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Abstract 

In this thesis we consider the Bayesian and non-Bayesian estimation of the unknown 

parameters of the Generalized Exponential (GE) distribution. Our aim is to compare the 

estimates of parameters and to observe the performance of the methods used for 

estimation.  

By the developed methodology for MLE and Bayesian estimation has been demonstrated 

on a real data set when both the shape (𝑝) and scale (𝜃) parameters of the GE distribution 

are unknown under informative set of independent priors. It is observed that the parameter 

estimates under the classical maximum likelihood method could not be obtained in close 

form; we therefore employed Newton- Raphson iterative approach via the Hessian matrix. 

In this study following C. Guure and S. Bosomprah (2013), we consider the Bayesian 

estimation of the unknown parameters of the GE distribution. We have also assumed a 

gamma prior on both parameters, and we provide the Bayesian estimators under the 

assumptions of squared error and general entropy loss functions. We see that the Bayesian 

estimators cannot be obtained in explicit forms, due to the complex nature of the posterior 

distribution of which Bayesian inference is drawn. Therefore, Lindley’s numerical 

approximations procedure is used. 

Results show that the Bayesian estimator under general entropy loss function performed 

quiet better than Bayesian under squared error loss function and that of maximum 

likelihood estimator for estimating the scale parameter with both MSE and absolute bias. 
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Chapter  One 

Introduction 

1.1   Survival Data 

Survival analysis is a branch of statistics which includes a variety of "statistical methods 

designed to describe, explain or predict the occurrence of events". It is widely applied in 

many fields such as biology, medicine, public health, and epidemiology. In survival 

analysis, our objective is to model the survival time, i.e. the time to the occurrence of a 

given event. The event could be just about anything. Within the medical field, common 

examples are the time to development of a disease, response to a treatment, and of course 

death. The available data often include the survival time, patient characteristics (such as 

gender, age, and blood pressure), disease information, treatment information, examination 

data and much more. Often we attempt to predict the probability of survival, response, or 

mean lifetime given a set of observed variables and compare survival distributions.  

1.2   Survival Function 

For matters of simplicity we assume time 𝑇 ( where 𝑇 is the random variable representing 

survival time) to be continuous. The distribution of survival times is described by three 

mathematically equivalent  functions: survival , hazard and cumulative hazard functions . 

A very simple way to specify the probability distribution of continuous durations 𝑇 is the 

distribution function 

𝐹 𝑡 = 𝑃 𝑇 ≤ 𝑡  (1.1) 

The distribution function of 𝑡 represents the probability that a realization of the random 

variable 𝑇 is less than a value 𝑡. Furthermore 𝑓(𝑡) is the density function corresponding to 

(1.1) and thus can be written as 



2 
 

𝑓 𝑡 = 𝑑𝐹(𝑡) 𝑑𝑡  (1.2) 

An alternative specification of the probability distribution of duration and an important 

concept in survival analysis is the survivor function, 𝑆(𝑡), defined as 

𝑆 𝑡 = 𝑃 𝑇 > 𝑡 = 1 − 𝐹 𝑡 = 1 −  𝑓 𝑥 𝑑𝑥

𝑡

−∞

=   𝑓 𝑥 𝑑𝑥

∞

𝑡

 (1.3) 

which is the probability that a realization of the random variable 𝑇 is greater than or equals 

to 𝑡. Or in other words: the probability that the event has not yet occurred by time 𝑡. 

Theoretically, the survival curve  𝑆 𝑡  can be plotted graphically to represent the 

probability of an individual‟s survival at varying time points. As 𝑡 ranges from 0 to ∞ all 

survival curves have the following properties: 

i. 𝑆 𝑡  is monotone  

ii. 𝑆 𝑡  is non-increasing 

iii. At time 𝑡 = 0 ,   𝑆 𝑡 = 1 (i.e. the probability of surviving past time 0 is 1)  

iv. At time 𝑡 = ∞,   𝑆 𝑡 = 0  (i.e. as time goes to infinity, the survival curve goes to 0)  

     (See Figure 1.1). 

 

Figure 1.1: The survival function 
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1.3   Hazard Function  

The hazard function (𝑡) is the instantaneous rate at which events occur, given no previous 

events, defined as: 

(𝑡) = 𝑙𝑖𝑚
𝑑𝑡→0

𝑃𝑟{𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡 𝑇 ≥ 𝑡} 

𝑑𝑡 

= 𝑙𝑖𝑚
𝑑𝑡→0

𝑃𝑟{𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡}

𝑑𝑡 𝑃𝑟(𝑇 ≥ 𝑡) 
 

=
1

𝑆(𝑡)
𝑙𝑖𝑚
𝑑𝑡→0

𝐹 𝑡 + 𝑑𝑡 − 𝐹(𝑡)

𝑑𝑡

=
𝑓(𝑡)

𝑆(𝑡)

= −
𝑑

𝑑𝑡
log(𝑆 𝑡 ) 

 (1.4) 

from the definition; the hazard function is the „chance‟ of failure (though it is a normalized 

probability, not a probability) at time t , given that the individual has survived until time t. 

We see that the hazard function is similar to the density in the sense that it is a positive 

function. However it does not integrate to one. Indeed, it is not integrable. 

The cumulative hazard function ,𝐻 𝑡 ,  define as: 

𝐻 𝑡 =   𝑢 𝑑𝑢 =  − 𝑙𝑜𝑔 𝑆(𝑡)

𝑡

0

 (1.5) 

1.3.1   Relationship between survival function and hazard function 

From (1.3) and (1.4), we get the relationship 

 𝑡 =
𝑓(𝑡)

𝑆(𝑡)
 (1.6) 

Furthermore, since the density function is defined as the derivative of the cumulative 

distribution function, we get  

𝑓 𝑡 =
𝑑

𝑑𝑡
 1 − 𝑆 𝑡  = −𝑆ˊ 𝑡  (1.7) 
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Inserting (1.7) in (1.6), we have 

 𝑡 =
−𝑆ˊ 𝑡 

𝑆(𝑡)
=
−𝑑

𝑑𝑡
𝑙𝑜𝑔 𝑆(𝑡) (1.8) 

Using (1.5) we get 

𝑆 𝑡 = exp −𝐻 𝑡  = exp[−  𝑢 𝑑𝑢

𝑡

0

] (1.9) 

Inserting (1.9) in (1.6) yields 

𝑓 𝑡 =  𝑡  𝑒𝑥𝑝[−𝐻 𝑡 ] (1.10) 

Hence, we have shown that it is possible to derive any of the three functions given the two 

others are known. 

1.4   Censoring in Survival Data (left-right-interval) 

A key characteristic that distinguishes survival analysis from other areas in statistics is that 

survival data are usually censored. Censoring is probably most well known because of 

survival analysis, which studies time until an event. There are usually  some individuals 

who do not experience the event during the study, so the time to event is incomplete for 

these cases. Subjects are said to be censored if they are lost to follow up or drop out of the 

study, or if the study ends before they die or have an outcome of interest. The most 

common censoring models are: 

1- Right censoring occurs when a subject leaves the study before an event occurs, or 

the study ends before the event has occurred. The only information we have is this 

right bound. This is very important in study of survival time, because data are often 

right-censored. (An example of right censoring data are shown in Figure 1.2). 
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Figure 1.2: Right-censoring example  

2- Left censoring occurs when the event of interest has already occurred before 

recording. It happens, for example, when we know the date of a medical exam that 

revealed a disease, but we don‟t know when the patient has been infected.( An 

example of left censoring data are shown in Figure 1.3). 

 

Figure 1.3: Left-censoring example  

3- Interval censoring: when the event occurs between two times , but the exact  time 

of failure is not known.(i.e. the event occurred between date A and date B). It could 

occurs, for example, when a patient is regularly checked, and one time we discover 

a medical deterioration. The only information we have is that the deterioration 

appears between two checks. Usually Turnbull gives an algorithm using to find a 

nonparametric estimator for interval censored data.(An example of interval 

censoring data are shown in Figure 1.4). 
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Figure 1.4: Interval-censoring example  

Left and right censoring are special cases of interval censoring, with the beginning 

of the interval at zero or the end at infinity, respectively. 

1.5   Estimation of survival function 

Survival analysis in a brief is to estimate the three survival (survivorship, density, and 

hazard) functions as defined before. There exist parametric as well as non-parametric 

methods for this purpose. In case we do not know the exact survival times, estimation of 

the survival functions becomes much more difficult. 

1.5.1   Parametric approach  

In this case we consider the Bayes and non-Bayes estimation of the unknown parameters. 

1.  Non- Bayesian Inference (Maximum Likelihood Approach): It provides a consistent 

approach to parameter estimation problems. This means that maximum likelihood 

estimates can be developed for a large variety of estimation situations. Also it has 

desirable mathematical and optimality properties. The disadvantages of this method 

are: The likelihood equations need to be specifically worked out for a given 

distribution and estimation problem , the numerical estimation is usually non-trivial , 

it can be heavily biased for small samples. The optimality properties may not apply 

for small samples, and it sensitive to the choice of starting values. 

2. Bayesian Inference :In Bayesian Inference, the parameter of interest is always 

considered to be a random variable with a prior distribution. The prior distribution is 
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the distribution of the parameter before any data is observed. Distributions that are 

commonly used in survival analysis are the Exponential, Weibull, Gamma and Log-

normal. Because of its historical significance and mathematical simplicity. 

 Exponential distribution, with density function 𝑓 𝑡 = 𝛼𝑒−𝛼𝑡  and survival function 

𝑆 𝑡 = 𝑒−𝛼𝑡 .  

 Weibull distribution, with density function 𝑓 𝑡;𝛼,𝛽 =  

𝛼

𝛽𝛼
𝑡𝛼−1𝑒

− 
𝑡

𝛽
 
𝛼

 𝑡 ≥ 0

 0                       𝑡 < 0
   

  

 Gamma distribution, with density function 𝑓 𝑡;𝛼,𝛽 =
𝛽𝛼 𝑡𝛼−1𝑒−𝛽𝑡

𝛾 𝛼 
      𝑡,𝛽 ,𝛼 > 0 

where  𝛾 𝛼 =  𝑡𝛼−1𝑒−𝑡𝑑𝑡         𝛼 > 0
∞

0
 

 Log-normal distribution, with density function 𝑓 𝑡 =
1

𝑡 .𝜍 2𝜋
𝑒

(−
1

2𝜍2(log ( 𝑡)−𝜇 )2)
 

The exponential distribution is one of the most popular parametric models and play a 

central role in analyses of lifetime or survival data, in part because of their 

convenient statistical theory, their important 'lack of memory' property and their 

constant hazard rates. As shown in the following example. 

Example 1.1 

Consider a random variable 𝑇 with an exponential  probability distribution with 

parameter 𝜃:  𝑓 𝑡 =
1

𝜃
𝑒−𝑡/𝜃  .The formula for the cumulative distribution function 

of the exponential distribution is 𝐹 𝑡 =  
1

𝜃
𝑒−𝑦/𝜃𝑑𝑦

0

𝑡
= 1 − 𝑒−𝑡/𝜃  . 

The formula for the survival function is   𝑆 𝑡 = 1 − (1 − 𝑒−
𝑡

𝜃) = 𝑒−𝑡/𝜃 . 

The formula for the hazard function is    𝑡 =
1

𝜃
𝑒−𝑡/𝜃

𝑒−𝑡/𝜃 =
1

𝜃
 . 

The formula for the cumulative hazard function is   𝐻 𝑡 =  
1

𝜃
𝑑𝑡

𝑡

0
=

𝑡

𝜃
 .  

The following is the plot of the exponential survival function (Figure 1.5).  
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Figure 1.5: Exponential Survival Function  

1.5.2   Non-parametric approach 

Nonparametric estimator does not assume that the data come from a specified distribution, 

so we use it when we cannot know the distribution of the data. Now we will discuss the 

Kaplan-Meier estimator and  the Turnbull estimator as the nonparametric estimators of the 

survival function. 

1. Kaplan-Meier (K-M) estimator  

The standard nonparametric estimator of the survival function is the Kaplan-Meier 

(K-M) estimator, also known as the product-limit estimator. This estimator is 

defined as: 

𝑆  𝑡 =  

1                                                      𝑖𝑓 𝑡 < 𝑡1,

  1 −
𝑑𝑖
𝑌𝑖
 

𝑡𝑖≤𝑡
                           𝑖𝑓 𝑡1 < 𝑡 ,

  (1.11) 

where 𝑡1 denotes the first observed failure time, 𝑑𝑖   represents the number of 

failures at time 𝑡, and 𝑌𝑖  indicates the number of individuals who have not 

experienced the event of interest, and have also not been censored, by time 𝑡. 

From the function given in Equation (1.3), we notice that before the first failure 

happens, the survival probability is always 1. As failures occur, the K-M estimator 

of the survival function decreases. A step function with jumps at the observed event 
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times will be obtained by using K-M method to estimate the survival function. The 

jumps on the survival curve depend not only on the number of events observed at 

each event time, but also on the pattern of the censored observations before the 

event time. 

Example 1.2  

Consider the 10-year follow-up study, where we are interested in knowing how 

long people will survive after a kidney transplant. Suppose there are a total of 50 

patients in the 10-year study. Also suppose that six of them died at 0.5 years, and 

two are lost to follow up during the half year after transplant. Therefore, at 0.5 

years after the transplant, there are 42 patients still in this study. Similarly, we have 

some deaths at 1 year after transplant and so on, until the end of the study period, at 

which time there are 22 patients still alive and enrolled in the study. Data from this 

hypothetical study are given in Table 1.1, along with K-M estimates of the survival 

function at the various death times. 

Table 1.1: Construction of the Kaplan-Meier estimator. 

Time 

𝒕𝒊 
Number of events 

𝒅𝒊 
Number at risk 

𝒀𝒊 
K-M Estimator 

𝑺  𝒕 =   𝟏−
𝒅𝒊
𝒀𝒊
 

𝒕𝒊≤𝒕
 

0.5 6 42 [1- 
6

42
] = 0.857 

1 5 35 [0.857](1- 
5

35
) = 0.735 

2 3 32 [0.735](1- 
3

32
) = 0.666 

3.5 2 30 [0.666]( 1- 
2

30
) = 0.622 

5 1 28 [0.622]( 1- 
1

28
) = 0.600 

6.5 1 27 [0.600]( 1- 
1

27
) = 0.578 

8.5 2 25 [0.578]( 1- 
2

25
) = 0.532 

9.5 2 22 [0.532]( 1- 
2

22
) = 0.484 
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Table 1.2 shows the K-M estimates for all times, and the corresponding graph of 

the K-M function is given in Figure 1.6. 

 

Table 1.2: Kaplan-Meier survival estimates 

Time on study (𝒕) K-M Estimator 𝑺  𝒕  

0 ≤ 𝑡 < 0.5 1.000 

0.5 ≤ 𝑡 < 1 0.857 

1 ≤ 𝑡 < 2 0.735 

2 ≤ 𝑡 < 3.5 0.666 

3.5 ≤ 𝑡 < 5 0.622 

5 ≤ 𝑡 < 6.5 0.600 

6.5 ≤ 𝑡 < 8.5 0.578 

8.5 ≤ 𝑡 < 9.5 0.532 

9.5 ≤ 𝑡 < 10 0.484 

 

 

 

Figure 1.6: Kaplan-Meier survival function for right-censored data 

 

The K-M estimator is a common nonparametric estimator. It is efficient and easy to 

use, and it is available in many statistical software programs such as SAS and S-

Plus. 
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2. Turnbull estimator 

An estimator of the survival function is available for interval-censored data. 

Richard Peto developed a Newton-Raphson method to estimate the nonparametric 

maximum likelihood estimator (NPMLE) for interval-censored data in (1973). 

Then in 1976 Richard Turnbull formulated an Expectation-Maximization (EM) 

algorithm which also estimated the NPMLE for interval-censored data. The 

NPMLE for interval-censored data is based on n independent, arbitrarily interval-

censored observations. The NPMLE can be estimated using Turnbull‟s algorithm in 

R software. (An example of Turnbull survival function for interval-censored data 

are shown in Figure 1.7) 

S
(t

) 

 
t 

Figure 1.7: Turnbull survival function for interval-censored data 
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1.6   Problem statement 

Generating survival data means observing a sample of research subjects (individuals) over 

a predefined time period and recording whether and when the individuals experience the 

event. Basic survival data consist of a variable measuring the time that has passed (the 

duration) before an individual experiences the event (or until the study ends) and a variable 

indicating if the individual experiences that event during the observation period or not. 

Survival analysis estimates  by estimating a survival time. 

In this thesis both  Bayesian and Non- Bayesian approaches will be used to estimate the 

unknown parameters and compared it to determine the best method (with less Standard 

Errors, Absolute Bias, and  Mean Squared Errors) that can be used to estimate the 

parameters of the generalized exponential distribution and survival function. 

1.7   Literature review 

In the past five decades, survival analysis has become one of the most frequently used 

methods for analyzing data in various disciplines. Introductory treatments of survival 

analysis for social scientists can be found in Allison (1984, 1995), Tuma and Hannan 

(1984), Kiefer (1988), Blossfeld and Rohwer (2001). For a biostatistical point of view, see 

Collett (2003), Hosmer and Lemeshow (2003). Soliman et al. (2006) estimated the Weibull 

distribution by using the maximum likelihood estimator and Bayesian estimator under 

squared error loss function and Linex loss function for a given shape parameter and several 

unknown parameters. Gupta and Kundu (1999) recently proposed the two parameter 

generalized exponential distribution (𝐺𝐸) as an alternative to the lognormal, gamma, and 

Weibull distributions and did some studies on its properties. Some references on 𝐺𝐸 

distribution are Raqab (2002), Zheng (2002), and Kundu and Gupta (2008). According to 

Gupta and Kundu (2001), the two-parameter 𝐺𝐸(𝜃, 𝑝) can have increasing and decreasing 

http://scialert.net/fulltext/?doi=jas.2012.1313.1317&org=11#622395_ja
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failure rates depending on the shape parameter. Some research has been done to compare 

MLE to that of the Bayesian approach in estimating the survival function and the 

parameters of the Weibull distribution which are similar to the GE distribution.  Amongst 

others, Sinha (1986) determined the Bayesian estimates of the reliability function and the 

hazard rate of the Weibull failure time distribution by employing only squared error loss 

function. Singh et al. (2008) estimated generalized-exponential by maximum likelihood 

and obtained Bayes estimator using Lindley‟s expansion. Preda et al. (2010) used 

maximum likelihood and Bayesian methods to estimate the modified Weibull by Lindley‟s 

expansion under various loss functions.  

1.8   Objectives 

The main objectives of  this thesis can be summarized as follows: 

1- Estimation the parameters of generalized exponential distribution for survival data 

using Bayesian estimation method. 

2- Estimation the parameters of generalized exponential distribution for survival data 

using Non-Bayesian estimation method. 

3- A comparison study is made between Bayesian and Non-Bayesian estimators to 

determine the best method that can be used to estimate the parameters of the 

generalized exponential distribution. 

1.9   Thesis Structure 

This thesis consists of four chapters: Basic concepts and an introduction to survival 

analysis are described In Chapter 1, Chapter 2 deals with analysis of non-Bayesian 

inference for survival data. Bayes‟ theorem and Bayesian survival analysis are discussed in 

Chapter 3. A comparison study through a simulation study and real data analysis followed 

by conclusion of this study in the final chapter. 

http://scialert.net/fulltext/?doi=jas.2012.1313.1317&org=11#576195_ja
http://scialert.net/fulltext/?doi=jas.2012.1313.1317&org=11#37360_con
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Chapter Two  

Non-Bayesian  Estimation 

2.1   Maximum Likelihood Estimation 

In this section we discuss the maximum likelihood estimators of the unknown parameters 

of the GE model. The GE can be used in situation where a skewed distribution for a non-

negative random variable is needed. The two parameters of a GE distribution represent the 

scale and the shape parameters and because of the scale and shape parameters, it has quite 

a bit of flexibility to analyze any positive real data. Due to the simple structure of its 

distribution function, the GE can be used quite effectively in analyzing any lifetime data, 

especially in the presence of censoring or if the data is grouped. It has increasing as well as 

decreasing failure rate depending on the shape parameter. The distribution function of GE 

is: 

𝐹 𝑡;𝜃, 𝑝 =  1 − 𝑒−𝜃𝑡   
𝑝

        ;𝜃 ,𝑝 , 𝑡 > 0 (2.1) 

The probability density function of GE is written as: 

𝑓 𝑡;𝜃,𝑝 = 𝑝𝜃 1 − 𝑒−𝜃𝑡   
𝑝−1

𝑒−𝜃𝑡              ;𝜃 , 𝑝 , 𝑡 > 0 (2.2) 

where 𝜃 is the scale parameter and 𝑝 is the shape parameter. 

Let 𝑇 = (𝑡1,… , 𝑡𝑛) be the set of 𝑛 random lifetimes with respect to the generalized 

exponential distribution, with 𝑝 and 𝜃 as the parameters, the survival function is: 

𝑆 𝑡;𝜃,𝑝 = 1 −  1 − 𝑒−𝜃𝑡   
𝑝

  (2.3) 

Let the 𝐺𝐸 distribution with the shape parameter 𝑝 and the scale parameter 𝜃 be denoted 

by 𝐺𝐸(𝜃,𝑝). 

Since 𝑇 = (𝑡1,… , 𝑡𝑛) is the set of 𝑛 random lifetimes from the generalized exponential 

distribution with parameters 𝜃 and 𝑝. The likelihood function is 
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𝐿 𝑡;𝜃,𝑝 =  𝑓(𝑡𝑖)

𝑛

𝑖=1

=   𝑝𝜃 1 − 𝑒−𝜃𝑡𝑖   
𝑝−1

𝑒−𝜃𝑡𝑖 

𝑛

𝑖=1

 (2.4) 

Taking log of equation (2.4) we get  

𝑙 𝑡;𝜃,𝑝 = 𝑛 ln𝑝 + 𝑛 ln 𝜃 +  𝑝 − 1  ln 1 − 𝑒−𝜃𝑡𝑖 

𝑛

𝑖=1

− 𝜃 𝑡𝑖

𝑛

𝑖=1

 (2.5) 

Differentiate 𝑙 𝑡;𝜃,𝑝  partially with respect to the unknown parameters we obtain ;  

𝜕𝑙

𝜕𝑝
=
𝑛

𝑝
+  ln 1 − 𝑒−𝜃𝑡𝑖 

𝑛

𝑖=1

 = 0   (2.6) 

and 

𝜕𝑙

𝜕𝜃
=
𝑛

𝜃
+  𝑝 − 1  

𝑡𝑖𝑒
−𝜃𝑡𝑖

1 − 𝑒−𝜃𝑡𝑖

𝑛

𝑖=1

− 𝑡𝑖

𝑛

𝑖=1

= 0   (2.7) 

 Solve (2.6) for 𝑝 we get   

𝑝 =
−𝑛

 ln 1 − 𝑒−𝜃𝑡𝑖 𝑛
𝑖=1

    (2.8) 

Substituting  (2.8) into (2.7) , we obtain 

𝑛

𝜃
+  

−𝑛

 ln 1 − 𝑒−𝜃𝑡𝑖 𝑛
𝑖=1

− 1  
𝑡𝑖𝑒

−𝜃𝑡𝑖

1 − 𝑒−𝜃𝑡𝑖

𝑛

𝑖=1

− 𝑡𝑖

𝑛

𝑖=1

= 0   (2.9) 

Since it is difficult to solve equation (2.9) for 𝜃. Newton-Raphson method is employed in 

order to estimate the unknown parameters. 

By Newton-Raphson method, 𝜃 can be estimated by iteration as follows: 

𝜃𝑚+1 = 𝜃𝑚 −
𝑔(𝜃𝑚)

𝑔ˊ(𝜃𝑚 )
 

where,  

𝑔 𝜃 =
𝑛

𝜃
+  

−𝑛

 ln 1 − 𝑒−𝜃𝑡𝑖 𝑛
𝑖=1

− 1  
𝑡𝑖𝑒

−𝜃𝑡𝑖

1 − 𝑒−𝜃𝑡𝑖

𝑛

𝑖=1

− 𝑡𝑖

𝑛

𝑖=1

    

and  
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𝑔ˊ 𝜃 = −
𝑛

𝜃2
+  

−𝑛

 ln 1 − 𝑒−𝜃𝑡𝑖 𝑛
𝑖=1

− 1  
−𝑡𝑖

2𝑒−𝜃𝑡𝑖

(1 − 𝑒−𝜃𝑡𝑖)2

𝑛

𝑖=1

 

+ 𝑛  
 

𝑡𝑖𝑒
−𝜃𝑡𝑖

1 − 𝑒−𝜃𝑡𝑖
𝑛
𝑖=1

 ln 1 − 𝑒−𝜃𝑡𝑖 𝑛
𝑖=1

 

2

 

 

This method need an initial value for 𝜃 , say 𝜃0 ,  

To prove that 𝜃  make likelihood function is maximum, substituting  (2.8) into (2.5) we 

obtain  

𝑙 𝑡;𝜃,𝑝 = 𝐶 + 𝑛 ln 𝜃 − 𝑛 ln − ln 1 − 𝑒−𝜃𝑡𝑖 

𝑛

𝑖=1

 − ln 1 − 𝑒−𝜃𝑡𝑖 

𝑛

𝑖=1

− 𝜃 𝑡𝑖

𝑛

𝑖=1

   

(2.10) 

where 𝐶 is a constant independent of 𝜃. 

𝑙 𝑡;𝜃, 𝑝  is need to prove it as unimodal function of 𝜃. Prove it is out of theorem in an 

article entitled " Generalized Exponential Distribution: Statistical Inferences" published by 

Gupta and Kundu (2003). 

Theorem: If 𝑛 = 1, 

𝑔(𝜃) = 𝑙 𝑡;𝜃,𝑝 = 𝐶 + ln 𝜃 − ln − ln 1 − 𝑒−𝜃𝑡   − ln 1 − 𝑒−𝜃𝑡  − 𝜃𝑡    

is unimodal function of 𝜃. 

Proof: Note that it is equivalent to prove that 

𝑔(𝜃) = ln𝜃 − ln − ln 1 − 𝑒−𝜃  − ln 1 − 𝑒−𝜃 − 𝜃    

 is unimodal function of 𝜃. Consider the second derivative of  𝑔(𝜃), 

𝑔ˊˊ 𝜃 =  
𝑒−2𝜃

 1 − 𝑒−𝜃 2 ln 1 − 𝑒−𝜃  2
+

𝑒−𝜃

 1 − 𝑒−𝜃 2 ln 1 − 𝑒−𝜃 
 

+  
𝑒−𝜃

 1 − 𝑒−𝜃 2
−

1

𝜃2
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say,  𝑔ˊˊ 𝜃 = 𝑔1 𝜃 + 𝑔2(𝜃). We show that 𝑔1 𝜃 ≤ 0 and 𝑔2 𝜃 ≤ 0. It would imply 

that 𝑔 𝜃  is a concave function. Now the result follows from the fact that 𝑔 0 → −∞ and 

𝑔 ∞ → −∞, therefore 𝑔 .   has to be unimodal. Therefore, the proof will be complete if 

we can show that 𝑔1 𝜃 ≤ 0 and 𝑔2 𝜃 ≤ 0. 

Now to prove 𝑔1 𝜃 ≤ 0, it is enough to prove that for 𝜃 ≥ 0 

𝑒−𝜃

ln 1 − 𝑒−𝜃 
+ 1 ≥ 0 ⟺ 𝑢 𝑥 = 𝑥 + ln(1 − 𝑥) ≤ 0 ;      0 ≤ 𝑥 ≤ 1 

Since 𝑢 𝑥  is a decreasing function and 𝑢 0 = 0, implies 𝑢 𝑥 ≤ 0. 

Now to prove 𝑔2 𝜃 ≤ 0, it is enough to prove that for 𝜃 ≥ 0 

𝑒−
𝜃
2

 1 − 𝑒−𝜃 
≤

1

𝜃
⟺ 1 − 𝑒−𝜃 − 𝜃𝑒−

𝜃
2 ≥ 0 ⟺ 𝑢 𝜃 = 𝑒

𝜃
2 − 𝑒−

𝜃
2 − 𝜃 ≥ 0 

Since  𝑢ˊ 𝜃 =
1

2
𝑒−

𝜃

2  1 − 𝑒−
𝜃

2 
2

≥ 0  and 𝑢 0 = 0, therefore 𝑢 𝜃 ≥ 0. 

So 𝑔2 𝜃 ≤ 0. ■ 

Maximizing (2.10) using Newton-Raphson method.  
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2.2   Fisher Information matrix 

Since the MLEs of the unknown parameters 𝑝,𝜃 cannot be in closed forms, it is not easy to 

derive the exact distributions of the MLEs. We can derive the asymptotic confidence 

intervals of these parameters when 𝑝 > 0, and 𝜃 > 0. The large sample approach is to 

assume that the MLE (𝑝 ,𝜃 ) are approximately bivariate normal with mean (𝑝, 𝜃) and 

covariance matrix Ι(𝑝,𝜃). 

where Ι(𝑝,𝜃) is the Fisher Information matrix , defined as:   

Ι 𝑝, 𝜃 = −
1

𝑛

 
 
 
 
 𝐸  

𝜕2𝑙

𝜕𝑝2
 𝐸  

𝜕2𝑙

𝜕𝑝𝜕𝜃
 

𝐸  
𝜕2𝑙

𝜕𝜃𝜕𝑝
 𝐸  

𝜕2𝑙

𝜕𝜃2
 
 
 
 
 
 

 

It is the variance of the score, or the expected value of the observed information, it is used 

to calculate the covariance matrices associated with maximum-likelihood estimates. 

The elements of the Fisher Information matrix are as follows,  

For 𝑝 > 2;  

𝐸  
𝜕2𝑙

𝜕𝑝2
 = −

𝑛

𝑝2
 

𝐸  
𝜕2𝑙

𝜕𝑝𝜕𝜃
 = 𝑛𝐸  

𝑡𝑒−𝑡𝜃

 1 − 𝑒−𝑡𝜃  
 

= 𝑛𝐸  𝑡  
1

1 − 𝑒−𝑡𝜃
− 1  =

𝑛

𝜃
 

𝑝

𝑝 − 1
 𝜓 𝑝 − 𝜓 1  −  𝜓 𝑝 + 1 − 𝜓 1   

 

𝐸  
𝜕2𝑙

𝜕𝜃2
 = −𝑛  

1

𝜃2
+  𝑝 − 1 𝐸  

𝑡2𝑒−𝑡𝜃

 1 − 𝑒−𝑡𝜃  2
  

= −𝑛  
1

𝜃2
+  𝑝 − 1 𝐸  

𝑡2

 1 − 𝑒−𝑡𝜃  2
−

𝑡2

 1 − 𝑒−𝑡𝜃  
  

= −
𝑛

𝜃2
 1 +

𝑝(𝑝 − 1)

𝑝 − 2
 𝜓ˊ 1 − 𝜓ˊ 𝑝 − 1  +   𝜓 𝑝 − 1 − 𝜓 1  

2
  

−
𝑛𝑝

𝜃2
  𝜓ˊ 1 − 𝜓ˊ 𝑝  +   𝜓 𝑝 − 𝜓 1  

2
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For 0 < 𝑝 ≤ 2, 

𝐸  
𝜕2𝑙

𝜕𝑝2
 = −

𝑛

𝑝2
 

𝐸  
𝜕2𝑙

𝜕𝑝𝜕𝜃
 =

𝑛𝑝

𝜃
 𝑡𝑒−2𝑡(1 − 𝑒−𝑡)𝑝−2𝑑𝑥

∞

0

  < ∞ 

𝐸  
𝜕2𝑙

𝜕𝜃2
 = −

𝑛

𝜃2
−
𝑛𝑝(𝑝 − 1)

𝜃2
 𝑡2𝑒−2𝑡(1 − 𝑒−𝑡)𝑝−3𝑑𝑥

∞

0

  < ∞ 

For 𝑝 > 0, the GE family satisfies all the regularity conditions and therefore, we have the 

following result ; which is published in article entitled " Generalized Exponential 

Distribution: Statistical Inferences" by Gupta and Kundu (2003);  

Theorem: For 𝑝 > 0 the maximum-likelihood estimators, (𝑝 ,𝜃 ), of (𝑝,𝜃) are consistent 

and  𝑛(𝑝 − 𝑝,𝜃 − 𝜃) is asymptotically normal with mean vector zero and dispersion 

matrix 𝐼−1 . 

We provide the elements of the Fisher Information matrix, when the data are type Ι 

censored. Note that it is possible to obtain the Fisher Information matrix in terms of  

𝐸 𝑇 𝑇 ≤ 𝐿 = 𝜓 𝑝, 𝐿    𝑠𝑎𝑦    𝑎𝑛𝑑 

  𝐸 𝑇2 𝑇 ≤ 𝐿 = 𝜓  𝑝, 𝐿    𝑠𝑎𝑦               

where 𝑇 is a 𝐺𝐸(𝑝, 1) random variable. The explicit expressions of 𝜓 𝑝, 𝐿  and 𝜓  𝑝, 𝐿  

are as follows; 

𝜓 𝑝, 𝐿 =
𝑝

(1 − 𝑒−𝐿)𝑝
  −1 𝑗𝑐 𝑝 − 1, 𝑗 

∞

𝑗=0

 
1

 𝑗 + 1 2
 1 − 𝑒− 𝑗+1 𝐿 −

𝐿𝑒− 𝑗+1 𝐿

𝑗 + 1
  

and 

𝜓  𝑝, 𝐿 =
𝑝

(1 − 𝑒−𝐿)𝑝
  −1 𝑗𝑐 𝑝 − 1, 𝑗 

∞

𝑗=0

 
2

 𝑗 + 1 2
 1 − 𝑒− 𝑗+1 𝐿 −

2𝐿𝑒− 𝑗+1 𝐿

(𝑗 + 1)2

−
𝐿2𝑒− 𝑗+1 𝐿

𝑗 + 1
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where  𝑐 𝑝, 𝑖 =
𝑝 𝑝−1 …(𝑝−𝑖+1)

𝑖!
. 

Then  

𝐸  
𝜕2𝑙

𝜕𝑝2
 = −

𝑟

𝑝2
+ 𝑔1

ˊ (𝑝,𝜃) 

𝐸  
𝜕2𝑙

𝜕𝑝𝜕𝜃
 =

1

𝜃
  

𝑝

 𝑝 − 1 (1 − 𝑒−𝐿𝑖𝜃)
𝜓 𝑝 − 1, 𝐿𝑖𝜃 − 𝜓 𝑝, 𝐿𝑖𝜃  

𝑖∈𝐷

+ 𝑔1
ˊ (𝑝, 𝜃) 

𝐸  
𝜕2𝑙

𝜕𝜃2
 = −

𝑟

𝜃2
+ 𝑔2

ˊ (𝑝,𝜃) +
 𝑝 − 1 

𝜃2

×   
𝑝

 𝑝 − 2  1 − 𝑒−𝐿𝑖𝜃 2
𝜓  𝑝 − 2, 𝐿𝑖𝜃 −

𝑝

 𝑝 − 1 (1 − 𝑒−𝐿𝑖𝜃)
× 𝜓  𝑝 − 1, 𝐿𝑖𝜃  

𝑖∈𝐷

 

 

Therefore, the survival function can be obtained as 

𝑆 (𝑡) = 1 −  1 − 𝑒−𝜃
 𝑡   

𝑝 
                               (2.11) 

where 𝜃  and 𝑝  are the maximum likelihood estimates of the parameters. 
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Chapter Three  

Bayesian Estimation 

3.1   Bayes’ Theorem  

The foundation of Bayesian statistics is Bayes‟ theorem. Suppose we observe a random 

variable 𝑦 and wish to make inferences about another random variable 𝜃, where 𝜃 is drawn 

from some distribution 𝑝(𝜃). From the definition of conditional probability,  

𝑃𝑟 𝜃 𝑦  =
𝑃𝑟(𝑦,𝜃)

𝑃𝑟(𝑦)
 (3.1) 

Again from the definition of conditional probability, we can express the joint probability 

by conditioning on 𝜃 to give 

𝑃𝑟 𝑦, 𝜃 = 𝑃𝑟 𝑦 𝜃  𝑃𝑟(𝜃) (3.2) 

Substituting (3.2) into (3.1) together gives Bayes‟ theorem: 

𝑃𝑟 𝜃 𝑦  =
𝑃𝑟 𝑦 𝜃  𝑃𝑟(𝜃)

𝑃𝑟(𝑦)
 (3.3) 

With 𝑛 possible outcomes (𝜃1,…   ,𝜃𝑛),  

𝑃𝑟 𝜃𝑗 𝑦  =
𝑃𝑟 𝑦 𝜃𝑗  𝑃𝑟(𝜃𝑗 )

𝑃𝑟(𝑦)
=

𝑃𝑟 𝑦 𝜃𝑗  

 𝑃𝑟(𝜃𝑖)
𝑛
𝑖=1  𝑃𝑟 𝑦 𝜃𝑖  

 (3.4) 

 𝑃𝑟(𝜃) is the prior distribution of the possible 𝜃 values, while 𝑃𝑟 𝜃 𝑦   is the posterior 

distribution of 𝜃 given the observed data 𝑦. 

The continuous multivariate version of Bayes‟ theorem is: 

𝑝(𝛩 𝑦 ) =
𝑝 𝑦 𝛩  𝑝(𝛩)

𝑝(𝑦)
=
𝑝 𝑦 𝛩  𝑝(𝛩)

 𝑝 𝑦 𝛩  𝑑𝛩
 (3.5) 
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where Θ = ( 𝜃 1 , 𝜃 2 ,… ,𝜃 𝑘  )  is a vector of 𝑘 (potentially) continuous variables. As 

with the univariate case, 𝑝(Θ) is the assumed prior distribution of the unknown parameters, 

while 𝑝(Θ y ) is the posterior distribution given the prior 𝑝(Θ) and the data 𝑦. 

3.1.1   From Likelihood to Bayesian analysis 

The method of maximum likelihood and Bayesian analysis are closely related. Suppose 

ℓ(Θ 𝑥 ) is the assumed likelihood function. Under ML estimation, we would compute the 

mode (the maximal value of ℓ , as a function of Θ given the data 𝑥) of the likelihood 

function, and use the local curvature to construct confidence intervals. Hypothesis testing 

follows using likelihood-ratio (LR) statistics. The strengths of ML estimation rely on its 

large-sample properties, namely that when the sample size is sufficiently large, we can 

assume both normality of the test statistic about its mean and that LR tests follow 𝜒2 

distributions. These nice features don‟t necessarily hold for small samples. 

An alternate way to proceed is to start with some initial knowledge/guess about the 

distribution of the unknown parameter(s), 𝑝(Θ). From Bayes‟ theorem, the data 

(likelihood) augment the prior distribution to produce a posterior distribution, 

𝑝 𝛩 𝑥  =
1

𝑝 𝑥 
 .𝑝 𝑥 𝛩  𝑝 𝛩 

=  
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 .𝑝 𝑥 𝛩  𝑝 𝛩 

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 𝑙𝑖𝑘𝑒𝑜𝑜𝑑.𝑝𝑟𝑖𝑜𝑟

 

 

 (3.6) 

as 𝑝 𝑥 𝛩  = ℓ(𝛩 𝑥 ) is just the likelihood function.1 𝑝(𝑥)  is a constant (with respect to 

Θ), because our concern is the distribution over 𝜃. Because of this, the posterior 

distribution is often written as 

p Θ x  ∝  ℓ(Θ 𝑥 )p Θ  (3.7) 

where the symbol ∝ means “proportional to” (equal up to a constant). Note that the 

constant 𝑝(𝑥) normalizes 𝑝 𝑥 𝛩  .𝑝 𝛩  to one, and hence can be obtained by integration, 
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𝑝 𝑥 =  𝑝 𝑥 𝛩  . 𝑝 𝛩  𝑑𝛩
𝛩

 (3.8) 

The dependence of the posterior on the prior (which can easily be assessed by trying 

different priors) provides an indication of how much information on the unknown 

parameter values is contained in the data. If the posterior is highly dependent on the prior, 

then the data likely has little signal, while if the posterior is largely unaffected under 

different priors, the data are likely highly informative. To see this, taking logs on Equation 

(3.6) (and ignoring the normalizing constant) gives 

𝑙𝑜𝑔 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖𝑜𝑜𝑑 + 𝑙𝑜𝑔(𝑝𝑟𝑖𝑜𝑟) (3.9) 

3.1.2   Marginal Posterior Distributions 

Often, only a subset of the unknown parameters is really of concern to us, the rest being 

nuisance parameters that are really of no concern to us. A very strong feature of Bayesian 

analysis is that we can remove the effects of the nuisance parameters by simply integrating 

them out of the posterior distribution to generate a marginal posterior distribution for the 

parameters of interest. 

The marginal posterior may involve several parameters (generating joint marginal 

posteriors).Write the vector of unknown parameters as 𝛩 = (𝛩1,𝛩𝑛), where 𝛩𝑛  is the 

vector of nuisance parameters. Integrating over Θ𝑛  gives the desired marginal as 

𝑝 𝛩1 𝑦  =  𝑝 𝛩1,𝛩𝑛 𝑦   𝑑𝛩𝑛
𝛩𝑛

 (3.10) 

3.1.3   Summarizing the posterior distribution 

How do we extract a Bayes estimator for some unknown parameter  ? If our mindset is to 

use some sort of point estimator (as is usually done in classical statistics), there are a 
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number of candidates. We could follow maximum likelihood and use the mode of the 

distribution (its maximal value), with 

𝜃 = 𝑚𝑎𝑥
𝜃

 𝑝(𝜃 𝑥 )  (3.11) 

We could take the expected value of 𝜃 given the posterior, 

𝜃 = 𝐸 𝜃 𝑥  =  𝜃𝑝 𝜃 𝑥  𝑑𝜃 (3.12) 

Another candidate is the median of the posterior distribution, where the estimator satisfies 

𝑃𝑟 𝜃 > 𝜃 𝑥  = 𝑃𝑟 𝜃 < 𝜃 𝑥  = 0.5 , hence 

 𝑝 𝜃 𝑥  𝑑𝜃
+∞

𝜃 
=  𝑝 𝜃 𝑥  𝑑𝜃

𝜃 

−∞

=
1

2
 (3.13) 

However, using any of the above estimators, or even all three simultaneously, loses the full 

power of a Bayesian analysis, as the full estimator is the entire posterior density itself . If 

we cannot obtain the full form of the posterior distribution, it may still be possible to 

obtain one of the three above estimators. However, as we will see later, we can generally 

obtain the posterior by simulation using Gibbs sampling, and hence the Bayes estimate of a 

parameter is frequently presented as a frequency histogram from (Gibbs) samples of the 

posterior distribution. 

3.1.4   The choice of a prior 

Obviously, a critical feature of any Bayesian analysis is the choice of a prior. The key here 

is that when the data have sufficient signal, even a bad prior will still not greatly influence 

the posterior. In a sense, this is an asymptotic property of Bayesian analysis in that all but 

pathological priors will be overcome by sufficient amounts of data. If the posterior is 

highly dependent on the prior, then the data (the likelihood function) may not contain 
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sufficient information. However, if the posterior is relatively stable over a choice of priors, 

then the data indeed contain significant information. 

The location of a parameter (mean or mode) and its precision (the reciprocal of the 

variance) of the prior is usually more critical than its actual shape in terms of conveying 

prior information. The shape of the prior distribution is often chosen to facilitate 

calculation of the prior, especially through the use of conjugate priors that, for a given 

likelihood function, return a posterior in the same distribution family as the prior. 

3.2   Markov Processes 

Arguably the simplest type of dependency that can be exhibited by the variables of a 

random process is the one found in first-order Markov processes: each variable 𝑆𝑖   depends 

only the preceding one, 𝑆𝑖−1; moreover, conditionally on  𝑆𝑖−1, it is independent of all 

other preceding variables. Formally, the process is called a first-order Markov process 

when 

𝑃𝑆𝑛 𝑠𝑛 𝑠𝑛−1 , 𝑠𝑛−2,… , 𝑠1  = 𝑃𝑆𝑛(𝑠𝑛 𝑠𝑛−1 ) (3.14) 

The joint probability function of any process (of any set of random variables) can be 

factored as 

𝑃𝑆1,… , 𝑆𝑛 𝑠1,… , 𝑠𝑛 

= 𝑃𝑆𝑛 𝑠𝑛 𝑠𝑛−1 ,… , 𝑠1  𝑃𝑆𝑛−1 𝑠𝑛−1 𝑠𝑛−2 ,… , 𝑠1  …𝑃𝑆2 𝑠2 𝑠1  𝑃𝑆1(𝑠1) 

which is a trivial chain application of 𝑝(𝐴 𝐵) 𝑝 𝐵 = 𝑝(𝐴,𝐵). One of the most important 

consequence of the Markovianity of a process is that its factorization becomes simply 

𝑃𝑆1,… , 𝑆𝑛 𝑠1,… , 𝑠𝑛 

= 𝑃𝑆𝑛 𝑠𝑛 𝑠𝑛−1   𝑃𝑆𝑛−1 𝑠𝑛−1 𝑠𝑛−2   …𝑃𝑆2 𝑠2 𝑠1  𝑃𝑆1(𝑠1) 

(3.15) 
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Accordingly, a Markov process is completely characterized (i.e., it is possible to compute 

any joint probability function) once the initial probability function 𝑆1(𝑠1) , and the 

sequence of transition probability functions  𝑃𝑆𝑖(𝑠𝑖 𝑠𝑖−1 ) are given. 

Consider a Markov process such that each 𝑆𝑖  can take values on a finite set (the 𝑖th state 

space) 𝑠𝑖 =  1,2,… ,𝑀𝑖  (without loss of generality here identified with sets of integers; 

notice that these are merely labels). In this case, the process is called a finite Markov 

process, 𝑃𝑆1(𝑠1) is a set of 𝑀1 probability values, and the transition probability functions 

𝑃𝑆𝑖(𝑠𝑖 𝑠𝑖−1 ) define 𝑀𝑖−1 × 𝑀𝑖  transition matrices Ρ 𝑖 =  𝑃𝑘𝑙 (𝑖)  according to 

𝑃𝑘𝑙 (𝑖) = 𝑃𝑆𝑖(𝑠𝑖 = 𝑙 𝑠𝑖−1 = 𝑘 ) ≥ 0 (3.16) 

Given their meaning, these matrices must verify 

 𝑃𝑘𝑙 (𝑖)

𝑀𝑖

𝑙=1

=  𝑃𝑆𝑖 𝑠𝑖 = 𝑙 𝑠𝑖−1 = 𝑘  = 1

𝑀𝑖

𝑙=1

 (3.17) 

and are called stochastic matrices. If everything in the previous definitions is index-

invariant, i.e.,𝑆𝑖 = 𝑆 (the state space, of 𝑀𝑖 = 𝑀 course with ) and 𝑃 𝑖 = 𝑃, we have a so-

called time-invariant or homogeneous Markov chain. If the probability function of variable 

𝑆𝑛  is P𝑆𝑛(𝑠𝑛) , then that of the “next” variable, 𝑆𝑛+1, can easily be obtained by noting that 

P𝑆𝑛+1(𝑠𝑛+1) =  P𝑆𝑛 , 𝑆𝑛+1(𝑠𝑛 , 𝑠𝑛+1)

𝑠𝑛∈𝑆𝑛

=  P𝑆𝑛+1 𝑠𝑛+1 𝑠𝑛  𝑃𝑆𝑛(𝑠𝑛)

𝑠𝑛∈𝑆𝑛

 
  

 

(3.18) 

(with integrals taking place of the summations in the case of continuous state spaces). If we 

are the presence of a time invariant chain (or process), then a probability function that 

remains unchanged from index 𝑛 to the next index 𝑛 + 1, i.e., such that 
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P𝑆𝑛+1(𝑏) =  P𝑆𝑛+1 𝑏 𝑠𝑛  𝑃𝑆𝑛 𝑠𝑛 = 𝑃𝑆𝑛(𝑏)

𝑠𝑛∈𝑆𝑛

 (3.19) 

 

 (again, with integrals instead of summations in the case of continuous state spaces), is 

called a stationary distribution. 

3.2.1  Bayesian-MCMC and Gibbs Sampling 

 Bayesian Methods 

Traditional maximum likelihood approach delivers only point estimate and associated 

asymptotic standard error estimates for the model parameters. This motivates the use of 

Bayesian analysis, as the development of computing power and improved scope for 

estimation via iterative sampling methods. Bayesian analysis of data in health, social and 

physical sciences has been greatly facilitated in the last decade. The new estimation 

methods Markov Chain Monte Carlo (MCMC) may be used to augment the data and this 

provides and analogue to the classical Expectation Maximization (EM) method. 

Priors for Parameters: In classical inference the sample are considered as random while 

the parameter 𝜃 considered as fixed. In Bayesian analysis, parameters themselves follow a 

probability distribution, and is summarized in a prior distribution  𝜃  before considering 

the data at hand. In many situation, existing knowledge may be difficult to summarize in 

the form of an informative prior; resort is made to non-informative priors such as flat 

priors (Uniform Distribution). However some priors which are improper (don‟t integrate to 

1 over their ranges) may add to identifiability problems. Minimally informative priors (just 

proper priors) are preferred such as normal distribution with mean zero and large variance. 

Posterior and likelihood: In maximum likelihood approaches, inferences are based on the 

likelihood of the data alone. In Bayesian models, the likelihood of the observed data 𝑦 
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given parameter 𝜃, i.e. 𝑓(𝑦/𝜃) or 𝐿(𝜃 𝑦 ) is used to modify the prior  𝜃  , with the updated 

posterior density  𝜃 𝑦  . The relation can be written as 

  𝜃 𝑦  =
𝑓(𝑦 𝜃) 𝜃  

𝑚(𝜃)
=

𝑓(𝑦 𝜃) 𝜃  

 𝑓(𝑦 𝜃) 𝜃  𝑑𝜃
 (3.20) 

and we can simplify it as 

 𝜃 𝑦  ∝  𝑓(𝑦 𝜃) 𝜃   (3.21) 

Sampling Parameters: In most of the situations, with many parameter 𝜃 and with possibly 

non-conjugate priors, the goal is to summarize the marginal posterior of a particular 

parameter 𝜃𝑘  given the data. This involves integrating out all parameters but this one 

𝑃 𝜃𝑘 𝑦  ∝  …   𝑓(𝜃1,… ,𝜃𝑘−1,𝜃𝑘+1 ,… ,𝜃𝑝/𝑦)𝑑𝜃1 …𝑑𝜃𝑘−1𝑑𝜃𝑘+1 …𝑑𝜃𝑝  (3.22) 

Such integrations using classic approaches involved demanding methods such as numerical 

quadrature. 

Markov Chain Monte Carlo (MCMC) 

A major limitation towards more widespread implementation of Bayesian approaches is 

that obtaining the posterior distribution often requires the integration of high-dimensional 

functions. MCMC methods aim to simulate direct draws from some complex distribution 

of interest MCMC approaches are so-called because one uses the previous sample values 

to randomly generate the next sample value, generating a Markov chain as the transition 

probabilities between sample values are only a function of the most recent sample value. 

The Gibbs sampler is very widely applicable to a broad class of Bayesian problems it has 

sparked a major increase in application of Bayesian analysis. MCMC methods have their 

roots in Metropolis algorithm Metropolis et al. (1953), which computes complex integrals 
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by expressing them as expectations for some distribution and then estimate this expectation 

by drawing samples from that distribution. The Gibbs sampler, Geman and Geman (1984) 

is a special case of Metropolis-Hastings sampling. 

Monte Carlo Integration 

The original Monte Carlo approaches was a method developed by physicists to use random 

number generation to compute integrals. Suppose we wish to compute a complex integral  

  𝑥 𝑑𝑥 ,

𝑏

𝑎

 

if we can decompose (𝑥) into the production of a function 𝑓(𝑥) and a probability density 

function 𝑃(𝑥) defined over the interval (𝑎, 𝑏), then 

   𝑥 𝑑𝑥 = 
𝑏

𝑎

 𝑓 𝑥 𝑃 𝑥 𝑑𝑥
𝑏

𝑎

= 𝐸𝑝(𝑥) 𝑓(𝑥)  (3.23) 

that is, the integral may be expressed as an expectation of 𝑓(𝑥) over the density 𝑃(𝑥). 

Thus, if we draw a large number 𝑥1,… , 𝑥𝑛  of random variables from the density 𝑃(𝑥), then 

  𝑥 𝑑𝑥 = 
𝑏

𝑎

𝐸𝑝(𝑥) 𝑓(𝑥) ≃
1

𝑛
 𝑓(𝑥𝑖)

𝑛

𝑖=1
 (3.24) 

this is referred to as Monte Carlo integration, this integration can be used to approximate 

posterior or marginal posterior distributions required for Bayesian analysis. Consider the 

integral 𝐼 𝑦 =  𝑓 𝑦 𝑥  𝑃 𝑥 𝑑𝑥 which we approximate by 

𝐼  𝑦 =
1

𝑛
 𝑓(𝑦 𝑥𝑖 )

𝑛

𝑖=1
 (3.25) 

where 𝑥𝑖  are draws from the density 𝑃(𝑥). The estimated Monte Carlo standard error is 

given by 
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𝑆𝐸2 𝐼  𝑦  =
1

𝑛
(

1

𝑛 − 1
 (𝑓 𝑦 𝑥𝑖  

𝑛

𝑖=1
− 𝐼  𝑦 )2) (3.26) 

Markov Chains 

Before introducing the Metropolis-Hastings algorithm and Gibbs sampler, a few 

introductory comments on Markov Chains are in order. Let 𝑋𝑡  denote the value of a 

random variable at time 𝑡, and let the state space refer to the range of possible 𝑋 values. 

The random variable is a Markov process if the transition probabilities between different 

values in the state space depend only on the random variable‟s current state, that is 

𝑃 𝑋𝑡+1 = 𝑠𝑖 𝑋0 = 𝑠𝑘 ,… ,𝑋𝑡 = 𝑠𝑖 = 𝑃(𝑋𝑡+1 = 𝑠𝑗 𝑋𝑡 = 𝑠𝑖)   (3.27) 

Thus for a Markov random variable the only information about the past needed to the 

future is the current state of the random variable. Knowledge of the values of earlier states 

do not change the transition probability. A Markov chain refers to a sequence of random 

variables (𝑋0,… ,𝑋𝑛) generated by a Markov process, a particular chain is defined most 

critically by its transition probabilities, 𝑃 𝑖, 𝑗 = 𝑃(𝑖 → 𝑗) , which is the probability that a 

process at state space 𝑠𝑖  moves to state 𝑠𝑗  in a single step, 

𝑃 𝑖, 𝑗 = 𝑃 𝑖 → 𝑗 = 𝑃(𝑋𝑡+1 = 𝑠𝑗 𝑋𝑡 = 𝑠𝑖)   (3.28) 

Let 𝜋𝑗  𝑡 = 𝑃(𝑋𝑡 = 𝑠𝑖) denote the probability that the chain is in state 𝑗 at time 𝑡, and let 

𝜋 𝑡  denote the row vector of the state space probabilities at step 𝑡. We start the chain by 

specifying a starting vector 𝜋 0 . Often all the elements of 𝜋 0  are zero except for a 

single element of 1, corresponding to the process starting in the particular state. As the 

chain progresses, the probability values gets spread out over the possible state space. The 

probability that the chain has state value 𝑠𝑖  at time 𝑡 + 1 is given by the Chapman-
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Kolomogrov equation, which sums over the probability of being in a particular state at the 

current step and the transition probability from that state into state 𝑠𝑖  

𝜋𝑖 𝑡 + 1 = 𝑃 𝑋𝑡+1 = 𝑠𝑗   

=  𝑃(𝑋𝑡+1 = 𝑠𝑖 𝑋𝑡 = 𝑠𝑘)𝑃(𝑋𝑡 = 𝑠𝑘) 
𝑘

=  𝑃 𝑘 → 𝑖 𝜋𝑘 𝑡 =  𝑃(𝑘, 𝑖)𝜋𝑘 𝑡 
𝑘𝑘

 (3.29) 

Finally, a Markov chain is said to be irreducible if there exists a positive integer such that   

 𝑃
𝑖𝑗

𝑛𝑖𝑗 = 𝑃 𝑋𝑡+𝑛 = 𝑠𝑗 𝑋𝑡 = 𝑠𝑖   > 0        for all 𝑖 and 𝑗. 

That is, all states communicates with each other, as one can always go from any state to 

any other state. Likewise, a chain is said to be a periodic when the number of steps 

required to move between two states (say 𝑥 and 𝑦) is not required to be multiple of some 

integer. But another way, the chain is not forced into some cycle of fixed length between 

certain states. 

Metropolis-Hastings Algorithm 

One problem with applying Monte Carlo integration is in obtaining samples from some 

complex probability distribution 𝑝(𝑥). Attempts to solve this problem are the roots of 

MCMC methods. In particular, they trace to attempt by mathematical physicists to 

integrate very complex functions by random sampling Metropolis et al. (1953), Hastings 

(1970), and the resulting Metropolis-Hastings (M-H) algorithm. Suppose our goal is to 

draw samples from some distribution 𝑝(𝜃) where 𝑝 𝜃 =
𝑓(𝜃)

𝐾
 where the normalizing 

constant 𝐾 may not be known, and very difficult to compute. The Metropolis algorithm 

generates a sequence of draws from this distribution as follows: 

Algorithm 3.1 M-H Algorithm 

Step 1, Start with any initial value 𝜃0 satisfying 𝑓(𝜃0) > 0. 
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Step 2, Using current 𝜃 value, sample a candidate point 𝜃∗ from some jumping distribution 

𝑞(𝜃1,𝜃2), which is the probability of returning a value of 𝜃2 given a previous value of 𝜃1. 

This distribution is also referred to as the proposal or candidate-generating distribution. 

The only restriction on the jump density in the Metropolis algorithm is that it is symmetric, 

𝑞 𝜃1,𝜃2 = 𝑞(𝜃2,𝜃1). 

Step 3, Given the candidate point 𝜃∗, calculate the ratio of the density at the candidate 

(𝜃∗) and current (𝜃𝑡−1) points  

 𝛼 =
𝑝(𝜃∗)

𝑝(𝜃𝑡−1)
=

𝑓(𝜃∗)

𝑓(𝜃𝑡−1)
 

(3.30) 

Step 4, If the jump increases the density (𝛼 > 1), then accept the candidate point 

( 𝑠𝑒𝑡 𝜃𝑡 = 𝜃∗) and return to step 2. 

Step 5, If the jump decreases the density (𝛼 < 1), then with probability 𝛼 accept the  

candidate point, else reject it and return to step 2. 

This algorithm generates a Markov chain (𝜃0,𝜃1 ,… ,𝜃𝑘 ,… ) , as the transition probabilities 

from 𝜃𝑡  to 𝜃𝑡+1 depends only on 𝜃𝑡  and not (𝜃0 ,… ,𝜃𝑡−1). Following a sufficient burn-in 

period (of, say, 𝑘 steps), the chain approaches its stationary distribution and samples from 

the vector (𝜃𝑘+1,… ,𝜃𝑘+𝑛)  are samples from 𝑝(𝑥). Hasting (1970) generalized the 

Metropolis algorithm by using an arbitrary transition probability function 𝑞 𝜃1,𝜃2 =

𝑃(𝜃1 → 𝜃2) and setting the acceptance probability for a candidate point as 

𝛼 = min  
𝑓 𝜃∗ 𝑞(𝜃∗,𝜃𝑡−1)

𝑓 𝜃𝑡−1 𝑞(𝜃𝑡−1,𝜃∗)
, 1  (3.31) 

Assuming that the proposal distribution is symmetric in M-H, recovers the original 

Metropolis algorithm. 

Convergence Diagnostics 

A key issue in the successful implementation of M-H or any other MCMC sampler is the 

number of runs (steps) until the chain approaches stationary which is the length of the 
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burn-in period, typically the first 1000 to 5000 elements are thrown out, and then 

convergence tests can be used to assess whether stationary distribution has indeed been 

reached. Adjacent members from a M-H sequence are expected to be positively correlated, 

and we can quantify the nature of this correlation by using an autocorrelation function. 

Consider a sequence (𝜃1,… ,𝜃𝑛) of length 𝑛. Correlations can occur between adjacent 

members (𝜌(𝜃𝑡 ,𝜃𝑡+1) ≠ 0) and more generally between more distant members 

(𝜌(𝜃𝑡 ,𝜃𝑡+𝑘) ≠ 0) . The 𝑘th order autocorrelation 𝜌𝑘  can be estimated by 

𝜌 𝑘 =
𝐶𝑜𝑣(𝜃𝑡 ,𝜃𝑡+𝑘)

𝑉𝑎𝑟(𝜃𝑡)
=
 (𝜃𝑡 − 𝜃 )(𝜃𝑡−𝑘 − 𝜃 )𝑛−𝑘
𝑡=1

 (𝜃𝑡 − 𝜃 )2𝑛−𝑘
𝑡=1

,   𝑤𝑒𝑟𝑒 𝜃 =
1

𝑛
 𝜃𝑡

𝑛

𝑡=1
 (3.32) 

An important result from the theory of time series analysis is that if the 𝜃𝑡  are from a 

stationary and correlated process, correlated draws still provide an unbiased picture of the 

distribution provided the sample size is sufficiently large. Some indication of the required 

sample size comes from the theory of a first order autoregressive process (or 𝐴𝑅1), where 

 

𝜃𝑡 = 𝜇 + 𝛼 𝜃𝑡−1 − 𝜇 + 𝜖 (3.33) 

 

where 𝜖 is white noise, that is 𝜖 ~𝑁(0 ,𝜍2). Here 𝜌1 = 𝛼 and the 𝑘th order autocorrelation 

is given by 𝜌𝑘 = 𝜌1
𝑘 . Under this process (𝐴𝑅1),  𝐸 𝜃  = 𝜇 with standard error 

 

 𝑆𝐸 𝜃  =
𝜍

 𝑛
 

1 + 𝜌1

1 − 𝜌1
 (3.34) 

the first ratio is the standard error for white noise, while the second ratio is the sample size 

inflation factor, or SSIF, which shows how the autocorrelation inflates the sampling 

variance. One strategy for reducing autocorrelation is thinning the output, storing only 

every 𝑚th point after the burn-in period. 
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3.2.2   The Gibbs Sampling 

The Gibbs sampler introduced in the context of image processing by Geman and Geman 

(1984), is a special case of M-H sampling wherein the random value is always 

accepted(𝑖. 𝑒.   𝛼 = 1). The task remains to specify how to construct a Markov Chain 

whose values converge to the target distribution. The key to the Gibbs sampler is that one 

only considers univariate conditional distribution − the distribution when all of the random 

variables but one are assigned fixed values. Such conditional distributions are far easier to 

simulate than complex joint distributions and usually have simple forms, such as normal, 

inverse 𝜒2 or other common prior distributions. Thus, one simulates 𝑛 random variables 

sequentially from the 𝑛 univariate conditionals rather than generating a single 𝑛-

dimensional vector in a single pass using the full joint distribution. 

To introduce the Gibbs sampler, consider a bivariate random variable (𝑥,𝑦), and suppose 

we wish to compute one or both marginals, 𝑝(𝑥) and 𝑝(𝑦). The idea behind the sampler is 

that it is far easier to consider a sequence of conditional distributions, 𝑝(𝑥 𝑦 ) and 𝑝(𝑦 𝑥 ), 

than it is to obtain the marginal by integration of the joint density 𝑝(𝑥, 𝑦), e.g. 𝑝 𝑥 =

 𝑝 𝑥,𝑦 𝑑𝑦. The sampler start with some initial value 𝑦0 for 𝑦 and obtain 𝑥0 by generating 

a random variable from the conditional distribution 𝑝(𝑥 𝑦 = 𝑦0 ). The sampler then uses 

𝑥0 to generate a new value of 𝑦1, drawing from the conditional distribution based on the 

value of 𝑥0, 𝑝(𝑦 𝑥 = 𝑥0). The sampler proceeds as follows: 

 

𝑥𝑖  ~ 𝑝(𝑥 𝑦 = 𝑦𝑖−1) ,𝑦𝑖~ 𝑝(𝑦 𝑥 = 𝑥𝑖) 
 

(3.35) 

Repeating this process 𝑘 times, generates a Gibbs sequence of length 𝑘, where a subset of 

points (𝑥𝑗 , 𝑦𝑗 )  for 1 ≤ 𝑗 ≤ 𝑚 < 𝑘 are taken as the simulated draws from the full joint 

distribution. One iteration of all the univariate distributions is often called a scan of the 

sampler. To obtain desired total of 𝑚 sample points, one samples the chain (i) after a 
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sufficient burn-in to remove the effects of the initial sampling values and (ii) at set time 

points (say every 𝑛 samples) following the burn-in. The Gibbs sequence converges to a 

stationary (equilibrium) distribution that is independent of the starting values, and by 

construction this stationary distribution is the target distribution we were trying to 

simulate. When more than two variables are involved, the sampler is extended in the 

obvious fashion. In particular, the value of the 𝑘th variable is drawn from the distribution 

𝑝(𝜃(𝑘) Θ(−𝑘)  where Θ(−𝑘) denotes a vector containing all off the variables but 𝑘. Thus, 

during the 𝑖th iteration of the sample, to obtain the value of 𝜃𝑖
(𝑘)

 we draw from the 

distribution 

 

𝜃𝑖
(𝑘)

 ~ 𝑝(𝜃(𝑘) 𝜃(1) = 𝜃𝑖
(1)

,… , 𝜃(𝑘−1) = 𝜃𝑖
(𝑘−1)

,𝜃(𝑘+1) = 𝜃𝑖−1
(𝑘+1)

,… ,𝜃(𝑛) = 𝜃𝑖−1
(𝑛)

    
 

(3.36) 

 

 

 

 

 

 

 

 

 

 



36 
 

3.3   Bayesian Estimation 

In Bayesian analysis, the parameter of interest is always considered to be a random 

variable with a prior distribution. The prior distribution is the distribution of the parameter 

before any data is observed. The selection of prior distribution is most often than not based 

on the type of prior information that is available to us. When we have little or no 

information about the parameter, a non-informative prior should be used else an 

informative prior. In analyzing data from medical, engineering, or biological studies, it is 

possible to obtain information with respect to similar studies in the past, and if that is even 

unattainable, information from an expert could be modeled to fit an appropriate prior 

distribution. This can be referred to as prior elicitation. 

We let the two unknown parameters take on the gamma prior distributions by assuming 

that the hyper parameters are all known and greater than zero, that is, 𝑎 , 𝑏 , 𝑐 ,𝑑 > 0. 

Where,  the joint density function for Gamma distribution is 𝐺𝑎 𝑥;𝛼,𝛽 =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝑥𝛽  , 

and the marginal distribution function is   𝐺𝑎 𝛼,𝛽 𝑑𝛼 𝑑𝛽
∞

0

∞

0
. The gamma prior is 

assumed for this distribution because both the scale and shape parameters are greater than 

zero: 

𝑣1 𝜃 =
𝑎𝑏

Γ(𝑏)
𝜃𝑏−1 exp −𝜃𝑎 ⟹𝑣1 𝜃 ∝ 𝜃𝑏−1 exp −𝜃𝑎 , 𝜃,𝑎, 𝑏 > 0,  

𝑣2 𝑝 =
𝑐𝑑

Γ(𝑑)
𝑝𝑑−1 exp −𝑝𝑐 ⟹ 𝑣2 𝑝 ∝ 𝑝𝑑−1 exp −𝑝𝑐 ,   𝑝, 𝑐, 𝑑 > 0, (3.37) 

Bayesian inference is based on the posterior distribution which is obtained by dividing the 

joint density function to the marginal distribution function as given below: 

𝜋∗(𝜃,𝑝𝑡𝑖)  ∝
𝑣1 𝜃 𝑣2 𝑝 𝐿(𝑡𝑖 ;𝜃,𝑝)

  𝑣1 𝜃 𝑣2 𝑝 𝐿(𝑡𝑖 ;𝜃,𝑝)𝑑𝜃𝑑𝑝
∞

0

∞

0

  (3.38) 

Due to the complex nature of the posterior distribution given in (3.38), Lindley 

approximation is employed in order to estimate the unknown parameters. 
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The Bayesian estimator is considered under two loss functions. Since in drawing 

conclusions about the survival or duration of a living organism, an overestimation could be 

more detrimental to underestimation or vice versa, we have considered both asymmetric 

(general entropy) loss function and symmetric (squared error) loss function. 

3.3.1   Lindley Approximation. Lindley (1980) suggested an asymptotic approximation to 

compute the ratio of two integrals of the form 

 𝑤(𝛼)𝑒𝑥𝑝 ℓ(𝛼) 𝑑𝛼

 𝑣(𝛼)𝑒𝑥𝑝 ℓ(𝛼) 𝑑𝛼
 (3.39) 

where ℓ(𝛼) is the log likelihood and 𝑤 𝛼 , 𝑣(𝛼) are arbitrary functions of 𝛼 , 𝑣(𝛼) is the 

prior distribution for 𝛼, and 𝑤 𝛼 = 𝑢 𝛼 . 𝑣(𝛼) with 𝑢(𝛼) being some function of interest 

as seen in (3.40). The posterior expectation according to Sinha is 

𝐸 𝑢 𝛼 𝑥  =
 𝑢(𝛼)𝑒𝑥𝑝 ℓ 𝛼 + 𝜌(𝛼) 𝑑𝛼

 𝑒𝑥𝑝 ℓ(𝛼)𝜌(𝛼) 𝑑𝛼
           (3.40) 

where 𝜌 𝛼 = 𝑙𝑜𝑔 𝑣(𝛼)  and ℓ(𝛼) represent the log-likelihood function. Considering the 

Bayesian estimator under the squared error loss function, which is the posterior mean, the 

posterior expectation can be approximated asymptotically with respect to the two 

parameters by (3.42): 

𝑢 = 𝑢 𝜃 ,𝑝  +
1

2
  𝑢11𝜍11 +  𝑢22𝜍22  + 𝑢1𝜌1𝜍11 + 𝑢2𝜌2𝜍22

+
1

2
  ℓ30𝑢1𝜍11

2  +  ℓ03𝑢2𝜍22
2    

(3.41) 

 

𝑢 = 𝜃 ,          𝑢1 =
𝜕𝑢

𝜕𝜃
= 1 ,          𝑢11 = 0,                                

𝑢 = 𝑝 ,          𝑢2 =
𝜕𝑢

𝜕𝑝
= 1 ,          𝑢22 = 0,                                

𝜌 = ln 𝑣1(𝜃) + ln 𝑣2(𝑝) (3.42) 
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𝜌1 =
𝑏 − 1

𝜃
− 𝑎 ,                𝜌2 =

𝑑 − 1

𝑝
− 𝑐   

 

𝜍11 = (−ℓ20)−1,               𝜍22 = (−ℓ02)−1   

The second and third derivatives with respect to the scale and shape parameters are 

ℓ20 = −
𝑛

𝜃2
− 

(𝑝 − 1) (𝑡𝑖)
2exp(−𝜃𝑡𝑖) 

(1 − exp −𝜃𝑡𝑖 )

𝑛

𝑖=1

− 
(𝑝 − 1)  𝑡𝑖 

2(exp −𝜃𝑡𝑖 )
2 

(1 − exp −𝜃𝑡𝑖 )2

𝑛

𝑖=1

 (3.43) 

 

ℓ30 =
2𝑛

𝜃3
− 

 𝑝 − 1   𝑡𝑖 
3 exp −𝜃𝑡𝑖  

 1 − exp −𝜃𝑡𝑖  

𝑛

𝑖=1

+  
3 𝑝 − 1   𝑡𝑖 

3 exp −𝜃𝑡𝑖  
2 

 1 − exp −𝜃𝑡𝑖  2

𝑛

𝑖=1

+  
2 𝑝 − 1   𝑡𝑖 

3 exp −𝜃𝑡𝑖  
3 

 1 − exp −𝜃𝑡𝑖  3

𝑛

𝑖=1

 

           ℓ02 = −
𝑛

𝑝2
  , ℓ03 = −

2𝑛

𝑝3
  

 

 

To estimate the survival function, under the squared error loss function, we let 

𝑢(𝑆) = 1 −  1 − 𝑒−𝜃𝑡   
𝑝
 (3.44) 

where 

𝑢1 =
𝜕𝑢(𝑆)

𝜕𝜃
,          𝑢11 =

𝜕2𝑢(𝑆)

𝜕𝜃2
,         

𝑢2 =
𝜕𝑢(𝑆)

𝜕𝑝
,          𝑢22 =

𝜕2𝑢(𝑆)

𝜕𝑝2
 , (3.45) 

 

 

 



39 
 

3.3.2  General Entropy Loss Function. 

This is another useful asymmetric loss function that is used to determine whether there is 

overestimation or underestimation. The general entropy loss function is a generalization of 

the entropy loss function. The Bayes estimator 𝛼 𝐵𝐺  of 𝛼 under the general entropy loss is 

𝛼 𝐵𝐺 =  𝐸𝛼(𝛼−𝑘) −1 𝑘  (3.46) 

Provided 𝐸𝛼(. ) exists and is finite. The Bayes estimator for this loss function with respect 

to the parameters and the survival function are 

𝐸  (𝜃)−𝑘 , (𝑝)−𝑘  =
  𝑢   𝜃 −𝑘 ,  𝑝 −𝑘 𝑣1(𝜃)𝑣2(𝑝)𝐿(𝑡𝑖 ;𝜃, 𝑝)𝑑𝜃𝑑𝑝

  𝑣1(𝜃)𝑣2(𝑝)𝐿(𝑡𝑖 ;𝜃,𝑝)𝑑𝜃𝑑𝑝
 

 

 

𝐸  (𝑆)−𝑘  =
  𝑢  1 −  1 − exp(−𝜃𝑡) 𝑝 −𝑘𝑣1(𝜃)𝑣2(𝑝)𝐿(𝑡𝑖 ;𝜃,𝑝)𝑑𝜃𝑑𝑝

  𝑣1(𝜃)𝑣2(𝑝)𝐿(𝑡𝑖 ;𝜃,𝑝)𝑑𝜃𝑑𝑝
 

(3.47) 

A similar Lindley approach is used for the general entropy loss function as in the squared 

error loss function, with 

 

𝑢 =  𝜃 −𝑘 ,             𝑢1 =
𝜕𝑢

𝜕𝜃
= −𝑘 𝜃 −𝑘−1,  

𝑢11 =
𝜕2𝑢

𝜕(𝜃)2
= −(−𝑘2 − 𝑘) 𝜃 −𝑘−2,   

𝑢 =  𝑝 −𝑘 ,             𝑢2 =
𝜕𝑢

𝜕𝑝
= −𝑘 𝑝 −𝑘−1, 

 

𝑢22 =
𝜕2𝑢

𝜕(𝑝)2
= −(−𝑘2 − 𝑘) 𝑝 −𝑘−2,  

(3.48) 

For the general entropy loss function, the posterior expectation according to Lindley  can 

be approximated by using (3.47)  

𝑢 =  𝑢 𝜃 ,𝑝  +
1

2
  𝑢11𝜍11 +  𝑢22𝜍22  + 𝑢1𝜌1𝜍11 + 𝑢2𝜌2𝜍22

+
1

2
  ℓ30𝑢1𝜍11

2  +  ℓ03𝑢2𝜍22
2    

−1 𝑘 

 

(3.49) 
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Chapter Four  

Simulation and Real case study 

4.1   Simulation Study 

In this simulation study we propose MCMC (Gibbs) sampling procedure to generate 

samples from the posterior density functions described in the previous chapters under the 

assumptions that 𝜃 and 𝑝  follow Gamma(a; b) and Gamma(c; d) respectively and they are 

independent. Now using Lindley approach or entropy loss functions described in the 

previous chapter, we propose the following scheme to generate (𝜃,𝑝) from their posterior 

density functions.  Once we have the mechanism to generate samples given the data, we 

can use the samples to compute the approximate Bayesian estimates and also the 

corresponding descriptive statistics. 

Algorithm: 

Step 1: Generate 𝜃1 from the Gamma(a; b)  

Step 2: Generate 𝑝1 from the Gamma(c; d) 

Step 3: Obtain the posterior samples  𝜃1, 𝑝1 ;… ;  𝜃𝑀 , 𝑝𝑀  by repeating the Steps 1 and 2, 

M times. 

Step 4: The Bayes estimates of 𝜃 and 𝑝 then obtained by  

𝐸  𝜃 𝑑𝑎𝑡𝑎 =
1

𝑀−𝑁
 𝜃𝑖
𝑀−𝑁
𝑖=1     and  𝐸  𝑝 𝑑𝑎𝑡𝑎 =

1

𝑀−𝑁
 𝑝𝑖
𝑀−𝑁
𝑖=1  

where N is the burn-in period 

Step 5: Obtain the posterior variance of 𝜃 and 𝑝 as 

𝑉  𝜃 𝑑𝑎𝑡𝑎 =
1

𝑀 −𝑁
  𝜃𝑖 − 𝐸  𝜃 𝑑𝑎𝑡𝑎  

2𝑀−𝑁

𝑖=1
; and 
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𝑉  𝑝 𝑑𝑎𝑡𝑎 =
1

𝑀 −𝑁
  𝑝𝑖 − 𝐸  𝑝 𝑑𝑎𝑡𝑎  

2𝑀−𝑁

𝑖=1
 

where N is the burn-in period 

Step 6: A lifetime 𝑇 is generated from 𝐺𝐸(𝜃,𝑝) as follows: 

i. Generate 𝑈 from the Uniform(0, 1) 

ii. Let  𝑇 =  −ln(1 − 𝑈1 𝑝   𝜃   

iii. Repeating Steps i and ii, n  times (sample size). 

The simulation study is carried out for different sample size and with different hyper 

parameter values. In particular we take sample sizes n = 20, 40 and 100. Informative priors 

are used for the shape and scale parameters, we chose a = b = c = d = 0.0001 in order to 

obtain proper priors as suggested by Guure and Bosomprah (2013). In all these cases, we 

generate observation from a gamma distribution with assumed actual shape parameter (𝑝) 

of the 𝐺𝐸 distribution were taken to be 0.75, 1.5, and 2.5. Also, the scale parameter (𝜃) was 

considered throughout this simulation to be 0.5, 1.0, and 10. The values of the loss 

parameter for the general entropy loss function are 𝑘 = ±0.5, which can be extended for 

other values of the loss parameter. 

For comparison purpose we compute maximum likelihood estimates (MLE), Bayes 

estimate using Lindley's approximation (BSE), and  Bayes estimates under the general 

entropy loss functions (BGE). In all cases Bayes estimate using 5000 MCMC samples 

were obtained with 1500 iterations after 500 iterations were burn-in. 

Note that the parameter estimates under the classical maximum likelihood method could 

not be obtained in close form, and we therefore employed Newton-Raphson iterative 

approach via the Hessian matrix. This can simply be implemented in the 𝑅 programming 

language with vglm function under the package VGAM. (See Appendix A). 
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1. For the scale parameter (𝜃 = 1), the average estimates obtained by all the methods 

along with mean squared error, the absolute bias values and the average 95% 

confidence intervals are determined and presented in Tables 4.1 – 4.6. 

Table 4.1: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 0.75 and 𝜃 = 1 

n Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  1.255219 0.110249 0.255219 0.872099 1.638339 

BSE  1.255095 0.110098 0.255095 0.872212 1.637978 

BGE (k = 0.5) 1.251456 0.111166 0.251456 0.869158 1.633754 

BGE (k = –0.5) 1.246358 0.101183 0.246358 0.878400 1.614316 

40 

MLE  1.170036 0.041618 0.170036 0.978673 1.361399 

BSE  1.170024 0.041613 0.170024 0.978673 1.361375 

BGE (k = 0.5) 1.163792 0.040048 0.163792 0.977576 1.350008 

BGE (k = –0.5) 1.163408 0.038896 0.163408 0.978896 1.347920 

100 

MLE  1.119557 0.016901 0.119557 1.017933 1.221181 

BSE  1.119556 0.016900 0.119556 1.017934 1.221178 

BGE (k = 0.5) 1.115652 0.014504 0.115652 1.019062 1.212242 

BGE (k = –0.5) 1.113236 0.013092 0.113236 1.019789 1.206683 

 

Table 4.2: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 1.5 and 𝜃 = 1 

n Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.853394 0.070492 0.146606 0.461282 1.245506 

BSE  0.854497 0.069543 0.145503 0.465089 1.243905 

BGE (k = 0.5) 0.851304 0.068749 0.148696 0.462113 1.240495 

BGE (k = –0.5) 0.856258 0.068157 0.143742 0.470902 1.241614 

40 

MLE  0.923829 0.024940 0.076171 0.803420 1.044238 

BSE  0.923974 0.024859 0.076026 0.803771 1.044177 

BGE (k = 0.5) 0.920380 0.025602 0.079620 0.797161 1.043599 

BGE (k = –0.5) 0.900474 0.026197 0.099526 0.766338 1.034610 

100 

MLE  0.962301 0.008282 0.037699 0.914159 1.010443 

BSE  0.962325 0.008273 0.037675 0.914211 1.010439 

BGE (k = 0.5) 0.965101 0.007617 0.034899 0.919560 1.010642 

BGE (k = –0.5) 0.967674 0.007042 0.032326 0.924500 1.010848 
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Table 4.3: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 2.5 and 𝜃 = 1 

n Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  1.102155 0.055014 0.102155 0.769435 1.434875 

BSE  1.100471 0.053753 0.100471 0.771840 1.429102 

BGE (k = 0.5) 1.097077 0.053014 0.097077 0.772063 1.422091 

BGE (k = –0.5) 1.091142 0.052206 0.091142 0.771211 1.411073 

40 

MLE  1.042563 0.020509 0.042563 0.946628 1.138498 

BSE  1.042287 0.020373 0.042287 0.946738 1.137836 

BGE (k = 0.5) 1.042121 0.020713 0.042121 0.946037 1.138205 

BGE (k = –0.5) 1.039761 0.020135 0.039761 0.945911 1.133611 

100 

MLE  1.000584 0.005621 0.000584 0.976160 1.025008 

BSE  1.000533 0.005606 0.000533 0.976167 1.024899 

BGE (k = 0.5) 1.000935 0.005640 0.000935 0.976295 1.025575 

BGE (k = –0.5) 1.001552 0.006044 0.001552 0.975752 1.027352 

 

 

 

 

 

 

 

Table 4.4: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 0.75  and 𝜃 = 1  

n Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.826655 0.184489 0.076655 0.272569 1.380741 

BSE  0.826655 0.184489 0.076655 0.272569 1.380741 

BGE (k = 0.5) 0.814999 0.181371 0.064999 0.271118 1.358880 

BGE (k = –0.5) 0.811920 0.175658 0.061920 0.277697 1.346143 

40 

MLE  0.775291 0.111177 0.025291 0.588832 0.961750 

BSE  0.775291 0.111177 0.025291 0.588832 0.961750 

BGE (k = 0.5) 0.776927 0.116500 0.026927 0.585537 0.968317 

BGE (k = –0.5) 0.776832 0.119055 0.026832 0.583549 0.970115 

100 

MLE  0.761682 0.078559 0.011682 0.665625 0.857739 

BSE  0.761682 0.078559 0.011682 0.665625 0.857739 

BGE (k = 0.5) 0.761904 0.077485 0.011904 0.666354 0.857454 

BGE (k = –0.5) 0.761483 0.077037 0.011483 0.666403 0.856563 
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Table 4.5: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 1.5 and 𝜃 = 1 

n Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  1.990047 0.469041 0.490047 0.922655 3.057439 

BSE  1.990047 0.469041 0.490047 0.922655 3.057439 

BGE (k = 0.5) 2.053140 0.455767 0.553140 0.965922 3.140358 

BGE (k = –0.5) 1.981065 0.444008 0.481065 0.940410 3.021720 

40 

MLE  1.647109 0.276404 0.147109 1.299493 1.994725 

BSE  1.647109 0.276404 0.147109 1.299493 1.994725 

BGE (k = 0.5) 1.649840 0.281081 0.149840 1.298549 2.001131 

BGE (k = –0.5) 1.659436 0.287383 0.159436 1.300266 2.018606 

100 

MLE  1.560677 0.179674 0.060677 1.393902 1.727452 

BSE  1.560677 0.179674 0.060677 1.393902 1.727452 

BGE (k = 0.5) 1.557956 0.180913 0.057956 1.392072 1.723840 

BGE (k = –0.5) 1.559022 0.181074 0.059022 1.392544 1.725500 

 

 

 

 

Table 4.6: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 2.5 and 𝜃 = 1 

n Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  3.243582 0.654769 0.741582 1.901152 4.586012 

BSE  3.243582 0.654769 0.741582 1.901152 4.586012 

BGE (k = 0.5) 3.410514 0.676817 0.908514 1.968394 4.852634 

BGE (k = –0.5) 3.398282 0.640145 0.896282 1.989414 4.807150 

40 

MLE  2.864344 0.438533 0.362344 2.337967 3.390721 

BSE  2.864344 0.438533 0.362344 2.337967 3.390721 

BGE (k = 0.5) 2.868843 0.431086 0.366843 2.343160 3.394526 

BGE (k = –0.5) 2.864682 0.428062 0.362682 2.342282 3.387082 

100 

MLE  2.630699 0.271799 0.128699 2.398542 2.862856 

BSE  2.630699 0.271799 0.128699 2.398542 2.862856 

BGE (k = 0.5) 2.641918 0.279051 0.139918 2.401927 2.881909 

BGE (k = –0.5) 2.626457 0.270577 0.124457 2.396798 2.856116 

 

Some of the points are quite clear from the numerical results. As expected it is observed 

that the performances of all estimators become better when the sample size increases. It is 
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also observed that both in terms of biases and mean squared errors (MSE), for large sample 

sizes the Bayes estimates and the MLEs become closer. When 𝜃 = 1, the Bayes estimates 

of 𝜃 perform marginally better than the MLEs in terms of biases and MSE for all cases 

considered. In general the Bayes estimates of 𝑝 perform better than the MLEs for 𝑝 ≤ 1 

and for 𝑝 > 1 it is the other way. Particularly, from Tables 1 – 3 , it is very clear that the 

most dominant estimator that had the smallest MSE with regard to the absolute biases for 

the scale parameter (𝜃) is Bayesian under general entropy loss function. This is followed 

closely by Bayes under squared error loss function. What has been observed again is that, 

as the sample size increases, the MSE of all the estimators decrease unswervingly. This is 

simply an indication of how good and reliable the estimators are. 

Results in  Tables 4 – 6 contain the MSE and the absolute biases of the estimated shape 

parameter (𝑝 ) when 𝜃 = 1, it is noticed that the MSE and the absolute biases of the two 

estimators, that is, maximum likelihood and Bayes under squared error loss function, have 

the same values for the estimated shape parameter. This is expected in that the priors used 

for the Bayesian analysis are noninformative. With regards to the survival function, Bayes 

estimator under the general entropy loss function gives a minimum bias with relatively 

small samples. Maximum likelihood estimator is slightly ahead of the other estimators with 

respect to the MSE. 

 

2. For the scale parameter (𝜃 = 0.5), the average estimates obtained by all the methods 

along with mean squared error, the absolute bias values and the average 95% 

confidence intervals are determined and presented in Tables 4.7 – 4.12. 
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Table 4.7: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 0.75 and 𝜃 = 0.5 

n Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.73419 0.11180 0.23419 0.55225 0.91613 

BSE  0.73409 0.11165 0.23409 0.55227 0.91590 

BGE (k = 0.5) 0.73034 0.11268 0.23034 0.54768 0.91299 

BGE (k = –0.5) 0.72624 0.10265 0.22624 0.55191 0.90057 

40 

MLE  0.65587 0.04232 0.15587 0.54864 0.76311 

BSE  0.65586 0.04231 0.15586 0.54863 0.76309 

BGE (k = 0.5) 0.64979 0.04069 0.14979 0.54464 0.75493 

BGE (k = –0.5) 0.64952 0.03953 0.14952 0.54588 0.75316 

100 

MLE  0.60787 0.01710 0.10787 0.54132 0.67441 

BSE  0.60787 0.01710 0.10787 0.54132 0.67441 

BGE (k = 0.5) 0.60420 0.01466 0.10420 0.54258 0.66582 

BGE (k = –0.5) 0.60193 0.01322 0.10193 0.54340 0.66045 

 

 

 

Table 4.8: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 1.5 and 𝜃 = 0.5 

n Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.33634 0.07096 0.16366 0.19140 0.48129 

BSE  0.33754 0.07000 0.16246 0.19358 0.48150 

BGE (k = 0.5) 0.33443 0.06924 0.16557 0.19125 0.47761 

BGE (k = –0.5) 0.33944 0.06859 0.16056 0.19693 0.48195 

40 

MLE  0.41134 0.02470 0.08867 0.32941 0.49326 

BSE  0.41149 0.02462 0.08851 0.32970 0.49328 

BGE (k = 0.5) 0.40782 0.02540 0.09218 0.32474 0.49090 

BGE (k = –0.5) 0.38785 0.02619 0.11215 0.30349 0.47222 

100 

MLE  0.45147 0.00766 0.04853 0.40693 0.49601 

BSE  0.45150 0.00765 0.04850 0.40699 0.49601 

BGE (k = 0.5) 0.45434 0.00697 0.04566 0.41186 0.49682 

BGE (k = –0.5) 0.45697 0.00637 0.04303 0.41637 0.49757 
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Table 4.9: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 2.5 and 𝜃 = 0.5 

n Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.58665 0.05504 0.08665 0.45900 0.71431 

BSE  0.58510 0.05376 0.08510 0.45893 0.71126 

BGE (k = 0.5) 0.58178 0.05298 0.08178 0.45652 0.70703 

BGE (k = –0.5) 0.57592 0.05212 0.07592 0.45170 0.70014 

40 

MLE  0.53051 0.01993 0.03051 0.45691 0.60411 

BSE  0.53025 0.01980 0.03025 0.45691 0.60359 

BGE (k = 0.5) 0.53005 0.02013 0.03005 0.45608 0.60402 

BGE (k = –0.5) 0.52775 0.01953 0.02775 0.45489 0.60060 

100 

MLE  0.49002 0.00463 0.00998 0.45540 0.52464 

BSE  0.48997 0.00461 0.01003 0.45541 0.52453 

BGE (k = 0.5) 0.49037 0.00465 0.00963 0.45567 0.52507 

BGE (k = –0.5) 0.49095 0.00506 0.00905 0.45475 0.52715 

 

 

 

 

Table 4.10: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 0.75  and 𝜃 = 0.5  

n Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.80821 0.18272 0.05821 0.57561 1.04080 

BSE  0.80821 0.18272 0.05821 0.57561 1.04080 

BGE (k = 0.5) 0.79686 0.17972 0.04686 0.56618 1.02754 

BGE (k = –0.5) 0.79435 0.17404 0.04435 0.56735 1.02136 

40 

MLE  0.76417 0.10992 0.01417 0.59134 0.93700 

BSE  0.76417 0.10992 0.01417 0.59134 0.93700 

BGE (k = 0.5) 0.76528 0.11523 0.01528 0.58832 0.94223 

BGE (k = –0.5) 0.76493 0.11779 0.01493 0.58602 0.94383 

100 

MLE  0.75383 0.07744 0.00383 0.61220 0.89545 

BSE  0.75383 0.07744 0.00383 0.61220 0.89545 

BGE (k = 0.5) 0.75416 0.07637 0.00416 0.61352 0.89480 

BGE (k = –0.5) 0.75378 0.07592 0.00378 0.61355 0.89401 
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Table 4.11: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 1.5 and 𝜃 = 0.5 

n Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  1.90314 0.45414 0.40314 1.53645 2.26983 

BSE  1.90314 0.45414 0.40314 1.53645 2.26983 

BGE (k = 0.5) 1.96756 0.44024 0.46756 1.60653 2.32860 

BGE (k = –0.5) 1.89666 0.42920 0.39666 1.54018 2.25314 

40 

MLE  1.57947 0.26493 0.07947 1.31115 1.84778 

BSE  1.57947 0.26493 0.07947 1.31115 1.84778 

BGE (k = 0.5) 1.58173 0.26958 0.08173 1.31107 1.85239 

BGE (k = –0.5) 1.59070 0.27579 0.09070 1.31694 1.86445 

100 

MLE  1.50271 0.16907 0.00271 1.29345 1.71197 

BSE  1.50271 0.16907 0.00271 1.29345 1.71197 

BGE (k = 0.5) 1.49986 0.17033 0.00014 1.28982 1.70991 

BGE (k = –0.5) 1.50091 0.17048 0.00091 1.29078 1.71105 

 

 

 

 

Table 4.12: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 2.5 and 𝜃 = 0.5 

n Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  3.17811 0.67218 0.67811 2.73199 3.62422 

BSE  3.17811 0.67218 0.67811 2.73199 3.62422 

BGE (k = 0.5) 3.34283 0.69590 0.84283 2.88891 3.79675 

BGE (k = –0.5) 3.33427 0.65911 0.83427 2.89251 3.77602 

40 

MLE  2.82049 0.45216 0.32049 2.46996 3.17102 

BSE  2.82049 0.45216 0.32049 2.46996 3.17102 

BGE (k = 0.5) 2.82573 0.44475 0.32573 2.47809 3.17338 

BGE (k = –0.5) 2.82188 0.44169 0.32188 2.47543 3.16832 

100 

MLE  2.60352 0.28309 0.10352 2.33274 2.87430 

BSE  2.60352 0.28309 0.10352 2.33274 2.87430 

BGE (k = 0.5) 2.61401 0.29045 0.11401 2.33973 2.88829 

BGE (k = –0.5) 2.59940 0.28182 0.09940 2.32922 2.86957 
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When  𝜃 = 0.5 < 1, results in Tables 7, 8, and 9 show that the average biases and the 

average MSE's decrease as sample size increases. It is observed that the average biases and 

the average MSE's of  𝜃   depend on 𝑝. For all the methods as 𝑝 increases the average 

relative MSE's of 𝜃  decrease and the same thing is true for the average biases also for most 

of the methods. Moreover, with respect to the MSE's it is clear that when 𝜃 < 1 the 

performances of all approaches in estimating 𝜃 are quite close to that when 𝜃 = 1. 

On the other hand there is no pattern observed for the average biases of 𝑝  and the 

corresponding average MSE's. It observed that for most of the methods the biases are quite 

severe for small sample sizes and large 𝑝. Considering only MSE's it can be said that the 

estimation of 𝑝's are more accurate for   𝑝 < 2 and  𝜃 = 0.5. 

 

3. For the scale parameter (𝜃 = 10), the average estimates obtained by all the methods 

along with mean squared error, the absolute bias values and the average 95% 

confidence intervals are determined and presented in Tables 4.13 – 4.18. 

 

Table 4.13: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 0.75 and  𝜃 = 10 

N Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  11.04537 0.13622 1.04537 10.84454 11.04537 

BSE  11.04526 0.13606 1.04526 10.84454 11.04526 

BGE (k = 0.5) 11.04161 0.13671 1.04161 10.84042 11.04161 

BGE (k = –0.5) 11.03651 0.12627 1.03651 10.84315 11.03651 

40 

MLE  10.96010 0.05891 0.96010 10.83358 10.96010 

BSE  10.96009 0.05890 0.96009 10.83358 10.96009 

BGE (k = 0.5) 10.95386 0.05667 0.95386 10.82977 10.95386 

BGE (k = –0.5) 10.95347 0.05548 0.95347 10.83069 10.95347 

100 

MLE  10.90958 0.02889 0.90958 10.82308 10.90958 

BSE  10.90958 0.02889 0.90958 10.82308 10.90958 

BGE (k = 0.5) 10.90567 0.02608 0.90567 10.82348 10.90567 

BGE (k = –0.5) 10.90325 0.02441 0.90325 10.82373 10.90325 
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Table 4.14: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 1.5 and  𝜃 = 10 

N Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  10.64344 0.09733 0.64344 10.47368 10.81319 

BSE  10.64454 0.09625 0.64454 10.47573 10.81335 

BGE (k = 0.5) 10.64135 0.09580 0.64135 10.47294 10.80977 

BGE (k = –0.5) 10.64630 0.09465 0.64630 10.47890 10.81370 

40 

MLE  10.71381 0.04357 0.71381 10.60500 10.82262 

BSE  10.71395 0.04347 0.71395 10.60527 10.82264 

BGE (k = 0.5) 10.71036 0.04462 0.71036 10.60025 10.82047 

BGE (k = –0.5) 10.69047 0.04741 0.69047 10.57697 10.80397 

100 

MLE  10.55224 0.02251 0.55224 10.47587 10.62860 

BSE  10.55227 0.02250 0.55226 10.47593 10.62860 

BGE (k = 0.5) 10.55504 0.02154 0.55504 10.48035 10.62972 

BGE (k = –0.5) 10.55761 0.02067 0.55761 10.48443 10.63078 

 

 

 

 

Table 4.15: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝜃 ) with 𝑝 = 2.5 and  𝜃 = 10 

N Method 𝜽  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  10.44107 0.09187 0.44107 10.27614 10.60600 

BSE  10.44221 0.09083 0.44221 10.27821 10.60620 

BGE (k = 0.5) 10.43905 0.09028 0.43905 10.27555 10.60254 

BGE (k = –0.5) 10.44401 0.08929 0.44401 10.28141 10.60661 

40 

MLE  10.41299 0.04061 0.41299 10.30794 10.51804 

BSE  10.41313 0.04052 0.41313 10.30820 10.51806 

BGE (k = 0.5) 10.40951 0.04155 0.40951 10.30326 10.51577 

BGE (k = –0.5) 10.38960 0.04367 0.38960 10.28066 10.49853 

100 

MLE  10.04381 0.02090 0.04381 9.97024 10.11738 

BSE  10.04385 0.02088 0.04385 9.97030 10.11740 

BGE (k = 0.5) 10.04737 0.02001 0.04737 9.97537 10.11937 

BGE (k = –0.5) 10.05060 0.01924 0.05060 9.98001 10.12119 
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Table 4.16: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 0.75  and 𝜃 = 10  

N Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  0.79907 0.17233 0.04907 0.57319 1.02496 

BSE  0.79907 0.17233 0.04907 0.57319 1.02496 

BGE (k = 0.5) 0.78787 0.16941 0.03787 0.56391 1.01183 

BGE (k = –0.5) 0.78565 0.16374 0.03565 0.56546 1.00583 

40 

MLE  0.75867 0.09983 0.00867 0.59397 0.92338 

BSE  0.75867 0.09983 0.00867 0.59397 0.92338 

BGE (k = 0.5) 0.75952 0.10513 0.00952 0.59050 0.92854 

BGE (k = –0.5) 0.75904 0.10769 0.00904 0.58797 0.93011 

100 

MLE  0.74996 0.06741 0.00004 0.61782 0.88210 

BSE  0.74996 0.06741 0.00004 0.61782 0.88210 

BGE (k = 0.5) 0.75034 0.06634 0.00034 0.61926 0.88143 

BGE (k = –0.5) 0.74998 0.06589 0.00002 0.61934 0.88063 

 

 

 

 

Table 4.17: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 1.5 and 𝜃 = 10 

N Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  1.85231 0.46011 0.35231 1.48322 2.22141 

BSE  1.85231 0.46011 0.35231 1.48322 2.22141 

BGE (k = 0.5) 1.91951 0.44556 0.41951 1.55630 2.28272 

BGE (k = –0.5) 1.85082 0.43523 0.35082 1.49184 2.20980 

40 

MLE  1.56648 0.27414 0.06648 1.29355 1.83942 

BSE  1.56648 0.27414 0.06648 1.29355 1.83942 

BGE (k = 0.5) 1.56781 0.27876 0.06781 1.29259 1.84304 

BGE (k = –0.5) 1.57554 0.28488 0.07554 1.29731 1.85378 

100 

MLE  1.50890 0.17904 0.00890 1.29355 1.72424 

BSE  1.50890 0.17904 0.00890 1.29355 1.72424 

BGE (k = 0.5) 1.50579 0.18033 0.00579 1.28968 1.72191 

BGE (k = –0.5) 1.50681 0.18047 0.00681 1.29061 1.72302 
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Table 4.18: The average values of  MLE, BSE, and BGE along with average mean squared errors, 

absolute biases and 95% C. I. of (𝑝 ) with 𝑝 = 2.5 and 𝜃 = 10 

N Method 𝒑  MSE Bias 
95%  C. I. 

Lower Upper 

20 

MLE  3.24533 0.78999 0.74533 2.76169 3.72896 

BSE  3.24533 0.78999 0.74533 2.76169 3.72896 

BGE (k = 0.5) 3.41242 0.83018 0.91242 2.91664 3.90820 

BGE (k = –0.5) 3.40018 0.79254 0.90018 2.91577 3.88459 

40 

MLE  2.86571 0.53421 0.36571 2.48470 3.24671 

BSE  2.86571 0.53421 0.36571 2.48470 3.24671 

BGE (k = 0.5) 2.87021 0.52732 0.37021 2.49166 3.24875 

BGE (k = –0.5) 2.86605 0.52388 0.36605 2.48874 3.24335 

100 

MLE  2.63183 0.34344 0.13183 2.33358 2.93008 

BSE  2.63183 0.34344 0.13183 2.33358 2.93008 

BGE (k = 0.5) 2.64306 0.35185 0.14306 2.34117 2.94494 

BGE (k = –0.5) 2.62758 0.34176 0.12758 2.33006 2.92510 

 

When  𝜃 = 10 ≫ 1, results in Tables 13, 14, and 15 show that the average biases and the 

average MSE's decrease as sample size increases. It is observed that the average biases and 

the average MSE's of  𝜃   depend on 𝑝. For all the methods as 𝑝 increases the average 

relative MSE's of 𝜃  decrease and the same thing is true for the average biases also for most 

of the methods.  It observed that for most of the methods the biases are quite severe for 

small sample sizes and small 𝑝. Moreover, with respect to the MSE's it is clear that when 

𝜃 ≫ 1 the performances of all approaches in estimation of  𝜃‟s are more accurate for  large  

𝑝. 

On the other hand when 𝜃 = 10 an increasing pattern observed for the average biases of 𝑝  

and the corresponding average MSE's. It observed that for most of the methods the biases 

are quite severe for small sample sizes and large 𝑝. Considering only MSE's it can be said 

that the estimation of 𝑝's are more accurate for   𝑝 < 2 and  𝜃 = 10. 
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4.2  Real Data Analysis 

In this section we analyze three data sets in which we have considered to be relatively 

small, moderate, and large for illustration and comparison purposes. We analyzed the 

postoperative survival of non-small cell lung cancer patients using administrative data. The 

data were obtained from the Diagnosis Procedure Combination (DPC). DPC-formatted 

database administered by the Quality Indicator/Improvement Project (QIP). This database 

is very different from those of clinical registries: registries usually collect specific data for 

predetermined purposes and these data are submitted intentionally for analysis. In contrast, 

the DPC database uses medical claims data, which are routinely produced for all medical 

services with the primary intended purpose of reimbursement.  

All the patients died by the end of the experiment, so there is no censoring. For the purpose 

of our study, we have considered the first set of data to be relatively small with 𝑛 = 10 and 

the second which seem relatively moderate with 𝑛 = 30 and the third which seem relatively 

large with 𝑛 = 150. 

 Since we do not have any prior information on the hyper parameters, we assume a = b = c 

= d = 0.0001. This makes the priors proper on θ   and 𝑝  and the corresponding posteriors 

also proper. Also the values of the loss parameter for the general entropy loss function are 

𝑘 = ±0.5, which can be extended for other values of the loss parameter. 

Since there is no censoring, the Kaplan-Meier (KM) estimate coincides with the empirical 

survival function. Figure 4.1 shows Kaplan-Meier estimates for all groups in this study. 

Note that the KM estimator has a nice interpretation as a non-parametric maximum 

likelihood estimator (NPML) which gives a good and first impression of the behavior of 

the survival function. 
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Using the iterative procedure suggested in the previous sections the maximum likelihood 

estimates (MLE), Bayesian estimate using Lindley's approximation (BSE), and  Bayesian 

estimates under the general entropy loss functions (BGE)  of  θ   and 𝑝  were calculated. The 

results are presented in Tables 4.19 and 4.20. 

 

 

 

 

 



55 
 

 

Figure 4.1: KM Survival Curves for the Three Data Sets 

 

 

 

Table 4.19: Average parameters estimates and their corresponding standard error 

n Par MLE BSE BGE (k = 0.5) BGE (k = –0.5) 

10 

𝑝  (shape) 
2.013757 2.013741 2.103082 2.012830 

0.332790 0.332784 0.288041 0.296107 

𝜃  (scale) 

0.073131 0.070231 0.068382 0.0690713 

0.103280 0.101827 0.090814 0.090637 

30 

𝑝  (shape) 
2.123059 2.124003 2.183105 2.190426 

0.191745 0.191666 0.174825 0.181635 

𝜃  (scale) 

0.075919 0.074246 0.068352 0.067747 

0.056615 0.055721 0.047206 0.046261 

150 

𝑝  (shape) 
2.497158 2.497542 2.492109 2.494437 

0.100275 0.100021 0.099038 0.099875 

𝜃  (scale) 

0.059869 0.059868 0.058958 0.059671 

0.003171 0.003150 0.003013 0.003103 
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Table 4.20: Mean Square Errors (MSE) and (AIC) of the Survival Function 

 n = 10 n = 30 n = 150 

 MSE AIC MSE AIC MSE AIC 

MLE 0.023728 72.34 0.022819 71.77 0.024351 74.93 

BSE 0.024102 73.01 0.023594 70.85 0.023364 74.71 

BGE (k = 0.5) 0.013725 54.13 0.011552 49.17 0.004471 42.67 

BGE (k = –0.5) 0.014089 57.64 0.012339 51.73 0.004028 41.03 

 

Results in Table 4.19 show that the Bayes estimator under squared error loss for the shape 

parameter (𝑝) approximately has the same estimate and standard error as compared to that 

of the classical maximum likelihood estimator but with the scale parameter (𝜃), and Bayes 

under squared error has a smaller standard error in comparison or contrasting effect of 

MLE specially when n get larger. Moreover,  Observing from the same Table, it is evident 

that the estimator with the smallest parameter estimate and having a corresponding smaller 

standard error is Bayesian with the generalized entropy loss function. This occurred for 

both parameters with a positive and negative loss parameter, that is, ±0.5 

The importance of the survival function cannot be ignored; therefore, the correctness of its 

estimate is very crucial to both biological and medical studies. As Shown in Figures (4.2) - 

(4.4) and Table 4.20, the estimator with the smallest standard error and Akaike‟s 

Information Criterion (AIC) under small and moderate samples are the classical MLE and 

BSE; while the BGE is better than the others with large samples, therefore, the three 

estimator can be preferable upon the sample size, moreover, the BGE depend also on 

proper priors. Comparing all the estimators, it is clear from the results that Bayes estimator 
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under general entropy loss function with the loss parameter of ±0.5 has the smallest 

standard error and estimate for both the shape parameter (𝑝) and the scale parameter (𝜃). 

4.3  Conclusions 

In this thesis we consider the Bayes and non-Bayes estimation of the unknown parameters 

of the Generalized Exponential (GE) distribution. Our aim was to obtain the estimates of 

the parameters and to observe the performance of the methods used for estimation.  

The developed methodology for MLE and Bayesian estimation has been demonstrated on a 

real data set when both the shape (𝑝) and scale (𝜃) parameters of the GE distribution are 

unknown under informative set of independent priors. It is observed that the parameter 

estimates under the classical maximum likelihood method could not be obtained in close 

form; we therefore employed Newton- Raphson iterative approach via the Fisher matrix.  

In Bayesian analysis, the parameter of interest is always considered to be a random 

variable with a prior distribution. The prior distribution is the distribution of the parameter 

before any data is observed. The selection of prior distribution is most often than not based 

on the type of prior information that is available to us. When we have little or no 

information about the parameter, a noninformative prior should be used else an informative 

prior. 

In this study we consider the Bayes estimation of the unknown parameters of the GE 

distribution. We have also assumed a gamma prior on both parameters, and we provide the 

Bayes estimators under the assumptions of squared error and general entropy loss 

functions. We see that the Bayes estimators cannot be obtained in explicit forms, due to the 

complex nature of the posterior distribution of which Bayes inference is drawn. Therefore, 

Lindley‟s numerical approximations procedure is used. 
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We have also used MCMC technique to generate posterior sample and it is observed that 

the estimated posteriors match quite well with the theoretical posterior density functions. 

Since we have an effective MCMC technique we can use any other loss function also.  

Moreover, this method can be easily extended for exponentiated Weibull distribution also. 

From the results and discussions above, it is evident that the Bayesian estimator under 

general entropy loss function performed quiet better than Bayes under squared error loss 

function and that of maximum likelihood estimator for estimating the scale parameter with 

both MSE and absolute bias. In the case of the shape parameter, the Bayesian estimator 

under the squared error loss function and the maximum likelihood estimator are both 

almost tantamount in estimating it. For the survival function, maximum likelihood 

performed better than the other estimators for moderate and small samples. 

Finally we should mention that, although we have used gamma priors on the shape 

parameter, but this method can be used for a more general class of priors also, for example 

priors with log-concave density functions. Choosing the proper priors is a challenging 

problem. More work is needed in that direction. 

 

 

 

 

 



59 
 

 

 

 

 

 

Figure 4.2: KM and Survival Curves for the Small Data Under (MLE), (BSE), and (BGE) 
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Figure 4.3: KM and Survival Curves for the Moderate Data Under (MLE), (BSE), and (BGE) 
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Figure 4.4: KM and Survival Curves for the Large Data Under (MLE), (BSE), and (BGE) 
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 باسخخذاو  Survivalنخحهٍم بٍاَاث Bayesian ٔ Non-Bayesian دساست يقاسَت بٍٍ طشٌقخً

 انخٕصٌع الأسً انًعًى

 فشٌال يحًذ خهف سشاحٍٍ: إعذاد

 خانذ صلاح. د: إشراف

الملخص 

 Generalized)انًعًى  الأسً انخٕصٌع حخبع  انخً(Parameters)انًجخًع  يعانى حقشٌب انذساست ْزِ حُأنج

Exponential (GE) distribution)انخقهٍذٌت  انطشٌقت باسخخذاو  ٔرنك(Maximum Likelihood Estimation 

 .انًقاسَت  لأغشاض(Bayes)بٍض   ٔطشٌقت(

.  بعذة طشق نًعشفت أفضم طشٌقت يُاسبت نهخقشٌب(Parameters)انٓذف يٍ انذساست ْٕ حقشٌب يعانى انًجخًع  

 shape)انخٕصٌع  ْزا  ٔيعانى(GE)حٕصٌعٓا  ٌكٌٕ حقٍقٍت بٍاَاث يجًٕعت باسخخذاو قًُا انسابقت انطشق حطٕس ٔبٕساطت

(𝑝) and scale (𝜃) parameters ) نٕحظ أٌ حقشٌب . غٍش يعشٔفت، ٔنٍس نذٌُا أي يعهٕيت يٍ قبم عٍ حٕصٌعٓا

(Parameters) بطشٌقت MLE انكلاسٍكٍت ٌعطً صٕس يعقذة نهًعهًاث َٔهجأ لاسخخذاو طشق انخقشٌب يثم طشٌقت 

. ٍَٕحٍ سافسٌٕ

 the Bayes estimation of the اعخبشَا C. Guure and S. Bosomprah (2013)فً ْزِ انذساست ٔحبعا نـِ 

unknown parameters of the GE distributionكًا فشضُا انـ ،  gamma prior نكلا parameters .

 ٔجذَا أَّ squared error and general entropy loss functions بطشٌقخً the Bayes estimatorsٔبإٌجاد 

يٍ انصعب انخٕصم إنى صٍغت سٓهت لاقخشاٌ انًعانى بسبب انطبٍعت انًعقذة نخٕصٌع ْزِ انًعانى ؛ نزنك اسخخذيُا طشٌقت 

Lindley’s numerical approximations  .

 the Bayesian estimator under general entropy loss functionيٍ خلال انُخائج حٕصهُا إنى أٌ طشٌقت 

.   ، خاصت فً حقذٌش انًعانى نهعٍُاث انكبٍشة َسبٍاMLEحعطً َخائج أفضم يٍ طشٌقت 




