
Deanship of Graduate Studies

AL - Quds University

Channel-Aware Decision Fusion for Distributed

Classi�cation in MIMO Wireless Sensor Networks

Rushdi Nadi Mahmoud AbuAwad

M.Sc. Thesis

Jerusalem - Palestine

1440 - 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/336842165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Channel-Aware Decision Fusion for Distributed

Classi�cation in MIMO Wireless Sensor Networks

Prepared By:

Rushdi Nadi Mahmoud AbuAwad

B.Sc.: Communication And Electronic Engineering,

Palestine Polytechnic University, Palestine

Supervisor: Dr. Ali Jamoos

A thesis submitted in partial ful�llment of the re-

quirements for the master degree of Electronics and

Computer Engineering/ Faculty of Engineering/ Grad-

uate Studies

1440 - 2019



AL - Quds University

Deanship of Graduate Studies

Master of Electronics and Computer Engineering

Thesis Approval

Channel-Aware Decision Fusion for Distributed

Classi�cation in MIMO Wireless Sensor Networks

Prepared By: Rushdi Nadi Mahmoud AbuAwad

Registration No: 21611219

Supervisor: Dr. Ali Jamoos

Master thesis submitted and accepted. Date:19/5/2019

The names and signatures of the examining committee members are as

follows:

1- Head of Committee: Dr. Ali Jamoos Signature:�����

2- Internal Examiner: Dr. Ahmad Abdou Signature:�����

3- External Examiner: Dr. Ashraf Al-Rimawi Signature:�����[12pt]

Jerusalem - Palestine

1440 - 2019



Dedication

To the memory of my father (may Allah grant him His Mercy), to my

mother who has been supporting and encouraging me all the way, to

my beloved wife, for her outstanding and highly appreciated patience

day and night throughout the time of my study, to my son and

daughter, to my brother and sister.

friends and all of my family



Declaration

I certify that this thesis submitted for the degree of Master is the result of my own

research, except where otherwise acknowledged, and that this thesis (or any part

of the same) has not been submitted for higher degree to any other university or

institution.

Signed:.......................

Rushdi Nadi Mahmoud AbuAwad

Date:19/5/2019

i



Acknowledgements

First of all, I thank God for every thing.

I am very grateful to my supervisor Dr. Ali Jamoos. I feel it is a great fortune

to be supervised by Dr. Ali. Dr. Ali is a knowledgeable scholar, deep thinker and

hard worker. He has a keen insight into the research topics and gives very helpful

instructions to me. Besides, his enthusiasm, responsibility and rigor make him a

role model to my future career. I could not have obtained this degree in such an

enjoyable way, nor would I have the same strong motivation and interest toward

research, if not for Dr. Ali. In addition to academics, he gave me many personal

helps when I was in need, which I am equally, or even more, thankful to him.

As always, I am thankful to my parents for supporting me to pursue my aca-

demic goal. Their encouragement and support through all these years meant more

than what I can express in words.

Last but by no means least, I am thankful to all my teachers and friends.

Their support is indispensable to my completing the master degree.

ii



Abstract

Wireless sensor networks (WSNs) have become a rich research area through

the last few years. That is because of its high �exibility, mobility and cost e�ciency.

WSNs have many application such as security, surroundings and battle�eld moni-

toring. The very important part must be investigate in the design of WSN is how

to transact with the observed information at the decision fusion center (DFC) so as

to obtain the �nal decision about a certain phenomena.

We study several fusion rules such as optimum rule, maximum ratio com-

biner (MRC), equal gain combiner (EGC), max-log rule, chair varshney-maximum

likelihood (CV-ML) and chair varshney-minimum mean square error (CV-MMSE)

applied at the DFC for one hypothesis which requires both the channel state infor-

mation (CSI) and the sensors indices. The need of these information is assumed as

an overhead in power and bandwidth obliged systems such as WSNs. The above

rules used to �xed the matter about implementations and give a wide spectrum of

choices for reducing complication and minimal system knowledge. All these rules

still signi�cantly interest from adding several antennas at the DFC.

We study in this thesis the fusion of decisions in distributed multiple input

multiple output (MIMO) WSN with M -ary hypothesis and binary local decisions,

where M is the number of hypothesis to be classi�ed. The detection of distributed

schemes for testing of M -ary hypothesis often assume that for every observed phe-

nomena the local detector transmits at least log2M bits to DFC. We formulate

three fusion rules for the DFC such as Optimum maximum a posteriori (MAP) rule,

Augmented Quadratic Discriminant Analysis (A-QDA) rule and MAP Observation

bound.

A comparison performance has been obtained through simulation between
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three di�erent fusion rules, optimum (MAP), MAP observation bound, augmented

quadratic discriminant analysis (A-QDA) applied at MIMO WSN system model.

We assumed Rayleigh fading and additive white Gaussian noise (AWGN) channels

between the local detectors (sensors) and the DFC. We investigate the system pa-

rameters e�ect on the system performance at the DFC. We study the e�ect of the

local detector (sensors) performance indices in the case in which all indices are iden-

tical. also investigate the e�ect of the total number of antenna at the DFC, the

number of local detectors, the number of hypothesis and the e�ect of the value of

channel signal to noise ratio (SNR) between the sensing elements and the DFC.

Results obtained by simulation show that the MIMO WSN system model provide

a relatively good performance in terms of detection performance when increasing

the number of antenna at the DFC with lower number of hypothesis for the applied

fusion rules. In addition, simulation results show that the optimum (MAP) rule

has the best performance than A-QDA rule, also the A-QDA needs higher signal to

noise ratio to obtain suitable performances comparable with the optimum (MAP)

rule.

Keywords: Wireless Sensor Networks (WSNs), Distributed hypothesis testing, De-

cisions fusion, fading channels, distributed detection, MIMO, Optimum (MAP) clas-

si�er, Augmented Quadratic Discriminant Analysis (A-QDA).
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Chapter 1 � Introduction

1.1 Wireless Sensor Networks Overview

Dispersal sensing technology has the potential to enhance information gather-

ing and processing in many applications. The ideal Wireless sensor networks (WSNs)

employs multiple local detectors, each local detector equipped with appliances able

to realizing, processing, and communication [1�4]. The interest points of WSN

contain pliability in deployment and the ability of a process, soft charges and quick

introductory setup. Recently many applications has been enabled such as security,

surroundings and battle�eld monitoring. [5, 6].

Every local detector collects and potentially processes information about the

phenomenon and transmits its observations to decision fusion center (DFC) for a

�nal decision. The DFC makes a �nal decision about the certain phenomenon based

on the received local decisions from the local detectors, and potentially triggers an

appropriate action. DFC combines information from several sources in order to im-

prove the fusion of decisions in WSNs and get better classi�cation precision while

diminishing the power utilization and bandwidth demand for information transmis-

sion [7, 8].

Every local detector node in the system has the ability to observe a speci�c

phenomenon and to send information over a parallel access channel (PAC) or mul-

tiple access channel (MAC) to the DFC, in order to makes a �nal decision about

the speci�c phenomenon. Considerable di�culties exist and should be classi�ed in

respect of the visualized application to become actuality. However, the individual

local detector are extraordinarily resource obliged. They have restricted limitation

of capacity and bandwidth of communication. In addition, in many WSN applica-
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Chapter 1 � Introduction

tions, local detectors operate on indispensable power supply, making it necessary

for energy conservation for long existence [9].

The usual architecture for WSN assumes that each local detector communi-

cates through PAC, where each local detector can exploit a channel to communicate

with the DFC as shown in Figure 1.1. As of late, it has been recommended to utilize

the wireless medium as a MAC for DFC, where several sensors communicate with

a single DFC through a common channel as shown in Figure 1.2 [10,11].

Figure 1.1: General system of decentralized detection for PAC

The structure of any WSN could be either decentralized or centralized as ap-

peared in Figure 1.3(a) and Figure 1.3(b) [12]. In the decentralized scheme, every

sensor gets noisy measurements and makes a local decision regarding a speci�c phe-

nomena and sends its local decision to the DFC where the �nal decision about the

phenomena is taken. In the centralized scheme, each sensor gets noisy measure-

ments and transmit their raw information to the DFC to make a �nal decision. In

this scheme, there are no decisions regarding the phenomena obtained by the sen-
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Chapter 1 � Introduction

Figure 1.2: General system decentralized detection for MAC

sors and the sensors just re-transmit the received measurement to the DFC. While

the centralized scheme performs better than the decentralized scheme, the power

consumption and the channel bandwidth requirements for the centralized scheme is

much more than that for the decentralized scheme because each sensor transmits a

raw data to the DFC, so the decentralized scheme is of particular interest [12].

There are three primary topologies for WSN, parallel, serial and tree [13].

Figure 1.3a shows the parallel topology for WSN which is the most widely recog-

nized topology considered in literature [12]. In this topology, every sensor, k, gets

an observation denoted by xk regarding a speci�c phenomena. All sensors make

their own decisions regarding the phenomena and transmit their own decisions, uk,

to the DFC. The �nal decision, uo, in the case of parallel topology settled on depen-

dent on the own decisions for all sensors and not on their individual got observations.

The serial topology is appeared in Figure 1.4. Considering K sensors in the

network, only the �rst sensor makes the local decision dependent on its own per-
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Chapter 1 � Introduction

(a) Decentralized (b) Centralized

Figure 1.3: WSN structures

ception, while the K − 1 sensors did their local decisions based on their own got

observations and the got local decisions from the previous sensors. The �nal decision

in serial topology based WSN is created at the Kth sensor in the network.

Figure 1.4: Serial topology for WSN

The tree topology for WSN is appeared in Figure 1.5. Considering K sensors

in the network, the network is divided into levels up to K
2
levels. In Level 1, the �rst

two sensors get their own observations and transmit their local decisions to the next

sensor in Level 2. The remaining K
2
sensors in the network get their own observations
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Chapter 1 � Introduction

regarding the phenomena and also get the local decisions from two sensors in the

higher level. Decision fusion is applied and the sensors transmit their local decisions

and observations to the sensor in the next level. The �nal decision takes place at

the K
2
th level. However, in our research we consider the MAC architecture with

decentralized structure for WSN.

Figure 1.5: Tree topology for WSN

The central interest in this thesis is making use of signal processing algorithms

for a WSN engaged in a detection task. As with any detection problem, including

classical distributed detection theory, decision making is confronted with the uncer-

tainty in the state of the phenomenon. This uncertainty may be due to observation

noise and propagation distortion from the target of interest to the sensors.
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Chapter 1 � Introduction

1.2 Literature Review

The issue of distributed detection has been contemplated broadly in the pre-

vious decades. In [14], distributed detection algorithm proposed in the case of two

sensors. A careful and relatively recent overview on distributed detection can be

discovered in [15] and [16].

Decisions combination represents a formal system that arrangements with an

information gathered from di�erent resources to obtain a more quality of �nal de-

cision about a speci�c hypothesis [17]. Choices combination with vulnerability has

been inspected and a bayesian testing approach has been proposed to address this

issue [18].

Combination of decisions under communication constraints has been explored

by various authors earlier. In [19] and [20], optimum fusion rule has been obtained

under the restrictive autonomy presumption. Distributed detection in a constrained

network has been also considered in [21�23]. Decisions combination which are

associated to one another has been examined in [24]. Decisions combination in

WSN worked in multiple input multiple output (MIMO) channel has been studied

in [25,26].

In [11, 25, 27] the authors studied channel-aware decision fusion through a

Rayleigh �at fading channel with various antennas at the DFC, they o�ered di-

verse imperfect rules for fusion with minimized system awareness and instantaneous
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Chapter 1 � Introduction

channel state information (CSI). As of late, a few sub-optimal fusion rules have been

inspected in the ongoing writing, such as log likelihood ratio (LLR), maximum ratio

combiner (MRC), equal gain combiner (EGC), chair varshney-maximum likelihood

(CV-ML). In [28] the authors have presented theoretical performance analysis of the

MRC rule for channel-aware decision fusion over MIMO channels for independent

and dependent local decisions.

The distributed detection of channel-aware has been advised in [29�31] which

combine the wireless channel conditions in calculation structure. Fading channels

get more consideration in recent research reports [32]. A majority logic fusion rule

which combines the fading channels among the local detectors and the DFC has

been suggested in [33]. Most designs commonly expect that the information about

channel is known at the DFC. A new fusion rule was studied in [32], which needs

just the channel statistics rather than the instantaneous CSI has been constructed.

This is more practical since the accurate information of CSI may be costly to acquire.

In [25], for complexity limitation, the authors assume that the sensors make

independent local decisions on the hypotheses based on their respective observations

and forward these decisions over a MIMO channel to a DFC which makes a �nal

decision about the state of the phenomenon based on the hypothesis. The use of

multiple antennas at the DFC in order to avoids deep fading scenarios. The authors

in [34] demonstrate that when the quantity of reception antennas at DFC is very

large, low intricacy calculations can asymptotically achieve an upper bound on per-

formance of detection nevertheless using a receiver with incomplete CSI.

8



Chapter 1 � Introduction

Most researches of parallel distributed detection for M-ary hypothesis expect

that for every observation the sensor sends at minimum log2M binary data to the

DFC, where M is the number of hypothesis to be classi�ed. However, the authors

in [35] assuming that it is possible to transmit bits using less than log2M .

1.3 Thesis Contributions and Organization

The fusion of decisions model describing WSNs in the existence of MIMO

channel is illustrated in �gure (1.6). This system model assumes that each sensor

communicates through MAC for DFC while coping with existence of substantial

interference.

Figure 1.6: The decision fusion model in existence of MIMO channel [36]

In our research work, the propose model in [36] is extended to include dis-

9



Chapter 1 � Introduction

Figure 1.7: Proposed decision fusion model with distributed M -ary hypothesis and
MIMO channel

tributedM -ary hypothesis testing [35]. Particularly, we will consider channel-aware

decision fusion in distributed MIMO WSN with M -ary hypothesis testing and bi-

nary local decisions as shown in Figure 1.7. In addition, we will design fusion rules

with simpler implementation and possibly reduced system knowledge.

10
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Chapter 2 � Fusion of Decision Model in Existence of MIMO Channel

In this chapter, the fusion of decisions model describing WSN in the existence

of MIMO channel that incorporates fading and noisy channels between the sensors

and the DFC. The system model is divided into three categories and each category

is illustrated in details in the next sections. Moreover, the state of the art of the

decision fusion rules are presented which have been described and derived in [36].

2.1 WSN System Model Categories

The fusion of decisions model describing WSN in the existence of MIMO chan-

nel is illustrated in Figure 2.1. This system model assumes that each sensor com-

municates through MAC for DFC while coping with existence of Substantial inter-

ference.

Figure 2.1: The fusion decision model in existence of MIMO channel [36]

There are two hypotheses under test, H1 (present of target), and H0 (absent

of target). Each sensing elements gets noisy measurements and processes these

measurements for the sake of making local decision regarding the hypothesis under

test. At that point, every sensor transmits the got information to the DFC through

12



Chapter 2 � Fusion of Decision Model in Existence of MIMO Channel

multiple access channels (MACs) which hew Rayleigh �at fading and additive white

Gaussian noise (AWGN) due to the bandwidth of channel is larger than the band-

width of the transmitted signal.

2.1.1 Category 1: Sensors (Local Detectors)

In this category, all the local detector get noisy measurements according to

a certain hypothesis. In this work, the observations are assuming independent of

each other. After getting its observation, xk, each local detector , k, makes binary

local decision: uk = 1 is sent if H1 is decided, and uk = −1 is sent otherwise, where

k = 1, . . . , K and K is the total number of local detectors in the network. The local

binary decision is made by each local detector upon the below equation:

uk =

 1 : xk > 0

−1 : xk < 0

 (2.1)

In addition, we assume that every sensor node makes a binary local decision

based on its own observation. The detection performance of every local detector

node can be characterized by its corresponding detection probability which denoted

by PD,k and false alarm probability which also denoted by PF,k.

In general, the detection and false alarm probabilities may not be equal and

they are functions of signal to noise ratios as long as the detection sill at every local

detector. Figure 2.2 describes these two probabilities.

13



Chapter 2 � Fusion of Decision Model in Existence of MIMO Channel

Figure 2.2: Conditional detection and false alarm probabilities [12].

2.1.2 Category 2: Fading and Noisy Channels

The sensing element communicate with the DFC through a wireless MAC.

The N receive antennas are utilized at the DFC in order to take the advantage of

diversity and combat the attenuation in the signal because of small-scale fading of

the wireless medium, this con�guration determines basically a distributed MIMO

channel, as shown in Figure 2.1 [8].

The obtained signal for nth receiving antenna of the DFC after �ltering and

sampling is denoted by yn, the fading coe�cient between sensors and DFC is denoted

by hn,k ∼ Nc (0, 1), also the AWGN with zero mean and variance σ2
w is denoted by

wn.

This model at the DFC is obtained upon the following:

y = Hd+w (2.2)

where y ∈ CN , H ∈ CN×K , d ∈ XK , w ∼ NC(0N , sigma
2
wIN), are the received

signal vector at the DFC, the channel matrix of y, the transmitted signal vector and

14



Chapter 2 � Fusion of Decision Model in Existence of MIMO Channel

the noise vector of y respectively.

2.1.3 Category 3: Decision Fusion Center:

The most important Category in WSN system is DFC. It will be prepared with

N received antennas so as to makes a �nal decision uo regarding a certain hypothesis

based on the received yk information for all local detector. This is might a chance

to be carried out by applying a certain fusion rule at the DFC. In order to make

�nal decision, the CSI and the local sensing elements performance parameters are

required according to the used fusion rule at the DFC. The following mathematical

statement portrays those capacity of the DFC after forming a certain statisticΛ:

uo =

 1 : Λ > T

−1 : Λ < T

 (2.3)

where uo is the �nal decision, Λ is the fusion statistic and T is the decision threshold

at the DFC.

2.2 State of the Art on Decision Fusion Rules

The decision fusion rule through MIMO channels are arranged under Decode-

and-Fuse (DaF) and Decode-then-Fuse (DtF) methodologies. A short survey of the

developed fusion rules was given in [36].
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Chapter 2 � Fusion of Decision Model in Existence of MIMO Channel

2.2.1 Decode-and-Fuse:

1. Optimum Rule: The optimal test [37] for the considered problem can be formu-

lated as:

Λopt = ln

[
p(y|H1)

p(y|H0)

]
Ĥ=H1

≶
Ĥ=H0

(2.4)

where p(y|H1) is the probability of y when H1 is present, p(y|H0) is the probability

of y when H0 is present and Ĥ is the decided hypothesis.

2. (MRC) : The LLR of (2.4) can be rearranged under those suspicion of typical

local detectors [38, 39] i.e.(PD,k, PF,k) = (1, 0) , k ∈ K. In this case the sending

vector x ∈ (1K ,−1K) and the (2.4) reduces to:

ΛMRC = ln

e− ‖y−H1K‖
2

2σ2

e−
‖y+H1K‖2

2σ2

 ∝ Re
(
1tKH

†y
)

(2.5)

where (·)t the matrix transpose and (·)† the matrix conjugate transpose

3. (EGC): Prompted by the fact that resembles a MRC fact for di�ering diversity

combining, an third elective in the form of an EGC has been suggested previously

[40], which obliges little amount of data:

ΛEGC = Re
(
z†y
)
z = ej∠(H1K) (2.6)
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Chapter 2 � Fusion of Decision Model in Existence of MIMO Channel

4. Max-Log Rule: The approximation of max-log is expressed as in [41] as below:

Λmax−log = min
x∈XK

[
‖y −Hx‖2

2σ2
−

K∑
k=1

lnP (xk|H0)

]
−min
x∈XK

[
‖y −Hx‖2

2σ2
−

K∑
k=1

lnP (xk|H1)

]
(2.7)

2.2.2 Decode-then-Fuse:

1. CV-ML: The following statistic, termed as the CV fusion statistic has been

indicate in (2.8) [41] as:

ΛCV−ML = arg min
x∈XK

‖y −Hx‖2 (2.8)

where ΛCV−ML is fusion statistic of CV-ML, y is the received signal vector at

the DFC, H the channel matrix of y and x is the transmitted signal vector.

2. CV-MMSE: In order to reduce the system complexity, a sub-optimal rule

obtained via the MMSE solution [41] and it is concern with correlation between

symbols which obtain the same hypothesis. This problem was discussed in [42], the

following MMSE decoder should be considered [37]:

ΛMMSE = sign
[
x̄+C†H

(
HC†H + 2σ2IN

)−1
(y−Hx̄)

]
(2.9)
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where x̄ = E (x) and C , E(x− x̄) (x− x̄)†.

In the Figure 2.3 shown, a performance comparison between the above fusion

rules in term of receiver operating characteristics curves (ROC). These curves ob-

tained by MATLAB simulation. In this simulation, �rst, a noisy data is generated

for both phenomena (H0, H1), then each sensing element make its decision based

on the sign of the received measurement according to (2.1). The obtained decisions

are then transmitted to the DFC by each sensor and it is assumed that the chan-

nel between each sensor and the DFC undergoes independent Rayleigh fading and

AWGN and the channel signal to noise ratio (SNR) is 15 dB, also with 8 sensors and

2 antennas at the DFC. The local sensing elements performance indices values, i.e.

the PD,k and PF,k are 0.5 and 0.05 respectively. The global decisions are obtained

by the DFC according to (2.1). Through this simulation, the range of threshold (

i.e. -30:30 ) is made in order to get a wide range of PD,k and PF,k.

It is apparent in the �gure shown above that the ROC for max-log rule is

much similar with optimum rule ROC, where this result is independent on channel

SNR. However, there are an intersection point between the ROCs of MRC and EGC,

CV-ML and CV-MMSE, respectively. However, while in the �rst case the result is

independent of the speci�c channel SNR, in the latter case it depends on the poor

performances of CV-ML statistics, due to the low channel SNR.

The performance comparison between the above fusion rules is shown in Fig-

ure 2.4 as a function of probability of detection and the channels SNR, in a network

with number of sensor K = 8; we plot the cases N ∈ (1, 2) to investigate the e�ect

18
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Figure 2.3: ROCs for the presented fusion rules, channel SNR = 15 dB, PD,k =
(0.5), PF,k = (0.05), number of sensors K=8 and number of antenna N = 2.

on performances when two antennas are employed at the DFC. At high and low

channel SNR the CV-ML and MRC curves approach the optimum curve, respec-

tively, also max-log achieve same performance as optimum rule at all channel SNR

range.

Figure 2.5 shows the performance comparison for the above fusion rules as

a function of probability of detection and the number of antennas for the cases

(SNR) ∈ (5, 15)dB under PF0 ≤ 0.01, the plotted cases are examined the perfor-

mance when increasing the number of antennas under channel SNR values. We

notice when we increasing the number of antennas at the DFC is bene�cial for all

the fusion rules.
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Figure 2.4: PD0 vs average channel (SNR) for the presented fusion rules, channel
SNR = 15 dB, PD,k = (0.5), PF,k = (0.05), number of sensors K=8 and number of
antennas N = (1, 2).

Comparison between the presented rules in term of the probability of error

PE0 in the network as a function of the number of sensors K, we plot the case

PD,k = (0.7), PF,k = (0.05) to investigate the results observed. We assume a network

with di�erent number of antennas at DFC and the average channel (SNR) = 15

dB.

Another performance comparison between the above fusion rules is shown
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Figure 2.5: PD0 vs number of antenna N for the presented fusion rules, number of
sensors K=8, PD,k = (0.5), PF,k = (0.05). SNR = (5, 15) dB.

in Figure 2.6, Figure 2.7 as a function of probability of error and the number of

sensor for the cases N ∈ (1, 2) under �xed SNR channel. It can be notice that

the probability of error for EGC is lower than the probability of error for MRC

due to the intersection point in the ROCs curves. However, increasing the num-

ber of received antennas at the DFC will reducing probability of error attainable

by each rule. In addition, the minimum error probability is obtained by using large

number of sensor, also e�ects slop and limiting value of probability of error for MRC.
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Figure 2.6: PE0 vs number of sensorsK for presented fusion rules, number of antenna
N = 1 at DFC and channel SNR = 15 dB, PD,k = (0.7), PF,k = (0.05).
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Figure 2.7: PE0 vs number of sensorsK for presented fusion rules, number of antenna
N = 2 at DFC and channel SNR = 15 dB, PD,k = (0.7), PF,k = (0.05).
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3.1 Motivation

In the previous chapter we study the fusion rules. The study was inspired

by the need of multiple received antennas at the DFC to acquire an emotional

improvement in exhibitions with a diminished WSN power budget. The introduced

choices solve the problem in about implementations and spectrum to diminished

complexity and lower information about the system. All these rules still signi�cantly

still altogether pro�t by the expansion of antennas at the DFC. However, in this

chapter we will consider channel-aware decision fusion in distributed MIMO WSN

with M -ary hypothesis testing and binary local decisions. In addition, extending

the analysis for optimum and observation bound rule to include M -ary hypothesis

testing and design other fusion rules with less complexity of implementation and

conceivably diminished information about the system.

3.2 System Model

In our system we considerM -hypotheses test, where K local detectors are uti-

lized to segregate among the hypotheses of the set H = {H1, . . . ,HM}. The a priori

probability of hypothesis Hi ∈ H is denoted P (Hi). The kth local detector observed

a binary data dk ∈ X , where X , {−1, 1}, about the obtained phenomenon on the

premise of its own measurements.

Our distributed detection system utilize K local detectors to study a typical

volume for evidence of one of the M -hypotheses within H. These local detectors

are registered to did a single binary decision per observation, representing a binary

phase shift keying (BPSK) modulation. The DFC uses the vector of local binary

decisions d ∈ {−1, 1}K to form a �nal decision Ĥ for one of the M -hypotheses.
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We appropriate to this model the marginal probability mass function (pmf) of

kth sensor decisions over the probabilities of transition ρk,m, m = 1, . . .M , where

ρk,m is the probability that the kth sensor transmits dk = 1 to the DFC when

presented one of the M -hypotheses is namely,

ρk,m , Pr {dk = 1|Hm} . (3.1)

The above probabilities are summarized for kth sensor in the vector as the following:

ρk ,

[
ρk,1 · · · ρk,m

]T
(3.2)

The N receive antennas are utilized at the DFC in order to take the advantage

of diversity and combat the attenuation in the signal because of small-scale fading

of the wireless medium, this con�guration determines mainly a distributed MIMO

channel as shown in [8] MIMO channel.

The obtained signal for nth receiving antenna of the DFC after �ltering and

sampling is denoted by yn, the fading coe�cient between sensors and DFC is denoted

by hn,k ∼ Nc (0, 1), also the AWGN with zero mean and variance σ2
w is denoted by

wn.

where Nc (0, 1) is the complex normal distribution with zero mean vector and unity

covariance matrix. This model at the DFC is obtained upon the following:

y = Hd+w (3.3)
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where y ∈ CN , H ∈ CN×K , d ∈ XK , w ∼ NC(0N , sigma
2
wIN), sigma

2
w, IN

are the received signal vector, the channel matrix, the transmitted signal vector

and the noise vector, variance of white gaussian noise, the null vector of length N

respectively. It is not di�cult to show that the received signal, under hypothesis

Hm, is distributed as:

y|Hm ∼
∑
d∈XK

NC(Hd, σ2
wIN) P (d|Hm) , (3.4)

The system model in (3.3) can be underloaded when the number of sensor less

than number of antenna at DFC, fully-loaded when the number of sensor equal to

the number of antenna at the DFC or overloaded when the number of sensor more

than number of antenna at DFC. The reasonable case in WSN is overloaded case,

typically when the number of antenna employed at the DFC is much less than the

number of sensor.

The total average of SNR in the WSN is formulated as:

SNR , Es/σ2
w = KN/σ2

w (3.5)

where σ2
w is the variance of white Gaussian noise, Es power spectral density of the

signal, K total number of sensor, N total number of antenna at DFC.

The second order characterization of the received vector under hypothesis Hm (i.e.
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y|Hm) is given by:

E{y|Hm} = H E{d|Hm} (3.6)

Σy|Hm = H Σd|HmH
† + σ2

w IN (3.7)

Σ̄y|Hm = H Σd|HmH
T (3.8)

where E{y|Hm} is the mean vector of y, Σy|Hm is the covariance of y and Σ̄y|Hm is

the pseudo-covariance of y, respectively.

The proof is given in Appendix 5.2.

The augmented covariance of y|Hm is given in closed form as:

Σy|Hm = H Σd|HmH
† + σ2

w I2N . (3.9)

where σ2
w, I2N is the variance of white Gaussian noise, the null vector of length 2N

respectively.
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3.3 Fusion Rules

3.3.1 Optimum Maximum A Posteriori (MAP) Rule

The test of optimal [37] for the assumed issue is that minimizing the fusion

error-probability, that is the MAP criterion, formulated as

Ĥmap , arg max
Hm

P (Hm|y) (3.10)

= arg max
Hm

p(y|Hm)P (Hm)

p(y)
(3.11)

= arg max
Hm

p(y|Hm)P (Hm) (3.12)

= arg max
Hm

ln p(y|Hm) + ln πm. (3.13)

where Ĥ and πm , P (Hm). An explicit expression of the log-likelihood ln p(y|Hm)

from (3.10) is given by

ln p(y|Hm) = ln

[ ∑
d∈XK

p(y|d)P (d|Hm)

]
(3.14)

= ln

[ ∑
d∈XK

1

σ2
w

exp

(
−‖y −Hd‖

2

σ2
w

)
P (d|Hm)

]

where we have abused the conditional independence of y from Hm (given d).
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3.3.2 MAP Observation bound Rule

For examination purposes we refer to �observation bound� [10],where the op-

timum performances through a noise free channel, given by the following classi�er:

Ĥobs , arg max
Hm

P (Hm|d) (3.15)

= arg max
Hm

ln p(d|Hm) + ln πm . (3.16)

It is clearly the MAP observation bound rule should be intended as an opti-

mistic upper bound on the classi�cation performance which can be achieved over a

virtual MIMO channel.

3.3.3 Augmented Quadratic Discriminant Analysis (A-QDA)

Rule

The following classi�er based on a complex version of quadratic discriminant

analysis can be obtained [43]:

Ĥqda , arg min
Hm

{
(y − E{y|Hm})†Σ−1y|Hm (y − E{y|Hm})

+ ln det
(
Σ−1y|Hm

)
+ ln πm

}
(3.17)

where E{y|Hm} = H E{d|Hm} and the augmented covariance of y|Hm is given in

closed form as:

Σy|Hm = H Σd|HmH
† + σ2

w I2N . (3.18)
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In this chapter, the general execution of di�erent fusion rules which uti-

lized at the DFC in the WSN system model is tested. Moreover, the rapprochement

of performance for di�erent fusion rules is executed over numerical analysis so as to

get ROC curves for di�erent fusion rules with di�erent hypothesis. Moreover, we

studied the in�uence of di�erent factors that may in�uence the performance of a

fusion rule such as the average SNR values for communication channel, number of

local detectors in the network (i.e. K), the number of antenna at the DFC (i.e. N),

number of hypothesis (i.e. M) and the local detectors information (i.e. PD,k and

PF,k).

4.1 Comparison of Performance Among Di�erent

Fusion Rules Utilized at theWSN SystemModel

In this subsection, the general execution of di�erent fusion rules which utilized

at the DFC in the WSN system model is tested. Moreover, the rapprochement of

performance for di�erent fusion rules is executed over numerical analysis so as to

get ROC curves for di�erent fusion rules with di�erent hypothesis. Moreover, we

studied the in�uence of di�erent factors that may in�uence the performance of a

fusion rule such as the average SNR values for communication channel, number of

local detectors in the network (i.e. K), the number of antenna at the DFC (i.e. N),

number of hypothesis (i.e. M) and the local detectors information (i.e. PF,k and

PF,k).

ROC: We show, for the derived rules, in Figure 4.1 and Figure 4.2 we show

the ROC (i.e. PD vs PF ), for di�erent fusion rules with K = 8 local detectors and

N = 2 antennas at the DFC, the a channel (SNR) = 15 dB for di�erent number of
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hypothesis.

The recognized detection performance shown in Figure 4.1 and Figure 4.2 and

we conclude that the optimum map fusion rule extends the best performance among

the other fusion rules among number of di�erent hypothesis.
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Figure 4.1: ROC for the optimum MAP and observation bound rules. Channel
SNR = 15 dB, PD,k = (0.5), PF,k = (0.05), number of local detectors K=8 and
number of antenna N = 2.
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Figure 4.2: ROC for the A-QDA rule. Channel SNR = 15 dB, PD,k = (0.5),
PF,k = (0.05), number of local detectors K=8 and number of antenna N = 2.

4.2 The E�ect of the Channel SNR Between the

Sensors and the DFC

In this scenario we consider that the local detector indices are identical under

the same value of channel SNR between the sensors and the DFC. However, the

channels SNR to the DFC in this scenario are not Fixed and we study the e�ect of

the channels quality for a wide rage of SNRs.

In Figure 4.3 and Figure 4.4, a comparison in terms of the performance of

detection versus the average channel SNR between di�erent fusion rules utilized at

the WSN system model.
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Figure 4.3: PD vs channel (SNR) dB for the optimum MAP and observation bound
rules, PD,k = (0.5), PF,k = (0.05), number of local detectors K=8 and number of
antenna N = 2.

PD vs. (SNR) dB: In Figure 4.3 and Figure 4.4 , we simulate, for the derived

rules, PD as a function of the average channel (SNR) dB for di�erent hypothesis,

we consider WSN with �xed number of sensors and antennas at K = 8 and N = 2

respectively, we plot the casesH ∈ {H2, H4, H6, H8} in Figure 4.5 while in Figure 4.6

we plot the cases H ∈ {H3, H4, H6, H8}. We plot these scenario to investigate

the e�ect on performances when di�erent hypothesis are exist. It can be noticed

from Figure 4.3 and Figure 4.6 that at higher channel SNR we can achieve higher

performance. In Addition, the optimum map rule is better performance than other

AQDA rule for di�erent hypothesis scenarios. However, in Figure 4.6 we shows that
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Figure 4.4: PD vs channel (SNR) dB for the A-QDA rule, PD,k = (0.5), PF,k =
(0.05), number of local detectors K=8 and number of antenna N = 2.

the WSN system model could signi�cantly raise the performance of A-QDA fusion

rule for higher SNR values for di�erent hypothesis scenarios.

All the presented rules signi�cantly bene�t from the presence of two anten-

nas at DFC with lower number of hypothesis.When we have 2 or 4 hypothesis, the

optimum map has the best range of improvement in the [5, 20] dB and reaches the

observation bound at (SNR) ≈ 20 dB, While that the (SNR) ≈ 25 dB when there

is 6 or 8 hypothesis. The A-QDA needs higher value of SNR to gain acceptable

performances, but the case 3 or 4 hypothesis as yet needs less power to reach the

observation bound. Finally decreasing number of hypothesis not only increase the

detection performances for the presented rules at low-medium SNR, but also give

better limiting performances.
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4.3 The E�ect of the Number of Antenna Used at

the DFC

Performance comparison between di�erent fusion rules as a function of number

of antenna N at the DFC is shown in Figure 4.5 and in Figure 4.6. We consider

�xed values of SNR at 15 dB, system probability of false alarm P (fo) = 0.01, the

local detectors have a performance indices of PD,k = (0.5), PF,k = (0.05).
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Figure 4.5: PD vs N for the optimum MAP and observation bound rules, PD,k =
(0.5), PF,k = (0.05), number of local detectors K=8 and (SNR) = 15 dB.
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Figure 4.6: PD vs N for the A-QDA rule, PD,k = (0.5), PF,k = (0.05), number of
local detectors K=8 and (SNR) = 15 dB.

PD vs. N : In Figure 4.5 and Figure 4.6, we simulate, for the derived fusion

rules, the PD as a function of the number of antenna N for di�erent hypothesis,

we plot the case PD,k = (0.5), PF,k = (0.05), we consider wireless system with

K = 8 local detector and the value of channel (SNR) ≈ 15 dB, also we plot the

cases H ∈ {H2, H4, H6, H8} in Figure 4.5 while in Figure 4.6 we plot the cases

H ∈ {H3, H4, H6, H8} to investigate the e�ect of number of antenna N at the DFC

under realistic channel SNR value in the proposed WSN system model for the vari-

ous fusion rules with di�erent hypothesis. It is apparent that adding more antennas

at the DFC is more bene�cial for the presented rules, however, a saturation e�ect is

present. The e�ect of saturation depends on the channel SNR and the chosen rule

of fusion, but also number of hypothesis. In addition, it can be noticed that when
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the number of hypothesis increasing the performance detection will decreasing, so

we get better performance when increasing the number of antenna and decreasing

number of hypothesis. In particular, speci�c con�gurations achieve the observation

bound (e.g. optimum map with N = 4 at (SNR) = 15 dB) while others (e.g. A-

QDA with N = 7 at (SNR) = 15 dB). Moreover, an increase in number of antennas

N and decrease the number of hypothesis gives a increase in performance detection.
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5.1 Conclusions

In this thesis, the problem of fusion of decisions for distributed classi�cation

in MIMO wireless sensor networks is studied. Many decision fusion rules proposed

in literature, these fusion rules are mainly applied at the DFC and they have dif-

ferent performance and require a variety of information so as to get a �nal decision

with respect to a certain phenomena. In addition these fusion rules solve the issues

about �xed point implementations and present a wide spectrum of choices for re-

duced complexity and lower system knowledge.

The comparison has been outright through MATLAB simulation for three dif-

ferent fusion rules, optimum (MAP), MAP observation bound, A-QDA applied at

MIMO WSN system model. We investigate the e�ect of the system parameters on

the overall system performance at the DFC. We study the e�ect of the local sensing

elements information are assumed identical, also investigating the e�ect of the total

number of antenna at the DFC, the number of sensing elements, the number of

hypothesis and the e�ect of the value of the SNR between the sensing elements cat-

egory and the DFC. Numerical results show that the derived system model provide

a relatively better execution when increasing the number of antenna at the DFC

with lower number of hypothesis for the applied fusion rules (i.e. that the optimum

(MAP) has the best performance than A-QDA rule).

5.2 Future Work

Several research problems exist and may extend the current work presented in

this thesis and they are listed as below:
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1. In this thesis, we extending the mathematical analysis of optimum and obser-

vation bound rules, however, we may extend the analysis of other rules which

discuss in Section 2.2.

2. In this work, we get the numerical result for 8 hypothesis, however, we can

get the numerical results for hypothesis greater than 8.

3. In this work, we assume that the channel between the sensors layer and the

DFC is Rayleigh channel. However, in some scenarios there may exist a line

of sight between the sensors and the DFC, thus another fading distribution

may be considered such as rician fading distribution. We could investigate

to combine the decisions that is sending through rician fading channels and

the ability to apply the proposed WSN model in the case of rician and other

fading channels.
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uo �nal decision fusion center

uk local decision made by the sensing element

xk received noisy by sensing element

K total number of local detectors

N total number of antenna

E{·} the expectation value

var{·} the variance value

(·)T the matrix transpose

(·)† the matrix conjugate transpose

‖·‖ Euclidean norm operators

det(A) the determinant of A

Re (·) real part

Im(·) imaginary part

AK the k-ary Cartesian power of A

0N the null vector of length N

ON×K the N ×K null matrix

Pdk sensing element probability of detection
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Pfk sensing element probability of false alarm

Λ fusion statisic

σ2 variance of white Gaussian noise

T decision threshold

P (·) the probability of mass function (pmf)

p(·) the probability of density function (pdf)

diag(A) the diagonal matrix extracted from A

Σx the covariance matrix of the complex-valued random vector x

NC(µ,Σ) complex normal distribution with mean vector µ and covariance matrix Σ

∝ statistically equivalent to

∼ distributed as
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Appendix A

Second− ordercharacterizationofy|Hm

In this appendix we provide a second-order characterization for y|Hm. First, We

recall that the exact pdf is

y|Hm ∼
∑
d∈XK

P (d|Hm)NC(Hd, σ2
w IN), (5.1)

which is recognized as a mixture of 2K proper complex-valued Gaussian vectors.

Then, we evaluate the mean vector of y|Hm as follows:

E{y|Hm} =
∑
d∈XK

E{y|d}P (d|Hm) = (5.2)

H
∑
d∈XK

dP (d|Hm) = H E{d|Hm} (5.3)
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It is worth remarking that (5.3) was obtained by exploiting E{w} = 0N . Di�erently,

the covariance matrix is evaluated as

Σy|Hm = E {[H (d− E{d|Hm}) +w]

[H (d− E{d|Hm}) +w]† |Hm

}
= (5.4)

H Σd|HmH
† + E{ww†} = (5.5)

H Σd|HmH
† + σ2

w IN (5.6)

since: (i) x and w are mutually independent and (iii) E{w} = 0N . Similarly, we

obtain the complementary covariance [43] as

Σ̄y|Hm = E {[H (d− E{d|Hm}) +w]

[H (d− E{d|Hm}) +w]T |Hm

}
= (5.7)

H Σd|HmH
T + E{wwT} = (5.8)

H Σd|HmH
T (5.9)

where the last equality follows from E{wwT} = ON×N (indeedw is a proper random

vector). Therefore, we conclude that y|Hm is an improper random vector, since its

complementary covariance matrix does not vanish, thus motivating the potential for

WL processing.
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