 1</id>

 <char_code>

 16

 </char_code>

 <shortcut_desc>

 pronouncing keys

 </shortcut_desc>

 <keys>

 Ctrl + "P"

 </keys>

 <enabled>0</enabled>

 </shortcut>

 </shortcuts>

While the deployment of XMLBB-generated web application requires the hosting of the

application in IIS web server and Speech server 2004 in server side, in addition to XForms

processor in client-side.

4.2 Database Structure:

In XMLBB development, we use XML documents to retain the system and user data. For

the accessibility methods package, we created a data access layer that consists of two XML

documents; “Messages.xml” to retain the id, type and description of each system message

that may be displayed to the user, the id is unique identifier for the message, the

description is the message itself and the type used to specify whether the message is a

notify, error, caution or command message.

“Shortcuts.xml” document which used to keep the list of keyboard shortcuts that the user

can use to run specific action, it consists of several elements; Id is a unique identifier,

char_code retains the shortcut code, shortcut_desc used to set the description of the action

of the shortcut, keys identify the keys that can be pressed to execute the action and enabled

used to determine whether the action is in enabled or disabled state. Following are sample

of the data that is retained in this XML documents:

Messages.XML

Figure (4.1): Messages.xml document snapshot

54

<?xml version="1.0" encoding="utf-8" ?>
<messages>

 <message>

 <id>

 4

 </id>

 <description>

 can't enlarge more , reached the maximum size allowed

 </description>

 <type>

 1

 </type>

 </message>

</messages>

<?xml version="1.0" encoding="utf-8" ?>

<forms>

<form name="XMLBB_Interface" AccessibleDescription="XMLBB interface is the main

page of XMLBB; it's can be used by a user to create his/ her own web project easily

and efficiently , user can either create , or modify or delete a project using

this/ her page" AccessibleName="&Interface" Text="XML Builder for Blind

Programers Interface">

 <controls>

 <control name="New_Project">

 <AccessibleDescription >

 creating a new web project

 </AccessibleDescription>

 <AccessibleName>

 &Create

 </AccessibleName>

 <Text>

 Create New Project

 </Text>

 </control>

 <control name="Modify_Project">

 <AccessibleDescription>

 Modify Existing Web Project

 </AccessibleDescription>

 <AccessibleName>

 &Modify

 </AccessibleName>

 <Text>

 Modify Existing Project

 </Text>

 </control>

</controls>

</form>

</forms>

Shortcuts.XML

For the XMLBB interface, we created three XML document; the “Forms_Access.xml”,

“Forms_Notification” and “User-Projects”. Following snapshot shows example of the

details return for “XMLBB-Interface” form

Forms_Access.xml

Figure (4.2): Shortcut.xml document snapshot

Figure (4.3): Forms_Access document snapshot

55

The Forms_Access.xml document holds a detailed accessible description of each form and

all its controls, and is used by the system to provide user with help concurrent declarative

and help message. This XML document has been used in our system to enables the option

of supporting multiple languages, i.e. enable the tool interaction to be in both English and

Arabic. It consists of several elements and attributes; the form element which holds the

form name in name attribute, AccessibleDescription attribute that is used to show the

objective of the form, the AccessibleName attribute to identify the accessible name of the

form, in addition to text attribute that retain the form title. It also contains a list of sub-

elements; that retains the Name attribute and AccessibleDescription, AccessibleName and

Text sub-elements of all form controls.

The Forms_Notifcation.xml document holds the list of errors and notification messages in

the application. For each Notification sub-element, the id and the type attributes of both are

defined, the type specifies the error or message type to be displayed, i.e. whether the error

shows a specific field in the form is required or shows a custom error, or determines the

range of the values that can be inserted in this field for the error element, or it confirms

record deletion or notifying the completion of a process successfully. The following are

sample of data retained in this document:

Forms_Notifcation.xml

<?xml version="1.0" encoding="utf-8" ?>

<Notification>

<Errors>

<Error Id="1" Type="Required">

The F-1 field is required , Can't be empty

</Error>

</Errors>

<Messages>
<Message Id ="13"

Type="NotifySchemaElementCreateSuccessfuly">

New schema simple type have been created

successfully

</Message>

</Messages>

</Notification>

</xml>

Figure (4.4): Forms_Notification.xml document snapshot

56

Finally the User_Projects.xml document, which retains the list of user-created project‟s

.This document, consists of project schemas within the schema sub-element, and a list of

project forms and reports inside forms and reports sub-element. Since our pilot project

objective is the process of creating application schemas, here we specify only the details of

the schema sub-element.

The project element contains the project name, which retain the project name and path that

have to be unique in the system level, also it has details sub-element that have several

attributes; the project default namespace, in addition to the schema, forms and reports

folders names.

While the schema element has the name attribute, in addition to one or more sub-elements

named with the user-created schema sub-elements. Each schema sub-element specifies the

object_type; that is whether the schema sub-element is of type element, attribute, simple or

complex, the data-type which can be built-in, simple element name or complex element

name.

It also keeps the default and fixed value of the schema object, whether it‟s nillable or not.

What to do with whitespace. Use attribute for attribute object to define whether this

attribute is optional or complex. Also define the restriction criteria that can be applied to

simple elements, such as enumeration list, text pattern, minvalue , maxvalue, minlength ,

maxlength, length, fractiondigits and totaldigits . In addition to order attribute in complex

elements to indicate how sub-elements of the complex element can be ordered, and a list of

sub-elements that include the ref attribute which specifies the name of the sub-elements

that constitute the complex element.

The following are example data retained for a user project created using XMLBB:

57

User_Projects.xml

4.3 System Libraries:

In the development of XMLBB, accessibility package has been created, which is designed

specifically to overcome the difficulty blind people faces in using GUI. It enables them to

use their speech and keyboard shortcuts to create integrated web application.

“Blind_Accessibility.vb” package can be imported in any dot net windows form to apply

accessibility methods to this form. Blind_accessibility package consists of six classes;

<?xml version="1.0" encoding="utf-8"?>

<Projects>

 <Project Name="C:\NIIT_Project">

 <Details Namespace="www.ni-it.org" Schema="Schemas" Forms="Forms"

Reports="Reports"></Details>

 <Schemas>

 <Schema Name="NIIT-Database.xsd">

 <City object_type="element" data_type="string" whitespace="Preserve"

enumeration="Ramallah,Jerusalem,Jericho, hebron, other" default="Ramallah"/>

 <Street object_type="element" data_type="string"

whitespace="Preserve"/>

 <Email object_type="simple" data_type="string"

pattern="[^@]+@[^@]+\.[^@]+"/>

 <Mobile object_type="attribute" data_type="Integer" use="Optional" />

 <Address object_type="complex" order="sequance" >

 <element ref=”City”/>

 <element ref=”Street”/>

 <element ref=”Email”/>

 <element ref=”Mobile” minOccurs="1"//>

 </Address>

 <Name object_type="element" data_type="string" nillable="False" />

 <Rate Object_Type="Element" Data_Type="decimal" Nillable="False" />

 <Trainer object_type="complex" data_type="string" order="sequance" >

 <element ref=”Address”/>

 <element ref=”Name”/>

 <element ref=”Rate”/>

 </Trainer>

 </Schema>

 </Schemas>

 <Forms></Forms>

 <Reports></Reports>

 </Project>

 </Projects>

Figure (4.5): User_Projects.xml document snapshot

58

Show_content, execute_shortcuts, help, recognize, enabling_commands, enlarge, and each

class consist of several procedures and functions.

Blind_Accessibility package is the main class that instantiates all other classes

and applies the accessibility facilities in the active form. It imports two

namespaces, System.Speech.Synthesis package used to convert text to speech, and

System.Speech.Recognition package which converts speech to text. The new constructor

new set the form default button; which is executed by default when pressing “PageUp” key

or by pronouncing execute. In addition, it maximizes the form to screen size, and enables

form auto scrollbar so that if it is enlarged more than screen size, a scrollbar is shown

automatically.

Show_content class main objective is to play the forms controls contents to speech using

Microsoft System.Speech.Synthesis package; which helps the developer to recognize the

content of the current control, and consequently ensures its correctness. It consists of

several procedures and functions; the Speak_control_text procedure speaks the whole text

value of the active control if it is not empty; regardless of the control type. While

Speak_first_word() and Speak_last_word() procedure speaks the first and last word of

the text respectively. And spell_text procedure to spell the active control text character by

character. say_char procedure is used to pronounce each character the developer pressed,

and Show_msg_async, and Show_msg procedures both can be used to display help, error

and other type of messages to the developer in both text and speech, but the first one plays

message asynchronously; so during playing the message another event can be done at the

same time.

execute_shortcuts class is used to execute specific action when user presses keyboard

shortcut or pronounce a specific command. In its constructor, it adds two events to the

form, keypress and keydown, and two procedures that implement these events;

form_KeyPress first check whether the pressed key is a shortcut or not, this done by

checking its existence in shorcuts.xml document using check_if_shortcut(keycode)

function, if it exist, according to the pressed shortcut, the form runs a specific action, for

example it may enables or disables pronouncing pressed key, displays a help message to

the user, enlarges or reduces the form size, notifies the user with the active control or even

executes any method in the show-content class.

59

 While form_keydown, check whether the user presses either PageUp, F1, F2 or Delete

key; if PageUp key is pressed then it will execute the form default action, by using

Execute_default_action method which simply call the performclick method of the default

button, while delete key check if the content of the active control could be deleted or not;

depending on its delete tag property, if yes it clears this control content. Finally, pressing

F1 or F2, provides the user with form or project description respectively using help class.

Help class aims to provide user with help when requested. It has three methods,

Speak_help_message, from_help and project_help. The Speak_help_message procedure

provides the user active control accessibility description, in addition to the current value of

the control, and the selected value if list controls is used. from_help procedure displays

help in form level , and project_help method display a help message about the active

project.

Recognize class is very similar to execute-shortcut class in its objective. It listens to the

user speech in order to extract a specific command. It consists of several procedures and

functions; createGrammer is a primary procedure which specifies the grammar of the user

speech. And spRecognizer_SpeechRecognized procedure which recognizes user speech

defined in this grammar, and then executes the action identified for this command. For

example, when user says “Read Text”, the active control text will be played into a speech.

enabling_commands is a very simple class , it just either enables or disables or changes the

shortcut command state. It consists of three procedures; Enable_Cmd , turn the shorcut

enabled state in shorcuts.xml document to true regardless of the current state, and notifies

the user that the shortcut is enabled, Disable_Cmd on the other side disables the shortcut,

and notifies the user. While Change_status_cmd , changes the enabled state from true to

false and from false to true, and notifies the user with the new state.

The last class is enlarge class. enlarge class enable visually impaired people to enlarge and

reduce the form size according to their request. It changes the size of every control on the

form, and its content, and automatically added a scrollbar to it, so that user can traverse all

controls in the form. It consists of four procedures; enlarge, Max_enlarge, Reduce and

Min_Reduce. Enlarge doubles the form size, and Max_enlarge doubles the form size four

60

times of the original size. Reduce minimizes the form size to half, and Min_Reduce reduces

the form size to one over eight of the original size.

4.4 Application Interface:

In our development of XMLBB interface, all forms are enhanced with several accessibility

methods by instantiating the blind_accessibility package, and providing its constructor

with the form and its default button parameters, as well as inheriting the template_form.

template_form fills the accessibility and text properties of the form and its controls from

the forms_access.xml document at form load event. It also displays the form title and

controls names, by both speech and text on received focus event, and manipulates generic

control validation, if defined in form tag property, such as required validation. It

automatically displays an error message to the user when attempt to leave the control

empty. In case of custom validation; it is manipulated locally at the form level. And finally

it registers the hot keys for each control in the form.

In XMLBB interface, if the windows speech recognition is opened, the user can enable or

disable speech listener by saying “start listening” or “stop listening” respectively. Then he

may use his speech to execute actions in the form.

In every form in the XMLBB, user can recognize what are the type, value and objective of

each control in the form when received focus. Also he can request for more help in several

levels; in the form level by pressing F1 or saying “form help”, in the control level by

pressing “Ctl+C” or saying “control help”, or in the project level by pressing F2 or saying

“project help”. He may also move up and down through the controls by pressing “Tab” or

“Shift+Tab”, or by saying “next” or “previous”. He may also press “Alt+E” or say “exit”

to exit the form.

 User can jump directly to a specific control in the form by either pressing “Alt” plus

specific character or by saying the control name, noting that accessing a control directly

using the hot keys executes the default action of the control.

All forms in XMLBB can be accessed by using the previous criteria .Following are few

examples of the XMLBB forms, their detailed description, and their objectives:

61

XMLBB_Interface form shown below, is the main page in XMLBB tool, through this form,

user can create new projects, modify and /or delete existing projects.

When user initially runs the XMLBB tool, this form is opened, and the title of the form is

displayed in both text and speech. This can help the user to recognize the objective of this

form. It also displays the name and type of the active control in the form; in both speech

and text, which is “create” button in this form. If the user requests more details about this

form, he may either press F1, or by saying “form help”.

User also can request help in control level by either saying “help” or pressing “Ctl+C”, and

it will display the description of the control, and its content when available, prefixed with

control type, in our case “button”. For novice user, he can recognize the form controls by

moving through all controls in the form and requesting help in each level. He can either

say “next” or “previous” or press “Alt” or “Shift+Alt” to traverse the form control‟s.

For an expert user, he can jump and execute the default action of a specific control directly.

For example, to create a new project, user can either say create, or press “Alt+C” keys,

and on-click event will be executed. User may exit the form by saying exit, or by pressing

“Alt+E”, or by moving to the Exit button, by mouse, keyboard or speech and then press

enter. Also he can execute the form default action by saying “execute form”, or pressing

“PageUp”.

If user is visually impaired, he can enlarge the form size so that he can read and access it

more easily. This can be done by either saying “enlarge” or “enlarge maximum”, or by

pressing “Ctl+E” or “Shift+‟+‟”, or reducing form size by saying “reduce” or “reduce

minimum”, or pressing “Ctl+R” , or “Shift+‟-„”.

62

If user wants to create a new project, he can either says “create”, or press “Ctl+C” or

moves to the create button and click it and/or presses enter key. Then the New_Project

form is opened. Following is a snapshot of this form:

The New_project form can be used to set the configuration property of the new project; the

name and path of the project, its default namespace and the name of the folders for

schemas, forms and reports. When the New_project form is opened, the form title is

displayed, and the cursor moves to the first control on the form, i.e. the “project” textbox,

Figure (4.6): XMLBB Interface

Figure (4.7): New Project Configuration

63

and then the name and description of the control is displayed in both speech and text to

help the user to recognize the type and format of the data he have to input.

For novice users, who are not familiar enough with keyboard keys, they have the option to

enable or disable pronouncing pressed characters by saying “enable pronouncing”, or

“disable pronouncing”, or by pressing “Ctl+P”.

In New_project form the user can access any control directly by saying the control name,

or by pressing “Alt+P”, “Alt+N” “Alt+S”, “Alt+F”, “Alt+R” to jump to project,

namespace, schemas, forms or reports textbox respectively. In this form, since all these

fields are required, leaving any empty field is not allowed and an error message will be

displayed to the user to notify him that the field is required.

Committing changes in each form is done automatically when moving to the next one in

the wizard. When closing any XMLBB form, a request for confirmation message will be

displayed to the user to confirm exiting the form, followed by another message to confirm

his interest of committing changes. In this form, two new navigation controls have been

added, “Okay” and “Cancel” buttons, where “Okay” moves the user to next step of

creating new form wizard, while cancel button exits the wizard. If the user says “Okay” or

press “Alt+O”, then a message is displayed to user to notify Him that his form is created

successfully, and the Project_Objects form is opened.

 Figure (4.8): Creating/Deleting or Modifying Project Component

64

Project_Objects form enables the user to create, modify or delete project component; i.e.

user may create multiple project schemas, forms and reports. Since the user can access this

form through creating or modifying existing project, pressing “Schemas”, “Forms” or

“Reports” buttons can forward the user to different forms according to the current state of

the project. If project is new then pressing schema buttons will forward the user to

new_schema form, but in case, at least one schema document is created to the current

project, then the user is forwarded to Project_Schemas form. In our pilot project, only

creating project schema is implemented, so the “forms” and “reports” buttons are disabled.

Since XMLBB is based on wizards, it consists of many forms; each is used to fill specific

and simple information. But all follow the same accessing and using criteria. When the

user gets used to any form he will be able to use all others easily.

65

Chapter 5

XMLBB Training, Testing & Evaluation:

In the development and implementation of XMLBB tool, it was not easy to anticipate

entirely what the blind people would consider more suitable for their needs, and what they

expect from the XMLBB tool. So we conducted four sessions, about three hours each to

train our blind volunteer on the tool. The main objective of these sessions is to test the tool

performance and usability and to refine, validate and evaluate it. Since we were unable to

find a volunteers who has good knowledge of database concepts, the training sessions

include a part of clarifying and explaining the database concepts using real test cases, how

to apply these concepts using XML schema, and the usefulness of defining a valid database

schema to the entire project. At the end of the training, the volunteer was able to build

XML schema easily, and she also was able to manipulate with XMLBB tool and to totally

depend on herself.

5.1 Training:

Because our blind volunteer has no database background, we started the training sessions

by explaining the concept of database in general, and how to apply these concepts using

XML schema. Several examples have been discussed, such as School and Supermarket

database. Then we explained to her what schema objects can be used for building a

database such as elements, attributes, simple types and complex types. Then clarified the

differences between these objects, and what is best to use for each field in the XML

database.

After this training, the volunteer was able to identify the object of the simple schema

database, determine the schema objects and data type that fit her needs. Also she learned

how to set the constraint on the XML database using the simple type objects, and how to

group multiple schema objects using the complex type objects.

66

Next, we explained to her the objective of building XML schema, its effects on the form,

size and type of data used in creating the XML document, and how the user can use it later

to generate XForms which is used to collect data.

After explaining the database concepts, we trained her on how to use the XMLBB tool, and

provided her with a list of shortcuts, hotkeys and speech commands that she can use to

access XMLBB interface. Following are the entire list:

No. Action Shortcut Speech Command

1
Enable or Disable pronouncing of every

printable charctered user pressed
Ctrl + “P”

“Enable Pronounicng”

or “Disable

Prounouncing”

2
Display Help Message for the Active

control
Ctrl+ “C” “Control Help”

3 Enlarge Form Size Ctrl + “E” “Enlarge”

4 Reduce Form Size Ctrl + “R” “Reduce”

5 Enlarge Form Size Ctrl + “U” “Enlarge Maximum”

6 Reduce Form Size Ctrl + “D” “Reduce Minimum”

7
Display the Entire Text of the Active

Control
Ctrl + “T” “Read Text”

8
Display the Last Word of the Active

Control Text
Ctrl + “L” “Last Word”

9
Display the First Word of the Active

Control Text
Ctrl + “F” “First Word”

10 Spell the Active Control Text Ctrl + “S” “Spell Text”

11 Display Form Help “F1” “Form Help”

12 Display Current Project Details “F2” “Project Help”

13
Jumb to the Next Control on the Ative

Form
Up Arrow “ Previous ”

14
Jumb to the Previous Control on the Active

Form
Down Arrow “Next”

15
Apply the Click Event of the Okay Button

of the Active Form
Alt +”O” “Okay”

16 Cancel the current process Alt +”A” “Abort”

17 Exit the Active Form and close XMLBB Alt +”E” “Exit”

18 Go back to previous page Alt +”B” “Back”

19 Jumb Directly to a Specific Control

Alt + 1
st
 or

2
nd

 character

(control

Text)

Pronounce the first

word of the control text

20 Execute the default action of the form PageUp “Execute”

21 Stop the current playing speech PageDown “Stop”

Table (5.1): List of Shortcuts, Speech Commands & Hotkeys

67

To help the blind volunteer to become familiar with the XMLBB tool interface, we

clarified to her in details how to use this tool by showing her all the accessibility methods

in table 5.1.

5.2 Testing:

In the testing process, we suggest a usability testing methodology to evaluate the tool and

add more improvement in it when necessary. But since we was unable to find qualified

users for applying this part, we implemented this part without following our proposed

testing methodology.

One blind volunteer expressed her wailings to examine the tool, but since she is specialized

in a field that is quite different from computer technology, she was unable to evaluate the

output of the tool, and whether the generated schema is valid in both syntax and semantic

or not.

5.2.1 Proposed Testing Methodology:

Our proposed testing methodology consists of several stages during and after the tool

development. First the XMLBB have to be tested by at least two expert users that have an

experience in the XML schema in order to evaluate its functionality, and examine whether

XMLBB cover all of the XML schema objects or not, and to identify possible problems in

the tool. The feedback of the expert users determines whether to move to the next stage

directly or to add more improvement in the tool.

The next step is to test the XMLBB tool by three to five blind end-users, who have a

preliminary knowledge of database concepts. The end-users will follow three sessions, two

hours each, to review their database knowledge, and how to apply all XML Schema

concepts using this tool. In this stage the end-users interaction with XMLBB should be

monitored in order to evaluate how simple they can access and interact with the tool and

consequently improve it if necessary.

As a final step for the tool testing, the blind end-users are requested to design a specific

database using XMLBB. And then expert user evaluate their created databases, and the

end-users also write-down their opinion about usability and efficiency of the tool.

68

XMLBB Testing:

After four sessions of training, the blind volunteer becomes familiar with XMLBB tool.

Since she is familiar with the screen reader software‟s such as Hal, but never used

windows speech recognition technology before, and so she preferred to use keyboard

shortcuts and hotkeys instead of speech commands.

In the testing process, our volunteer suggested divers comment and improvements to the

XMLBB, based on her previous experience with the screen reader tools. She suggested

displaying a speech message to the user to notify if any character is deleted. She also

requested a notification message of the current character when moving within the textbox

by arrows. She preferred to have the ability to stop the list of the playing speech messages

by pressing a specific key. All her suggestions have been taken into consideration and we

improved the tool according to it.

While monitoring her during the testing of the tool, we found that she faced some

difficulties such as; when moving between controls using “Tab” key our volunteer was

faster than the speech message that displays the active control name, so she thought by

mistake that she is in the correct control. To handle this problem, we automatically stopped

the previous played message when the cursor accessed the next control, so that both cursor

and speech point to the same control.

Another difficulty she faced was that she is unable to recognize whether a new form is

loaded or she is still in the same form. To handle this issue, we added a beep sound in the

form load event that notifies the user when a new form is opened.

In the last session, the blind volunteer test the speech recognition commands, since she was

unfamiliar with speech recognition technology from windows, she was not very satisfied of

this technology, she said that it is easier for blind person to use either his speech or

keyboard shortcuts to execute commands but not both.

Also she faced some difficulties because speech recognition is not very efficient since

some speeches are interpreted incorrectly in textbox controls to “Home”, which moves the

cursor to the beginning of the control text while inputting data and causes invalid input to

be inserted. To handle this problem, she stopped the speech listener whenever she wanted

69

to input any text. But at the same time, she said that using speech commands is interesting,

and can be useful for disabled people who can‟t use their hands.

5.3 Evaluation:

When asking our volunteer about her opinion of the XMLBB tool; she was satisfied about

it. She thinks that blind people can get used to it easily, since the help and declaration

messages can be displayed to the user in any application level. Also she thinks that

providing the user with several accessibility methods distinguish the tool, since every user

can to use the accessibility method that he is comfortable with it.

Because she was unfamiliar with windows vista or windows 7, and since “Hal” screen

reader does not support these operating systems, she suggested that XMLBB should be

able to run in any operating system.

Also, our volunteer was pleased about the improvements we added finally to the tool, and

she think that more testing with a larger number of blind users can help to enhance the tool

more.

Also she thinks that this tool has to support other languages such as Arabic, since this will

encourage more people to use this tool.

70

Chapter 6

Conclusion and Future Work:

When providing appropriate environment, blind people can compete with sighted

people since they has distinctive capabilities that sighted people don‟t have,

specifically in their memorizing capabilities. Our testing of the pilot project

proves that a tool augmented with several means of enhancement can be used

easily by blind people.

Developing blind oriented tools contributes in opening new job opportunities to

blind people and consequently can improve their living conditions. The problem

is not in the incapability of the blind people, but in lack of conviction of blind

people capabilities from employers.

The integrated idea of our model becomes more obvious when all components of

the XMLBB tool are created, specifically the XForm generation part, also this

part can be enhanced with several templates, so that the user can either use the

system built-in templates or custom one. Also many options have to be available

to the user to customize his automatically generated interface, such as the height

and width of the form controls, font type, size and color, and many others.

As we discussed in chapter 3, XMLBB have to support many languages to enable

developers to create integrated web application, such as server-side and client side

scripting languages, in addition to styling sheets and others.

Since the XMLBB is implemented to support multilingual, one of the main

objectives in the future is to use speech recognition and synthesizers technology

71

that supports Arabic languages, to get rid of the language barrier when using

XMLBB.

The world of XML technology is constantly evolving, and new languages based on XML

technology continuously emerges. Our model can be enhanced to support more XML-

based programming languages, such as resource description framework (RDF) and the web

ontology language (OWL).

One of the areas that become widely used in these days is the web services; also named

XML web services, since it is based mainly on XML technology. Enhancing XMLBB with

such feature can help blind people to expand their projects, and develop more professional

and usable applications.

One of the weaknesses of speech recognition technology that should be enhanced is the

dictating feature, either word by word, or character by character. Improving this can lead to

a significant facilities in accessibility method for disabled people.

The development of accessible user interface is a never-ending process. There are

always more features that can be added, which improves and facilitate the

software usage.

For professional blind programmers, wizard is not very efficient; they may prefer

to write code directly into editor. Providing a blind programmer with source

editor should be very useful if augmented and enhanced with clear error and

warning messages that identify the line and cause of the error.

http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://en.wikipedia.org/wiki/Web_Ontology_Language

72

References:

[1] Argyropoulos, S, Moustakas, K, Karpov, A, Aran, A, Tzovaras, T, Tsakiris, T, Varni,

G, Kwon, B. (2008): Multimodal user interface for the communication of the disabled. J

Multimodal User Interfaces 2: 105–116.

[2] B´artek, L, Plh´ak, J. (2006): WebGen System - Visually Impaired Users Create Web

Pages. ICCHP 2008, LNCS 5105, pp. 466–473.

[3] Bigham, J, Aller, M, Brudvik, J, Leung, J, Yazzolino, Ladner, R. (2008): Inspiring

Blind High School Students to Pursue Computer Science with Instant Messaging Chatbots

, ACM 978-1-59593-947-0/08/0003.

[4] Franqueiro, K, Siegfried, R. (2006): Designing a Scripting Language to Help the Blind

Program Visually. ACM 1-59593-290-9/06/0010.

[5] Haraty, R, Ariss, O. (2007): CASRA+: A Colloquial Arabic Speech Recognition

Application. American Journal of Applied Sciences 4 (1): 23-32.

[6] Kuo, Y, Shih, N, Tseng, L, Hu, H. (2005): Generating Form-Based User Interfaces for

XML Vocabularies. ACM 1-59593-240-2/05/0011.

[7] Najjar, L. (2005): Accessible Java Application User Interface Design Guidelines. HCI

International Proceedings.

[8] Sánchez, J, Aguayo, F. (2005): Blind Learners Programming Through Audio, ACM 1-

59593-002-7/05-0004.

[9] Siegfried, R. (2004): Teaching the Blind to Program visually. Proc ISECON v21.

[10] Siegfried, R. (2006): Visual Programming and the Blind: The Challenge and the

Opportunity. ACM,1-59593-259-3/06/0003.

[11] Wald, M, Bain, K. (2008): Universal access to communication and learning: the role

of automatic speech recognition. Univ Access Inf Soc , 6:435–447.

[12] W3C. (2004): XML Schema Part 0: Primer Second Edition. W3C Recommendation:

http://www.w3.org/TR/xmlschema-0.

[13] W3C. (2004): XML Schema Part 1: Structures Second Edition. W3C

Recommendation: http://www.w3.org/TR/2004/REC-xmlschema-1.

[14] W3C. (2004): XML Schema Part 2: Datatypes Second Edition.W3C

Recommendation: http://www.w3.org/TR/xmlschema-2.

[15] W3C. (2007): XML Syntax for XQuery 1.0 (XQueryX). W3C Recommendation:

http://www.w3.org/TR/xqueryx.

[16] W3C. (2009): XForms 1.1. W3C Recommendation, http://www.w3.org/TR/xforms.

http://www.lawrence-najjar.com/

73

Appendix A: Source Code

Imports System.Speech

'' Synthesis class convert text to speech

Imports System.Speech.Synthesis

'' reccognition class convert speech to text

Imports System.Speech.Recognition

'' schemas in data access layer

Imports XMLBB.Access

'' accessibility

Public Class Blind_Accessibility

 'Inherits System.Windows.Forms.NativeWindow

 '' synthesier used to say words

 Public Shared Syn As SpeechSynthesizer = New SpeechSynthesizer

 '' recognizer used to recognize the user speech

 Private rec As SpeechRecognizer = New SpeechRecognizer

 '' used to define dictiation grammer to be able to turn it off or on

 Private DGrammar As DictationGrammar = New DictationGrammar()

 '' reference to messges class "Access Layer"

 Shared msgs As messages = New messages

 '' form

 Private frm As Form = New Form

 '' default button for default action

 Shared btn As Button

 '' create instance of help class

 Private hlp As help

 '' create instance of help class

 'Shared spk As Show_content = New Show_content

 '' create instance of enlarge class

 Shared en As enlarge

 '' create instance of show_content class

 Private cnt As Show_content

 Private Speech_Rec As recognize

 Public Sub New(ByVal myform As Form, ByVal default_Button As Button)

 frm = myform

 btn = default_Button

 hlp = New help(frm)

 en = New enlarge(frm)

 cnt = New Show_content(frm)

 Speech_Rec = New recognize(frm)

 ' set form window size maximized

74

 frm.WindowState = FormWindowState.Maximized

 'enable scrolling in windows form

 frm.AutoScroll = True

 '' create instance of execute shortcuts clas

 Dim exe_short As execute_shortcuts = New execute_shortcuts(frm)

 End Sub

 '' speech text in any control

 Public Class Show_content

 Private frm As Form

 '' synthesier used to say words

 Public Sub New(ByVal myform As Form)

 frm = myform

 End Sub

 ' thisfunction speak the text within a control to help user check

whether He is writting every thing correctly

 Public Sub Speak_control_text()

 If frm.ActiveControl.Text.Length = 0 Then

 Syn.SpeakAsync(msgs.get_message_byID(10))

 Else

 Syn.SpeakAsync(frm.ActiveControl.Text)

 End If

 End Sub

 ' thisfunction speak the text within a control to help user check

whether He is writting every thing correctly

 Public Sub Spell_control_text()

 Dim shrt As shortcuts = New shortcuts

 If frm.ActiveControl.Text.Length = 0 Then

 Syn.SpeakAsync(msgs.get_message_byID(10))

 Else

 For Each text_char In frm.ActiveControl.Text

 If Char.IsLetterOrDigit(text_char) Then

 If Char.IsUpper(text_char) Then

 Syn.SpeakAsync("Capital " + text_char)

 Else

 Syn.SpeakAsync(text_char)

 End If

 Else

 Syn.SpeakAsync(shrt.get_KeyName(text_char))

 End If

 Next

 End If

 End Sub

 'pronounce the character "speech"

 Public Sub pronounce_char(ByVal text_char)

 Dim shrt As shortcuts = New shortcuts

 If frm.ActiveControl.Text.Length = 0 Then

 Syn.SpeakAsync(msgs.get_message_byID(10))

 Else

 If Char.IsLetterOrDigit(text_char) Then

 If Char.IsUpper(text_char) Then

 Syn.SpeakAsync("Capital " + text_char)

 Else

75

 Syn.SpeakAsync(text_char)

 End If

 Else

 Syn.SpeakAsync(shrt.get_KeyName(text_char))

 End If

 End If

 End Sub

 'return the character "speech"

 Public Function Return_char(ByVal text_char) As String

 Dim shrt As shortcuts = New shortcuts

 If frm.ActiveControl.Text.Length = 0 Then

 Return (msgs.get_message_byID(10))

 Else

 If Char.IsLetterOrDigit(text_char) Then

 If Char.IsUpper(text_char) Then

 Return ("Capital " + text_char)

 Else

 Return (text_char)

 End If

 Else

 Return (shrt.get_KeyName(text_char))

 End If

 End If

 End Function

 ' thismethod can be used to say the Last word of contol text

 Public Sub Speak_last_word()

 '' active control

 Dim control_text As String = frm.ActiveControl.Text

 '' last word

 Dim Last_word As String =

control_text.Substring(IIf(control_text.LastIndexOf(" ") <> -1,

control_text.LastIndexOf(" "), 0))

 If Last_word.Length = 0 Then

 Syn.SpeakAsync(msgs.get_message_byID(10))

 Else

 Syn.SpeakAsync(Last_word)

 End If

 End Sub

 ' thismethod can be used to say the first word of contol text

 Public Sub Speak_First_word()

 Dim control_text As String = frm.ActiveControl.Text

 ''first word

 Dim first_word As String = control_text.Substring(0,

IIf(control_text.IndexOf(" ") <> -1, control_text.IndexOf(" "),

control_text.Length))

 If first_word.Length = 0 Then

 Syn.Speak(msgs.get_message_byID(10))

 Else

 Syn.SpeakAsync(first_word)

 End If

 End Sub

 ' say the charcter pressed to help user ensure He is pressing the

correct character

 Public Sub say_char(ByVal chr As Char)

 Syn.Speak(chr)

 End Sub

76

 '' spoken & written

 Public Sub Show_msg_async(ByVal msg As String)

 If Not (frm Is Nothing) Then

 frm.Controls("msg").Text = msg

 End If

 Syn.SpeakAsync(msg)

 End Sub

 Public Sub Show_msg(ByVal msg As String)

 If (Not (frm Is Nothing)) And (Not (frm.Controls("msg") Is

Nothing)) Then

 frm.Controls("msg").Text = msg

 End If

 Syn.Speak(msg)

 End Sub

 End Class

 Public Class execute_shortcuts

 Private frm As Form

 Private cnt As Show_content

 Private hlp As help

 '' synthesier used to say words

 Public Sub New(ByVal myfrom As Form)

 'indicate that the form will receive key events before the

event is passed to the control that has focus

 frm = myfrom

 cnt = New Show_content(frm)

 hlp = New help(frm)

 frm.KeyPreview = True

 ' enable key press event to be able to handle it

 AddHandler frm.KeyPress, AddressOf form_KeyPress

 AddHandler frm.KeyDown, AddressOf form_keyDown

 End Sub

 '' work whenever a user press a key in keyboard

 Private Sub form_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs)

 Try

 Dim shrt As shortcuts = New shortcuts

 'enabling_commands class to enable or disable commands

 Dim cmds As enabling_commands = New

enabling_commands(frm)

 Dim code As Int16 = Asc(e.KeyChar) ' return the asci code

of the keys pressed

 Dim p_enabled = shrt.check_shortcut_enabled_byID(1) '

check if pronouncing is enabled

 If Not shrt.check_if_shortcut(code) Then ' check if code

of the keys pressed is not shortcut

 If p_enabled And (frm.ActiveControl.GetType.ToString

= "System.Windows.Forms.TextBox") Then '' pronouncing key enabled

 If Char.IsLetterOrDigit(e.KeyChar) Then

 cnt.say_char(e.KeyChar)

 Else

cnt.Show_msg_async(shrt.get_KeyName(e.KeyChar))

 End If

77

 End If

 Else

 ' if key pressed is a shortcut

 If code = 16 Then

 ' pronouncing key shortcut

 cmds.Change_status_cmd(1, 2, 3) ' 1- shortcut

id=1 "pronouncing key" , 2- message id =2 "pronouncing key is enabled" 3-

message id =3 "pronouncing key is disabled"

 ElseIf code = 8 Then

 ' help shortcut

 If Me.frm.ActiveControl.GetType.ToString =

"System.Windows.Forms.TextBox" Then

 Try

 Dim txt_ctl As TextBox =

CType(Me.frm.ActiveControl, System.Windows.Forms.TextBox)

 If txt_ctl.Text.Length > 0 Then

cnt.Show_msg_async(cnt.Return_char(txt_ctl.Text.Substring(txt_ctl.Selecti

onStart - 1, 1)) & " deleted")

 Else

 cnt.Show_msg("Text Box is Empty")

 End If

 Catch

 End Try

 End If

 ElseIf code = 5 Then ' Enlarge shortcut

 ' enlarging form to double

 Syn.SpeakAsync(msgs.get_message_byID(7))

 en.enlarge()

 ElseIf code = 18 Then ' reduce shortcut

 ' reducing form size to half

 Syn.SpeakAsync(msgs.get_message_byID(8))

 en.Reduce()

 ElseIf code = 19 Then

 ' say active control text shortcut

 cnt.Spell_control_text()

 ElseIf code = 20 Then

 ' say active control text shortcut

 cnt.Speak_control_text()

 ElseIf code = 12 Then

 ' say text of active control(last word) shortcut

 cnt.Speak_last_word()

 ElseIf code = 6 Then

 ' say text of active control (first word)

shortcut

 cnt.Speak_First_word()

 ElseIf code = 21 Then ' enlarge maximum

 ' enlarging form to maximum size

 Syn.SpeakAsync(msgs.get_message_byID(7))

 en.Max_enlarge()

 ElseIf code = 4 Then ' reduce minimum

 ' reducing form size to minimum size

 Syn.SpeakAsync(msgs.get_message_byID(8))

 en.Min_Reduce()

 End If

 End If

 Catch ex As Exception

 cnt.Show_msg_async(ex.Message)

 End Try

 End Sub

78

 Private Sub form_keyDown(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyEventArgs)

 Try

 If e.KeyCode = Keys.Right Then

 If Me.frm.ActiveControl.GetType.ToString =

"System.Windows.Forms.TextBox" Then

 Try

 Dim txt_ctl As TextBox =

CType(Me.frm.ActiveControl, System.Windows.Forms.TextBox)

 If txt_ctl.Text.Length = 0 Then

 cnt.Show_msg_async("Last Character")

 Else

 If txt_ctl.SelectionStart <>

txt_ctl.Text.Length Then

cnt.pronounce_char(txt_ctl.Text.Substring(txt_ctl.SelectionStart, 1))

 Else

cnt.pronounce_char(txt_ctl.Text.Substring(txt_ctl.SelectionStart - 1, 1))

 cnt.Show_msg_async("Last Character")

 End If

 End If

 Catch

 End Try

 End If

 ElseIf e.KeyCode = Keys.Left Then

 If Me.frm.ActiveControl.GetType.ToString =

"System.Windows.Forms.TextBox" Then

 Try

 Dim txt_ctl As TextBox =

CType(Me.frm.ActiveControl, System.Windows.Forms.TextBox)

 If txt_ctl.Text.Length = 0 Then

 cnt.Show_msg_async("First Character")

 Else

 If txt_ctl.SelectionStart <> 0 Then

cnt.pronounce_char(txt_ctl.Text.Substring(txt_ctl.SelectionStart - 1, 1))

 Else

cnt.pronounce_char(txt_ctl.Text.Substring(txt_ctl.SelectionStart, 1))

 cnt.Show_msg_async("First Character")

 End If

 End If

 Catch

 End Try

 End If

 ElseIf e.KeyCode = Keys.Delete Then

 If Me.frm.ActiveControl.GetType.ToString =

"System.Windows.Forms.TextBox" Then

 Try

 Dim txt_ctl As TextBox =

CType(Me.frm.ActiveControl, System.Windows.Forms.TextBox)

 If txt_ctl.Text.Length > 0 Then

cnt.Show_msg_async(cnt.Return_char(txt_ctl.Text.Substring(txt_ctl.Selecti

onStart, 1)) & " deleted")

 Else

 cnt.Show_msg("Text Box is Empty")

 End If

 Catch

79

 End Try

 End If

 ElseIf e.KeyCode = Keys.F1 Then

 hlp.Form_help()

 ElseIf e.KeyCode = Keys.F2 Then

 hlp.Project_help()

 ElseIf (e.Alt = True) And (e.KeyCode.ToString <> "Menu")

Then

 hot_key(e.KeyCode.ToString)

 ElseIf (e.KeyCode = 72) And (e.Control = True) Then

 hlp.Speak_help_message()

 ElseIf e.KeyCode = Keys.PageUp Then

 btn.PerformClick()

 ElseIf (e.KeyCode = Keys.PageDown) Then

 Syn.SpeakAsyncCancelAll()

 End If

 Catch ex As Exception

 cnt.Show_msg_async(ex.Message)

 End Try

 End Sub

 Sub hot_key(ByVal chr As Char)

 Try

 For Each ctl In frm.Controls

 If (ctl.GetType.ToString <>

"System.Windows.Forms.Label") And (ctl.GetType.ToString <>

"System.Windows.Forms.GroupBox") Then

 If ctl.AccessibleName.ToString.Length > 0 Then

 If Char.ToUpper(chr) =

ctl.AccessibleName.Substring(ctl.AccessibleName.IndexOf("&") + 1,

1).ToString.ToUpper Then

 If (ctl.GetType.ToString <>

"System.Windows.Forms.GroupBox") Then

 ctl.focus()

 'If ctl.GetType.ToString =

"System.Windows.Forms.Button" Then ctl.PerformClick()

 Exit For

 End If

 End If

 End If

 ElseIf (ctl.GetType.ToString =

"System.Windows.Forms.GroupBox") Then

 For Each sub_ctl In ctl.Controls

 If (sub_ctl.GetType.ToString <>

"System.Windows.Forms.Label") And (sub_ctl.GetType.ToString <>

"System.Windows.Forms.GroupBox") Then

 If sub_ctl.AccessibleName.ToString.Length

> 0 Then

 If Char.ToUpper(chr) =

sub_ctl.AccessibleName.Substring(sub_ctl.AccessibleName.IndexOf("&") + 1,

1).ToString.ToUpper Then

 sub_ctl.focus()

 Exit For

 ' If ctl.GetType.ToString =

"System.Windows.Forms.Button" Then ctl.PerformClick()

 End If

 End If

 End If

 Next

 End If

80

 Next

 Catch ex As Exception

 cnt.Show_msg_async(ex.Message)

 End Try

 End Sub

 End Class

 ''help User by providing him the description of the current control

 Public Class help

 Dim msg As String

 Dim cnt As Show_content

 Private frm As Form

 Public Sub New(ByVal myform As Form)

 frm = myform

 cnt = New Show_content(frm)

 End Sub

 ' thisfunction display a help message to the user according to

which control the cursor i

 Public Sub Speak_help_message()

 msg = IIf(frm.ActiveControl.AccessibleDescription <> "",

frm.ActiveControl.AccessibleDescription, msgs.get_message_byID(9))

 cnt.Show_msg_async(msg + " " +

frm.ActiveControl.GetType.ToString.Substring(frm.ActiveControl.GetType.To

String.LastIndexOf(".") + 1))

 If

frm.ActiveControl.GetType.ToString.Substring(frm.ActiveControl.GetType.To

String.LastIndexOf(".") + 1).ToUpper <> "BUTTON" Then

 cnt.Show_msg_async(frm.ActiveControl.Text)

 Dim itm_cnt As Int16 = 0

 If

frm.ActiveControl.GetType.ToString.Substring(frm.ActiveControl.GetType.To

String.LastIndexOf(".") + 1).ToUpper = "COMBOBOX" Then

 itm_cnt = CType(frm.ActiveControl,

ComboBox).Items.Count

 cnt.Show_msg_async(msgs.get_message_byID(11) &

itm_cnt)

 For i = 0 To itm_cnt - 1

 cnt.Show_msg_async(msgs.get_message_byID(12) +

i.ToString + " ," + CType(frm.ActiveControl, ComboBox).Items(i))

 Next

 End If

 End If

 End Sub

 '' form help

 Public Sub Form_help()

 msg = IIf(frm.AccessibleDescription <> "",

frm.AccessibleDescription, msgs.get_message_byID(9))

 cnt.Show_msg_async(msg)

 End Sub

 '' form help

 Public Sub Speech_Commands_help()

 msg = IIf(frm.AccessibleDescription <> "",

frm.AccessibleDescription, msgs.get_message_byID(9))

 cnt.Show_msg_async(msg)

 End Sub

 '' form help

 Public Sub Shortcuts_help()

 msg = IIf(frm.AccessibleDescription <> "",

frm.AccessibleDescription, msgs.get_message_byID(9))

 cnt.Show_msg_async(msg)

 End Sub

81

 Public Sub Project_help()

 msg = IIf(frm.Tag = "", "", "CURRENT PROJECT:" & " (" &

frm.Tag & ")")

 cnt.Show_msg_async(msg)

 End Sub

 End Class

 ''recognize class used to recognize user speech

 Public Class recognize

 Private gbuilder2 As GrammarBuilder = New GrammarBuilder

 Private gbuilder1 As GrammarBuilder = New GrammarBuilder

 Private gbuilder3 As GrammarBuilder = New GrammarBuilder

 Private speechgrammar2 As Grammar

 Private speechgrammar1 As Grammar

 Private speechgrammar3 As Grammar

 Private frm As Form

 Private cnt As Show_content

 Private hlp As help

 Dim msg As String

 '' recognizer used to recognize the user speech

 Private rec As SpeechRecognizer = New SpeechRecognizer

 '' synthesier used to say words

 Public Sub New(ByVal myform As Form)

 frm = myform

 hlp = New help(frm)

 cnt = New Show_content(frm)

 createGrammer()

 End Sub

 Public Sub createGrammer()

 Try

 'enable recognizer

 rec.Enabled = True '''''''''''''

 'grammer # 1

 gbuilder2.Append(New Choices("Enable", "Disable"))

 gbuilder2.Append(New Choices("Pronounicng", "Speech

Command", "Speech Dictation", "Automatic Help"))

 speechgrammar2 = New Grammar(gbuilder2)

 rec.LoadGrammar(speechgrammar2)

 'grammer # 2

 gbuilder1.Append(New Choices("Help", "Execute",

"Previous", "Next", "Read Text", "Spell Text", "Read First Word", "Read

Last Word", "Enlarge", "Reduce", "Enlarge Maximum", "Reduce Minimum",

"Home", "End", "Cancel"))

 speechgrammar1 = New Grammar(gbuilder1)

 rec.LoadGrammar(speechgrammar1)

 'grammer # 3

 gbuilder3.Append(New Choices("Shortcuts Help", "Project

Help", "Form Help", "Speech Commands Help"))

 speechgrammar3 = New Grammar(gbuilder3)

 rec.LoadGrammar(speechgrammar3)

 rec.PauseRecognizerOnRecognition = True

 '' add event handler

 AddHandler rec.SpeechRecognized, AddressOf

spRecognizer_SpeechRecognized

 Catch

 If frm.Name = "XMLBB_Interface" Then

82

 cnt.Show_msg_async("Audio Devices are not installed ,

can't use speech recognition to access specific control")

 End If

 End Try

 End Sub

 Sub spRecognizer_SpeechRecognized(ByVal sender As Object, ByVal e

As SpeechRecognizedEventArgs)

 Try

 'enabling_commands class to enable or disable commands

 Dim cmds As enabling_commands = New

enabling_commands(frm)

 ' user speech

 msg = e.Result.Text

 If (msg = "Enable Pronounicng") Then

 cmds.Enable_Cmd(1, 2)

 ElseIf (msg = "Disable Pronounicng") Then

 cmds.Disable_Cmd(1, 3)

 ElseIf (msg = "Help") Then

 hlp.Speak_help_message()

 ElseIf (msg = "Previous") Then

 cnt.Show_msg_async("Previous")

 frm.ActiveControl.ForeColor = Color.Black

 frm.SelectNextControl(frm.ActiveControl, False,

False, True, True)

 ElseIf (msg = "Next") Then

 cnt.Show_msg_async("Next")

 frm.ActiveControl.ForeColor = Color.Black

 frm.SelectNextControl(frm.ActiveControl, True, False,

True, True)

 ElseIf (msg = "Read Text") Then

 cnt.Show_msg_async("Read Text")

 ' speak active control text

 cnt.Speak_control_text()

 ElseIf (msg = "Spell Text") Then

 cnt.Show_msg_async("Spell Text")

 ' spell active control text

 cnt.Spell_control_text()

 ElseIf (msg = "Read Last Word") Then

 cnt.Show_msg_async("Last Word")

 'speak last word of active control text

 cnt.Speak_last_word()

 ElseIf (msg = "Read First Word") Then

 cnt.Show_msg_async("First Word")

 'speak first word of active control text

 cnt.Speak_First_word()

 ElseIf (msg = "Form Help") Then

 cnt.Show_msg_async("Form Help")

 'speak first word of active control text

 hlp.Form_help()

83

 ElseIf (msg = "Project Help") Then

 cnt.Show_msg_async("Project Help")

 'speak first word of active control text

 hlp.Project_help()

 ElseIf (msg = "Enlarge") Then

 cnt.Show_msg_async("Enlarge")

 en.enlarge()

 ElseIf (msg = "Reduce") Then

 cnt.Show_msg_async("Reduce")

 en.Reduce()

 ElseIf (msg = "Enlarge Maximum") Then

 cnt.Show_msg_async("Enlarge Maximum")

 en.Max_enlarge()

 ElseIf (msg = "Reduce Minimum") Then

 cnt.Show_msg_async("Reduce Minimum")

 en.Min_Reduce()

 ElseIf (msg = "Cancel") Then

 cnt.Show_msg_async("Cancel")

 Else

 ' can't recognize user message

 cnt.Show_msg_async(msgs.get_message_byID(6))

 End If

 Catch ex As Exception

 cnt.Show_msg_async(ex.Message)

 End Try

 End Sub

 End Class

 Public Class enabling_commands

 ' reference to shortcuts xml document

 Dim shrt As shortcuts = New shortcuts

 ' Dim cnt As Show_content = New Show_content

 Dim msg As String

 Dim frm As Form

 Private cnt As Show_content

 '' recognizer used to recognize the user speech

 Private rec As SpeechRecognizer = New SpeechRecognizer

 Public Sub New(ByVal myform As Form)

 frm = myform

 cnt = New Show_content(frm)

 End Sub

 '' convert the command status into enabled

 Public Sub Enable_Cmd(ByVal shrt_id As Int32, ByVal msg_id As

Int32)

 Dim enabled As Boolean =

shrt.check_shortcut_enabled_byID(shrt_id)

 If Not enabled Then

shrt.change_shortcut_enabled_status(shrt_id) '' enable pronouncing

 msg = msgs.get_message_byID(msg_id)

 cnt.Show_msg_async(msg)

 End Sub

 '' convert the command status into disabled

 Public Sub Disable_Cmd(ByVal shrt_id As Int32, ByVal msg_id As

Int32)

 Dim enabled As Boolean =

shrt.check_shortcut_enabled_byID(shrt_id)

 If enabled Then shrt.change_shortcut_enabled_status(shrt_id)

'' disable pronouncing

 msg = msgs.get_message_byID(msg_id)

84

 cnt.Show_msg_async(msg)

 End Sub

 '' reverse the command status

 Public Sub Change_status_cmd(ByVal shrt_id As Int32, ByVal

msg_id1 As Int32, ByVal msg_id2 As Int32)

 Dim enabled As Boolean =

shrt.check_shortcut_enabled_byID(shrt_id)

 shrt.change_shortcut_enabled_status(shrt_id)

 If enabled Then

 msg = msgs.get_message_byID(msg_id2)

 Else

 msg = msgs.get_message_byID(msg_id1)

 End If

 cnt.Show_msg_async(msg)

 End Sub

 End Class

 '' thisclass define the methods that can be used to enlarge form size

 Public Class enlarge

 Dim do_enlarge As Boolean = True

 Dim do_Reduce As Boolean = False

 Shared enlarged_value As Int16

 Dim cnt As Show_content

 Private frm As Form

 Public Sub New(ByVal myform As Form)

 enlarged_value = 1

 frm = myform

 cnt = New Show_content(frm)

 End Sub

 ' thisfunction enlarge the form to the user

 Public Sub enlarge()

 If do_enlarge Then ' allow maximum enlarge the font size of

the control to be 200

 enlarged_value = enlarged_value + 1

 do_Reduce = True

 Dim factor As System.Drawing.SizeF = New

System.Drawing.SizeF(2, 2)

 frm.Scale(factor)

 Dim ctl As Control

 Dim fnt As Font

 For Each ctl In frm.Controls

 fnt = ctl.Font

 ctl.Font = New Font(ctl.Font.Name, ctl.Font.Size * 2)

 If enlarged_value = 5 Then do_enlarge = False

 Next

 Else

 cnt.Show_msg_async(msgs.get_message_byID(4))

 End If

 End Sub

 ' enlarge form size to maximum (4 doubling)

 Public Sub Max_enlarge()

 If enlarged_value < 5 Then ' allow maximum enlarge the font

size of the control to be 200

 do_Reduce = True

 do_enlarge = False

 Dim factor As System.Drawing.SizeF = New

System.Drawing.SizeF(10 / enlarged_value, 10 / enlarged_value)

 frm.Scale(factor)

 Dim ctl As Control

 Dim fnt As Font

 do_enlarge = False

 For Each ctl In frm.Controls

85

 fnt = ctl.Font

 ctl.Font = New Font(ctl.Font.Name, ctl.Font.Size *

(10 / enlarged_value))

 Next

 enlarged_value = 5

 Else

 cnt.Show_msg_async(msgs.get_message_byID(4))

 End If

 End Sub

 'thisfunction decrease the form size

 Public Sub Reduce()

 If do_Reduce Then ' allow minimum decrease of the control

font size of the control to be 10

 enlarged_value = enlarged_value - 1

 do_enlarge = True ' enable enlarging form size

 Dim factor As System.Drawing.SizeF = New

System.Drawing.SizeF(0.5, 0.5)

 frm.Scale(factor)

 Dim ctl As Control

 Dim fnt As Font

 For Each ctl In frm.Controls

 fnt = ctl.Font

 ctl.Font = New Font(ctl.Font.Name, ctl.Font.Size / 2)

 If enlarged_value = 1 Then do_Reduce = False '

disable reducing since reached minimum size

 Next

 Else

 cnt.Show_msg_async(msgs.get_message_byID(5))

 End If

 End Sub

 'thisfunction decrease the form size to minimum allowed

 Public Sub Min_Reduce()

 If enlarged_value > 1 Then ' if form is not in his minimum

size

 do_enlarge = True ' enable enlarging

 do_Reduce = False ' disable reducing

 ' define the factor of reducing form size

 Dim factor As System.Drawing.SizeF = New

System.Drawing.SizeF((6 - enlarged_value) / 8, (6 - enlarged_value) / 8)

 'reduce form size

 frm.Scale(factor)

 Dim ctl As Control

 Dim fnt As Font

 For Each ctl In frm.Controls

 fnt = ctl.Font

 'reduce the font size in each control

 ctl.Font = New Font(ctl.Font.Name, ctl.Font.Size * (6

- enlarged_value) / 8)

 Next

 ' set the form enlargiing size to minimum value (intial)

 enlarged_value = 1

 Else

 ' notify user that hisform is reduced to minimum size ,

so can't reduced more

 cnt.Show_msg_async(msgs.get_message_byID(5))

 End If

 End Sub

86

 End Class

End Class

Imports XMLBB.Blind_Accessibility

Public Class Template_Form

 'Public Project_Name As String

 Private err As Forms_Notifcation

 Public cnt As Show_content = New Show_content(Me)

 Shared last_gotFocus As String = ""

 Private loaded As Boolean = False

 Private modified As Boolean = False

 Private Sub Template_Form_Disposed(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Disposed

 Syn.SpeakAsyncCancelAll()

 If Me.Name = "XMLBB_Interface" Then

 Beep()

 Beep()

 cnt.Show_msg("Closing XMLBB")

 End If

 End Sub

 Private Sub Template_Form_GotFocus(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.GotFocus

 If Not loaded Then

 cnt.Show_msg_async(Me.Title.Text)

 End If

 loaded = False

 End Sub

 Private Sub Template_Form_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

 Try

 XMLBB.Blind_Accessibility.Syn.SpeakAsyncCancelAll()

 Beep()

 If (DesignMode) Then

 Return

 Else

 msg.Text = "Template"

 err = New Forms_Notifcation

 Dim done As String =

forms_access.get_form_accessibility_details(Me, Me.GetType)

 loaded = True

 For Each ctl In Me.Controls

 Dim fnt As Font = New Font("times new roman", 20,

FontStyle.Bold)

 Me.BackColor = Color.White

 ctl.ForeColor = Color.Black

 ctl.font = fnt

87

 If (ctl.GetType.ToString <>

"System.Windows.Forms.Label") And (ctl.GetType.ToString <>

"System.Windows.Forms.GroupBox") Then

 If (ctl.GetType.ToString <>

"System.Windows.Forms.Button") Then

 ctl.BackColor = Color.White

 End If

 AddHandler CType(ctl, Control).Enter, AddressOf

ctl_got_focus

 AddHandler CType(ctl, Control).Leave, AddressOf

ctl_lost_focus

 If (ctl.GetType.ToString =

"System.Windows.Forms.ComboBox") Then

 AddHandler CType(ctl,

ComboBox).SelectedIndexChanged, AddressOf Ctl_Selectd_Index_Changed

 End If

 If (ctl.GetType.ToString =

"System.Windows.Forms.CheckBox") Then

 AddHandler CType(ctl,

CheckBox).CheckedChanged, AddressOf Ctl_Selectd_Checked_Changed

 End If

 If ctl.tag <> "" Then

 AddHandler CType(ctl, Control).Validated,

AddressOf ctl_Validated

 AddHandler CType(ctl, Control).Validating,

AddressOf ctl_Validating

 End If

 End If

 For Each sub_ctl In ctl.controls

 Me.BackColor = Color.White

 sub_ctl.ForeColor = Color.Black

 sub_ctl.font = fnt

 If (sub_ctl.GetType.ToString <>

"System.Windows.Forms.Label") And (sub_ctl.GetType.ToString <>

"System.Windows.Forms.GroupBox") Then

 If (sub_ctl.GetType.ToString <>

"System.Windows.Forms.Button") Then

 sub_ctl.BackColor = Color.White

 End If

 AddHandler CType(sub_ctl, Control).Enter,

AddressOf ctl_got_focus

 AddHandler CType(sub_ctl, Control).Leave,

AddressOf ctl_lost_focus

 If sub_ctl.GetType.ToString =

"System.Windows.Forms.ComboBox" Then

 AddHandler CType(sub_ctl,

ComboBox).SelectedIndexChanged, AddressOf Ctl_Selectd_Index_Changed

 End If

 If (sub_ctl.GetType.ToString =

"System.Windows.Forms.CheckBox") Then

 AddHandler CType(sub_ctl,

CheckBox).CheckedChanged, AddressOf Ctl_Selectd_Checked_Changed

 End If

 If sub_ctl.tag <> "" Then

 AddHandler CType(sub_ctl,

Control).Validated, AddressOf ctl_Validated

 AddHandler CType(sub_ctl,

Control).Validating, AddressOf ctl_Validating

 End If

 End If

 Next

88

 Next

 Me.msg.TextAlign = ContentAlignment.MiddleCenter

 Me.Title.Text = Me.Text

 cnt.Show_msg_async(Me.Text)

 End If

 Catch ex As Exception

 msg.Text = ex.Message

 End Try

 End Sub

 Private Sub ctl_got_focus()

 Try

 Me.ActiveControl.ForeColor = Color.BlueViolet

 Dim st As String = Me.ActiveControl.AccessibleName

 If st.Length > 0 Then

 ' instance of class show content

 Dim pos As Int16 = st.IndexOf("&")

 Dim part1 As String = st.Substring(0, pos)

 Dim part2 As String = st.Substring(pos + 1)

 cnt.Show_msg_async(part1 + part2 + " " +

Me.ActiveControl.GetType.ToString.Substring(Me.ActiveControl.GetType.ToSt

ring.LastIndexOf(".") + 1))

 If (Me.ActiveControl.Text <> "") And

(Me.ActiveControl.GetType.ToString.Substring(Me.ActiveControl.GetType.ToS

tring.LastIndexOf(".") + 1).ToUpper <> "BUTTON") Then

cnt.Show_msg_async("Current Value " + Me.ActiveControl.Text)

 End If

 End If

 last_gotFocus = Me.ActiveControl.Name

 If Me.ActiveControl.GetType.ToString =

"System.Windows.Forms.TextBox" Then

 Dim txt_ctl As TextBox = CType(Me.ActiveControl, TextBox)

 txt_ctl.SelectionStart = CType(Me.ActiveControl,

TextBox).Text.Length

 txt_ctl.SelectionLength = 0

 End If

 Catch ex As Exception

 msg.Text = ex.Message

 End Try

 End Sub

 Private Sub ctl_lost_focus(ByVal sender As Object, ByVal e As

EventArgs)

 Try

 If (Me.ActiveControl.Name <> "Okay_Btn") Then

sender.CausesValidation = False

 Else

 sender.CausesValidation = True

 End If

 Syn.SpeakAsyncCancelAll()

 CType(sender, Control).ForeColor = Color.Black

 Me.ActiveControl.ForeColor = Color.Black

 Catch ex As Exception

 msg.Text = ex.Message

 End Try

 End Sub

89

 Private Sub ctl_TextChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs)

 If (Not (sender.GetType.ToString =

"System.Windows.Forms.Button")) And (Not (sender.GetType.ToString =

"System.Windows.Forms.Label")) Then

 modified = True

 End If

 End Sub

 Friend Function get_form_status() As Boolean

 Return modified

 End Function

 Public Sub ctl_Validating(ByVal sender As Object, ByVal e As

System.ComponentModel.CancelEventArgs)

 Try

 Dim ctl_tag As String = sender.tag.ToString

 If (sender.Text = "") And (ctl_tag.Contains("Required")) Then

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.AccessibleDescription, "Required")

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 ElseIf (ctl_tag.Contains("Length")) Then

 Dim min_len_pos As Int16 = ctl_tag.IndexOf("Length:") +

"Length:".Length

 Dim max_len_pos As Int16 = ctl_tag.IndexOf(":", min_len_pos)

 Dim min_len As Int16 = ctl_tag.Substring(min_len_pos,

max_len_pos - min_len_pos)

 Dim max_len As Int16 = ctl_tag.Substring(max_len_pos + 1,

ctl_tag.IndexOf(",", max_len_pos) - max_len_pos)

 'determine whether the value length is within the range

 If (sender.text.length < min_len) Or (sender.text.length >

max_len) Then

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.AccessibleDescription, "Length", min_len,

max_len)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End If

 ElseIf (ctl_tag.Contains("Range")) Then

 Dim min_len_pos As Int16 = ctl_tag.IndexOf("Range:") +

"Range:".Length

 Dim max_len_pos As Int16 = ctl_tag.IndexOf(":", min_len_pos)

 Dim min_val As Int16 = ctl_tag.Substring(min_len_pos,

max_len_pos - min_len_pos)

 Dim max_val As Int16 = ctl_tag.Substring(max_len_pos + 1,

ctl_tag.IndexOf(",", max_len_pos) - max_len_pos)

 'determine whether the value is within the range

 If (sender.text < min_val) Or (sender.text > max_val) Then

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.AccessibleDescription, "Range", min_val,

max_val)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End If

 ElseIf (ctl_tag.Contains("Integer")) Then

90

 Dim Start_pos As Int16 = ctl_tag.IndexOf("Integer:") +

"Integer:".Length

 Dim End_pos As Int16 = ctl_tag.IndexOf(",", Start_pos)

 Dim err_id As Int16 = ctl_tag.Substring(Start_pos, End_pos -

Start_pos)

 If err_id = 17 Then

 Try

 If Not (IsNumeric(IIf(sender.text = "", 0,

sender.text)) And (sender.text.ToString.IndexOf(".") = -1) And

(IIf(sender.text = "", 0, sender.text) >= -1)) Then

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.text, err_id)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End If

 Catch ex As Exception

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.text, err_id)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End Try

 ElseIf err_id = 19 Then

 Try

 If Not (IsNumeric(IIf(sender.text = "", 0,

sender.text)) And (sender.text.ToString.IndexOf(".") = -1) And

(IIf(sender.text = "", 0, sender.text) >= 0)) Then

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.text, err_id)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End If

 Catch ex As Exception

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.text, err_id)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End Try

 End If

 ElseIf (ctl_tag.Contains("Custom")) Then

 Dim Start_pos As Int16 = ctl_tag.IndexOf("Custom:") +

"Custom:".Length

 Dim End_pos As Int16 = ctl_tag.IndexOf(",", Start_pos)

 Dim err_id As Int16 = ctl_tag.Substring(Start_pos, End_pos -

Start_pos)

 ' custom error # 5

 If err_id = 5 Then '' incorrect Schema name

 ' Determine whether the schema name have.xsd extension

 If

sender.text.ToString.Substring(sender.text.ToString.Length - 4).ToUpper

<> ".XSD" Then

 e.Cancel = True

 Dim err_msg As String =

err.get_control_error(sender.text, err_id)

 Me.GeneralErrorProvider.SetError(sender, err_msg)

 cnt.Show_msg(err_msg)

 End If

91

 End If

 End If

 Catch ex As Exception

 msg.Text = ex.Message

 End Try

 End Sub

 Private Sub ctl_Validated(ByVal sender As Object, ByVal e As

System.EventArgs)

 Try

 Me.GeneralErrorProvider.SetError(sender, "")

 Catch ex As Exception

 msg.Text = ex.Message

 End Try

 End Sub

 Private Sub Template_Form_Shown(ByVal sender As Object, ByVal e As

System.EventArgs) Handles MyBase.Shown

 Me.Title.Text = Me.Text

 If Not loaded Then

 cnt.Show_msg_async(Me.Title.Text)

 End If

 loaded = False

 For Each ctl In Me.Controls

 AddHandler CType(ctl, Control).TextChanged, AddressOf

ctl_TextChanged

 If ctl.GetType.ToString = "System.Windows.Forms.GroupBox"

Then

 For Each sub_ctl In ctl.controls

 AddHandler CType(sub_ctl, Control).TextChanged,

AddressOf ctl_TextChanged

 Next

 End If

 Next

 End Sub

 Private Sub Template_Form_LostFocus(ByVal sender As Object, ByVal e

As System.EventArgs) Handles Me.LostFocus

 For Each ctl In Me.Controls

 ctl.CausesValidation = False

 Next

 End Sub

 Private Sub Ctl_Selectd_Index_Changed(ByVal sender As Object, ByVal e

As System.EventArgs)

 Try

 If Not Me.ActiveControl Is Nothing Then

 If sender Is ActiveControl Then

cnt.Show_msg_async("Selected Value" + " " + sender.SelectedItem.ToString)

 End If

 Catch ex As Exception

 cnt.Show_msg_async(ex.Message)

 End Try

 End Sub

 Private Sub Ctl_Selectd_Checked_Changed(ByVal sender As Object, ByVal

e As System.EventArgs)

 Try

 If Not Me.ActiveControl Is Nothing Then

92

 If sender Is ActiveControl Then

cnt.Show_msg_async(sender.text + IIf(sender.Checked, " is True", " is

False"))

 End If

 Catch ex As Exception

 cnt.Show_msg_async(ex.Message)

 End Try

 End Sub

End Class

Imports System.Linq

Imports System.Configuration

Public Class forms_access

 Shared DAL_Path As String

 Shared XMLDOCFILEPATH As String

 Shared doc As XDocument = New XDocument

 Shared frm As Form

 Shared app As New AppSettingsReader()

 Shared Sub add_controls_access(ByVal frm_det As XElement, ByVal

frm_ctl As Control, ByVal ctl_name As String)

 If (frm_ctl.GetType.ToString <> "System.Windows.Forms.Label") And

(frm_ctl.GetType.ToString <> "System.Windows.Forms.GroupBox") Then

 Dim ctl_det = (From m In

frm_det.Elements("controls").Elements _

 Where m.Attribute("name").Value = ctl_name _

 Select New With { _

 .C_Name = m.Attribute("name").Value, _

 .C_Desc = m.Element("AccessibleDescription").Value, _

 .C_AccName = m.Element("AccessibleName").Value, _

 .C_Text = m.Element("Text").Value}).FirstOrDefault

 frm_ctl.Text = ctl_det.C_Text.ToString.TrimEnd().TrimStart

 frm_ctl.AccessibleDescription =

ctl_det.C_Desc.TrimEnd.TrimStart

 frm_ctl.AccessibleName = ctl_det.C_AccName.TrimEnd.TrimStart

 Else

 '' if label or group

 Dim ctl_det = (From m In

frm_det.Elements("controls").Elements _

 Where m.Attribute("name").Value = ctl_name _

 Select New With { _

 .C_Name = m.Attribute("name").Value, _

 .C_Text = m.Element("Text").Value}).FirstOrDefault

 '' any label other than message label

 If (frm_ctl.Name <> "msg") And (frm_ctl.Name <> "Title") Then

frm_ctl.Text = ctl_det.C_Text.ToString.TrimEnd().TrimStart

 End If

 End Sub

 Shared Function get_form_accessibility_details(ByVal XMLBB_frm As

Form, ByVal frm_type As Type) As String

 Try

 frm = XMLBB_frm

93

 XMLDOCFILEPATH = ".\DAL\Forms_access.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 ' return form accessibility details

 Dim f_res = (From m In doc.Descendants.Elements("form") _

 Where (m.Attribute("name").Value = frm.Name) _

 Select New With { _

 .desc = m.Attribute("AccessibleDescription").Value, _

 .text = m.Attribute("Text").Value, _

 .AccName =

m.Attribute("AccessibleName").Value}).FirstOrDefault

 frm.AccessibleDescription = f_res.desc

 frm.AccessibleName = f_res.AccName

 frm.Text = f_res.text

 'return controls accessibilty details

 Dim ctl_name As String

 Dim frm_det As XElement = (From m In

doc.Descendants.Elements("form") _

 Where m.Attribute("name").Value = frm.Name).First

 If frm_det.HasElements Then

 For Each frm_ctl In frm.Controls

 ctl_name = frm_ctl.name

 add_controls_access(frm_det, frm_ctl, ctl_name)

 For Each sub_ctl In frm_ctl.controls

 add_controls_access(frm_det, sub_ctl,

sub_ctl.name)

 Next

 Next

 End If

 frm.Controls("Title").Text = frm.Text

 Return "True"

 Catch ex As Exception

 Return ex.Message

 End Try

 End Function

End Class

Imports System.Linq

Imports System.Configuration

Public Class Forms_Notifcation

 Shared app As New AppSettingsReader()

 Shared DAL_Path As String

 Shared XMLDOCFILEPATH As String

 Shared doc As XDocument = New XDocument

 Public Function get_control_error(ByVal ctl_acc_name As String, ByVal

error_type As String) As String

 Try

 Dim error_msg As String = ""

94

 DAL_Path = app.GetValue("NotifyData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\Forms_Notifcation.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 ' return form accessibility details

 Dim f_res = (From m In doc.Descendants.Elements("Error") _

 Where (m.Attribute("Type").Value.ToString.ToUpper =

error_type.ToUpper) _

 Select New With { _

 .desc = m.Value}).FirstOrDefault

 error_msg = f_res.desc.Replace("F-1", ctl_acc_name)

 Return error_msg

 Catch ex As Exception

 Return ex.Message

 End Try

 End Function

 Public Function get_control_error(ByVal ctl_acc_name As String, ByVal

error_type As String, ByVal Val1 As Int16, ByVal val2 As Int16) As String

 Try

 Dim error_msg As String = ""

 DAL_Path = app.GetValue("NotifyData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\Forms_Notifcation.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 ' return form accessibility details

 Dim f_res = (From m In doc.Descendants.Elements("Error") _

 Where (m.Attribute("Type").Value.ToString.ToUpper =

error_type.ToUpper) _

 Select New With { _

 .desc = m.Value}).FirstOrDefault

 error_msg = f_res.desc.Replace("F-1", ctl_acc_name)

 error_msg = error_msg.Replace("V-1", Val1)

 error_msg = error_msg.Replace("V-2", val2)

 Return error_msg

 Catch ex As Exception

 Return ex.Message

 End Try

 End Function

 Public Function get_control_error(ByVal ctl_Text As String, ByVal

error_id As Integer) As String

 Try

 Dim error_msg As String = ""

 DAL_Path = app.GetValue("NotifyData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\Forms_Notifcation.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 ' return form accessibility details

 Dim f_res = (From m In doc.Descendants.Elements("Error") _

 Where (m.Attribute("Id").Value = error_id) _

 Select New With { _

 .desc = m.Value}).FirstOrDefault

 error_msg = f_res.desc.Replace("F-1", ctl_Text)

 Return error_msg

 Catch ex As Exception

 Return ex.Message

 End Try

95

 End Function

 Public Function get_Message(ByVal Message_id As Integer) As String

 Try

 Dim message As String = ""

 DAL_Path = app.GetValue("NotifyData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\Forms_Notifcation.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 ' return form accessibility details

 Dim f_res = (From m In doc.Descendants.Elements("Message") _

 Where (m.Attribute("Id").Value = Message_id) _

 Select New With { _

 .desc = m.Value}).FirstOrDefault

 message = f_res.desc

 Return message

 Catch ex As Exception

 Return ex.Message

 End Try

 End Function

 Public Function get_Message(ByVal ctl_Text As String, ByVal

Message_id As Integer) As String

 Try

 Dim message As String = ""

 DAL_Path = app.GetValue("NotifyData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\Forms_Notifcation.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 ' return form accessibility details

 Dim f_res = (From m In doc.Descendants.Elements("Message") _

 Where (m.Attribute("Id").Value = Message_id) _

 Select New With { _

 .desc = m.Value}).FirstOrDefault

 message = f_res.desc.Replace("F-1", ctl_Text)

 Return message

 Catch ex As Exception

 Return ex.Message

 End Try

 End Function

End Class

Imports System.IO

Imports System.Linq

Imports System.Configuration

Class xmlbb_pack

 Shared app As New AppSettingsReader()

 Shared DAL_Path As String

 Shared XMLDOCFILEPATH As String

 Shared doc As XDocument = New XDocument

 Dim note As Forms_Notifcation = New Forms_Notifcation

 Dim Complex_attributes As List(Of Project_Object_attributes)

 '' thismethod create the main and sub directories of the new project

96

 Public Function create_Project_Directory(ByVal Prj_dir As String,

ByVal Sch_sub_dir As String, ByVal Frm_sub_dir As String, ByVal

Rep_sub_dir As String)

 ''project directory

 Try

 Dim Main_Dir As DirectoryInfo = New DirectoryInfo(Prj_dir)

 Main_Dir.Create()

 ' Form Sub directory.

 Dim Schema_Sub_Dir As DirectoryInfo = New

DirectoryInfo(Prj_dir & "\" & Sch_sub_dir)

 Schema_Sub_Dir.Create()

 ' Form Sub directory.

 Dim Form_Sub_Dir As DirectoryInfo = New DirectoryInfo(Prj_dir

& "\" & Frm_sub_dir)

 Form_Sub_Dir.Create()

 ' Form Sub directory.

 Dim Report_Sub_Dir As DirectoryInfo = New

DirectoryInfo(Prj_dir & "\" & Rep_sub_dir)

 Report_Sub_Dir.Create()

 Return True

 Catch ex As Exception

 Return False

 End Try

 End Function

 Public Function Delete_Project_Directory(ByVal Prj_dir As String) As

Boolean

 Dim Main_Dir As DirectoryInfo = New DirectoryInfo(Prj_dir)

 Main_Dir.Delete(True)

 Return True

 End Function

 '' thissub insert details of any new projectt into user_project

document

 Public Sub add_proj_details(ByVal Prj_dir As String, ByVal namspc As

String, ByVal Sch_sub_dir As String, ByVal Frm_sub_dir As String, ByVal

Rep_sub_dir As String)

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim project = doc.<Projects>(0)

 Dim elm = <Project></Project>

 elm.Add(New XAttribute("Name", Prj_dir))

 Dim det = <Details></Details>

 det.Add(New XAttribute("Namespace", namspc))

 det.Add(New XAttribute("Schema", Sch_sub_dir))

 det.Add(New XAttribute("Forms", Frm_sub_dir))

 det.Add(New XAttribute("Reports", Rep_sub_dir))

 elm.Add(det)

 elm.Add(<Schemas></Schemas>)

 elm.Add(<Forms></Forms>)

 project.AddFirst(elm)

 Console.WriteLine(project)

 doc.Save(XMLDOCFILEPATH)

 End Sub

 '' used to get the details of the project (namespace, schema ,report

& forms foloders)

97

 Public Sub get_project_details(ByVal Project_Name As String, ByRef

namspce As String, ByRef schema_dir As String, ByRef Forms_dir As String,

ByRef Reports_dir As String)

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim Prj_det = (From m In prj.Elements("Details") _

 Select New With { _

 .P_Namespace = m.Attribute("Namespace").Value, _

 .P_Schema = m.Attribute("Schema").Value, _

 .P_Forms = m.Attribute("Forms").Value, _

 .P_Reports = m.Attribute("Reports").Value}).First

 namspce = Prj_det.P_Namespace.TrimEnd.TrimStart

 schema_dir = Prj_det.P_Schema.TrimEnd.TrimStart

 Forms_dir = Prj_det.P_Forms.TrimEnd.TrimStart

 Reports_dir = Prj_det.P_Reports.TrimEnd.TrimStart

 End If

 End Sub

 ' used to check if the project have already a schema created

 Public Function Project_Has_Schema(ByVal Project_Name As String) As

Boolean

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim has_schema As Boolean = False

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim Prj_Sch = (From m In prj.Elements("Schemas"))

 If Prj_Sch.Elements.Count > 0 Then

 has_schema = True

 End If

 End If

 Return has_schema

 Catch

 Return False

 End Try

 End Function

 Public Function Schema_Has_objects(ByVal project_name As String,

ByVal schema_name As String) As Boolean

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim has_objects As Boolean = False

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

project_name.ToUpper).First

 If prj.HasElements Then

 Dim Prj_Sch = (From m In

prj.Elements("Schemas").Elements("Schema") _

98

 Where m.Attribute("Name").Value.ToUpper =

schema_name.ToUpper).First

 If Prj_Sch.Elements.Count > 0 Then

 has_objects = True

 End If

 End If

 Return has_objects

 End Function

 '' used to check if schema with same name already exist

 Public Function Duplicate_Schema(ByVal Project_Name As String, ByVal

Schema_Name As String) As Boolean

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).FirstOrDefault

 If prj.HasElements Then

 Dim sch As XElement = (From m In

prj.Elements("Schemas").Elements("Schema") _

 Where m.Attribute("Name").Value.ToUpper =

Schema_Name.ToUpper).FirstOrDefault

 If Not sch Is Nothing Then

 Return True

 Else

 Return False

 End If

 End If

 Catch

 Return False

 End Try

 End Function

 '' used to check if project with same name and path already exist

 Public Function Duplicate_Project(ByVal Project_Name As String) As

Boolean

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).FirstOrDefault

 If Not prj Is Nothing Then

 Return True

 Else

 Return False

 End If

 Catch

 Return False

 End Try

99

 End Function

 '' used to check if schema object with same name already exist

 Public Function Duplicate_Schema_Object(ByVal Project_Name As String,

ByVal Schema_Name As String, ByVal Object_Name As String) As Boolean

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).FirstOrDefault

 If prj.HasElements Then

 Dim sch As XElement = (From m In

prj.Elements("Schemas").Elements("Schema") _

 Where m.Attribute("Name").Value.ToUpper =

Schema_Name.ToUpper).FirstOrDefault

 Dim obj As XElement = sch.Element(Object_Name)

 If Not obj Is Nothing Then

 Return True

 Else

 Return False

 End If

 End If

 Catch

 Return False

 End Try

 End Function

 '' insert details of schema

 Public Class Project_Object_attributes

 Public O_Desc As String

 Public O_Value As String

 End Class

 Public Sub Add_Schema_Object(ByVal Project_Name As String, ByVal

Schema_Name As String, ByVal Object_Name As String, ByVal

schema_Attribute_list As List(Of Project_Object_attributes))

 ' Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 Dim sch As XElement = (From m In

prj.Element("Schemas").Elements("Schema") _

 Where m.Attribute("Name").Value = Schema_Name).First

 If prj.HasElements Then

 Dim elm As XElement = New XElement(Object_Name)

 For Each Obj In schema_Attribute_list

100

 elm.Add(New XAttribute(Obj.O_Desc, Obj.O_Value))

 Next

 sch.AddFirst(elm)

 End If

 Console.WriteLine(doc)

 doc.Save(XMLDOCFILEPATH)

 End Sub

 '' modify schema element

 Public Sub Mod_Schema_Object(ByVal Project_Name As String, ByVal

Schema_Name As String, ByVal Object_Name As String, ByVal

schema_Attribute_list As List(Of Project_Object_attributes))

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 Dim sch As XElement = (From m In

prj.Element("Schemas").Elements("Schema") _

 Where m.Attribute("Name").Value = Schema_Name).First

 If sch.HasElements Then

 Dim obj As XElement = (From m In sch.Elements _

 Where m.Name.ToString.ToUpper =

Object_Name.ToUpper).First

 Dim found As Boolean = False

 For Each mod_att In schema_Attribute_list

 obj.SetAttributeValue(mod_att.O_Desc, "")

 found = False

 For Each att In obj.Attributes

 If att.Name = mod_att.O_Desc Then

 found = True

 If mod_att.O_Value <> "" Then

obj.SetAttributeValue(mod_att.O_Desc, mod_att.O_Value)

 End If

 If found Then Exit For

 Next

 Next

 End If

 Console.WriteLine(doc)

 doc.Save(XMLDOCFILEPATH)

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 End Sub

 Public Sub Add_Schema_Name(ByVal Project_Name As String, ByVal

Schema_Name As String)

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

101

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim elm = <Schema></Schema>

 elm.Add(New XAttribute("Name", Schema_Name))

 prj.<Schemas>(0).AddFirst(elm)

 Console.WriteLine(doc)

 doc.Save(XMLDOCFILEPATH)

 End If

 End Sub

 '' used to return the list of avaliable projects

 Public Function Get_Project_List() As List(Of String)

 Dim prj_list As List(Of String) = New List(Of String)

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj = (From m In doc.Descendants.Elements("Project"))

 For Each itm In doc.Descendants.Elements("Project")

 prj_list.Add(itm.Attribute("Name").Value)

 Next

 Return prj_list

 Catch ex As Exception

 prj_list.Add("Empty List" & ex.Message)

 Return prj_list

 End Try

 End Function

 '' used to return the list of project Schemas

 Public Function Get_Schema_List(ByVal Project_Name As String) As

List(Of String)

 Dim Sch_list As List(Of String) = New List(Of String)

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj = (From m In doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim Sch = (From m In prj.Elements("Schemas").Elements)

 For Each itm In Sch

 Sch_list.Add(itm.Attribute("Name").Value)

 Next

 End If

 Return Sch_list

102

 Catch ex As Exception

 Sch_list.Add("Empty List" & ex.Message)

 Return Sch_list

 End Try

 End Function

 '' used to return the list of Schema objects

 Public Function Get_Schema_Object_List(ByVal Project_Name As String,

ByVal schema_Name As String, ByVal object_name As String) As List(Of

String)

 Dim Obj_list As List(Of String) = New List(Of String)

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj = (From m In doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim Sch = (From m In prj.Elements("Schemas").Elements _

 Where m.Attribute("Name").Value.ToUpper =

schema_Name.ToUpper).First

 Dim Obj = (From m In Sch.Elements)

 For Each itm In Obj

 If object_name <> itm.Name.ToString Then

Obj_list.Add(itm.Name.ToString)

 Next

 End If

 Return Obj_list

 Catch ex As Exception

 Obj_list.Add("Empty List" & ex.Message)

 Return Obj_list

 End Try

 End Function

 '' used to check if schema used by any form

 Public Function Is_Schema_Used(ByVal Project_Name As String, ByVal

Schema_Name As String) As Boolean

 Try

 Return False

 Catch

 Return False

 End Try

 End Function

 '' thismethod can be used to delete ptoject schema

 Public Sub Delete_Project_Schema(ByVal Project_Name As String, ByVal

Schema_Name As String)

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

103

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim sch As XElement = (From m In

prj.Elements("Schemas").Elements _

 Where m.Attribute("Name").Value.ToUpper =

Schema_Name.ToUpper).First

 sch.Remove()

 Console.WriteLine(doc)

 doc.Save(XMLDOCFILEPATH)

 End If

 End Sub

 '' this method can be used to delete schema object

 Public Sub Delete_Schema_objects(ByVal Project_Name As String, ByVal

Schema_Name As String, ByVal Object_Name As String)

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Dim sch As XElement = (From m In

prj.Elements("Schemas").Elements _

 Where m.Attribute("Name").Value.ToUpper =

Schema_Name.ToUpper).First

 Dim Obj As XElement = (From m In sch.Elements _

 Where m.Name.ToString.ToUpper =

Object_Name.ToUpper).First

 Obj.Remove()

 Console.WriteLine(doc)

 doc.Save(XMLDOCFILEPATH)

 End If

 End Sub

 '' this method can be used to delete ptoject

 Public Sub Delete_User_Project(ByVal Project_Name As String)

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If Not (prj Is Nothing) Then

 prj.Remove()

 Console.WriteLine(doc)

 doc.Save(XMLDOCFILEPATH)

 End If

 End Sub

104

 '' used to return both simple and complex type objects

 Public Function return_schema_datatypes(ByVal Project_Name As String,

ByVal Schema_Name As String) As List(Of String)

 Dim type_list As List(Of String) = New List(Of String)

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj As XElement = (From m In

doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).FirstOrDefault

 If prj.HasElements Then

 Dim sch As XElement = (From m In

prj.Elements("Schemas").Elements("Schema") _

 Where m.Attribute("Name").Value.ToUpper =

Schema_Name.ToUpper).FirstOrDefault

 If sch.HasElements Then

 Dim obj_lst = (From m In sch.Elements _

 Where m.Attribute("Object_Type").Value.ToUpper

= "SIMPLE" Or m.Attribute("Object_Type").Value.ToUpper = "COMPLEX")

 If obj_lst.Count > 0 Then

 For Each el In obj_lst

 type_list.Add(el.Name.ToString & ":" &

el.Attribute("Object_Type").Value)

 Next

 End If

 End If

 End If

 Return type_list

 Catch

 Return type_list

 End Try

 End Function

 Public Function check_valid(ByVal val As String, ByVal data_type As

String) As Boolean

 Try

 Select Case data_type

 Case "Decimal"

 Dim dec_val As Decimal = CDec(val)

 Case "Integer"

 'Dim Int_val As Integer = CInt(val)

 If IsNumeric(val) Then

 If val.ToString.IndexOf(".") = -1 Then

 Return True

 End If

 End If

 Return False

 Case "Boolean"

 If IsNumeric(val) Then

 Return False

 Else

 Dim Bol_val As Boolean = CBool(val)

 End If

 Case "Date"

105

 Dim Dat_val As Date = CDate(val)

 Case "Time"

 Dim Tim_val As DateTime = CDate(val)

 Case Else

 End Select

 Return True

 Catch

 Return False

 End Try

 End Function

 Public Sub Select_schema_object(ByVal object_type As String, ByVal

project_name As String, ByVal schema_name As String, ByVal object_name As

String)

 If object_type.ToUpper = "NA" Then '' modify mode

 Dim Schema_object As XElement = Get_Object_Type(project_name,

schema_name, object_name)

 object_type = Schema_object.Attribute("object_type").Value

 If object_type.ToUpper = "ELEMENT" Then

 Dim Mod_Elm As XMLBB.Modify_Element

 Mod_Elm = New XMLBB.Modify_Element(project_name,

schema_name, Schema_object)

 Mod_Elm.Show()

 '' modify atttribute

 ElseIf object_type.ToUpper = "ATTRIBUTE" Then

 Dim Mod_Att As XMLBB.Modify_Attribute

 Mod_Att = New XMLBB.Modify_Attribute(project_name,

schema_name, Schema_object)

 Mod_Att.Show()

 '' modify simple type

 ElseIf object_type.ToUpper = "SIMPLE" Then

 Dim Mod_Simple As XMLBB.Modify_Simple_Type

 Mod_Simple = New XMLBB.Modify_Simple_Type(project_name,

schema_name, object_name, Schema_object)

 Mod_Simple.Show()

 Else

 '' modify complex type

 Dim mod_complex As XMLBB.Modify_Complex_Type

 mod_complex = New XMLBB.Modify_Complex_Type(project_name,

schema_name, object_name, Schema_object)

 mod_complex.Show()

 End If

 ElseIf object_type.ToUpper = "ELEMENT" Then

 Dim New_Elm As XMLBB.New_Element

 New_Elm = New XMLBB.New_Element(project_name, schema_name,

object_name)

 New_Elm.Show()

 '' create new atttribute

 ElseIf object_type.ToUpper = "ATTRIBUTE" Then

 Dim New_Att As XMLBB.New_Attribute

 New_Att = New XMLBB.New_Attribute(project_name, schema_name,

object_name)

 New_Att.Show()

 '' create new simple type

 ElseIf object_type.ToUpper = "SIMPLE" Then

 Dim New_Simple As XMLBB.New_Simple_Type

 New_Simple = New XMLBB.New_Simple_Type(project_name,

schema_name, object_name)

 New_Simple.Show()

106

 Else

 '' create new complex type

 Dim New_Complex As XMLBB.New_Complex_Type

 New_Complex = New XMLBB.New_Complex_Type(project_name,

schema_name, object_name)

 New_Complex.Show()

 End If

 End Sub

 '' used to return the list of Schema objects

 Public Function Get_Object_Type(ByVal Project_Name As String, ByVal

schema_Name As String, ByVal object_name As String) As XElement

 Dim Sch As XElement

 Dim obj As XElement = New XElement("empty")

 Try

 DAL_Path = app.GetValue("ProjectsData", GetType(String))

 XMLDOCFILEPATH = DAL_Path + "\User_Projects.xml"

 doc = XDocument.Load(XMLDOCFILEPATH)

 Dim prj = (From m In doc.Descendants.Elements("Project") _

 Where m.Attribute("Name").Value.ToUpper =

Project_Name.ToUpper).First

 If prj.HasElements Then

 Sch = (From m In prj.Elements("Schemas").Elements _

 Where m.Attribute("Name").Value.ToUpper =

schema_Name.ToUpper).First

 If Sch.HasElements Then

 obj = (From m In Sch.Elements _

 Where m.Name.ToString.ToUpper =

object_name.ToUpper).First

 End If

 End If

 Return obj

 Catch ex As Exception

 Return obj

 End Try

 End Function

End Class

