
Deanship of Graduate Studies

Al-Quds University

System for Top-k Keyword Search processing over

relational databases using semantics

Samia Taha Hussein Abdulhay

M.SC. Thesis

Jerusalem – Palestine

1431 / 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/336842106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

System for Top-k Keyword Search processing over

relational databases using semantics

Prepared By:

Samia Taha Hussein Abdulhay

B.Sc. : Computer Science, Al-Quds University,

Palestine

Supervisor :

Dr. Rashid Jayousi

A thesis Submitted in Partial Fulfillment of

Requirements for the Master Degree of Computer

Science from Computer Science Department of Al-

Quds University.

1431 / 2010

Deanship of Graduate Studies

Al-Quds University

Thesis Approval

System for Top-k Keyword Search processing over relational

databases using semantics

Prepared By: Samia Taha Hussein Abdulhay

Registration No: 20510194

Supervisor: Dr. Rashid Jayousi

Master thesis submitted and accepted Date: 15/5/2010

The names and signatures of examining committee members are

follows:

1. Head of Committee: Dr. Rashid Jayousi Signiture:…………..

2. Internal Examiner: Dr. Nedal Kafri Signiture:…………..

3. External Examiner: Dr. Yousef Abuzir Signiture:…………..

Jerusalem – Palestine

1431/ 2010

Dedication

I would like to dedicate this work to my family, who supported

me in all phases of this thesis, especially to my lovely mother,

for her support, care and love, and to all the people who help me

to overcome difficulties.

Samia taha Hussein Abdulhay

i

Declaration

I certify that this thesis submitted for the degree of Master of Computer Science, is the

result of my own research, except where otherwise acknowledged, and that this thesis

(or any part of the same) has not been submitted for a higher degree to any other

university or institution.

Signed …………………

Samia Taha Hussein Abdulhay

Date: 15/5 /2010

ii

Acknowledgements

Grateful thanks for God for giving me the patience and power to complete this work.

I sincerely thank Al-Quds University for giving me the opportunity to study the

M.Sc., and its efforts and help throughout this study.

I am deeply grateful, despite the inability of these words to express my thanks to my

supervisor, Dr. Rashid Jayousi, for his fruitful discussion, a valuable guidance,

continuous support, kindness, and allowing me a lot of his time.

Special thanks to the Library department of Al-Quds University for allowing me to

use the Library database to conduct the experiments.

Last, my endless thanks to my mother for her never ending enthusiasm, and to my

family for their encouragement and support.

Finally, to the soul of my father…..

iii

Abstract

A variety of keyword search systems over relational database are widely known.

Generally such systems do not take into account what is meant from the search query,

the user type a list of keywords in the search query, and then the search system

retrieve all the results (a set of related records) that contains this keywords, which

leads to a high irrelevant results at first top-k. In order to improve the relevancy of

such results, this thesis proposed a simple keyword search technique that can help

ordinary users to be more specific in expressing their needs.

This can be done by adding some schema information (e.g., table name, field name),

which can be used as semantics to the searching keywords. This thesis presents

Ssearch system that is designed to handle the proposed idea.

The researcher has conducted several experiments that use the Library database of Al-

Quds University. The experimental results showed that Ssearch adds a significant

improvement in terms of relevancy with acceptable overhead time when compare it

with an existing approach.

iv

 (Keyword Search)

Ssearch

v

Table of Contents

Declaration .. i

Acknowledgements .. ii

Abstract .. iii

 .. iv

Table of Contents ... v

List of Figures .. viii

List of Tables ... x

Chapter One: Introduction ... 1

1.1 Introduction .. 1

1.2 History of Keyword search .. 1

1.3 Related Work ... 2

1.4 Problems and Objectives.. 3

1.5 Motivation for this thesis ... 3

1.6 Contribution in the field ... 4

Chapter Two: Literature Review ... 5

2.1 Introduction .. 5

2.2 Graph Model of Relational Databases ... 5

2.3 BANKS .. 6

2.3.1 Database and query model .. 6

2.3.2 Backward expanding search algorithm ... 7

2.3.3 User Feedback ... 8

2.4 DBXplorer.. 9

2.4.1 Publish procedure.. 9

2.4.2 Search procedure ... 10

2.4.3 Execution efficiency ... 11

2.5 DISCOVER.. 11

2.5.1 Architecture... 12

2.6 Efficient IR style keyword search .. 14

2.6.1 System Architecture .. 14

2.7 ObjectRank .. 16

2.7.1 ObjectRank Architecture .. 17

2.8 Comparisons of different techniques ... 18

Chapter Three: Background ... 19

vi

3.1 Relational Database ... 19

3.2 Extracting data from database .. 20

3.2.1 SQL ... 20

3.2.2 QBE... 21

3.2.3 Keyword Search .. 22

3.2.4 Subject Search ... 24

3.2.5 SQL Vs. QBE.. 25

3.2.6 Keyword search vs. SQL .. 25

3.2.7 Keyword vs. Subject Search ... 26

3.3 Stemming ... 27

3.4 Stop Words... 27

3.5 Graph.. 29

3.5.1 Undirected graphs representation ... 30

3.6 Dikjestra‟s algorithm ... 32

3.7 Quicksort algorithm ... 33

Chapter Four: Discover Model .. 35

4.1 Introduction .. 35

4.2 Discover Architecture .. 37

4.3 Search Query .. 38

4.4 Master Index .. 38

4.5 Candidate Networks Generator .. 39

4.6 Execution Plan ... 39

4.6.1 Ranking Algorithm ... 40

4.7 Characteristics of Discover model ... 41

4.8 Summery .. 41

Chapter Five: Ssearch Model ... 42

5.1 Introduction .. 42

5.2 Ssearch Architecture .. 44

5.3 Offline System ... 45

5.3.1 Offline System Algorithms ... 49

5.3.2 Updating the Master Index Database .. 53

5.4 Online System .. 54

5.4.1 Suggested query syntax... 54

5.4.2 Parsing the Query String Algorithm ... 56

5.4.3 Retrieving Matching Records Algorithm .. 58

5.4.4 Semantic Satisfaction Algorithm .. 59

5.4.5 Tuples Combinations .. 61

vii

5.4.6 Data Graph .. 63

5.4.7 Candidate Network Generator Algorithm ... 65

5.4.8 Pruning Candidate Networks Algorithm .. 67

5.4.9 Ranking Algorithm ... 68

5.4.10 SQL Answers .. 69

5.5 Characteristics of Ssearch .. 79

5.6 Summery .. 79

Chapter Six: Experimental Design and Results Analysis ... 80

6.1 Introduction .. 80

6.2 Experiments Setup ... 80

6.3 Experiments Metrics .. 81

6.4 Experiments Outline .. 83

6.4.2 Experiment 2: Testing the scalability of the system in terms of relevancy

and overhead time .. 91

Chapter 7: Conclusion and Future Work ... 105

7.1 Conclusion ... 105

7.2 Future Work ... 107

References .. 108

List of Appendixes ... 110

Appendix A: Experimental Query Set ... 110

Appendix B: Term Index ... 111

viii

List of Figures

Figure 2.1: Discover Architecture.. 13
Figure 2.2: IR style keyword search architecture. ... 16
Figure 3.1: ER- Diagram of the Library database.. 20
Figure 3.2: QBE interface for Ms Access. ... 22
Figure 3.3: Keyword search interface. ... 23

Figure 3.4: Subject search interface. .. 24
Figure 3.5: Example for undirected graph representation using adjacency matrix 30
Figure 3.6: Example for undirected graph representation using adjacency matrix. ... 31
Figure 3.7: Dijkstra's Algorithm. ... 33
Figure 3.8: Quicksort Algorithm.. 34

Figure 4.1: Keyword search results. .. 35
Figure 4.2: TPC-H schema [Hristidis, 2002]. .. 36
Figure 4.3: Instance of TPC-H schema. ... 36

Figure 4.4: Discover Architecture.. 37
Figure 5.1: Library Schema ... 43
Figure 5.2: Sample of Library Instance. .. 43
Figure 5.3:Ssearch Architecture... 44

Figure 5.4: The local copy of the Original DB. ... 50
Figure 5.5: Output of the Parsing Algorithm (Parsing Matrix). 58

Figure 5.6: The Output of Retrieving Matching Records Algorithm. 59
Figure 5.7: The Output of the Semantic Satisfaction Algorithm. 61
Figure 5.8: The output of the Tuple-Combinations Generator Algorithm (TuplePairs

matrix). ... 62

Figure 5.9: Graph of the database instance in Figure)5.2). ... 63
Figure 5.10: The output of the Data Graph representation using Adjacency List. 64
Figure 5.11: Output of the candidate network generator algorithm............................. 66

Figure 5.12: The candidate networks after pruning. .. 67
Figure 5.13: The order of the joining networks after ranking and their corresponding

ranking scores. ... 69
Figure 5.14: Example of the needed information for generating an equivalent SQL

statement for the joining network 3 ∞ 14 ∞ 7 ∞ 1 ∞ 12 ... 72
Figure 5.15: The different parts of the equivalent SQL statement for the joining

network 3 ∞ 14 ∞ 7 ∞ 1 ∞ 12 ... 77

Figure 6.1: ER-Diagram of the experimental DB. ... 81

Figure 6.2: Some relevant and irrelevant answers. .. 82

Figure 6.3: Relevancy at Top-10 (10 MB)... 85

Figure 6.4: Relevancy at Top-20 (10 MB).. 86
Figure 6.5: Relevancy at Top-30 (10 MB).. 87
Figure 6.6: Relevancy at Top-40 (10 MB)... 88
Figure 6.7: Relevancy at Top-50 (10 MB)... 89
Figure 6.8: Mean precision of Discover and Ssearch (10 MB). 91

Figure 6.9: Relevancy at Top-10 (29 MB)... 93
Figure 6.10: Relevancy at Top-20 (29 MB). .. 94
Figure 6.11: Relevancy at Top-30 (29 MB) ... 95
Figure 6.12: Relevancy at Top-40 (29 MB). .. 96
Figure 6.13: Relevancy at Top-50 (29 MB). .. 97

ix

Figure 6.14: Mean precision of Discover and Ssearch (29 MB). 98

Figure 6.15: The relation between number of matching keywords and the overhead

fraction per query. .. 101

x

List of Tables

Table 3.1: Differences between SQL and QBE. .. 25
Table 3.2: Differences between keyword search and SQL. ... 26
Table 3.3: Differences between keyword search and subject search. 26
Table 3.4-a: Stopwords [www.wenconfs.com]. .. 27
Table 5.1: Keywords table of the Library DB. .. 46
Table 5.2: Keywords Information table of the Library DB. .. 47
Table 5.3: Tuples Information table of the Library DB. .. 48
Table 5.4: Primary to Foreign key table of the Library DB... 49
Table 5.5: Examples of the suggested query syntax. ... 56

Table 5.6: Pairs of tuples that have primary to foreign key relationship. 65

Table 5.7: The candidates networks and their equivalent SQL statements of the query

“author:nancy book:planning” ... 78
Table 6.1: Semantics Overheads per query.. 101

1

Chapter One: Introduction

1.1 Introduction

Keyword search querying has emerged as one of the most effective paradigms for

information discovery, especially over relational database. One of the key advantages of

keyword search querying is its simplicity – users do not have to learn a complex query

language, and can issue queries without any prior knowledge about the structure of the

underlying data. Since the keyword search query interface is very flexible, queries may not

always be precise and can potentially return a large number of query results, especially in a

large amount of data stored within the database. Consequently an important requirement

for keyword search is to rank the query results so that the most relevant results appear first.

This thesis proposes a new system where the semantics are a part of the search query

which allows the user to be more precise in formulating the query to improve the relevancy

of the query results.

This thesis starts by illustrating the previous related work in chapter 2. Chapter 3 provides

the needed background about different information retrieval approaches over databases. An

existing Approach (Discover) is presented in chapter 4. Then in chapter 5 the proposed

system (Ssearch) is described in detail. The experimental design and results analysis are in

chapter 6. Finally, conclusion and future work are in chapter 7.

1.2 History of Keyword search

Keyword search appears first as a tool for information retrieval over internet where the

search engines provide keyword search on top of sets of documents, when a set of

keywords is provided by the user, the search engine returns all documents that are

associated with these keywords.

Excite introduced the concepts of keyword searching over internet, it was launched in

February 1993 by Stanford students and was then called Architext. They had the idea of

using statistical analysis of word relationships to make searching more efficient. They were

http://www.excite.com/

2

soon funded, and in mid 1993 they released copies of their search software for use on web

sites [http://www.searchenginehistory.com].

Today, the dominant of keyword search as a tool for information retrieval over the internet

and its simplicity in use, and on the other hand the huge amount of information stored in

relational databases that is not well supported for information discovery, lead the

researchers to apply keyword search technique as a tool for extracting information from

relational database.

The first framework for keyword search on databases is presented in [Masermann, 2000].

The main limitation of this work is that all keywords must be contained in the same tuple.

That is, the relationships between tuples from different relations are not taken into

consideration. In the next section we will present several keywords search methods over

DB.

1.3 Related Work

Several systems apply Keyword Searching on a relational DBMS such as BANKS [Aditya,

2002] which creates a data graph, where each node represents a tuple, and edges connect

tuples that can be joined (e.g., according to Primary Key - Foreign Key relationships). A

Keyword searching query is processed by a graph traversal that searches for connection

trees containing the query keywords. A connection tree is a Steiner tree in which every leaf

node corresponds to a record containing at least one query keyword. Internal nodes

represent tuples that connect the leaf records and may include no query keywords.

DBXplorer [Agrawal, 2002] and Discover [Hristidis, 2002] use a higher level of

representation - candidate networks created from the schema of the database by join

operations. The systems use the candidate networks to generate operator trees for

evaluating the query. Both DBXplorer and Discover rank results based exclusively on the

distance of the tuples containing the query keywords, whereas [Hristidis, 2003] utilize

state-of-the-art IR measures to calculate scores, all of the mentioned systems focus on

keyword based searching over a single DBMS, recently [Yu, 2007] and [Vu, 2008]

concern on how to support keyword searching over multiple DBMSs, by developing

effective ranking methods to select the most useful databases for a given keyword query.

3

1.4 Problems and Objectives

All search systems that have been mentioned in the previous section, focus on how to

generate the graph, extracting the subtree results and display the results using different

ranking techniques to improve the relevancy, but no one of them take into account the

semantic of the query! This could lead to retrieve irrelevant results at first top-k,

especially; if the amount of data stored in the database is large (the precise of the top-k

results decreases as the amount of data stored in the database increases [Hristidis, 2002]).

This thesis aims to investigate new technique to improve the search results by utilizing

some schema information (table name, column name) as semantic to the related search

term (keyword).

After reviewing the literature, we noticed that [Cohen, 2003] developed syntax for search

queries over XML that is suitable for naïve user, which allows the user to specify how

keywords are related to tags by using the tag name as a semantic to the related keyword.

In our model, we adapt the idea of the query syntax mentioned above for a different

environment (keyword searching over relational database) where the users should have a

query expression power comparable with database queries, while the language should be

kept simple enough to be usable by ordinary user. The users should not be compelled to

have inside knowledge of the data structure or schema information of the data they search

in, yet once they know or discover it they should be able to take advantage of it.

1.5 Motivation for this thesis

We are motivated by this work for several reasons:

1. Increasing amount of data stored in databases, which leads to decrease the

percentage of relevant results that must appear at first.

2. Keyword search is the dominant information discovery method in documents.

3. The simplicity of the keyword search querying (especially for ordinary users).

4

1.6 Contribution in the field

We believe that our contribution is on the following points:

1. Improve the relevancy of query results that appear at first top-k by adding some

semantics to the keywords in the search query.

2. Describing the algorithms needed to build keyword search system, which can

support semantics.

3. Clarify the keyword search system workflow.

5

Chapter Two: Literature Review

2.1 Introduction

Query using keywords is the most widely used form of querying today. While keyword

searching is widely used to search documents on the Web, querying of databases currently

relies on complex query languages that are inappropriate for ordinary end-users, since they

are complex and hard to learn. Even languages, such as QBE, that have been targeted at

relatively inexperienced users require the user to be aware of the database schema, which

is not appropriate for casual users of an information system. Given the popularity of

keyword search, and the increasing use of databases as the back end for data published on

the Web, the need for querying databases using keywords is being increasingly felt. One

key problem in applying document or web keyword search techniques to databases is that

information related to a single answer to a keyword query may be split across multiple

tuples in deferent relations.

Survey of work on keyword querying in relational databases like Banks [Aditya, 2002],

DBXplorer [Agrawal, 2002], Discover [Hristidis, 2002] etc. along with the comparison

between deferent methods is presented in the following sections.[

2.2 Graph Model of Relational Databases

With evolution of different techniques in this area of research, a uniform model has

emerged for representing relational databases as a graph with the tuples in the database

mapping to nodes and cross references (such as foreign key and other forms of references)

between tuples mapping to edges connecting these nodes. The graph model may be used in

keyword search as follows:

Each tuple in the database is modeled as a node in the directed graph and each foreign key-

primary key link as an edge between the corresponding tuples. This can be easily extended

to other type of connections; for example, it can be extended to include edges

corresponding to inclusion dependencies, where the values in the referencing column of

the referencing table are contained in the referred column of the referred table but the

6

referred column need not be a key of the referred table. Keywords in a given query activate

some nodes. The answer to the query is defined to be a subgraph which connects the

activated nodes. Formal graph model can be described as follows:

Vertices: For each tuple T in the database, the graph has a corresponding node uT.

Edges: For each pair of tuples T1 and T2 such that there is a foreign key from T1 to T2, the

graph contains an edge from T1 to T2 and a back edge from T2 to T1 (this can be extended

to handle other types of connections). [Hulgeri, 2001]

2.3 BANKS

Banks [Aditya, 2002] works on graph representation of relational database. An answer to a

query is considered to be a rooted directed tree containing a directed path from the root to

each keyword node. The root node is called an „information node‟ and the tree a

„connection tree‟.

2.3.1 Database and query model

Node weights: Each node u in the graph is assigned a weight N(u) which depends upon the

prestige of the node. Node weights are inspired by prestige rankings such as PageRank in

Google. With this feature, nodes that have multiple pointers to them get a higher prestige.

In current implementation the node prestige is set to the in-degree of the node. Higher node

weight corresponds to higher prestige.

Edge weights: If u, v are nodes in the database graph and R(u) and R(v) are the relations

they belong to. s(R(u), R(v)) denotes the similarity between two relations. And IN v (u) is

the in-degree of u contributed by tuples belonging to relation R(v). Between nodes u and v

conceptually may have two edges. Weight of forward edge is set to s(R(u), R(v)) and that

of reverse edge is set to [s(R(v), R(u)) * IN v (u)]. The actual edge weight is the minimum

of the two.

7

The weight of a backward link generated from a foreign key relationship is directly

proportional to the in-degree of the source node (i.e. the referenced node). Since the

proximity between the nodes connected by a link is inversely proportional to the link

weight, the proximity from a referenced node to its referencing nodes is inversely

proportional to the in-degree of the referenced node.

An answer to a query is a rooted directed tree containing at least one node from each Si.

Note that the tree may also contain nodes not in any Si and is therefore a „Steiner tree‟. The

relevance score of an answer tree is computed from the relevance scores of its nodes and

its edge weights. (The condition that one node from each Si must be present can be relaxed

to allow answers containing only some of the given keywords.)

2.3.2 Backward expanding search algorithm

Finding minimum steiner tree is NP-complete problem. Backward expanding search

algorithm offers a heuristic solution for incrementally computing query results. The

algorithm description is mentioned bellow:

Input: set of keywords t1, t2, ……., tn

Output: Connection trees with highest relevance score containing all keywords in the

query.

 For each term ti and the set of nodes Si relevant to keyword by using disk resident

indices on keyword.

 Let S = UiSi Backward search concurrently runs |S| copies of Dijkstra's single

source shortest path algorithm for each keyword node n in S, with n as source.

 All copies run concurrently by creating iterator interface.

 Each copy traverses graph in reverse direction. To find common vertex from which

forward path exists to at least one node in each set Si. In each Iteration algorithm

8

picks an iterator whose next vertex to be output is at least distance from source

vertex of iterator.

 Generate all possible connection trees. They are approximately sorted. Maintain

small fixed-size heap of generated connection trees ordered on relevance of the

tree.

- Keep adding newly generated connection trees to heap.

- When heap is full, output highest relevant node in the heap and add new

tree to the heap.

- When all answers are generated, remaining trees in heap are output in

decreasing order of relevance.

Generating all connection trees and then sorting in decreasing relevance order would

increase computation costs and increased time to generate initial results. To avoid these

overheads, as a heuristic, the technique maintains a small fixed-size heap of generated

connection trees. This heuristic does not guarantee that the trees are generated in

decreasing order, it is found that it works well even with a reasonably small heap size.

2.3.3 User Feedback

Keyword queries are inherently ambiguous, so a user may need to interact with the system

to find required answers. Banks provides several strategies for refining queries to get

required results [Aditya, 2002].

• Disambiguation of nodes: A given keyword may match several nodes. Banks allows

users to select which nodes are relevant and re-execute the query with those nodes.

• Answer patterns: Suppose a user wishes to find papers by Soumen that refer to papers

by Sudarshan, and executes a query sudarshan soumen. This query would return papers

written jointly by Sudarshan and Soumen, papers by Sudarshan that refer to papers by

Soumen in addition to papers by Soumen that refer to papers by Sudarshan. The Banks

9

system allows the users to select particular tree patterns as relevant and find only answers

that match that pattern. The tree patterns are used to prune the search for answers.

• Re-scoring: A feature for the user to express a softer preference, by simply marking

some answers as relevant (or more relevant than unmarked answers) is added in Banks

system. The random walk model for answer tree scoring can use this information to prefer

or avoid certain paths.

2.4 DBXplorer

Given a set of query keywords, DBXplorer [Agrawal, 2002] returns all rows (either from

single tables, or by joining tables connected by foreign-key joins) such that the each row

contains all keywords. Enabling such keyword search requires (a) a preprocessing step

called Publish that enables databases for keyword search by building the symbol table and

associated structures, and (b) a Search step that gets matching rows from the published

databases.

2.4.1 Publish procedure

A database (or a desired part of it) is enabled for keyword search through the following

steps. Initially a database is identified, along with the set of tables and columns within the

database to be published. Then Symbol Tables are created for supporting keyword

searches, which is used at search time to efficiently determine the locations of query key-

words in the database (i.e., the tables, columns, rows they occur in). The 3 types of symbol

tables based on granularity are:

(1) Column level granularity (Pub-Col), where for every keyword the symbol table

maintains the list of all database columns (i.e., list of table. column) that contain it. They

are usually much smaller in size hence lead to efficient search if index on column is

present.

(2) Cell level granularity (Pub-Cell), where for every keyword the symbol table maintains

the list of database cells (i.e., list of table.column,rowid) that contain it. Search is faster in

if indices on columns are not available but update cost is much more.

10

(3) Hybrid Structure which is needed where the granularity is tied to the physical database

design: if an index is available for a column, it will be better to publish the column

contents with Pub-Col granularity, otherwise with Pub-Cell granularity.

2.4.2 Search procedure

Given a query consisting of a set of keywords, it is answered as follows. Step 1: The

symbol table is looked up to identify the tables, and columns/rows of the database that

contain the query keywords. Step 2: All potential subsets of tables in the database that, if

joined, might contain rows having all keywords, are identified and enumerated. A subset of

tables can be joined only if they are connected in the schema, i.e., there is a sub-tree (called

a join tree) in the schema graph that contains these tables as nodes (and possibly some

intermediate nodes). Step 3: For each enumerated join tree, a SQL statement is constructed

(and executed) that joins the tables in the tree and selects those rows that contain all

keywords. The final rows are ranked and presented to the user.

Some key parts of this procedure are expanded below:

Enumerating join trees: Let matched tables be the set of database tables that contain at

least one of the query keywords. If the schema graph G is viewed as an undirected graph,

this step enumerates join trees, i.e., sub-trees of G such that: (a) the leaves belong to

matched tables and (b) together, the leaves contain all keywords of the query. Thus, if the

tables that occur in a join tree are joined, the resulting relation will contain all potential

rows having all keywords specified in the query. This important step filters out a large

number of spurious join scenarios from being passed on to the subsequent step of the

search. If G is not a tree (i.e., if it contains cycles), the join tree enumeration involves bi-

connected component decomposition of G, followed by the enumeration of join trees on a

possibly cyclic schema graph. This feature is currently not supported by DBXplorer.

Searching for rows: The input to this final search step is the enumerated join trees. Each

join tree is then mapped to a single SQL statement that joins the tables as specified in the

tree, and selects those rows that contain all keywords. In fact, this is the only stage of the

search where the database tables are accessed.

11

Outputting results: The retrieved rows are ranked before being output. The approach here

is to rank the rows by the number of joins involved (ties broken arbitrarily); the reasoning

being that joins involving many tables are less relevant.

2.4.3 Execution efficiency

It depends on several factors e.g. availability of column indexes for the Pub-Col based

approach. There may be commonalities among the generated SQL statements for a given

keyword search query, with potential applications of multi-query optimization for further

efficiency. Since enumeration algorithm generates join trees in order of increasing size

(due to breadth first enumeration), the join tree enumeration step can be pipelined and thus

followed immediately by the SQL generation corresponding to the join tree which further

reduces response time.

2.5 DISCOVER

Discover [Hristidis, 2002] outputs query results by generating intermediate SQL queries

and evaluating them efficiently by generating nearly optimal plan. It introduces a concept

of candidate networks i.e. join expressions on foreign to primary key relationships of

relations or tuple sets.

Minimal Total Joining Network of Tuples (MTJNT) of keywords k1, k2, ..., km is the set of

all possible joining networks of tuples that are both:

• Total: every keyword is contained in at least one tuple of the joining network.

• Minimal: it is not possible to remove any tuple from the joining network and still have a

total joining network of tuples.

12

2.5.1 Architecture

This technique proceeds in two stages:

• Candidate Network Generator generates all candidate networks of relations, that is, join

expressions that generate the joining networks of tuples.

• Plan Generator builds plans for the efficient evaluation of the set of candidate networks,

exploiting the opportunities to reuse common sub expressions of the candidate networks.

Operation of Discover:

Figure (2.1) shows the basic stepwise operation of Discover. It is described in brief below:

Step 1: Master Index, this step builds full-text indices on single attributes using existing

database system utilities.

Step 2: Tuple set post processor, takes as input basic tuple sets and produces tuple sets

containing all keywords of query and no other keyword.

Step 3: Candidate Network Generator, given a set of keywords k1, k2, ...km a candidate

network C is a joining network of tuple sets such that it has MTJNT (Minimal Total

Joining Networks of Tuples) M belongs to C and no tuple t belongs to M that maps to a

free tuple set F belonging to C and containing any keywords.

A joining network of tuples j is not minimal if :

• It has a tuple with no keywords as a leaf. Discover eliminates this condition for joining

networks of tuple sets by not allowing free tuple sets as leaves.

• It contains sample tuple twice. Here, a candidate network does not contain a subtree of

the form R
K
 → S

L
 ← R

M
, where R and S are relations and the schema graph has an edge R

→ S.

Thus it gives minimal joining network of tuple sets.

13

Step 4: Plan Generator, in this step each rule will produce intermediate result or final

result. The efficiency is improved through reuse of common join sub expression.

Figure 2.1: Discover Architecture.

Given a set of candidate networks, find the intermediate results that should be built, so that

the overall cost of building these results and evaluating the candidate networks is minimum

is NP-complete on the size of the candidate networks with respect to the theoretical cost

model. Discover uses greedy algorithm and quality of the plans produced by the algorithm

are very close to the quality of the optimal plans.

Step 5: Plan Execution Module, this module prepares SQL statements from execution

plan and executes them over underlying database.

14

2.6 Efficient IR style keyword search

Applications in which plain text coexists with structured data are pervasive. Commercial

relational database management systems (RDBMSs) generally provide querying

capabilities for text attributes that incorporate state-of-the-art information retrieval (IR)

relevance ranking strategies, but this search functionality requires that queries specify the

exact column or columns against which a given list of keywords is to be matched. The

technique of [Hristidis, 2003] makes use of these available features of underlying RDBMS

and overcomes the above mentioned problem, due to which user with absolutely no

information about database schema can query the database easily.

2.6.1 System Architecture

The system architecture is shown in Figure (2.2). It consists of following main blocks:

• IR Engine: This module exploits IR-style text indexing functionality of Modern

RDBMSs to identify all tuples that have a non-zero score functionality for a given query.

The IR Engine relies on the IR Index, which is an inverted index that associates each

keyword that appears in the database with a list of occurrences of the keyword, each

occurrence of a keyword is recorded as a tuple attribute pair.

• Score Assignment: Score assigned to joining tree of tuples depends on: (1) Single

attribute IR-style relevance score score(ai, Q) for each textual attribute ai ∈T and query Q

as determined by an IR engine at the RDBMS. This is tf-idf score of the attribute. (2) A

function combine which combines the single attribute scores into a final score of T. It is

equal to the ratio of summation of individual attribute scores to size of T. IR engine takes

query Q as input and extracts for each relation R tuple set R
Q
 = {t ∈ R|Score(t, Q) > 0}.

• Candidate Network Generator: Candidate network S is a join network that involves

tuple sets plus additional (base) relations. Base relation R that appears in a CN is referred

as a free tuple set and denote it as R
{}

. Here only a single tuple set R
Q
 is created for each

relation R as specified above. For queries with AND semantics, post processing step

checks that it only returns tuple trees containing all query keywords.

15

They consider S to be a Candidate network and hence part of output if it satisfies following

properties: (1) No. of non-free tuple sets in S does not exceed the number of query

keywords m. (2) No leaf tuple sets of S are free. (3) S does not contain a construct of the

form R → S ← R. The size of the Candidate Network is its number of tuple sets.

• Execution Engine: It takes as input CNs together with non-free tuple sets. It contacts

RDBMSs query execution engine repeatedly to identify top-k query results.

There are many algorithms for improving efficiency of this step rather Naive algorithm: (1)

Sparse Algorithm: This approach computes a bound MPSI i.e. Maximum Possible Score

of a tuple tree derived from a Candidate Network C; If MPSI does not exceed actual score

of k already reduced tuple trees then CN Ci can be safely removed from further

consideration. (2) Single Pipelined Algorithm: This algorithm maintains an effective

estimate of MPFS (Maximum Possible Future Score) that an unseen result can achieve

given the information already gathered by algorithm. Hence this algorithm can start

producing results before examining the entire tuple sets as if the score of any result in the

queue has score greater than MPFS, then it is safe to output it as it will be one of top-k

results. (3) Global Pipelined Algorithm: It builds on the Single Pipelined algorithm to

efficiently answer a top-k keyword query over multiple CNs. The algorithm receives as

input a set of candidate networks, together with their associated non-free tuple sets, and

produces as output a stream of joining trees of tuples ranked by their overall score for the

query. The key idea of the algorithm is the following. All CNs of the keyword query are

evaluated concurrently following an adaptation of a priority preemptive, round robin

protocol, where the execution of each CN corresponds to a process. Each CN is evaluated

using a modification of the Single Pipelined algorithm, with the priority of a process being

the MPFS value of its associated CN.

16

Figure 2.2: IR style keyword search architecture.

2.7 ObjectRank

ObjectRank [Balmin, 2004] works on database modeled as labeled graph. Authority

originates at nodes containing keywords and flow from one object to another according to

semantic connection between them. Each node is ranked according to its authority with

respect to particular keywords. This is different from other techniques, in a way that most

of the other techniques assign a ranks to particular node based on original database and it is

not influenced by query keywords. Here keyword specific ObjectRank is also taken into

consideration while calculating rank of node.

They can adjust: (1) weight of global importance. (2) Weight of each keyword of query.

(3) Importance of result actually containing keyword vs. being referenced. (4) Volume of

authority flow via each type of semantic connection.

17

Authority Transfer Schema Graph and Authority Transfer Data Graph are constructed from

Schema graph and Database graph respectively, which control the authority flow from one

node to another.

2.7.1 ObjectRank Architecture

Architecture is divided into two stages.

Preprocessing stage:

1. ObjectRank Execution module takes as input the database to be indexed, the set of all

keywords that will be indexed, and a set of parameters. It creates an ObjectRank index

which is an inverted index indexed by keywords of query. The score of a node v with

respect to a keyword query w is a combination of the global ObjectRank rG(v) of v and the

keyword-specific ObjectRank rw(v). The following combining function is currently being

used: r
w,G

(v) = r
w
(v)(r

G
(v))

g
.

2. For each keyword w, it stores a list of < id(u); r
w
(u) > pairs for each object u with r

w
(u) ≥

threshold. The pairs are sorted by descending r
w
(u) to facilitate an efficient querying

method as described below. The ObjectRank Index has been implemented as an index-

based table, where the lists are stored in a CLOB attribute. A hash-index is built on top of

each list to allow for random access, which is required by the Query module.

Search stage:

1. Query module outputs top-k objects according to combining function using threshold

algorithm. The Threshold Algorithm is applicable since both combining functions (for

AND and OR semantics) are monotone and random access is possible on the stored lists.

Output of this algorithm is IDs of top k results.

2. Database Access module inputs the result ids and queries the database to get the suitable

information to present the objects to the user. This information is stored into an id-indexed

table that contains a CLOB attribute value for each object id.

18

2.8 Comparisons of different techniques

Banks considers node weights, forward and backward edge weights and similarity between

relations to find relevance of the answer. While ranking in DBXplorer and Discover is

only dependent on size of joining network.

Banks assumes that graph fits in memory. DBXplorer and Discover do not need such in

memory data structures, hence the maximum size of database they can process is not

bounded by memory size.

The technique of [Hristidis, 2003] is specifically designed for applications in which plain

text coexists with structured data e.g. comments or remarks column in a relational

database. It fully exploits single-attribute relevance-ranking results if the underlying

RDBMS has text indexing capabilities. This technique produce top-k results in a pipelined

fashion, in the sense that execution can resume to compute the “ext-k” matches if the user

so desires. This second feature is different from all other techniques.

Discover and DBXplorer create a separate tuple set for each combination of keywords in

query Q and each relation. This generally leads to a number of CNs that is exponential in

the query size, which makes query execution prohibitively expensive for queries of more

than a very small number of keywords. Technique of [Hristidis, 2003] creates only a single

tuple set R
Q
 for each relation R.

For queries with AND semantics, a post-processing step checks that only tuple trees

containing all query keywords are returned. This characteristic of the system results in

significantly faster executions, which in turn allows handling larger queries and also

considering larger CNs.

ObjectRank initially calculates global rank of an element in the document and then

calculates keyword specific rank at runtime. It recomputed an inverted index where for

each keyword there is a sorted list of the nodes with non-trivial ObjectRank for each

keyword. During runtime the Threshold algorithm is employed to efficiently combine the

lists. It performs well compared to global ranking algorithm like Google‟s PageRank and

simple algorithms which do not consider authority transfer between nodes.

19

Chapter Three: Background

This chapter gives the basic concepts and definitions necessary to best understanding of

this thesis. As the subject is vast, we limit the information to what is useful and necessary

for this work

3.1 Relational Database

A relational database was developed by Edgar Codd in 1969, it is a structured collection of

information that is related to a particular subject or purpose, such as a library database or a

human resources database. Within the database, you organize the data into storage

containers called tables. Tables are made up of columns and rows. Columns represent

individual fields in a table. Rows represent records of data in a table.

Each field in the table contains one piece of information. In a book table, for example, one

column contains the book title, another contains the ISBN, and numbers of pages are all

stored in their own columns. Each record represents one set of related information. For

example, the book table might store information about one book per row.

In a database, you can organize data in multiple tables. For example, if you manage a

database for the library department, you might have one table that lists all the books

information and another table that lists all the authors.

The tables of the database are linked by the primary-foreign key relationships, where a

primary key - foreign key relationship defines a one-to-many relationship between two

tables in a relational database. The term foreign key is defined as a column or a set of

columns in one table that references the primary key columns in another table, and the

primary key is defined as a column (or set of columns) where each value is unique and

identifies a single row of the table.

20

3.2 Extracting data from database

There are different methods available today to extract information from relational database,

choosing the method of retrieving data depends on the kind of user (naïve or expert user)

and his needs. We can extract data from database using one of the following methods:

SQL, QBE, Subject search or Keyword search. Each one of them has its own characteristic

and limitations. To demonstrate how we can formulate the query for each method, we will

generate the queries over the Library database which has the following schema (see Figure

(3.1)).

3.2.1 SQL

SQL (Structured Query Language) is a language that lets you communicate with databases.

For example, you can use SQL to retrieve data from a database, add data to a database,

delete or update records in a database, change columns in multiple rows, add columns to

tables and add and delete tables. SQL was one of the first languages for Edgar F. Codd's

relational model in his influential 1970 paper [E.F. Codd, 1970].

The SELECT statement is the most frequently used of all SQL commands after a

database's establishment. The SELECT statement allows you to view data that is stored in

the database. It is not a standalone statement, which means that one or more additional

clauses (elements) are required for a syntactically correct query. In addition to the required

Figure 3.1: ER- Diagram of the Library database.

http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Relational_model

21

clauses, there are optional clauses that increase the overall functionality of the SELECT

statement.

There are four keywords, or clauses, that are valuable parts of a SELECT statement. These

keywords are as follows: SELECT, FROM, WHERE and ORDER BY, for more

illustration see [http://www.w3schools.com/sql/default.asp].

SQL query

For example, if the user wants to retrieve information about the books in the domain of

statistics which is written by Rusell, the user must type the following query:

select book.isbn, book.title, author.author

 from book inner join (author inner join book_author on author.author_id =

book_author.author_id) on book.isbn = book_author.isbn

 where (((book.title) like „*statistic*‟) and ((author.author) like „*Rusell*‟));

Contents of a Query

Most queries require at least the following conditions to be stated. First, which table or

tables is the data coming from? If from two or more tables, what is the link between? Next,

define the selection criteria, which is the matching condition or filter. Lastly, define which

fields in the tables are to be displayed or printed in the result.

3.2.2 QBE

Query by Example (QBE) is a database query language for relational databases. It was

devised by Moshé M. Zloof at IBM Research during the mid 1970s, in parallel to the

development of SQL. It is the first graphical query language, using visual tables where the

user would enter commands, example elements and conditions.

The main purpose of QBE is to make it easier to run database queries and to avoid the

frustrations of SQL errors. QBE converts the user's input into a database SQL query.

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/w/index.php?title=Mosh%C3%A9_M._Zloof&action=edit&redlink=1
http://en.wikipedia.org/wiki/IBM_Research
http://en.wikipedia.org/wiki/SQL
http://www.orafaq.com/wiki/SQL

22

QBE query

For example, if the user wants to retrieve information about the books in the domain of

statistics which is written by Rusell, the user will use a graphical user interface as shown in

Figure (3.2).

Figure 3.2: QBE interface for Ms Access.

This interface, allows the user to perform powerful searches without having to learn SQL,

the user just fills in blanks and select items to define the query he/she wants to perform.

3.2.3 Keyword Search

Keyword searches are similar to Internet searches with Google in that the database will

look for the words you use wherever they may be on a page. Regardless of whether the

word is in a title, author name or place of publication, the page will be returned as a result.

23

i.e. When the user do a keyword search in a library catalog or a database, he can type in

words that describe his research topic in any order and retrieve records containing those

search terms. A major disadvantage of a keyword search is that it does not take into

account the meaning of the words used as search terms, so if a term has more than one

meaning (such as "mouse" - computer hardware or rodent?), irrelevant records may be

retrieved.

Keyword search query

For example, if the user wants to retrieve information about the books in the domain of

statistics which is written by Rusell, the user will use a graphical user interface as shown in

Figure (3.3).

Figure 3.3: Keyword search interface.

The user can use this page to search the full catalog for any keyword. Whatever word or

words he type into the search box, a result will be returned if a match is found anywhere in

the record, including the author, title and subject fields.

In general, the user types his choice of keywords into the text box. Then click the search

button to begin his search.

24

3.2.4 Subject Search

Subject searches, only return results in which the term being used appears in the subject

heading.

i.e. When the user do a subject search in a library catalog or database, only the subject

headings (subject fields) are searched for words that match his search terms. In library

catalogs and databases, items are assigned subject headings as access points, to assist users

in locating the content. Using subject headings ensures that all items about the same topic

have consistent subject headings and so they can all be accessed with one search term. This

saves the user time.

Subject search query

For example, if the user wants to retrieve information about the books in the domain of

statistics which is written by Rusell, the user will use a graphical user interface as shown in

Figure (3.4).

Figure 3.4: Subject search interface.

25

The user choose the Book Title from the drop down list, enter statistic keyword in the

search box and then click the search button to begin his search.

In general, the user can use this page to limit the search to the stock of one particular

branch by choosing the branch from the drop-down list.

3.2.5 SQL Vs. QBE

QBE is a language for querying like SQL, for retrieving, creating and modifying relational

data. It is different from SQL in having a graphical user interface that allows users to write

queries by creating example tables on screen. A user needs minimal information to get

started and the whole language contains relatively few concepts. QBE is especially suited

for queries that are not too complex and can be expressed in terms of a few tables. Table

(3.1) summarizes the differences between SQL and QBE.

Table 3.1: Differences between SQL and QBE.

QBE SQL

Graphical user interface Command line

Very convenient for simple queries More suitable for complex queries

Need minimal information to get

started
Must understand a lot of concepts

3.2.6 Keyword search vs. SQL

SQL and keyword search are two widely different techniques in discovery information, in

the first one the user needed to understand the rules of the language to communicate with

databases, while the second one the user only type a list of keywords in the text box that

related with his search topic to communicate with databases, Table (3.2) shows some key

differences between them.

26

Table 3.2: Differences between keyword search and SQL.

Keyword search SQL

Display a big amount of results, some are

relevance, other are not.
SQL returns exactly what the user needs

Ranking the results according relevancy Not ranking the results

Limited for retrieving data from the database Used to define, access, and manipulate data

Keywords query can formulate by any kind of

user

SQL queries can formulate only by expert

3.2.7 Keyword vs. Subject Search

Keyword Search and Subject search are common search techniques that the ordinary user

can apply to any database. These will enable the user to retrieve relevant information from

the thousands of records in a database. There are several differences between subject

searches and keyword searches. Table)3.3(shows some key differences between them.

Table 3.3: Differences between keyword search and subject search.

Keyword search Subject search

Search for: Records that have the search term

anywhere within them.

Search for: Records that have the search term

in the subject headings part of that record.

Volume: Depending on the terms you use,

searches may retrieve no results or thousands.

Searches with general terms often return many

results.

Volume: Varies widely. Some searches will

retrieve hundreds of results, but, if you choose

a nonexistent subject term, you will get none.

Relevance: Varies. Results may be completely

unrelated to your topic. For example, a search

for 'Philadelphia' returns records for every book

published by the University of Pennsylvania

Press (located in 'Philadelphia') regardless of

whether the work is about Philadelphia.

Relevance: High as long as you identify the

correct subject for your topic.

Flexibility: High: Terms can be combined in

complex ways to design effective searches.

Flexibility: The flexibility of your search is

limited by the manner in which subjects are

structured in the database that you are

searching.

The most obvious is keyword searches are broader searches than subject searches.

27

3.3 Stemming

Stemming algorithm attempt to reduce a word to its stem or root form. Thus, the keyword

terms of a query or records in the keyword search engine over relational database are

represented by stems rather than by the original words. This not only means that different

variants of a term can be conflated to a single representative form – it also reduces the

dictionary size, that is, the number of distinct terms needed for representing a set of

records. A smaller dictionary size results in a saving of storage space and processing time.

For example, if the user enters "viewer" as the query, the search engine reduces the word to

its root "view" and returns all records containing the root - like records containing view,

viewer, viewing, preview, review etc. [Lovins, 1968] is the first paper on the subject was

published.

3.4 Stop Words

A stop word is a commonly used word (such as "the") that a search engine has been

programmed to ignore, both when indexing entries for searching and when retrieving them

as the result of a search query. When building the index, most engines are programmed to

remove certain words from any index entry. The list of words that are not to be added is

called a stop list. Stop words are deemed irrelevant for searching purposes because they

occur frequently in the language for which the indexing engine has been tuned. In order to

save both space and time, these words are dropped at indexing time and then ignored at

search time. Table (3.4) shows a comprehensive list of words ignored by our Search

Engine Ssearch.

Table 3.4-a: Stopwords [www.wenconfs.com].

 A Able About Above Abroad According accordingly

Across Actually Adj After Afterwards Again Against

Ago Ahead ain't All Allow Allows Almost

Alone Along Alongside Already Also Although Always

Am Amid Amidst Among Amongst An And

Another Any Anybody Anyhow Anyone Anything Anyway

Anyways Anywhere Apart Appear Appreciate appropriate Are

Aren't Around As a's Aside Ask Asking

associated At Available Away Awfully B Back

Backward Backwards Be Became Because become becomes

http://www.searchenginedictionary.com/q.shtml#query

28

Table 3.4-b: Stopwords.

Becoming Been Before Beforehand Begin Behind Being

Believe Below Beside Besides Best Better Between

Beyond Both Brief But By C Came

Can Cannot Cant can't Caption Cause Causes

Certain Certainly Changes Clearly c'mon Co co.

Com Come Comes Concerning consequently consider considering

Contain Containing Contains corresponding Could couldn't Course

c's Currently D Dare daren't definitely described

Despite Did Didn't Different Directly Do Does

doesn't Doing Done don't Down downwards During

E Each Edu Eg Eight Eighty Either

Else Elsewhere End Ending Enough Entirely especially

Et Etc Even Ever Evermore Every everybody

Everyone Everything Everywhere Ex Exactly example Except

F Fairly Far Farther Few Fewer Fifth

First Five Followed Following Follows For Forever

Former Formerly Forth Forward Found Four From

Further Furthermore G Get Gets Getting Given

Gives Go Goes Going Gone Got Gotten

Greetings H Had hadn't Half happens Hardly

Has Hasn't Have haven't Having He he'd

he'll Hello Help Hence Her Here hereafter

Hereby Herein Here's Hereupon Hers Herself he's

Hi Him Himself His Hither hopefully How

Howbeit However Hundred I i'd Ie If

Ignored i'll i'm Immediate In inasmuch Inc

inc. Indeed Indicate Indicated Indicates Inner Inside

Insofar Instead Into Inward Is isn't It

it'd it'll Its it's Itself i've J

Just K Keep Keeps Kept Know Known

Knows L Last Lately Later Latter Latterly

Least Less Lest Let let's Like Liked

Likely Likewise Little Look Looking Looks Low

Lower Ltd M Made Mainly Make Makes

Many May Maybe mayn't Me Mean meantime

meanwhile Merely Might mightn't Mine Minus Miss

More Moreover Most Mostly Mr Mrs Much

Must mustn't My Myself N Name Namely

Nd Near Nearly Necessary Need needn't Needs

Neither Never Neverf Neverless nevertheless New Next

Nine Ninety No Nobody Non None nonetheless

Noone No-one Nor Normally Not nothing notwithstanding

Novel Now Nowhere O Obviously Of Off

Often Oh Ok Okay Old On Once

One Ones One's Only Onto opposite Or

Other Others Otherwise Ought Oughtn't Our Ours

Ourselves Out Outside Over Overall Own P

Particular Particularly Past Per Perhaps placed Please

Plus Possible Presumably Probably Provided provides Q

Que Quite Qv R Rather Rd Re

Really Reasonably Recent Recently Regarding regardless Regards

29

Table 3.4-c: Stopwords.

3.5 Graph

A graph is a collection of vertices or nodes and a collection of edges that connect pairs of

vertices. A graph may be undirected, meaning that there is no distinction between the two

vertices associated with each edge, or its edges may be directed from one vertex to another.

We will discuss undirected graph, which will be used in our work.[Base, 2000]

Relatively Respectively Right Round S Said Same

Saw Say Saying Says Second secondly See

Seeing Seem Seemed Seeming Seems Seen Self

Selves Sensible Sent Serious Seriously Seven Several

Shall Shan't She she'd she'll she's Should

shouldn't Since Six So Some somebody someday

Somehow Someone Something Sometime sometimes somewhat somewhere

Soon Sorry Specified Specify Specifying Still Sub

Such Sup Sure T Take Taken Taking

Tell Tends Th Than Thank thanks Thanx

That that'll that‟s that's that've The Their

Theirs Them Themselves Then Thence There thereafter

Thereby There'd Therefore Therein there'll there're Theres

There's Thereupon There've These They they'd they'll

They're They've Thing Things Think Third Thirty

This Thorough Thoroughly Those Though Three Through

throughout Thru Thus Till To together Too

Took Toward Towards Tried Tries Truly Try

Trying t's Twice Two U Un Under

underneath Undoing Unfortunately Unless Unlike unlikely Until

Unto Up Upon Upwards Us Use Used

Useful Uses Using Usually V Value Various

Versus Very Via Viz Vs W Want

Wants Was wasn't Way We we'd Welcome

Well we'll Went Were we're weren't we've

What Whatever What'll what's what've When Whence

Whenever Where Whereafter Whereas Whereby wherein where's

whereupon Wherever Whether Which Whichever While Whilst

Whither Who who'd Whoever Whole Who'll Whom

whomever who's Whose Why Will Willing Wish

With Within Without Wonder won't Would wouldn't

X Y Yes Yet You You'd you'll

Your you're Yours Yourself Yourselves You've Z

Zero

http://en.wikipedia.org/wiki/Vertex_(graph_theory)

30

3.5.1 Undirected graphs representation

There are two ways to represent a graph inside the computer, by using adjacency matrix or

by using adjacency list.

3.5.1.1 Adjacency matrix

Each cell aij of an adjacency matrix contains 1, if there is an edge between i-th and j-th

vertices, and 0 otherwise. Figure (3.5) shows an example for undirected graph

representation using adjacency matrix.

Advantages:

Adjacency matrix is very convenient to work with. Add or remove an edge can be done in

O(1) time, the same time is required to check, if there is an edge between two vertices.

Disadvantages:

Adjacency matrix consumes huge amount of memory for storing big graphs. All graphs

can be divided into two categories, sparse and dense graphs. Sparse ones contain not much

edges (number of edges is much less than the square of number of vertices, |E| << |V|
2
). On

the other hand, dense graphs contain number of edges comparable with square of number

of vertices. Adjacency matrix is optimal for dense graphs, but for sparse ones it is

superfluous.

Figure 3.5: Example for undirected graph representation using adjacency matrix

31

Next drawback of the adjacency matrix is that in many algorithms you need to know the

edges adjacent to the current vertex. To draw out such an information from the adjacency

matrix you have to scan over the corresponding row, which results in O(|V|) complexity.

To sum up, adjacency matrix is a good solution for dense graphs, which implies having

constant number of vertices

3.5.1.2 Adjacency list

This kind of the graph representation requires less amount of memory. For every vertex

adjacency list stores a list of vertices, which are adjacent to current one. See an example in

Figure (3.6).

Figure 3.6: Example for undirected graph representation using adjacency matrix.

Advantages:

Adjacent list allows us to store graph in more compact form, than adjacency matrix, but the

difference decreasing as a graph becomes denser. Next advantage is that adjacent list

allows to get the list of adjacent vertices in O(1) time, which is a big advantage for some

algorithms.

32

Disadvantages:

Adding/removing an edge to/from adjacent list is not so easy as for adjacency matrix. It

requires, on the average, O(|E| / |V|) time, which may result in cubical complexity for

dense graphs to add all edges.

Check, if there is an edge between two vertices is the next drawback, which can be done in

O(|E| / |V|) when list of adjacent vertices is unordered or O(log2(|E| / |V|)) when it is sorted.

This operation stays quite cheap.

To sum up, adjacency list is a good solution for sparse graphs.

3.6 Dikjestra’s algorithm

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1959,

which is a graph search algorithm that solves the single-source shortest path problem for a

graph with nonnegative edge path costs, producing a shortest path tree [Zhan, 1998]. This

algorithm is often used in routing.

For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost

(i.e. the shortest path) between that vertex and every other vertex. It can also be used for

finding costs of shortest paths from a single vertex to a single destination vertex by

stopping the algorithm once the shortest path to the destination vertex has been determined.

Figure (3.7) demonstrates Dijkstra‟s algorithm.

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/w/index.php?title=F._Benjamin_Zhan&action=edit&redlink=1
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)

33

Figure 3.7: Dijkstra's Algorithm.

3.7 Quicksort algorithm

Quicksort is a well-known sorting algorithm developed by [Hoare, 1962] that, on average,

makes O(nlogn) comparisons to sort n items. However, in the worst case, it makes O(n2)

comparisons. Typically, Quicksort is one of the fastest and simplest sorting algorithms. It

works recursively by a divide-and-conquer strategy. Figure (3.8) demonstrates the

quicksort algorithm.

In the following algorithm, u := Extract_Min(Q) searches for the vertex u in the vertex set Q that has the least d[u] value.

That vertex is removed from the set Q and returned to the user.

 1 function Dijkstra(G, w, s)

 2 for each vertex v in V[G] // Initializations

 3 d[v] := infinity

 4 previous[v] := undefined

 5 d[s] := 0

 6 S := empty set

 7 Q := set of all vertices

 8 while Q is not an empty set // The algorithm itself

 9 u := Extract_Min(Q)

10 S := S union {u}

11 for each edge (u,v) outgoing from u

12 if d[v] > d[u] + w(u,v) // Relax (u,v)

13 d[v] := d[u] + w(u,v)

14 previous[v] := u

If we are only interested in a shortest path between vertices s and t, we can terminate the search at line 9 if u = t.

Now we can read the shortest path from s to t by iteration:

1 S := empty sequence

2 u := t

3 while defined u

4 insert u to the beginning of S

5 u := previous[u]

Now sequence S is the list of vertices on the shortest path from s to t.

http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/C._A._R._Hoare
http://en.wikipedia.org/wiki/Average_performance
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

34

Input: sequence a0, ..., an-1 with n elements

Output:
permutation of the sequence such that all elements a0, ..., aj are less than or equal to all elements

ai, ..., an-1 (i > j)

Method:

1. choose the element in the middle of the sequence as comparison element x

let i = 0 and j = n-1

while i j

1. search for the first element ai which is greater than or equal to x

search for the last element aj which is less than or equal to x

if i j

1. exchange ai and aj

let i = i+1 and j = j-1

After partitioning the sequence, quicksort treats the two parts recursively by the same procedure. The recursion

ends whenever a part consists of one element only.

Figure 3.8: Quicksort Algorithm.

35

Chapter Four: Discover Model

4.1 Introduction

One key problem in applying keyword search techniques to databases is that information

related to a single answer to a keyword query may be split across multiple tuples in

different relations.

Masermann in [Masermann, 2000] introduced the keyword search over relational database,

the main limitation of this work is that all keywords must be contained in the same tuple.

Discover model [Hristidis, 2002] solve this problem by returning qualified joining

networks of tuples, that is, sets of tuples that are associated because they join on their

primary and foreign keys, and collectively contain all the keywords of the query.

 This model view a database as a data graph G that has tuples and keywords as nodes (see

Figure (4.1)). Two tuples are connected by an edge if they can be joined using a primary to

foreign key relationship, a tuple T and a keyword K are connected if T contains K. Thus, a

result of a keyword search is a subtree of G that is reduced with respect to K. Ranking of

results is based on the notion of keyword proximity; that is, a smaller reduced subtree has a

higher rank.

Figure 4.1: Keyword search results.

36

In this chapter we describe the Discover model in more details, which will be improved in

the next chapter by allowing the user to associate the keyword term with a semantic term in

the search string to help the computer to retrieve more relevant answers at first top- k.

To illustrate the different concepts of this chapter, we use a subset of TPC-H schema as

shown in Figure (4.2) and an instance of it as shown in Figure (4.3).

Figure 4.2: TPC-H schema [Hristidis, 2002].

Figure 4.3: Instance of TPC-H schema.

Orders Customer Nation
M:1 M:1

37

4.2 Discover Architecture

Figure (4.4) shows the Discover architecture, we applied the query string “Smith Miller” to

the right side of the figure to illustrate the role of each module in generating the query

answers. These modules will be described in more detail in sections 4.3 to 4.6.

Figure 4.4: Discover Architecture.

The expression A ∞ B in Figure (4.4) denote that tuple A joins with tuple B on their

primary to foreign key relationship.

The basic flow of information is as follows. The user enters a search query using a

browser. The search Query Processor parses the query into a list of search terms. The

Index Repository is used to fined nodes (tuples) that satisfy the search terms and to find out

38

whether pairs of nodes are interconnected. Once the relevant information is returned the

system creates the answers, which are ranked, sorted and then returned.

 4.3 Search Query

Search queries in Discover contain one or more keywords separated by spaces. In response

to these queries the results that actually contain all the search terms will return (AND

semantics).

4.4 Master Index

This module builds full-text indices on single attributes using existing database system

utilities. The Master Index inputs are a set of keywords entered by the user and the outputs

are a set of tuples, where the tuple contains at least one of the user keywords.

For Example,

The user type the following query string “Smith Miller”

Input:

 Two keywords Smith and Miller

Output:

 O1, O2, O3

Where the tuple O1 is the only tuple in the searched database that contains the Keyword

Smith, while the tuples O2 and O3 contain the keyword Miller.

39

4.5 Candidate Networks Generator

The candidate network is a set of tuples which have a primary to foreign key relationship

and contains all the search terms, in the same time it is minimal which have at least one

search term at each edge of the candidate network .Each candidate network represents a

single answer.

The keyword may appear in multiple tuples, so the candidate networks can be too big,

Discover determined the maximum size of the acceptable candidate network by the

maximum number of tables stored in the original database.

For Example,

CN1: O
Smith

 C O
Miller

CN2: O
Smith

 C N C O
Miller

CN3:

O

Smith
 C O

Miller
 C

CN1 and CN2 are acceptable candidate networks while CN3 is not acceptable, because it is

not minimal (tuple C not contain any search term).

4.6 Execution Plan

Generated SQL queries are expensive due to joins, so this module finds the intermediate

results that should be built, so that the overall cost of building these results and evaluating

the candidate networks is minimum. After preparing SQL statements from the execution

plan these statements will be executed over underlying database in descending order

according to the ranking score.

40

For Example,

Each CN corresponds to a SQL statement

CN1: O
Smith

 C O
Miller

 CN2: O
Smith

 C N C O
Miller

Execution Plan

 Temp O
Smith

 ∞ C

 CN1 Temp ∞ O
Miller

CN2 Temp ∞ N ∞ C ∞ O

Miller

4.6.1 Ranking Algorithm

The ranking function takes into account the number of tuples involved in the joining

network.

𝒔𝒄𝒐𝒓𝒆 𝒓 =
𝟏

𝒔𝒊𝒛𝒆(𝒕𝒓)

Where:

r =the search query result.

t r = the set of tuples that generate r .

size(tr) = the number of tuples in tr.

As the ranking score increase, the relevancy of the result increases accordingly.

41

4.7 Characteristics of Discover model

1. The search query is simple (list of keywords).

2. Provide irrelevant results at top- k.

3. Apply the results that satisfy AND semantics.

4.8 Summery

A search operation is initiated by typing the user the query syntax in the text box and then

pressing the search button, Discover first parsing the query syntax by splitting the contents

of the query string into tokens (words), then Discover retrieves all the matching records

that have at least one of the user keywords, then Discover build all the different pairs

combinations of tuples (matching records) to find the shortest path of each combination,

the shortest path of each combination represent a candidate network, it ranks the candidate

networks according to their ranking score in descending order which take into a count the

length of the joining network, after applying the execution plan optimization algorithm

over the candidate networks, it generates the equivalent SQL statement for each joining

network and finally it executes the SQL statements over original database to retrieve the

user‟s request results.

42

Chapter Five: Ssearch Model

5.1 Introduction

In the existing approaches of keyword search over relational databases, the user types a set

of keywords to formulate the search query, then a set of records containing these keywords

return as results without taking into account what user really means from typing these

keywords (i.e. If the user is looking for the keyword Taha, the existing approaches can‟t

distinguish what the user means by this keyword, does he mean the user Taha? or does he

mean the author Taha? or books about Taha?), leading to a high number of irrelevant

results at the first top-k, our proposed system solves this problem by giving a user an

ability to be more accurate in expressing the search query by allowing the user to

determine what he means from each searching keyword, by adding semantics (optional) for

each typing keyword to improve the quality of the results (increase the number of relevant

results at top-k).

In our proposed system, we will use some schema information (table name, field name) as

a semantic term.

 Ssearch stands for a semantic search engine over relational databases, in this system we

modified the Discover model to apply our proposed idea, by generating a simple query

syntax suitable for casual users and modifying the ranking function to take into account the

user‟s semantics. In this chapter we will describe Ssearch model in details.

To illustrate the concepts and the outputs of the algorithms mentioned in this chapter, we

created a simple example of a library database. Figure (5.1) shows the library database

schema and Figure (5.2) shows an instance of the library database.

43

Figure 5.1: Library Schema

Figure 5.2: Sample of Library Instance.

TNO

44

5.2 Ssearch Architecture

As we mentioned above, the architecture of the proposed system depends on the

architecture of Discover [Hristidis, 2002], with some modifications in the input search

query, indexing and ranking algorithm to be suitable to our proposed idea. See Figure

(5.3).

Figure 5.3: Ssearch Architecture.

The basic flow of information is as follows. The user enters a search query using a

browser. The search Query Processor parses the query into a list of pairs, semantic term

and search term. The Index Repository (Master index) is used to find nodes (tuples) that

satisfy the search terms, verify if the search terms within the node satisfy the user semantic

or not and find out whether pairs of nodes are interconnected. Once the relevant

information is returned the system creates the answers, which are ranked, sorted and then

returned.

45

Ssearch system is divided into two main subsystems:

1- Offline system, which is related to all the operations needed to build and update the

master index database.

2- Online system, which is related to all the operations needed to process the user‟s

request.

5.3 Offline System

As mentioned before, Offline System operations are all the processes needed to build and

update the master index database, which collects, parses, and stores data to facilitate fast

and accurate information retrieval.

The Master Index database (or a desired part of it) is enabled for keyword search through

the following steps. Initially a copy of all the original tables and its contents will be saved

in the master index database, then required tables are created for supporting keyword

searches, which is used at search time to efficiently determine the locations of query

keywords in the database (i.e., the tables, columns, rows they occur in). In the Master

Index database we create four tables to support the search operations in an efficient way.

1- Keywords Table

This table contains all the words (keywords) that appear in the original database after

removing stop words and stemming, we identify a unique identifier for each keyword to

distinguish between them. For example, see Table (5.1) which shows the contents of the

keywords table for the Library database.

Ssearch uses this table to determine if the search term (keyword term) after stemming

appears in the original database or not. We improve the search time by creating an index

on the keyword column.

46

Table 5.1: Keywords table of the Library DB.

2- Keywords Information Table

This table stores information about the locations of each keyword in the database (the row

number (TNo) and the column number (CNo) where the keyword appears), the same

keyword may appear in more than one location in the database. (i.e., the keyword Nancy

appears in two locations (See Table)5.2(), the first one appears in the tuple number 3 and

in the second column of the row, the second one appears in the tuple number 12 and in the

second column of the row). Table (5.2) shows the contents of the Keywords Information

table for the Library DB.

47

Table 5.2: Keywords Information table of the Library DB.

3- Tuples Information Table (tuplesInfo)

Ssearch use this table to map between the tuple number and its corresponding table name.

Table (5.3) shows the range of the tuples numbers of each table in the Library DB.

After stemming the search terms, Ssearch searches the keyword term in the Keywords

table, if the keyword is found, it uses the corresponding term identifier to retrieve the

location of the keyword in the DB (Tno, Cno) from the Keyword Information table, then

by using the Tno it retrieves the table name from the Tuples Information table, and then by

using the table name and the column number it can retrieve the column name using the

database catalog, Ssearch uses both table name and column name to check if the keyword

term in specific record satisfies the user‟s semantics or not (if the semantic term matches

the table name or the column name of the keyword term then we can say that the keyword

term satisfies the user‟s semantic at this record).

48

Table 5.3: Tuples Information table of the Library DB.

4- Primary to Foreign key table (PkFk_Table)

This table contains information about the foreign to primary key relationships between

records (tuples).

Each record in this table stores the following information:

 A pair of tuple numbers that have a primary to foreing key relationship (PTNo,

FTNo).

 The share value between the pair of related tuples.

 The primary column name and the foreign column name in the relationship.

For example, See Table (5.4), tuple 3 and tuple 14 have a primary to foreign key

relationship, because tuple 3 refers to tuple 14 by the share value 1 in the authorId column

which is a primary key column in Author table and a foreign key column in BooksAuthor

table.

We will use the contents of this table later in two cases:

 To build the data graph of the original database.

 To generate the Where part of the SQL statement.

49

Table 5.4: Primary to Foreign key table of the Library DB.

5.3.1 Offline System Algorithms

This section describes the algorithms needed to build the master index database, we will

describe these algorithms in order of their execution.

5.3.1.1 Data Gathering Algorithm

This algorithm copies the contents of the user tables from the original DB into the local DB

(Master Index DB)

Algorithm description:

 for each user table in the original DB

 creates a table with the same table and columns name in the local database

 copies the contents of the original table into the local table

 alters the local table by adding new column (Tno) for inserting the tuple No.

 in the new column , insert a unique value for each row in the created table

(which is a unique value for each record copied to the local database)

50

Output:

Figure (5.4) shows the output of the algorithm.

Figure 5.4: The local copy of the Original DB.

We generate a copy of the original database tables into the local database for two reasons:

1- To improve the execution time needed for updating the Master Index Database by:

 Parsing the data stores in the original database locally (the process of

analyzing a text, made of a sequence of tokens (words), for determining the

different keywords stored in the database), to decrease the transfer time

through a network.

http://en.wikipedia.org/wiki/Lexical_analysis#Token

51

 Generating the primary to foreign key table locally, leads to a critical

improvement in the execution time by comparing with the same operation

over remote (original) database.

2- To add the cash property to the Ssearch model (like Google). This gives the user an

opportunity to see the contents of the most recent copy of the original database in

the master index database, if the data in the original database is removed or updated

after indexing.

5.3.1.2 Build the Keywords Information table Algorithm

Algorithm description:

 Create a table (KeywordInfo) having the following fields : Keyword term,

TupleNo, ColumnNo

 For each table in the local database (Master Index database)

 Parse the contents of each record in the table

 For each token (keyword) in the record after stemming and removing the

stop words

 Insert new record in the keyword information table contains the

following information : stemming keyword, the record identifier

(tuple no.) and the column number where the keyword appear

Output:

Table (5.2) shows output of the algorithm after performing on the Library DB.

52

5.3.1.3 Build the Keywords table algorithm

Algorithm description:

 Create a table (Keywords) having the following fields : Keyword Identifier(KNo),

keyword term

 Use SQL query to retrieve all distinct keywords from the keywords information

table

 Insert these keywords in the Keywords table

 Associate each keyword with a unique identifier

 Replaces the keyword term column in the KeywordInfo table with its

corresponding identifier

Output:

Table (5.1) shows the Keywords table and Table (5.2) shows Keywords Information table

after replacing the keyword term column with the corresponding keyword number (Kno).

5.3.1.4 Build the Primary to Foreign key table Algorithm

Algorithm description:

 Creates a table (PkFk_Table) having the following fields: primary tuple identifier

(PTNo), foreign tuple identifier (FTNo), share value (ShareV), Primary column

name(PColumn) and foreign colomn name (FColumn)

 For each table in the original database which has at least one foreign key column

 For each foreign key column in the foreign table

53

 Retrieves the primary table name and the primary column name that the

foreign key column refers to.

 Use the primary table name, primary column name, foreign table name and

foreign column name to retrieve the matching records between the primary

table and foreign table (retrieve the tuple number of the primary table,the

tuple number of the foreign table and the share value) from the local

database.

 append the matching records information to the PkFk _Table

Output:

Table (5.4) shows output of the algorithm for the Library DB.

5.3.2 Updating the Master Index Database

Updating the contents of the Master Index database can be done automatically without any

custom configurations. We need only to establish a connection with the original database

by specifying the following parameters: the user‟s name and password for a user which has

a privilege to access the original database, the database name and the IP address of the

server which host the original database.

The master index database must be periodically updated with the latest information, it

could be done weekly, monthly or yearly depending on the amount of transactions that

happen over the original database. The aim of this operation is to provide the user with up-

to-date results.

The Ssearch retrieves the query answers from the database by generating SQL statement

for each joining network and executing it over the original database, or by using the

Ssearch cash which retrieves the query answers from the local database which have the

most recent copy of the original database, such as Google cash.

54

Ssearch cash can provide the user with information not longer available in the original

database or with information not yet updated in Master Index DB.

The results of the user query depend on the contents of the master index database.

5.4 Online System

Online System operations are all the operations needed to process the user request, which

analyze the query syntax, matching between the keyword term and the record number that

contains it, verify if the matching record satisfies the user semantic term or not, generate

the joining networks, ranking the results according to relevancy, generate SQL statement

equivalent for each joining network and finally execute the SQL statements in order to

retrieve the query answers.

The following sections describe these operations in detail.

5.4.1 Suggested query syntax

 A search term has the form l:k, l: or k where l: is a label and k is a keyword, the labels

give semantics to the keyword terms, the label may be table name or field name.

The semantic term in our system (Ssearch) can be applied but not required, if the user

enters more than one search term, the Ssearch system will retrieve only those results that

contain all the terms coming from the search request (AND semantic). Ssearch system

allows the user to enter up to 20 search terms.

For example, This example shows how the semantic term can improve the relevancy of

the results at top-k, assume the user type the search query “Nancy Planning” over the

Library database, see Figure (5.1) and Figure (5.2) where the links in Figure (5.1) point to

the direction of the foreign to the primary key (many to one) relationships between tables.

According to the current search engine Discover, the results of the query will be two

minimal joining networks that contain the both keywords Nancy and planning, 12 ∞ 1 ∞ 7

and 3 ∞ 14 ∞ 7, we use the expression a ∞ b to denote that tuple a joins with tuple b on

their primary to foreign key relationship, each one of the symbols a and b refers to a

55

different tuple (record) in a table, we identified each tuple in the Library instance (see

Figure (5.2)) by a unique number for simplicity. The two results in the current search

engines have the same score (rank), because the two keywords appear in the both results

and the two minimal joining networks have the same size (size= 3), If we take into

account the meaning of each result, we will discover that each result has completely

different meaning than other one, the first result 12 ∞ 1 ∞ 7 shows that the user Nancy

Jone borrowed “Planning your career” book from the library, whereas the second result

3 ∞ 14 ∞ 7 shows information about the “Planning your Career” book where Nancy

Davolio is one of its authors. Imagine that we apply this keyword search query to a huge

database, as a result of that, most of the top-k results will be irrelevant to what the user

really means, so by using our suggested query syntax, the user can reformulate the

keyword search query in more accurate way by adding semantic term to each keyword

term to get more relevant results at first top-k. Using our suggested query syntax , the user

can refine the query string to be “User:nancy book:planning“, if he searches for

information about the user Nancy, who borrowed books about planning, which will return

two minimal joining networks that contain the both keywords Nancy and planning,

12 ∞ 1 ∞ 7 and 3 ∞ 14 ∞ 7 , but with different scores depending on the semantics of the

search query, which will display the minimal joining network 12 ∞ 1 ∞ 7 at the top of the

search results , also the user can refine the query string to be “Author:nancy

book:planning”, if he searches for information about the author Nancy who writes books

about planning, which will return two minimal joining networks 3 ∞ 14 ∞ 7 and

12 ∞ 1 ∞ 7, which will display the first one at the top of the search results, in both cases

the most relevant result will be display at the top .

Ssearch system retrieves the same number of results as the previous system (Discover) but

with different ranking score, which take into account the user semantics.

 5.4.1.1 Query Examples

The sample queries provided in this section are based on the sample data model (see Figure

(5.1), Figure (5.2)).

Table (5.5) shows different examples of query string that can be applied in Ssearch model

to understand the power of the suggested query syntax.

56

Table 5.5: Examples of the suggested query syntax.

Query Syntax

Query Description

Nancy planning
Returns all related records that contain the two

keywords Nancy and planning

Author: Returns all the author‟s table records

Author: Andrew
Returns all the authors whose name contain

“Andrew”

Author: book: planning
Returns all related records that have information

about the authors and the books of planning

Books: Returns all the books table records

Books: Author:

Returns all related records that contain

information about the books in the library and

their authors

Books: user: Nancy
Returns all the books borrowed by the user

Nancy

Author:Nancy book:planning
Returns all the books of the author Nancy in the

domain of planning

ISBN : 4567894039
Returns the book information where the ISBN

equals 4567894039

We notice from the above examples that the suggested query syntax is not only the syntax

that allow the user to apply semantic term for the search keyword (To make the computer

distinguishes the true meaning of the Keyword), but it also allows the user to write queries

which provides the user with for-all semantics results (i.e. The query string “books:”

retrieves all the contents of the book‟s table).

The traditional keyword search engines over relational DB lack of the previous

characteristics.

5.4.2 Parsing the Query String Algorithm

Suppose a user enters the following search criteria:

Author:Nancy Book:planning

 This query must return all the books of the author Nancy in the domain of planning.

57

We will use this query to explain all the operations will be done over it, to retrieve the final

results.

 Algorithm description:

 For each token in the query string after stemming and removing stop words

 If the suffix of the token is „:‟ then

 Consider the token as a semantic term

 Else

 Consider the token as a keyword term

 If the system reads a keyword term after a semantic term then

 Link between the keyword term and the semantic term

 Else if the system reads a keyword term after a keyword term then

 The keyword term has no semantics

 Else if the system reads a semantic term after a semantic term then

 The first semantic term has no corresponding keyword term

 Output:

The output of the parsing algorithm is stored in two dimensional matrix (Parsing Matrix):

58

Index Semantic Keyword

0 Author Nanci

1 Book Plan

Figure 5.5: Output of the Parsing Algorithm (Parsing Matrix).

Where each row of the matrix contains both the semantic term and its corresponding

keyword term, or one of them if the other is absent.

5.4.3 Retrieving Matching Records Algorithm

After parsing the query string, the system retrieves the tuples numbers that match the

keyword term in each row of the parsing matrix if found, else the row of the parsing

matrix contains only the semantic term, so the system assumes that all the tuples that

satisfy the semantic term matches this row (i.e. the output of parsing the query string

“Author:” will be one row in the parsing matrix that have only the semantic term „author‟,

this semantic term matches the following tuples : 3, 4 and 5).

The tuple satisfy the semantic term if the tuple table name or one of its columns name have

the same name as the semantic term after stemming.

Algorithm description:

 For each row in the parsing matrix

 If the row has keyword term then

 Retrieve all the tuples numbers that contains it

 Else

 Retrieve all the tuples numbers that satisfy the semantic term

59

Output:

The output of this algorithm store in an array of a linked list to save the memory space

because the system can‟t predict how many times the particular keyword appears in the

DB (the probability of the total number of matching records increase, if the total number of

a particular keyword that appear in the database increase).

The following figure, shows the output of the algorithm.

The array index number of the matching records and its particular keyword are the same.

5.4.4 Semantic Satisfaction Algorithm

This algorithm check if the matching record of a particular keyword satisfies the user‟s

semantic or not.

The semantic satisfaction occurs if the matching record satisfies one of the following

conditions:

1. If the table name of the matching record equals the user‟s semantic term.

2. If the column name of the matching record where the particular keyword appear

equal the user‟s semantic term.

3. If the user didn‟t assign a semantic name to the keyword term, in this case, the

user does not have a problem whenever the keyword appears in the database,

Index Semantic Keyword Index Keyword locations

0 Author Nanci 0 3 12

1 Book Plan 1 7

 Input (Parsing Matrix)

Output(Matching Records)

Figure 5.6: The Output of Retrieving Matching Records Algorithm.

60

so the system assumes that the matching record of a particular keyword satisfies

user „s semantic whenever it appears in the database.

4. If the user didn‟t assign a keyword term to the semantic term, in this case, all

the matching records (which are all the table records that have the same name

as the semantic term or all the records where the semantic term has the same

name as one of its field names) satisfies user‟s semantic.

Algorithm description:

 For each row in the parsing matrix

 If the current parsing matrix row has the both terms (semantic and keyword

term)

 For every matching record

 If the matching record table‟s name or column‟s name

equal the semantic term then

 The matching record satisfies the user‟s semantic

 Else if the current parsing matrix row has only one term

(semantic term or keyword term)

 The matching record satisfy user‟s semantic

 Else

 The matching record not satisfy the user‟s semantic

Output:

The output of the above algorithm store in array of linked list, this structure store the

semantic satisfaction status for each matching record in its corresponding location, where

61

the symbol „T‟ means that the matching record satisfies the user‟s semantic while the

symbol „F‟ means that the matching record does not satisfy the user semantic.

The following figure, shows the output of the algorithm.

Figure 5.7: The Output of the Semantic Satisfaction Algorithm.

5.4.5 Tuples Combinations

In this section the system need to find all possible combinations of the set of tuples that

matched the search terms, each combination will be considered as a pair (S,D) where S is

the source node, D is the destination node in graph, to retrieve later in this chapter all the

possible solutions of the user search query, by finding the shortest path of each pair.

Ssearch will represent the data graph by using undirected graph, so the path between (x,y)

is equivalent to the path between (y,x), consequently the order of the two elements in a pair

is not important.

For example, depending on the matching records of Figure (5.6)

Let S refers to the set of tuples that matched the search terms and let T refers to the set of

tuples combinations. Then:

S= {3, 7, 12}

and

T= {{ 3 , 3}, {3 , 12}, {3 , 7} , {12 , 12}, {12 , 7}, {7 , 7}}

Index Semantic Keyword Keyword locations Satisfy semantics

0 Author Nanci 0 3 12 0 T F

1 Book Plan 1 7 1 T

Input

(Parsing Matrix)

 Input

(Matching Records)

 Output

(semantic satisfaction

status)

62

Algorithm Description: (Tuple-Combinations Generator)

 Generate one-dimensional array (matchTuples) which contains all the matching

records after removing duplicates

 n= number of elements in matchTuples array

 rowNumber=0

 for i=0 to n-1

 for j=i to n-1

 tuplePairs[rowNumber][0]=matchTuple[i]

 tuplePairs[rowNumber][1]= matchTuple[j]

 rowNumber = rowNumber+1

Output:

All the possible pairs of tuples store in two dimensional matrix (tuplePairs). See Figure

(5.8).

Index Source Destination

0 3 3

1 3 12

2 3 7

3 12 12

4 12 7

5 7 7

Figure 5.8: The output of the Tuple-Combinations Generator Algorithm (TuplePairs matrix).

63

5.4.6 Data Graph

Ssearch represents the database content as a graph where the nodes are the database tuples

and the edges are relationships among tuples.

Figure (5.9) shows the data graph of the database instance in Figure (5.2).

Figure 5.9: Graph of the database instance in Figure)5.2).

The Data Graph of Ssearch is undirected graph where each pair of tuples T1 and T2 such

that there is a foreign key from T1 to T2, the graph contains an edge from T1 to T2 and a

back edge from T2 to T1.

5.4.6.1 Data Graph Representation Algorithm

The data graph is represented using adjacency list, which is an array of linked list, to save

the memory space because the data graph of any database in general is sparse graph.

We use the contents of the Primary to Foreign key table in the master index database)see

Table (5.4) (to retrieve the pairs of tuples that have primary to foreign key relationship to

build the adjacency list, the first element of the pair is stored in the PTNo field while the

second one is stored in FTNo field.

64

Algorithm Description:

Input: the Primary to Foreign key table (PkFk_Table)

 For each record in the PkFk_Table

 Retrieve the current PTNo and FTNo value

 Append the value of PTNo field to the linked list tail which is found at the

location LinkeList[FTNo]

Output:

The output of the algorithm will be adjacency list as shown in Figure (5.10) which

represents the data graph in Figure (5.9).

For more illustration, Table (5.6) shows the pairs of tuples in the master index DB, that

have primary to foreign key relationship which is the only information needed to represent

the data graph.

Figure 5.10: The output of the Data Graph representation using Adjacency List.

65

Table 5.6: Pairs of tuples that have primary to foreign key relationship.

5.4.7 Candidate Network Generator Algorithm

In this section Ssearch will find all possible solutions for the user request (query), by

finding the shortest path between the pair of tuples in the TuplePairs matrix (Figure

(5.8)), where each tuple contains at least one keyword term or satisfies at least one of the

user‟s semantics. The resulted candidate networks are minimal (the start point and the end

point of the candidate network have at least one of the user‟s keyword terms or satisfies at

least one of the user‟s semantics, while the intermediate points not necessary to satisfy any

of them, the intermediate points only needed to find the set of tuples that joins between the

two end points).

66

Algorithm Description:

Input: TuplePairs Matrix (see Figure (5.8))

Assume the first element in the pair is the source node and the second element is the

destination node

 For i=0 to last row index number of the tuplePairs matrix

 Find the shortest path between TuplePairs[i,0] and TuplePairs[i,1] using

Dikjestra algorithm

 For each node in the shortest path

 Append the node to the tail of the liked list, which is found at the

location i of the array of linked list

Output:

The output of the algorithm is array of linked list which contains the shortest path of all the

possible solutions. The following figure represents the output of the algorithm

Index Source Destination

The shortest path

Length

0 3 3 0 3 0 1

1 3 12 1 3 14 7 1 12 1 5

2 3 7 2 3 14 7 2 3

3 12 12 3 12 3 1

4 12 7 4 12 1 7 4 3

5 7 7 5 7 5 1

 Input (TuplePairs

matrix)

 Output(Candidate Networks)

Figure 5.11: Output of the candidate network generator algorithm.

67

5.4.8 Pruning Candidate Networks Algorithm

Not all the possible solutions are relevance to the user request.

Ssearch pruning the following candidate networks:

 Disconnected path which is a pair of nodes that is not connected in any way in the

data graph (the length of the path is zero).

 The path with length more than the total number of tables in the original database

(in this case the candidate network generate an answer with a weak meaning). In

our experience of normalization, we have noticed that the path length between any

two tables in the ER- Diagram can be at maximum the total number of tables in the

database -1.

 The path that does not contains all the user keyword terms, Ssearch retrieve the

answers that satisfy AND semantics only.

Output:

Figure (5.12) shows the remaining candidate networks (joining networks) after pruning the

candidate networks in Figure (5.11).

Figure 5.12: The candidate networks after pruning.

Joining Networks

0 3 14 7 1 12
1 3 14 7
2 12 1 7

68

5.4.9 Ranking Algorithm

After pruning the candidate networks, Ssearch ranks the joining networks in descending

order according to the ranking score using Quick sort algorithm.

As the ranking score increase, the relevancy of the result increases accordingly.

The suggested ranking function takes into account two factors: the user‟s semantics and the

number of tuples size(tr) involved in the joining network r.

𝑠𝑐𝑜𝑟𝑒 𝑟 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
1

𝑠𝑖𝑧𝑒 𝑡𝑟
 ,

 𝑠 𝑘𝑖
𝑛𝑟
𝑖=1

𝑛𝑟

Where:

r =the search query result (the joining network).

t r = the set of tuples that generate r .

size(tr) = the number of tuples in tr.

nr = the total number of keywords in r .

ki= the i-th keyword in the search query.

𝑠 𝑘𝑖 =
1, 𝑘𝑖 𝑠𝑎𝑡𝑖𝑓𝑖𝑒𝑠 𝑡𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑡𝑒𝑟𝑚
0, 𝑘𝑖 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑡𝑒𝑟𝑚

 .

Output:

See Figure (5.13).

69

Joining Networks
Ranking

Score

0 3 14 7 0 0.66

1 3 14 7 1 12 1 0.6

2 12 1 7 2 0.41

Figure 5.13: The order of the joining networks after ranking and their corresponding

ranking scores.

5.4.10 SQL Answers

After retrieving the joining networks the model generate an equivalent SQL statement for

each joining network to execute the SQL statements over the original database to retrieve

up-to-date results, and over the master index database to retrieve the last version of

answers before updating.

The following points should be considered when generating the SQL answers:

 Some columns may have the same names in different tables.

 Some nodes in the joining network may come from the same table.

 The SQL statement must retrieve only one answer.

 To solve the problem of repeating the column‟s name or the table‟s name, the model

assigns different alias to each table in the FROM part of the SQL statement where each

node in the joining network will be assigned with its own table name.

To retrieve only one result from each joining network, the model adds conditions in the

WHERE part of the SQL statement to determine the intended record from each table,

where the collection of those records will formulate the answer. If the node in the joining

network locate in the primary part of the relation between two nodes, the condition will

retrieve only one result using the primary key value of this node, but if it locate in the

foreign part of the relation, the condition may retrieve more than one result using the

70

foreign key value of this node, therefore to be sure that the model will retrieve only the

intended record, the model retrieve the primary key value of the foreign node to be used in

the WHERE condition.

Algorithm Description (SQL answer generator):

There are two cases for generating the SQL statement:

 Case 1: If the answer stored in one table.

 Case 2: If the answer stored in more than one table.

Assume the tuple numbers in the joining network have the following variable names t0,

t1, t2, t3…etc., where t0 is the first node in the joining network, t1 the second node and

so on…

Case 1: (The answer stored in one table)

1. Generate the SELECT and the FORM part of the SQL statement

 Retrieve the table name of t0 from tuplesInfo table (see Table (5.3)) using

the following SQL statement:

 select tableName

 from tuplesInfo

 where t0 between from and to

 s = “select * from ” + tableName

2. Generate the Where part of the SQL statement

 Retrieve the primary key value of t0

To retrieve the intended record (t0) from the database, use the database

catalog to retrieve the primary key column name of the table, then by using

the table name and the primary key column of the table, execute the

71

following SQL statement over the local DB, to retrieve the primary key

value of t0 :

 select primaryKeyColumn

 from tableName

 where tNo =t0

 w= “ where “ + primarykeyColumn + “=” + primaryKeyValue

3. Generate the complete SQL statement

sql = s + w

Case 2: (The answer stored in more than one table)

We explain this part of the algorithm using an example for more illustration.

For Example, Generate an equivalent SQL statement for the following joining network:

3 ∞ 14 ∞ 7 ∞ 1 ∞ 12

Part1: Collect the needed information to generate the equivalent SQL statement (see

Figure (5.14))

 For each tuple (t0, t1, t2…) in the joining network

 Retrieve the table name of the tuple from tuplesInfo table (Table (5.3))

 Append the table name in the Tables array

 Append the corresponding alias name in the Alias array

 For each pair of neighbor tuples in the joining network

 Retrieve the primary and the foreign column names from the Pkfk_Table

(Table (5.6)), which connects the pair elements in primary to foreigh key

72

relationship, and append them in the Relationship array with the same order

of the pair elements

 Get the share value that joins the pair elements in primary to foreign key

relationship from the ShareV field in the Pkfk_Table, and append it in the

ShareV array.

 Store the symbol (P) to use as an indication for the primary part of the

relation and the symbol (F) to use as indication for the foreign part of the

relation in their corresponding location in the PF_Part array

Joining network 3

14 7 1 12

Tables Array Authors BookAuthors Books Borrow User

Alias Array Tbl1 Tbl2 Tbl3 Tbl4 Tbl5

Relationship Array AuthorId AuthorId BookId BookId BookId BookId UserId UserId

ShareV Array 1 2 2 2

PF_Part P F F P p F F P

Figure 5.14: Example of the needed information for generating an equivalent SQL statement for the joining

network 3 ∞ 14 ∞ 7 ∞ 1 ∞ 12

73

Part2: Generate the equivalent SQL statement (see Figure (5.15))

1. Generate the SELECT part of the SQL statement

 s= “select “

 Retrieve the columns names of the first table in the Table array using the

database catalog

 For each column name

 Append the column name to the string (s) using the following

expression:

s=s + alias[0] + „.‟ + columnName +‟,‟

 For each of the remaining tables in the Tables array

 Retrieve the table columns names using the database catalog

 For each columnName

 If the columnName is not one of the column names of the

previous table //to remove the redundancy columns

 Append the columnName to the variable (s) using

the following expression :

//alias[i] is the alias of the current table

s=s + alias[i] + „.‟ + columnName +‟,‟

 Remove the postfix character (,) from the string s

See Figure (5.15), SELECT part

74

2. Generate the FROM part of the SQL statement

 f = “ from ”

 For each table in the Tables array

 Append the table name and it‟s corresponding alias name to the

variable f

 f= f + tables[i] +‟ ‟ +alias[i] +„,‟

 Remove the postfix character (,) from the string f

See Figure (5.15), FROM part

3. Generate the WHERE part of the SQL statement

 // Generating the inner join part of the where condition

 i=0

 k=0

 w = “ where ”

 For each neighbor pairs in the joining network list

 /*Retrieve the corresponding joining columns names from the RelationShip

array with their corresponding tables name alias from Alias array */

 w = w + alias[i] + „.‟ +relationship[k]= alias[i+1] + „.‟ + relationship

[k+1] + ”and”

 k=k+2

75

 i=i+1

 //Retrieving the intended record from the primary part of the relationship

 k=0;

 For(i=0; i<length(Tables array)-1 ; i++)

 If (PF_PART[K]=‟P‟) then //if the first part of the relationship is

primary

 w = w + alias[i] +‟.‟ +relationship[k]+ „=‟ +shareV[i] + “and

”;

 Else // if the second part of the relationship is primary

 w = w + alias[i+1] +‟.‟ +relationship[k+1]+ „=‟ +shareV[i] +

“and ”;

 k=k+2

 //Retrieving the intended record from the foreign part of the relation

 k=0;

 For(i=0; i<length(Tables array)-1 ; i++)

 If (PF_PART[K]=‟F‟) then //if the first part of the relationship is

foreign

 Retrieve the primary column name and the primary key

value for the foreign part of the relationship using the

corresponding table name (table[i]) and the tuple number at

the corresponding location in the joining network list using

the DB catalog

76

 w = w + alias[i] +‟.‟ + primaryColumn + „=‟ + primaryValue

+ “and ”;

 Else // if the second part of the relationship is foreign

 Retrieve the primary column name and the primary key

value for the foreign part of the relationship using the

corresponding table name (table[i+1]) and the tuple number

at the corresponding location in the joining network list

using the DB catalog

 w= w + alias[i+1] +‟.‟ + primaryColumn + „=‟ +

primaryValue + “and ”

 k=k+2

 Remove the postfix (and) from the string w

See Figure (5.15), WHERE part

4. Generate the complete SQL statement

 sql = s + f + w

77

Select Part

select

tbl1.authorId, tbl1.firstName, tbl1.lastName,

tbl1.nationality, tbl2.bookId, tbl3.title,

tbl3.copyRightYear, tbl3.ISBN, tbl4.borrowKey,

tbl4.userId, tbl4.return, tbl5.firstName, tbl5.lastName,

tbl5.address, tbl5.phone

From Part

from

Authors tbl1, BookAuthors tbl2, Books tbl3, Borrow tbl4, User

tbl5

Where Part

where
tbl1.authorId= tb2.authorId and tbl2.bookId= tb3.bookId and

tbl3.bookId= tbl4.bookId and tbl4.userId = tbl5.userId and

tbl1.authorId=1 and tbl3.bookId=2 and tbl5.userId=2 and

tbl2.bookId=2 and tbl2.authorId=1 and tbl4.borrowKey= 1

Figure 5.15: The different parts of the equivalent SQL statement for the joining

network 3 ∞ 14 ∞ 7 ∞ 1 ∞ 12.

78

The following table shows the candidates networks and their equivalents SQL statements

(using the SQL answer generator algorithm) of the request query:

author:nancy book:planning

Table 5.7: The candidates networks and their equivalent SQL statements of the query

“author:nancy book:planning”.

Joining Network SQL Statement

3 ∞14 ∞ 7

select
tbl1.authorId, tbl1.firstNmae, tbl1.lastName,

tbl1.nationality, tbl2.bookId, tbl3.title,

tbl3.copyRightYear, tbl3.ISBN

from
Authors tbl1, BookAuthors tbl2, Books tbl3

where

 t1.authorId= t2.authorId and t2.bookId= t3.bookId

and t1.authorId=1 and t3.bookId=2 and

t2.bookId=2 and t2.authorId=1

3 ∞ 14 ∞ 7 ∞ 1 ∞12

Select

t1.authorId, t1.firstName, t1.lastName,

t1.nationality, t2.bookId, t3.title, t3.copyRightYear,

t3.ISBN, t4.borrowKey, t4.userId, t4.return,

t5.firstName, t5.lastName, t5.address, t5.phone

from

 Authors t1, BookAuthors t2, Books t3, t4 Borrow,

t5 User

where
 t1.authorId= t2.authorId and t2.bookId= t3.bookId

and t3.bookId= t4.bookId and t4.userId = t5.userId

t1.authorId=1 and t3.bookId=2 and t5.userId=2 and

t2.bookId=2 and t2.authorId=1 and t4.borrowKey=

1

12 ∞ 1 ∞ 7

select
t1.userId, t1.firstName, t1.lastName, t1.address,

t1.phone, t2.borrowKey, t2.bookId, t2.return,

t3.title, t3.copyRightYear, t3.ISBN

from
User t1, Borrow t2, Books t3

where

t1.userId= t2.userId and t2.bookId=t3.bookId and

t1.userId= 2 and t3.bookId= 2 and t2.borrowKey=1

79

5.5 Characteristics of Ssearch

1. The ability to apply semantics for the search keyword term.

2. Provide the most relevancy results at first top-k.

3. Using the capabilities of DBMS to improve and accelerate information retrieval

(such as the indexing technique, SQL statements capabilities).

4. Apply the results that satisfy AND semantics.

5. The ability to formulate query which have FOR ALL semantics implicitly.

6. Cashing the query results.

7. Stemming the search terms and the indexing terms.

8. Discard stop words (from the search terms and the indexing terms).

 5.6 Summery

A search operation is initiated by typing the user the query syntax in the text box and then

press the search button, Ssearch first parsing the query syntax by splitting the contents of

the query string into different tokens , some tokens are keywords terms and others are

semantic terms, Ssearch associate each semantic term to its corresponding keyword term,

then retrieves all the matching records that have at least one of the user keywords, then

checks if the matching record satisfy the user semantic or not, Ssearch build all the

different pairs combinations of tuples (matching records) to find the shortest path for each

combination, the shortest path of each combination represent a joining network, it ranks

the joining networks according to their ranking score in descending order which take into a

count the user semantics satisfaction, then generates the equivalent SQL statement for each

joining network and finally it executes the SQL statements over original database to

retrieve the user‟s request results.

80

Chapter Six: Experimental Design and Results Analysis

6.1 Introduction

As stated earlier the main objective of the proposed system is to improve the total number

of relevant results at the Top-k according to user query, within acceptable overheads in

time.

We design experiments in order to compare the relevance of proposed system Ssearch

with Discover.

This chapter presents the experiments setup, experiments procedures, experiments

objectives, experiments results and analysis to test the system outlined in the previous

chapter.

6.2 Experiments Setup

The experimental environment design implements the experimental systems (Discover,

Ssearch) using Java language (jdk1.6 compiler) and Oracle 10g DB, we run the both

systems on the same PC under windows XP, with Intel Core 2 Due (2.0GHZ 2MB cache)

and 4 GB of RAM.

We used Al–Quds university library database for evaluation. The ER-Diagram of the

experimental database is shown in Figure (6.1). We got randomly two samples of this

database, the first sample contains data about 5000 books with 31297 tuples (records) and

size 10 MB, while the second one contains data about 10000 books with 97282 tuples and

size 29 MB, we used these two samples to study the scalability of the system.

81

We also chose 16 different queries to be executed over the library database samples, we

tried to take into account when selecting this queries, to get all the probabilities we can

have from the searching operation, to get a wide view of how much the results are relevant

to the user query in different situations, we changed from simple queries which contains

only one keyword to more complex queries which contain more than one keyword. See

Table (A.1) in the appendix.

 For each selected query we identified a semantic term for each keyword in it, for example,

the input query “Book:dictionary Author:Al-Kilani” retrieves all the dictionary books

which are written by the author Al-kilany, where the book is the semantic term of the

dictionary keyword and the author is the semantic term of AL-Kilany keyword.

6.3 Experiments Metrics

We use three metrics to evaluate the different aspects of semantic search effectiveness:

Figure 6.1: ER-Diagram of the experimental DB.

82

1- Number of Top-k answers that are relevant to the user query. We consider the

answer is relevant, if and only if each keyword in the input query satisfies the user

semantics in the answer, i.e. using the same query mentioned in the previous

example (“Book:dictionary Author:Al-Kilani”), if the keyword dictionary in the

answer comes from the book table and Al-Kilani keyword comes from the author

table, this answer will be considered relevant for the user semantics otherwise the

answer is irrelevant, for more illustration see Figure (6.2), which displays some

relevant and irrelevant results for this semantic keyword query.

input search query :

“ Book:dictionary Author:Al-Kilani “

AUTHOR.

AUTH_ID

AUTHOR

.FAM_NAME

AUTHOR.

FIRST_NAME

CONTRIBUTOR.

CONTRI_ID

CONTRIBUTOR.

AUTOMATIC_ID

BOOK.

MATERIAL_ID

BOOK.

TITLE

Rel.
9573 Al-Kilani Taiseer 1 10973 1

An encyclopedic

dictionary of games

and sports (English-
Arabic)

AUTHOR.

AUTH_ID

AUTHOR

.FAM_NAME

AUTHOR.

FIRST_NAME

CONTRIBUTOR.

CONTRI_ID

CONTRIBUTOR.

AUTOMATIC_ID

BOOK.

MATERIAL_ID

BOOK.

TITLE

Rel.
9573 Al-Kilani Taiseer 1 12785 1

The Al-Kilani

dictionary of

computer and

internet

terminology :

English – English

– Arabic, with

illustrations

PUBLISHER.

PUBLISHER_CODE

PUBLISHER.

PUBLISHER_DISC

PUBLISHER.PUBLISHER

PUB_ID_BOOK

BOOK.

AUTOMATIC_ID

BOOK.

MATERIAL_ID

BOOK.

TITLE

Not

Rel. 105
Librairie du

Al-Kilani
1 13179 1

A dictionary of

economic and financial

terms : English –

French – Arabic : with

indexes of French and

Arabic key-words

PUBLISHER.

PUBLISHER_CODE

PUBLISHER.

PUBLISHER_DISC

PUBLISHER.PUBLISHER

PUB_ID_BOOK

BOOK.

AUTOMATIC_ID

BOOK.

MATERIAL_ID

BOOK.

TITLE

Not

Rel. 105
Librairie du

Al-Kilani
1 13316 1

Faruqi s law dictionary :

English - Arabic :

meanings and

definitions of terms of

English and American

Jurisprudence (ancient

and modern), forensic

medicine, commerce,

banking, insurance,

civil aviation,

diplomacy and

petroleum

Figure 6.2: Some relevant and irrelevant answers.

83

 2- Precision of query answers, this metric used to find the fraction of a search output that

is relevant for a particular query, precision is defined as:

3- Time Overhead, which we used to find the additional time needed by the proposed

system to process the user semantics (parsing the semantic query, associate the query

keywords with their related semantics, find if the retrieving results satisfy the user

semantics or not etc.). This metric give us an indication if the proposed system running

within acceptable overhead time to encourage who builds such systems to adopt the

proposed idea.

6.4 Experiments Outline

We have conducted two experiments in order to verify the proposed system:

 Experiment one, testing the relevancy of the search results.

 Experiment two, testing the scalability of the system in terms of relevancy and

overhead time.

6.4.1 Experiment 1: Testing the relevancy at Top-10, Top-20, Top-30, Top-40 and

Top-50

This experiment give us a detail view for the effect of the proposed system Ssearch in

ranking the relevant answers by comparing it with Discover at Top-10, Top-20, Top-30,

Top-40 and Top-50, which is enough to study.

According to Hedger [Hedger, 2006], where 90% of search users will click on links found

in the first three pages of search results, 62% of them click on a first page result. 41% of

respondents would either alter or abandon the keywords used in their queries if they could

not find results on the first page. Another important note is that only 12% of respondents

would follow a search past the first three pages of results, down from 22% in 2002.

84

The proposed system displays the first Top-10 answers in the first page and the first Top-

20 answers in the first two pages and the first Top-30 answers in the first three pages and

so on…

The users who will use the proposed system are the same users who are usually used the

web search engines, which we expect that they will follow the same behavior as mentions

in [Hedger, 2006].

6.4.1.1 Procedure of Experiment 1:

 In this experiment we need to compute the total number of relevant results at each Top k

in both systems for the entered keyword phrase using the following procedure:

In Ssearch, after inserting the semantic query, the results will be sorted in descending

order based on the Ssearch ranking score, then the total number of relevant results that

satisfy the user semantics at each Top-k will be computed, where 50,40,30,20,10k .

In Discover, we applied the same input query as we applied in Ssearch but with no

semantics, we assume the same semantics implicitly, after sorting the results in descending

order based on the Discover ranking score, we calculate the total number of relevant results

at each Top-k, where 50,40,30,20,10k .

The query answers with a higher score are more relevance to the user semantics than the

lower score.

We run this experiment over the sample of the library database that contains data about

5000 books with size 10 MB.

85

6.4.1.2 Part 1 of Experiment 1: Testing the relevancy at Top-10

Objectives :

In this part we studied the relation between the total number of relevant answers and the

Top-10 answers for query in both systems Ssearch and Discover, then compared between

them according to the relevancy. See Figure (6.3).

Figure 6.3: Relevancy at Top-10 (10 MB).

Discussion

We noticed in this part of the experiment that all query answers at the Top-10 in Ssearch

are nearly relevant except the queries that have the total number of relevant answers less

than 10, which means that our system displays all the relevant results at the Top-10, we

also noticed that the number of relevant results at Top-10 in Ssearch are always greater

than or equal Discover. An irregular number of relevant results in Search happened only at

Q10 where the number of relevant results at Top-10= 0, when we analyze the answers of

2
10 10 10 9 10 10 10 10

0

10 9 10 10 10 10

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-10

Discover

Ssearch

TOT. Rel.

86

this query, we found that the relevant answers of this query have a long size which leads to

decrease the ranking score of such results. The longer relevant answers have smaller score

in the proposed ranking algorithm than the relevant answers with shortest size.

6.4.1.3 Part 2 of Experiment 1: Testing the relevancy at Top-20

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-20 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.4).

Figure 6.4: Relevancy at Top-20 (10 MB).

Discussion

We noticed in this part of the experiment that all query answers at the Top-20 in Ssearch

are nearly relevant except the queries that have the total number of relevant answers less

than 20, which means that our system displays all the relevant results at the Top-20, we

2
10 12

19 19 20 20 20 20

0

20 19 20 20 20 20

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-20

Discover

Ssearch

TOT. Rel.

87

also noticed that the number of relevant results at Top-20 in Ssearch is always greater than

or equal Discover. An irregular number of relevant results in Ssearch still happen at Q10

where the number of relevant results at Top-20= 0, when we analyze the answers of this

query we found that the relevant answers of this query have a long size which leads to

decrease the ranking score of such results. The longer relevant answers have smaller score

in the proposed ranking algorithm than the relevant answers with shortest size.

6.4.1.4 Part 3 of Experiment 1: Testing the relevancy at Top-30

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-30 answers for each query in both systems Ssearch and Discover, then compared

between the two systems according to the relevance. See Figure (6.5).

Figure 6.5: Relevancy at Top-30 (10 MB)

2
10 12

19

29 30 30 30 30

9

30 29 30 30 30 30

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-30

Discover

Ssearch

TOT. Rel.

88

Discussion

We noticed in this part of the experiment that all query answers at the Top-30 in Ssearch

are nearly relevant except the queries that have the total number of relevant answers less

than 30, which means that our system display all the relevance results at the Top-30. We

also noticed that the number of relevant results at Top-30 in Ssearch are always greater

than or equal Discover. The first relevant results of an irregular query (Q10) started

appearing at Top-30, which display 9 relevant results from 68 relevant results while the

number of relevant results in Discover still 0.

6.4.1.5 Part 4 of Experiment 1: Testing the relevancy at Top-40

Objectives:

In this part we study the relation between the total number of relevant answers and the

Top-40 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.6).

Figure 6.6: Relevancy at Top-40 (10 MB).

2
10 12

19

34 35 38 40 40

19

40 39 40 40 40 40

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-40

Discover

Ssearch

TOT. Rel.

89

Discussion:

We noticed in this part of the experiment that all query answers at the Top-40 in Ssearch

are nearly relevant except the queries that have the total number of relevant answers less

than 40, which means that our system displays all the relevant results at the Top-40. We

also noticed that the number of relevant results at Top-40 in Ssearch are always greater

than or equal Discover. The number of relevant results of an irregular query (Q10) at Top-

40 increased by 10 which means all the results at page four are relevant while the number

of relevant results in Discover still 0.

6.4.1.6 Part 5 of Experiment 1: Testing the relevancy at Top-50

Objectives:

In this part we study the relation between the total number of relevant answers and the

Top-50 answers for each query in both systems Ssearch and Discover, then compared

between them according to the relevancy. See Figure (6.7).

Figure 6.7: Relevancy at Top-50 (10 MB).

2
10 12

19

34 35 38
45

50

29

50 49 50 50 50 50

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-50

Discover

Ssearch

TOT. Rel.

90

Discussion

We noticed in this part of the experiment that all query answers at the Top-50 in Ssearch

are nearly relevant except the queries that have the total number of relevant answers less

than 50, which means that our system displays all the relevant results at the Top-50. We

also noticed that the number of relevant results at Top-50 in Ssearch are always greater

than or equal Discover. The number of relevant results of an irregular query (Q10) at Top-

50 increase by 10, which means that all the results at page five also are relevant while the

number of relevant results in Discover still 0.

6.4.1.7 Overall Discussion of Experiment 1:

Based on all the above figures, we noticed that all the query answers at the Top-k in

Ssearch are nearly relevant except the queries that have the total number of relevant

answers less than k, which means that most of the results at top-k in Ssearch are relevant

to a user query.

We also noticed that the number of relevant results at Top-k in Ssearch are always greater

than or equal the number of relevant results at Top-k in Discover.

Even by using an irregular query (Q10), the proposed system verified based on the above

experiments that Ssearch gives a higher score for the relevant results than Discover in any

case, the relevant results of this query started to appear at Top-30 and increasing at Top-40

and Top-50, while Discover displays the top-50 results, with no relevant results.

To get a general view of experiment one, we compare the mean precision between

Discover and Ssearch. See Figure (6.8)

91

Figure 6.8: Mean precision of Discover and Ssearch (10 MB).

We noticed that Ssearch have the highest precision at any top-k, the precision at the first

page (Top 10) which is the most concern by all the users have a high precision 88%,

while Discover have 35% .

All the results in this experiment revealed that the proposed system (semantic search

engine over relational database) contributes in achieving better performance in terms of

relevancy.

6.4.2 Experiment 2: Testing the scalability of the system in terms of relevancy and

overhead time

To measure the scalability of the proposed system, we have conducted one experiment

with two different outputs, relevancy and overhead time:

Top-10 Top-20 Top-30 Top-40 Top-50

Discover 2% 13% 23% 29% 30%

Ssearch 89% 88% 83% 82% 79%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Mean precision of Discover and Ssearch

Discover

Ssearch

92

 Part1: Testing the relevancy at Top-10, Top-20, Top-30, Top-40 and Top-50.

 Part2: Testing Ssearch overheads in terms of time.

We run this experiment using a bigger sample size of the library database than that in

experiment one which contains data about 10000 books and 97282 records with size 29

MB.

6.4.2.1 Part1 of Experiment 2: the relevancy at Top-10, Top-20, Top-30, Top-40 and

Top-50

This part of the experiment give us a detail view for the effect of the proposed system

Ssearch in ranking the relevant answers by comparing it with Discover at Top-10, Top-20,

Top-30, Top-40 and Top-50 using another sample of the library database which is greater

than the sample used in the first experiment.

6.4.2.1.1 Experiment Procedure of Part1:

The procedure of this part of the experiment is the same as the procedure of experiment

one (section, 6.4.1.1), except the sample of the experimental database in this part is bigger

in size.

6.4.2.1.2 Part 1.1 of Experiment 2: Testing the relevancy at Top-10

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-20 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.9).

93

Figure 6.9: Relevancy at Top-10 (29 MB).

Discussion

We noticed in this part of the experiment that most of the query answers at the Top-10 in

Ssearch are relevant while in Discover are irrelevant, except the Q14 where the number of

its relevant results at top-10=0, when we analyze the answers of this query, we found that

the relevant answers of this query have a long size which leads to decrease the ranking

score of such results. We also noticed that the total number of relevant results at Top-10 in

Ssearch is always greater than or equal Discover.

10 8 10 10 10 10 10 6 10 10 10 10 8
0

10 10

0

50

100

150

200

250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-10

Discover

Ssearch

TOT. Rel.

94

6.4.2.1.3 Part 1.2 of Experiment 2: Testing the relevancy at Top-20

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-20 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.10).

Figure 6.10: Relevancy at Top-20 (29 MB).

Discussion

We noticed in this part of the experiment that most of the query answers at the Top-20 in

Ssearch are relevant while in Discover are irrelevant, the relevant answers of Q14 started

appearing in the second page while Discover still have no relevant results. We also noticed

that the total number of relevant results at Top-20 in Ssearch is always greater than the

total number of relevant results in Discover.

10
18 20 20 20 15 20

12
20 20 20 20 18

8
20 20

0

50

100

150

200

250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-20

Discover

Ssearch

TOT. Rel.

95

6.4.2.1.4 Part 1.3 of Experiment 2: Testing the relevancy at Top-30

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-30 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.11).

Figure 6.11: Relevancy at Top-30 (29 MB)

Discussion

We noticed in this part of the experiment that most of the query answers at the Top-30 in

Ssearch are relevant. We also noticed that the total number of relevant results at Top-30 in

Ssearch is greater than the total number of relevant results in Discover.

10
20 25 30 30

20
30

22
30 30 30 30 28

8

30 30

0

50

100

150

200

250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-30

Discover

Ssearch

TOT. Rel.

96

6.4.2.1.5 Part 1.4 of Experiment 2: Testing the relevancy at Top-40

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-40 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.12).

Figure 6.12: Relevancy at Top-40 (29 MB).

Discussion

We noticed in this part of the experiment that most of the query answers at the Top-40 in

Ssearch are relevant. We also noticed that the total number of relevant results at Top-40 in

Ssearch is greater than the total number of relevant results in Discover.

10
20 25

34 40
30

40
32

40 40 40 40 38

16

40 40

0

50

100

150

200

250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-40

Discover

Ssearch

TOT. Rel.

97

6.4.2.1.6 Part 1.5 of Experiment 2: Testing the relevancy at Top-50

Objectives:

In this part we studied the relation between the total number of relevant answers and the

Top-50 answers for query in both systems Ssearch and Discover, then compare between

the two systems according to the relevancy. See Figure (6.13).

Figure 6.13: Relevancy at Top-50 (29 MB).

Discussion

We noticed in this part of the experiment that most of the query answers at the Top-50 in

Ssearch are relevant. We also noticed that the total number of relevant results at Top-50 in

Ssearch is greater than or equal the total number of relevant results in Discover.

10
20 25

34
45 40

50
42

50 50 50 50 48

21

50 50

0

50

100

150

200

250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

N
u

m
b

e
r

o
f

R
e

l.
 a

n
sw

e
rs

Query

Relevancy at Top-50

Discover

Ssearch

TOT. Rel.

98

6.4.2.1.7 Overall Discussion of Experiment 2 Part1:

Based on all the above figures in this part of the experiment, we noticed that all the query

answers at the Top-k in Ssearch are nearly relevant except the queries that have the total

number of relevant answers less than k.

We also noticed that the total number of relevant results at Top-k in Ssearch is always

greater than or equal the number of relevant results at Top-k in Discover.

To get a general view of this part of the experiment, we compare the mean precision

between Discover and Ssearch. See Figure (6.14)

Figure 6.14: Mean precision of Discover and Ssearch (29 MB).

We noticed when compare the mean precision between Discover and Ssearch, that

Ssearch have the highest precision at any top-k, the precision at the first page (Top 10)

which is the most concern by all the users have a high precision 89%, while Discover

have 2% .

Top-10 Top-20 Top-30 Top-40 Top-50

Discover 2% 13% 23% 29% 30%

Ssearch 89% 88% 83% 82% 79%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mean precision of Discover and Ssearch

Discover

Ssearch

99

All the results in this experiment revealed that the proposed system (semantic search

engine over relational database) contributes in achieving better performance in terms of

relevancy. Also these results give us an indication that the proposed system is scalable in

terms of relevancy.

6.4.2.2 Part 2 of Experiment 2: Testing Ssearch overheads in terms of time

As shown in the previous part of the experiment, it was obvious that the proposed idea

added a significant improvement in terms of relevancy, but this is not enough to take a

decision that this idea is the better choice for building such system, because the overheads

of building such system may affect the acceptable response time, which is one of the most

sensitive issues in the world of data retrieval.

Response time means the time between submitting the search query and retrieving the first

batch of results (first Top-10).

The overheads induced by Ssearch are the time required to process all the operations

related to semantics (the proposed idea).

The following part of the experiment will give us a general estimation for the additional

needed time to run such a system.

6.4.2.1 Experiment Procedure of part 2:

To compute Ssearch overheads in terms of time, we followed the following procedure:

For each query in the experimental query set. See Table (A.1).

Step1: run the query on both systems (Ssearch, Discover) and then compute the Ssearch

overheads using the following formula:

Response Time(Ssearch)- Response Time(Discover)

Step2: repeat step1, 100 times for each query to get more accurate results by computing the

average overheads per query.

100

Overheads time included the following processes:

1- Parsing the semantic query

The time needed to distinguish between the user semantics and users keywords and

associate each input keyword with its input semantic.

2- Retrieving the matching keyword

The time needed to verify if the semantic of the retrieved keywords (from database) match

the user keywords semantics or not.

3- Ranking the answers

The time needed to compute the percentage of input keywords that satisfies the user

semantics in the answer (this percentage used to compute the ranking score of the answer).

We used the same environment for running the both systems (Ssearch, Discover)

6.4.2.2 Experiment Objectives of Part 2:

In this part of the experiment we measured the time overheads due to the use of the

semantic characteristic in the input search query. Table (6.1) shows the mean overheads

taken by each query.

101

Table 6.1: Semantics Overheads per query.

Query

No.

Discover

Response

time (sec)

Ssearch

Response

time (sec)

Overhead

(sec)

Overhead

Fraction

(sec)

1 252.6798 252.7026 0.022808 9.02561E-05

2 324.85970 324.8871 0.027395 8.43217E-05

3 469.2625 469.2962 0.033700 7.18097E-05

4 758.0394 758.0972 0.057800 7.62435E-05

5 758.0433 758.1012 0.057900 7.6375E-05

6 1119.0105 1119.0816 0.071100 6.35342E-05

7 1155.1077 1155.1811 0.073400 6.35398E-05

8 1371.6903 1371.771 0.080700 5.88291E-05

9 1443.8846 1443.9671 0.082500 5.71343E-05

10 1443.8846 1443.968 0.083400 5.77575E-05

11 1588.273 1588.3631 0.090100 5.67251E-05

12 1696.5644 1696.6565 0.092100 5.42832E-05

13 2129.7297 2129.8269 0.097200 4.56375E-05

14 2887.7691 2887.8758 0.106700 3.69476E-05

15 3068.2547 3068.3651 0.110400 3.59801E-05

16 3104.3518 3104.4631 0.111300 3.58516E-05

Avg. 1473.2135 1473.2864 0.0729 4.94812E-05

During this part of experiment, we noticed that the overhead time depends on the total

number of matching keywords per query. See Figure 6.15.

Figure 6.15: The relation between number of matching keywords and the overhead

fraction per query.

0

0.00002

0.00004

0.00006

0.00008

0.0001

1
4

1
8

2
6

4
2

4
2

6
2

6
4

7
6

8
0

8
0

8
8

9
4

1
1

8

1
6

0

1
7

0

1
7

2

Ti
m

e
 (

se
c)

No. of matching keywords per query

Overhead Fraction

Overhead Fraction

102

Matching keyword is the keyword in the database that matches one of the input query

keywords.

6.4.2.3 Experiment Discussion of part 2:

As shown in Table (6.1), the maximum overhead time for the experimental query equal

0.11 sec and the average overhead time equal 0.07 sec, which is 4.94E-5 of the total

response time of Ssearch, that means that Ssearch add a very tiny fraction of time to apply

the proposed idea .

Also, Figure (6.15) shows that the overhead fraction depends on the total number of the

keywords in the database that match one of the user keywords after stemming, if the

number of matching keywords increase the overhead fraction decrease accordingly

(because if the number of matching keywords increase, the total number of possible

candidate networks increase accordingly, so the number of times needed to search the data

graph will also increase).

This part of the experiment will give the developers of such systems an idea about an

approximate overhead time needed for processing such semantics in the search query.

6.4.3 Overall Summary

In this chapter, we have studied the effect of adding semantic information (table name,

field name) to the keywords in the search query on the relevancy of the returned answers.

Also we have studied the scalability of the proposed system in terms of relevancy and

overhead time.

We have conducted two experiments, experiment one studied the relevancy of the query

answers at Top-10, Top-20, Top-30, Top-40 and Top-50, while the second one studied the

accuracy and scalability of the proposed system.

The initial results, indicate a significance improvement on the returned results relevancy

when the search is conducted using the system presented in this research compared with

103

the previous system (Discover). Also the results indicated that the system is scalable and

can retrieve relevant results at top-k from a larger database.

In the first experiment, we tested the relevancy of query answers by computing the total

number of relevant answers at Top-10, Top-20, Top-30, Top-40 and Top-50 using Ssearch

and compared them individually with the total number of relevant answers using Discover

at Top-10, Top-20, Top-30, Top-40 and Top-50. We run this experiment over a sample of

Al-Quds University Library database which contains data about 5000 books. The results of

this experiment showed that all the query answers in Ssearch at the Top-k are nearly

relevant except the queries that have the total number of relevance answers less than k,

which mean that the proposed system can display all the relevance answers at the Top-k.

Also, we have noticed that the number of relevant answers at Top-k in Ssearch are always

greater than or equal the number of relevant answers at Top-k in Discover.

In the part1 of the second experiment, we tested also the relevancy of query answers by

computing the total number of relevant answers at Top-10, Top-20, Top-30, Top-40 and

Top-50 using Ssearch and compared them individually with the total number of relevant

answers using Discover at Top-10, Top-20, Top-30, Top-40 and Top-50. But this time we

run it over a larger sample of Al-Quds University Library database which contains data

about 10000 books. The results of this experiment showed that all the query answers in

Ssearch at the Top-k are nearly relevant except the queries that have the total number of

relevance answers less than k, which means that the proposed system is scalable and can

display the most relevant answers at top-k from a larger database.

In the part two of the second experiment, we measured the time overheads due to the use of

the semantic characteristic in the input search query. The results showed that the maximum

overhead time of the experimental queries equal 0.11 sec and the average overhead time

equal 0.073 sec, which is 4.94E-5 of the total response time of Ssearch. Also, we have

noticed that the overheads time depends on the total number of the keywords in the

database that match one of the user keywords after stemming, which means that when the

total number of retrieving keywords increases the total time for processing the semantics

operations will increase accordingly.

104

The performance of our proposed system is relevant to our achieved results, which adds a

significant improvement in terms of relevancy with acceptable overhead time, but it seems

that there is a delay in response time that needs to be looked in, and this is to be

investigated in future plan as it is not part of this work.

105

Chapter 7: Conclusion and Future Work

7.1 Conclusion

Keyword search allows non-expert users to retrieve information from relational databases

with much more flexibilities. The user retrieves information without requiring to know the

schema of the database, SQL or some QBE-like interface, and the roles of the various

entities and terms used in the query.

Increasing amount of data stored in the database leads to increase the amount of irrelevant

results returned from the query at top-k, which have a completely different meaning than

what the user really means. The improvement of the relevancy of the returned results at

top-k was the main motivation to do this work.

In this thesis we proposed a simple query language, suitable for a naive user, which

contains a list of pairs (semantic term and keyword term), which help the user to be more

specific in expressing his needs when formulating the query. Also we proposed a new

ranking method which assigns score to each query result by considering two factors, user

semantics and the size for the given result. Finally, we describe the algorithms needed to

build such systems.

A given keyword query in Ssearch is processed in four steps. (1) The system generates all

answers (candidate networks) for the query. (2) The system computes a ranking score for

each answer and ranks. (3) The system generates the equivalent SQL statement for each

answer (candidate network). (3) Finally, answers are returned with semantics after

execution the corresponding SQL statement over the database.

We have conducted two experiments, experiment one studied the relevancy of the query

answers at Top-10, Top-20, Top-30, Top-40 and Top-50, while the second one studied the

scalability of the proposed system in terms of relevancy and overhead time.

The initial results, indicate a significance improvement on the returned results relevancy

when the search is conducted using the system presented in this research compared with

106

the previous system (Discover). Also the results indicated that the system is scalable and

can retrieve relevant results at top-k from a larger database.

In the first experiment, we tested the relevancy of query answers by computing the total

number of relevant answers at Top-10, Top-20, Top-30, Top-40 and Top-50 using Ssearch

and compared them individually with the total number of relevant answers using Discover

at Top-10, Top-20, Top-30, Top-40 and Top-50. We run this experiment over a sample of

Al-Quds University Library database which contains data about 5000 books. The results of

this experiment showed that all the query answers in Ssearch at the Top-k are nearly

relevant except the queries that have the total number of relevance answers less than k,

which mean that the proposed system can display all the relevance answers at the Top-k.

Also, we have noticed that the number of relevant answers at Top-k in Ssearch are always

greater than or equal the number of relevant answers at Top-k in Discover.

In the part1 of the second experiment, we tested also the relevancy of query answers by

computing the total number of relevant answers at Top-10, Top-20, Top-30, Top-40 and

Top-50 using Ssearch and compared them individually with the total number of relevant

answers using Discover at Top-10, Top-20, Top-30, Top-40 and Top-50. But this time we

run it over a larger sample of Al-Quds University Library database which contains data

about 10000 books. The results of this experiment showed that all the query answers in

Ssearch at the Top-k are nearly relevant except the queries that have the total number of

relevance answers less than k, which means that the proposed system is scalable in terms

of relevancy.

In the part two of the second experiment, we measured the time overheads due to the use of

the semantic characteristic in the input search query. The results showed that the average

overhead time equal 0.073 sec, which is 4.94E-7 of the total response time of Ssearch,

which means that Ssearch add a very tiny fraction of time to apply the proposed idea .

Consequently, The performance of our proposed system is relevant to our achieved results,

which adds a significant improvement in terms of relevancy with acceptable overhead

time, but it seems that there is a delay in response time that needs to be looked in, and this

is to be investigated in future plan as it is not part of this work.

107

7.2 Future Work

As future work, Ssearch system applied semantics for the keyword query over single

database, we can extend this work to applied semantics for the keyword query over

multiple databases. Also we try to improve the execution time needed to generate all the

candidate networks by using the characteristics of parallel programming and distributed

systems and by finding a heuristic method that help the system to expect the disconnected

pairs and the pairs that have a path length greater than the total number of tables in the

database (Discover and Ssearch ignore the results that have a path length greater than the

total number of tables in the database) to decrease the total number of needed pairs to

explore their connection paths in the data graph.

108

References

[1] Hoare, C. A. R. Quicksort. Computer Journal 5 (1): 10-15, 1962.

[2] Julie Beth Lovins. Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics 11:22–31, 1968.

[3] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications

of the ACM 13 (No. 6): 377–387, 1970.

[4] F. Benjamin Zhan, Charle E. Noon. Shortest Path Algorithms: An Evaluation Using

Real Road Networks. Transportation Science 32(1): 65-73, 1998.

[5] U. Masermann, G. Vossen. Schema Independent Database Querying (on and off the

Web). In Proc. Of IDEAS, 2000.

[6] U.Masermann, G.Vossen. Design and Implementation of a Novel Approach to

Keyword Searching in Relational Databases. In ADBISDASFAA Symposium, 2000.

[7] S. Base, A. Van Gelder. Computer Algorithms Introduction to Design & Analysis.

Third Edition, Addison Wesley Longman 2000.

[8] A. Hulgeri, G. Bhalotia, C. Nakhe, S.Chakrabarti, S. Sudarshan. Keyword Search in

Databases. In CiteSeer, 2001.

[9] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword Search in Relational

Databases. In VLDB, 2002.

 [10] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, and P. Sudarshan.

BANKS: Browsing and Keyword Searching in Relational Databases. In VLDB, 2002.

 [11] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-Based

Search over Relational Databases. In ICDE, 2002.

 [12] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine

for XML. In VLDB, 2003.

[13] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword search

over relational databases. In HDMS, 2003.

 [14] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on

XML graphs. In ICDE, 2003.

[15] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. ObjectRank:

Authority-Based Keyword Search in Databases. In Proc. of VLDB Conf., 2004.

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/w/index.php?title=F._Benjamin_Zhan&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Charle_E._Noon&action=edit&redlink=1
http://en.wikipedia.org/wiki/Transportation_Science

109

[16] Jim Hedger, iProspect user search engine behavior Study. A Survey in

www.iprospect.com, 2006.

 [17] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: Top-k keyword query in relational

databases. In Proceedings of SIGMOD, 2007.

[18] B.Yu, G.Li, K.Sollins, A.Tung, Effective Keyword-based Selection of Relational

Databases. In SIGMOD, 2007.

[19] Q. Vu, B. Ooi, D. Papadies, A. Tung, A graph method for keyword-based selection of

the top-k databases. In SIGMOD, 2008.

http://www.iprospect.com/

110

List of Appendixes

Appendix A: Experimental Query Set

No. Query

1 Fam_name: Wolf Name: Stanley

2 Publisher: Navigation

4 Book: Agriculture Author: Boatfield

5 Other_title: Telephone Book: Networks

6 Book: Netscape Other_title: Exploring

7 Respons: Lindley Book: Image

8 Book: Assembly Publisher: Wiley

9 Book: Dictionary Author: Al-khatib

10 Book: Internet Author: Kiley Material: Textual

11 Book: Nutrition Book: Diet

12 Book: Yoga Publisher:Unwin

13 Title:Compiler Respons:Aho

14 Book : Plastics

15 Book: Medicine fam_name:Wilkinson

16 Title:Radio Respons:Ian

111

Appendix B: Term Index

AND semantic: Means that all the terms the user specifies in the search query must appear

in the contents of the search answers.

Candidate network: Is a set of records which are connected by primary to foreign key

relationship, which contains at least two keywords.

Data graph: Is graph where the nodes represent the records of the database tables and

edges represent the primary to foreign key relationship between records.

Database: Any collection of data: part numbers, product codes, customer information, etc.

It usually refers to data stored on a computer.

Dense graph: A graph in which the number of edges is much bigger than the possible

number of vertices.

ER-diagram: An entity-relationship diagram is a specialized graphic that illustrates the

interrelationships between entities in a database, entities refers to the tables of the database,

the relationships between tables refers to the primary to foreign key relationships.

Foreign Key: A field in a relational table that matches the primary key column of another

table.

Irrelevant answer: Answers that not satisfy the user search query.

Keyword: word used in a search query.

Keyword search: A type of search that looks for matching documents or records that

contain one or more words specified by the user.

Master index: Is the database that contains all the information needed to retrieve the user

request answers in efficient way.

http://www.itl.nist.gov/div897/sqg/dads/HTML/graph.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/edge.html

112

Offline operations: Are all the process needed to build and update the master index

database, which collects, parses, and stores data to facilitate fast and accurate information

retrieval.

Online operations: Are all the operations needed to process the user request.

OR semantic: Means that at least one of the terms the user specifies in the search query

must appear in the documents.

Primary key: A unique identifier, often an integer that labels a certain row in a table of a

relational database.

Query: Queries are the primary mechanism for retrieving information from a database and

consist of questions presented to the database in a predefined format.

Ranking score: It is an indicator which measures how well a particular answer is relevant

to the user query. Answers with high ranking scores are more relevant than the answers

with low ranking scores.

Record (tuple): A database record is a row of data in a database table consisting of a

single value from each column of data in the table. The data in the columns in a table are

all of the same type of data, whereas the rows represent a given instance.

Relational Database: A database that stores data in a structure consisting of one or more

tables of rows and columns, which may be interconnected. A row corresponds to a record

(tuple); columns correspond to attributes (fields) in the record.

Relationship: Is a link between two tables (i.e, relations). Relationships make it possible to

find data in one table that pertains to a specific record in another table.

Relevant answers: Answers that satisfy the user search query.

Schema information’s: also call a metadata which have information such as table names,

columns name, it defines the tables the fields in each table, and the relationships between

fields and tables.

113

Sparse graph: A graph in which the number of edges is much less than the possible

number of vertices.

http://www.itl.nist.gov/div897/sqg/dads/HTML/graph.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/edge.html

