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Finite Control Set – Model Predictive Control of a Nine Level Packed U Cell Grid 

Connected Multilevel Inverter 

By: Alaa Saleh Abuqubaita 

 

 

ABSTRACT 

 

This thesis describes a grid-connected Nine Level Packed U Cell (PUC9) topology using a Finite 

Control Set – Model Predictive Control (FCS-MPC) technique. The proposed system is a single 

phase multilevel inverter, with four pairs of switches that work in a complementary matter, one DC 

source and two flying capacitors connected to the grid through a filtering inductor. This topology 

has the ability to generate nine different voltage levels with less number of active and passive 

components comparing with conventional multilevel inverter topologies. The proposed control 

technique (FCS-MPC) aims at reducing the total harmonic distortion (THD) of the grid injected 

current while balancing the capacitors’ voltages at their nominal reference values.  Robustness 

analysis of the proposed model including the effect of a step change in the injected current into the 

grid, parameters’ mismatching, and grid voltage sag and swell have been conducted on a single 

phase low power (PUC9) inverter. Theoretical analysis, mathematical modelling and simulation 

results using MATLAB/SIMULINK software are presented in this thesis. The THD of the injected 

current for the proposed model is 1.13% and the capacitors’ voltages error is less than 5%. 
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نموذج تحكم تنبؤي ذو مجموعة تحكم محدودةالتحكم بعاكس متصل بالشبكة ينتج تسعة مستويات مختلفة من الجهد باستخدام   

 إعداد: علاء صالح أبوقبيطة

 ملخص 

 

لتحكم بعاكس متصل بالشبكة ينتج تسعة مستويات مختلفة من الجهد باستخدام نموذج تحكم تنبؤي لفي هذه الرسالة تم اقتراح طريقة 

يتكون من أربعة أزواج من المفاتيح تعمل  عاكس متعدد المستويات أحادي الطور. النظام المقترح هو ذو مجموعة تحكم محدودة

هذا محاثة لتصفية اشارة التيار. ة الكهربائية من خلال كموصول بالشب ، النظامبشكل تكاملي ومصدر جهد مستمر واحد ومواسعين

عواكس لة مقارنة بالبأقل عدد من المكونات الفعالة وغير الفعاالنموذج من العواكس يمتلك القدرة على انتاج تسعة مستويات من الجهد 

التقليدية. تقنية التحكم المقترحة تهدف الى تقليل التشوه في اشارة التيار الذي يتم ضخه الى الشبكة ، في الوقت ذاته يحافظ على 

ر خلال هذه الدراسة تم تحليل متانة النموذج المقترح من خلال دراسة أثر تغيي للمواسعات حسب القيمة الاسمية لها.مستوى الجهد 

هبوط والارتفاع في وأيضا أثر الالتيار الذي يتم ضخه الى الشبكة ، وأثر عدم تطابق قيم المكونات المختلفة للنظام مع القيم الاسمية، 

ماتلاب.في هذه الرسالة تم تقديم التحليل النظري والنموذج الرياضي وعرض نتائج المحاكاة باستخدام برنامج  جهد الشبكة.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Nowadays, multilevel inverters (MLIs) are in rapid development and have become a very useful 

solution for renewable energy resources applications due to its ability to deal with different power 

rating, switching semiconductors, operating frequency, and applied voltage and current [1]. 

Many publications have implemented multilevel converter technology and pointed to the importance 

of using this technology for high-power converters [2]. 

There are a lot of advantages for multilevel inverters compared to conventional inverters, as stated in 

table 1.1. 

 

Table 1.1 Comparison between conventional inverter and multilevel inverter [3]. 

Num. conventional inverter multilevel inverter 

1 High THD in the output waveform Low THD in the output waveform 

2 Not suitable for high power applications, due 

to the increased voltage stress on the 

switches 

Used for High power applications. 

3 High dv/dt Low dv/dt 

4 High EMI Low EMI 

5 High switching frequency Lower switching frequency 

6 Increased switching losses Decreased switching losses 

 

A lot of publications have been introduced the most common MLI topologies like Cascaded H-Bridge 

(CHB), Flying Capacitor(FC), Neutral-Point Clamped(NPC), and Packed U-Cells (PUC) inverters. 

PUC inverter (classified as FC inverter) has a lot of advantages compared with other MLI topologies 

such as:  

- High power quality 



 

2 
 

- The ability and flexibility in the multilayer voltage synthesis 

- Simple construction 

- Reduced number of switches and DC sources 

- Reliability 

- Less cost 

Due to using one DC source in PUC topology, capacitors voltage have to keep the balance at the 

reference value, also, the reduced number of switching devices means a reduced number of switching 

states, so the control strategy plays a vital rule in the inverter performance. 

There are many control methods proposed to control PUC inverter, in [4] a novel six band hysteresis 

controller were proposed, which has a fast dynamic and robust behavior, but it can’t deal with variable 

switching frequency. In [5] the authors proposed a 14-band hysteresis controller to control a 15-level 

PUC inverter. In [6,7] the authors used two proportional-integral (PI) to control the capacitor voltage 

at the desired value, and the gate signals were generated using multicarrier and reference voltage 

comparison. 

Model Predictive Control (MPC) is one of control techniques that used for power engineering, in the 

past, it was not used widely due to high computational cost, but recently, the rapid development in 

digital signal processors have become the common solution [8-13]. MPC have many features: 

- Can be used in a variety of application 

- Simplicity 

- Effective solution for traditional linear controllers 

 

 1.2 Objectives  

This thesis aims at propose an appropriate multilevel converter topology and control method using nine 

level PUC topology and MPC control algorithm that capable to: 

 Reduce the total harmonic distortion(THD) in the output waveform by increasing the number 

of voltage levels 

 Reduce the voltage stress on the switches 

 Decrease the size of the inverter by reducing the filter size 

 Achieve the stability under step change in the injected current to the grid and parameters 

mismatching 
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1.3 Methodology 

To get the desired results and to achieve the goals of this research, the following steps have been 

performed: 

 Literature review, to understand the issues and problems related to multilevel converters. 

 Different models of multilevel inverters related to thesis topic have been simulated using 

MATLAB/SIMULINK software for analyzing the advantages and disadvantages of those 

reported technologies. 

 Mathematical modeling of the proposed converter topology, in order to select the suitable 

control technique based on the switching behaviors and related performances. 

 Mathematical modeling of the selected control technique(FCS-MPC) 

 Simulation model using MATLAB/SIMULINK software for the proposed inverter topology. 

 Presenting the simulation results. 

 

1.4 Outline of the thesis 

In this thesis, nine level PUC (PUC-9) with finite-control-set model predictive control (FCS-MPC) is 

modeled and simulated. Different loading and parameters change cases have been tested to verify the 

validity of used approach and to make sure that the objectives have been achieved. A brief outline of 

the thesis is given below: 

 Chapter one presents a brief introduction about the thesis title, objectives and methodology 

to achieve the goals of this research. 

 Chapter two describes the most common multilevel converter topologies and control 

techniques with a brief comparisons between these topologies 

 Chapter three illustrates the mathematical design of the grid, PUC9 inverter topology, and 

FCS-MPC control technique showing the model prediction, state variables normalization, and 

calculation of cost function. 

 Chapter four shows the simulation results using MATLAB/SIMULINK software and the 

robustness analysis of the proposed model. 

 Chapter five presents the conclusion of the thesis and proposed tasks for future work. 
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CHAPTER TWO 

MULTILEVEL INVERTER 

 

In this chapter some of most common multilevel inverter should be described, then a brief comparison 

between them is going to be conducted in order to justify the reasons for choosing PUC inverter 

topology for our further research. Then detailed analysis for PUC9 topology and its control techniques 

should be conducted. 

2.1 Cascaded H-Bridge Multilevel Inverter 

This topology consist of series connected single full bridge inverter, each one has its isolated DC bus, 

so, almost sinusoidal voltage waveform can be generated. This inverter is transformer less type, and 

does not need for clamping diodes or flying capacitors [14]. 

The output voltage levels depending on the number of DC sources, the phase voltage will be able to 

range from −mVdc to mVdc which would have 2m + 1 levels. Where m is the number of the separate 

DC sources. By increasing the number of levels, the output voltage waveform becomes nearly 

sinusoidal, even without using any filter. 

This topology can be used for medium and high power applications, and the stress on the switches is 

less than the regular two level topology since the switch need to withstand only one DC source voltage 

[15]. 

The main disadvantages of this topology is the high cost of the inverter, because if we need to increase 

the number of voltage levels, the number of switches and DC sources must increase significantly. 

Figure 2.1 shows the general Cascaded H Bridge multilevel inverter topology. So by increasing the 

number of the single full bridges, the number of voltage levels is increased. 
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Fig.2. 1: Cascaded H Bridge multilevel inverter topology 

 

2.2 Diode-Clamped Multilevel Inverter 

Figure 2.2 shows three and five levels Diode-Clamped Multilevel Inverter topology. The generated 

voltage Van depends on the shared voltages by the capacitors, and n is chosen as the neutral point. The 

switches are working in complementary mode (i.e. if S1 is closed, S1’ is open).  

Clamping diodes play an important role in this topology, it is important to clamp the switch voltage at 

the required value. Table 2.1 presents the switching states for three levels and five levels inverter. 
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Table 2. 1 Switching states for Diode-Clamped Multilevel Inverter 

Van Three levels Five levels 

S1 S2 S1 S2 S3 S4 

Vdc/2 1 1 1 1 1 1 

Vdc/4 - - 0 1 1 1 

0 0 1 0 0 1 1 

-Vdc/4 - - 0 0 0 1 

-Vdc/2 0 0 0 0 0 0 

 

This kind of inverters has some disadvantages, firstly, the clamping diodes have different reverse 

blocking voltages, secondly, when the number of the voltage levels is very high, the system is 

impractical to be implemented due to the bulk number of required semiconductors (i.e. the number of 

clamping diodes can be expressed by (m-1)x(m-2), where m is the number of levels) [16]. 

 

Fig.2. 2: Diode-clamped multilevel inverter topology (a) three levels. (b)Five levels 
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2.3 Flying Capacitor Multilevel Inverter 

This kind of inverters is a replacement for Diode-Clamped Multilevel Inverter, as well shown in Figure 

2.3 where three and five levels Flying Capacitor Multilevel Inverter are displayed [17]. 

The number of switches of this topology is similar to the Diode-Clamped Multilevel Inverter, while 

the number of the additional capacitors besides the main dc-bus capacitors is (m-1)x(m-2)/2, where m 

is the number of levels. 

 

 

Fig.2. 3: Flying capacitor multilevel inverter topology (a) three levels, (b) five levels 

The main advantage of this topology is that it can provide some redundancies for the same output 

voltage level. This topology has some disadvantages similar to these of Diode-Clamped Multilevel 

Inverter topology in case of very high voltage levels. 
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2.4 Packed U Cell (PUC) Multilevel Inverter  

This topology consists of six switches and two capacitors placed between these cells as well shown on 

figure 2.4 for 7-level inverter. In this circuit, V1 represent the DC source generated from photovoltaic 

(PV) system (using charge controller), and V2 is the voltage of the second capacitor regulated by the 

control algorithm as mentioned in [1].  

The output voltages of this topology are 0, ± V2, ± 2V2, ± 3V2, depending on the switching states. 

This topology has six switches (S1, S1’) , (S2, S2’), (S3, S3’) which are controlled in a complementary 

manner. The switching function is defined using the following logic: 

𝑆𝑖 = {
1, 𝑖𝑓 𝑆𝑖 𝑖𝑠 𝑂𝑁
0, 𝑖𝑓 𝑆𝑖 𝑖𝑠 𝑂𝐹𝐹

 (2.1) 

Where (i) is the device number with values 1,2, and 3. 

 

Fig.2. 4: Grid-connected PUC inverter topology with PV power generator 
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Since, there are three pairs of switches, eight different combination of switching patterns can be 

obtained as well stated in table 2.2, where the switching table and the capacitors states for 7-level PUC 

are presented. 

Table 2. 2 Switching table and the capacitors states for PUC7 multilevel inverter 

State S1 S2 S3 C1 C2 VAN 

1 0 0 0 Bypassed Bypassed 0 

2 0 0 1 Bypassed Charged -V2 

3 0 1 0 Charged Discharged V2-V1 

4 0 1 1 Charged Bypassed -V1 

5 1 0 0 Discharged Bypassed V1 

6 1 0 1 Discharged Charged V1-V2 

7 1 1 0 Bypassed Discharged V2 

8 1 1 1 Bypassed Bypassed 0 

 

Nine levels PUC inverter (PUC9) 

This model is very similar to seven levels PUC inverter, but one pair of switches and one capacitor 

were added. The THD of the output voltage is decreased due to the generated additional voltage level.  

Furthermore, the stress on the switches will decrease because the switch handles less value of voltage. 

 

Fig.2. 5: Nine-level PUC multilevel inverter topology. 
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Comparison between topologies 

After the conducted brief descriptions related to multilevel inverter topologies, a short conclusion can 

be formulated as mentioned in table 2.3 based on comparative analysis.  It can be noticed that PUC9 

has achieved reliability and less cost compared to the other topologies. 

Table 2. 3 Comparison between 9 level inverter topologies 

Inverter 

topology(9 level) 

No. of DC 

sources 

No. of capacitors No. of clamping 

diodes 

No. of switches 

CHB 4 0 0 16 

NPC 1 8 8 16 

FC 1 36 0 16 

PUC 1 2 0 8 

 

2.5 Switching Techniques of Multilevel Inverter 

Multilevel inverter can be modulated using a lot of switching techniques. The applied switching 

technique are expected to reduce the switching losses and THD of the output waveform. Having into 

consideration these constrains, several switching techniques can be applied for multilevel inverters, 

such as Pulse Width Modulation (PWM), Level-Shifted PWM, Phase-Shifted PWM, Space Vector 

Modulation, and DC Voltage Balancing [18-21]. 

 

Finite Control Set Model Predictive Control (FCS-MPC) 

This is one of the most used control techniques that gives an optimal solution for related control 

problem by calculating the control action at each sampling time. The applied approach uses a dynamic 

strategy to forecast the future behavior from the current system state. So an optimal control solution 

will be generated.  

The main advantage of this method is that the switching actions are considered as constraints on the 

control input of the system, as a result for that, the modulation levels are not required [22,23]. 
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 Nowadays, MPC is used in several technical control issues [23-27], because it can deal with 

multivariable control, and unstable systems. However, MPC standard method does not care to the 

variation range of input and output, which leads to less tracking capabilities. 

In general, MPC has the following main components: 

1- Prediction model 

2- Objective function 

3- Optimizing algorithm 

 

 In this chapter, the most common multilevel converter topologies and control techniques with a brief 

comparisons between these topologies are presented, so PUC9 topology and FCS-MPC control 

technique are selected to achieve the goals of this thesis. 
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CHAPTER THREE 

MODELING OF PUC9 INVERTER TOPOLOGY AND FCS-MPC 

CONTROL TECHNIQUE 

 

Having into consideration this inverter advantages mentioned in previous chapter, PUC9 is selected as 

a multilevel inverter topology for this thesis. FCS-MPC control technique is chosen to get the 

optimized grid-current reference tracking while maintaining the capacitor voltage at its nominal value. 

The mathematical model of grid, PUC9 multilevel inverter topology, and FCS-MPC technique are 

going to be described in this chapter. 

3.1 Grid Modelling 

The proposed inverter for this thesis is low power single phase inverter connected to low voltage grid 

with RMS phase voltage (Vg) of 220V at 50Hz and peak voltage (Vgp) of 311V. 

The grid can be replaced by a concentration elements, source voltage, line inductance and reactance 

with values stated in table 3.1.  

Table 3. 1 Grid parameters 

Vg (V) Vgp (V) Inductance (mH) Resistance (Ω) Frequency (Hz) 

220 311 2.5 0.1 50 

 

3.2 Mathematical Modeling of PUC9 Topology 

The proposed model of this thesis has four pairs of switches(S1,S1’), (S2,S2’), (S3,S3’), and (S4,S4’) 

triggered in a complementary matter, let Sx Ԑ{0,1}, where x{1,2,3,4} and the obtained combinations 

are illustrated  on figure 3.1. 
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𝑆𝑥 = {
1, 𝑖𝑓 𝑆𝑥 𝑖𝑠 𝑂𝑁
0, 𝑖𝑓 𝑆𝑥 𝑖𝑠 𝑂𝐹𝐹

 (3.1) 

Where, VDC is the voltage of the single source of the system; VC1 is the voltage of the first capacitor; 

VC2 is the voltage of the second capacitor; and VAN is the output voltage of the inverter model. 

The proposed model generates 9 voltage levels (0, ±E, ±2E, ±3E, ±4E), where E= VDC/4 which presents 

the reference voltage. The nominal voltage value for VDC = 4E, VC1 = 2E and VC2 = E 

In our model the grid current ig(t) must track the grid current reference, also the capacitors voltage 

VC1(t) and VC2(t) must be maintained at their nominal voltage values.  

The generated output voltage of this inverter depends on the proposed voltage reference E and on the 

switching states with values presented in table 3.2.  

 

Fig.3. 1: Grid-tied PUC9 multilevel inverter topology 
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Table 3. 2 The output voltage at various switching combination table and the capacitors’ states for PUC9 

multilevel inverter 

State S1 S2 S3 S4 Output Voltage Van C1 C2 

1 0 0 0 0 0 0 B B 

2 0 0 0 1 -E -VC2 B C 

3 0 0 1 0 -E -VC1+VC2 C D 

4 0 0 1 1 -2E -VC1 C B 

5 0 1 0 0 -2E -VDC+VC1 D B 

6 0 1 0 1 -3E -VDC+VC1-VC2 D C 

7 0 1 1 0 -3E -VDC+VC2 B D 

8 0 1 1 1 -4E -VDC B B 

9 1 0 0 0 4E VDC B B 

10 1 0 0 1 3E VDC-VC2 B C 

11 1 0 1 0 3E VDC-VC1+VC2 C D 

12 1 0 1 1 2E VDC-VC1 C B 

13 1 1 0 0 2E VC1 D B 

14 1 1 0 1 E VC1-VC2 D C 

15 1 1 1 0 E VC2 B D 

16 1 1 1 1 0 0 B B 

 

From table 3.2 it can be stated that, there are twelve redundant states playing a vital role in charging 

and discharging the capacitors in order to maintain their voltages at the nominal value. 

Figure 3.2 illustrate how the output waveform generated for each switching state in a stand-alone 

configuration. 

 

 

 



 

15 
 

 

State 1: VAN = 0 State 2: VAN = -VC2 = -E 

 

State 3: VAN = -VC1+VC2 = -E State 4: VAN = -VC1 =-2E 
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State 5: VAN = -VDC+VC1= -2E State 6:VAN = -VDC+VC1-VC2 =-3E 

 

State 7: VAN = -VDC+VC2 = -3E State 8: VAN = -VDC  = -4E 
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State 9: VAN = VDC = 4E State10: VAN = VDC-VC2 = 3E 

 

State11:VAN = VDC-VC1+VC2 = 3E State12:VAN = VDC-VC1 = 2E 
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State 13: VAN = VC1 = 2E State 14: VAN = VC1-VC2 = E 

 

State 15: VAN = VC2 = E State 16: VAN = 0 

Fig.3. 2: Switching states model for PUC9 
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By using Kirchhoff current and voltage laws, relations between grid current ig(t), capacitors voltages 

VC1(t) and VC2(t), and the switching states Sx can be expressed as follow: 

𝐶1 
𝑑𝑉𝐶1

𝑑𝑡
= (𝑆3 − 𝑆2) 𝑥 𝑖𝑔(𝑡) (3.2) 

𝐶2 
𝑑𝑉𝐶2

𝑑𝑡
= (𝑆4 − 𝑆3) 𝑥 𝑖𝑔(𝑡) (3.3) 

𝐿𝑓 
𝑑𝑖𝑔(𝑡)

𝑑𝑡
= (𝑆1 − 𝑆2) 𝑥 𝑉𝐷𝐶(𝑡) + (𝑆2 − 𝑆3) 𝑥 𝑉𝐶1(𝑡) +  (𝑆3 − 𝑆4) 𝑥 𝑉𝐶2(𝑡) − 𝑉𝑔(𝑡) (3.4) 

Where, 

VDC Source voltage 

VC1,VC2 Capacitor voltages 

S1, S2, S3, S4 Switching states 

Lf Filtering inductance 

ig(t) Grid current 

Vg(t) Grid voltage 

C1, C2 Model capacitors 

 

3.3 Mathematical Modeling of FCS-MPC Technique 

The main challenge for the control method used in this thesis is to keep the voltages of the capacitors 

at their nominal voltages while tracking the grid current reference. Another important note, that any 

change in one of the controlled parameters (such capacitors’ voltages and grid current) will affect the 

others, which in turn complicating the control decisions. 

The proposed solution in this thesis is to normalize the state variables by calculating the maximal 

variations of the state variables. These variations will be used as additional optimization criteria in the 

cost function calculation. 
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Model Prediction 

The main idea for the control technique of this thesis is to predict the grid current (ig
k+1) and capacitors’ 

voltages (VC1
k+1, VC2

k+1) for each switching state (voltage vector generated by the inverter) in the 

means of discrete equations of the system state variables. 

In order to simplify the model, the state variables’ paths can be considered as rectilinear for a small 

sampling time. So the state variable that given in equations (3.2),(3.3) and (3.4) will be approximated 

for each sampling time Ts using the following equation 

𝑥𝑘+1 =  𝑥𝑘 + �̇�(𝑡). 𝑇𝑠 (3.5) 

Now, the prediction of the state variables at (k+1) sample of time in terms of the recent sample (k) are 

expressed as follow 

𝑉𝐶1
𝑘+1 =  𝑉𝐶1

𝑘 + (𝑆3 − 𝑆2) 
𝑇𝑠

𝐶1
 𝑖𝑔

𝑘 (3.6) 

𝑉𝐶2
𝑘+1 =  𝑉𝐶2

𝑘 + (𝑆4 − 𝑆3) 
𝑇𝑠

𝐶2
 𝑖𝑔

𝑘 (3.7) 

𝑖𝑔
𝑘+1 =  𝑖𝑔

𝑘 + (𝑆1 − 𝑆2) 𝑉𝐷𝐶
𝑘 + (𝑆2 − 𝑆3) 𝑉𝐶1

𝑘 + (𝑆3 − 𝑆4) 𝑉𝐶2
𝑘 − 𝑉𝑔

𝑘 (3.8) 

 

State Variables Normalization 

MPC technique does not matter to the variation ranges of the parameters (voltage and current). The 

main objective of this technique is to reduce the error between the reference and measurement, so it 

will select the switching state that gives the minimal error. 

Before calculating the cost function, this thesis proposes a normalization by calculating the maximal 

variations of the state variables (ΔVC1 max, ΔVC2 max and Δig max)  
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∆𝑉𝐶1𝑚𝑎𝑥 =  
2𝑖𝑔

𝐶1
 𝑇𝑠 (3.9) 

∆𝑉𝐶2𝑚𝑎𝑥 =  
2𝑖𝑔

𝐶2
 𝑇𝑠 (3.10) 

∆𝑖𝑔𝑚𝑎𝑥 =  
𝑉𝐴𝑁

𝐿𝑓
 𝑇𝑠 (3.11) 

 

Calculation of Cost Function 

The main objective of the cost function is to minimize the difference between the predicted state 

variables (𝑉𝐶1
𝑘+1, 𝑉𝐶2

𝑘+1 𝑎𝑛𝑑 𝑖𝑔
𝑘+1 ) and there references’ values. Thus, the cost function can be expressed 

as follow 

𝑔 =  |
𝑉𝐶1

∗ − 𝑉𝐶1(𝑘 + 1)

∆𝑉𝐶1𝑚𝑎𝑥
| + |

𝑉𝐶2
∗ − 𝑉𝐶2(𝑘 + 1)

∆𝑉𝐶2𝑚𝑎𝑥
| + 𝛼 |

𝑖𝑔
∗ − 𝑖𝑔(𝑘 + 1)

∆𝑖𝑔𝑚𝑎𝑥
| (3.12) 

Where 𝑉𝐶1
∗  is the nominal voltage of the first capacitor C1 (𝑉𝐶1

∗ = 2𝐸), 𝑉𝐶2
∗  is the nominal voltage for 

C2 (𝑉𝐶2
∗ = 𝐸), 𝑖𝑔

∗  is the reference current and 𝛼 is the weighting factor that can be adjusted to get the 

desired results of the model. Fig.3.3 describes the proposed control strategy for PUC9 inverter. 
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Fig.3. 3 FCS-MPC strategy for PUC9 inverter 

 

Summery 

In this chapter, the mathematical model of PUC9 topology and FCS-MPC technique are presented in 

order to be used in the simulation model to get the desired results.  

 

 

 



 

23 
 

CHAPTER FOUR 

SIMULATION RESULTS 

 

Using MATLAB/SIMULINK software, the performance of the proposed PUC9 inverter topology and 

FCS-MPC control technique are presented in this chapter. For more details, kindly refer to See 

appendix A for the Simulink model and appendix B for PUC9 topology model. 

4.1 Simulation Parameters Setup Details 

Table 4.1 shows the initial parameters for the grid side, filter and inverter of the model. 

Table 4. 1 Initial parameters' values for thesis proposed model 

parameter value 

Grid-side parameters 

Line to neutral voltage, Vrms, [V] 220 

Frequency, f,  [Hz] 50 

Phase shift, θ, [dg] 0 

Filter parameters 

Resistance, rg, [Ω] 0.01 

Inductance, Lf, [mH] 2.5 

Inverter parameters 

Input DC voltage, VDC , [V] 400 

Desired voltage of C1, VC1, [V] 200 

Desired voltage of C2, VC2, [V] 100 

Capacitance of C1, [mF] 7 

Capacitance of C2, [mF] 1 

Number of voltage levels, n 9 

Sampling time, Ts, [µs] 25 

Output rated power, Po, [kW] 5 
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4.2 Weighting Factor (α) Tuning 

Weighting factor plays a vital role in the inverter performance [1], it used to achieve the desired 

performance and the stability for this proposed model. The tuning of α must be done based on 

minimizing the total harmonic distortion (THD) of the grid current waveform and the error on the 

capacitors’ voltages (VC1 and VC2). Attention to be paid that THD of the grid current, VC1 and VC2 

voltage errors are considered as a performance indicators for α value selection. 

Figure. 4.1 illustrate the effect of varying weighting factor (α) on the performance indicators (THD, 

VC1 and VC2). Note that as α increases VC1 and VC2 error voltage increases, but THD is fluctuating 

between 3.07% and 1.31%. The optimum value of α is selected based on the minimum value of THD 

where α=0.22, and THD is moved to of 1.1%, where this value is used for all test cases in this thesis. 

 

Fig.4. 1: The effect of varying weighting factor (α) on the performance indicators 
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4.3 Simulation Results for 5kW Power Output 

To get the desired results of the proposed model, the output voltage of the inverter Vin must be greater 

than the grid voltage. Fig 4.2 shows the output voltage of the inverter Vin which has a peak value of 

400V, while the grid voltage has a peak value of 311V. . Furthermore, the 9 voltage levels are 

sequentially illustrated in this figure. 

 

Fig.4. 2: Voltage waveforms of the inverter and the grid 

 

 The injected current to the grid ig(t) is shown in Fig.4.3 with values very  closed to the reference 

current  value IGref(t). That means the THD of the current waveform is very small. 
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Fig.4. 3: Injected current and reference current waveforms 

Figure .4.4 illustrates the capacitors’ voltages, where they are controlled as requirement around the 

reference values (VC1= 2E = 200V and VC2 = E = 100V), and the steady state error is relatively small 

(less than 5%). 

 

Fig.4. 4: Capacitors' voltage waveforms 
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Figure 4.5 shows the steady state error of injected current, which is relatively small (less than 5%). 

 

Fig.4. 5: Injected current error 

By analyzing the output current waveform, it’s clear that the THD is very small (THD=1.13%). See 

Fig.4.6. 

 

Fig.4. 6 : THD spectrum histogram. 
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4.4 Step Change in the Output Power of the Inverter 

To study the transient operation of the inverter, a step change (at time of 0.525 s) of the injected current 

(ig) is done, where the current rises from 11.36 A to 22.72A, as shown in Figure 4.7 , where it is clear 

that the response of the injected current is very fast, the capacitors’ voltages error increased slightly 

but still relatively small (<5%),  and the output power of the inverter increased from 2500 W to 5000 

W within 1 cycle (0.02 s). 

 

Fig.4. 7: Injected current, VC1, VC2, and output power waveforms during step change in the current 

 

Figure 4.8 shows that the injected current error increased very slightly, but still very small. Also there 

are no change in the output voltage waveform. See Fig.4.9. 
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Fig.4. 8: Injected current error during step change in current 

 

 

Fig.4. 9: Voltage waveforms of inverter and grid during step change in current 
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4.5 Robustness Analysis 

In order to prove that the proposed model is robust, the model has been simulated under the effect of 

capacitors (C1, C2) and inductor filter (Lf) mismatches, also grid voltage sag and swell step change. 

This effect is observed by proposed study by changing the values of C1, C2 and Lf from 50% to 150% 

of their nominal values, also by changing the grid voltage from 90% to 110% of the rated value. 

The Effect of Capacitors and Inductor Mismatches 

We note from Fig.4.10 that if the difference of the capacitance of C1 is between -50% to 50%, the 

THD is fluctuating slightly around 1.1% (but still stable) and ΔVC2 also stable around 0.3VRMS, and 

there is no significant difference. ΔVC1 decreases from 4.9 VRMS to 1.8 VRMS, but, anyway the steady 

state error is relatively small (less than 5%). 

 

Fig.4. 10: Effect of changing the capacitance of C1 on the performance indicators 
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Figure 4.11 illustrate that if the change of the capacitance of C2 is between -50% to 50%, the THD is 

fluctuating slightly around 1.1% (but still stable) and ΔVC1 also stable around 2.7VRMS and there is no 

big difference. ΔVC2 is decreasing from 0.51 VRMS to 0.22 VRMS, but, anyway the steady state error 

stills small (less than 5%). 

 

 

Fig.4. 11: Effect of changing the capacitance of C2on the performance indicators 

 

Figure 4.12 illustrate the effect of changing the inductance of Lf between 50% to 150% of its nominal 

value. The THD is decreasing from 2.4% to 0.75% (and still relatively small). ΔVC1 is fluctuating 

around 2.7VRMS and there is no great difference and ΔVC2 also within the range. 
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Fig.4. 12: Effect of changing the inductance of Lf on the performance indicators 

 

The effect of grid voltage sag and swell 

In order to test the model under grid voltage sag and swell, a step change in the grid voltage has been 

applied (Vg ± 10%). An increasing of grid voltage by 10% is applied at T=0.7S and decreasing by -

10% at T= 0.76S. The model stills robust, the injected current THD have no change and the capacitors’ 

voltages are within the acceptable range. 

Fig.4.13 shows how the input voltage changes to follow the grid voltage. Note that the model generates 

only 7 levels at T= 0.76S due to the decreasing of grid voltage. 
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Fig.4. 13: Voltage waveforms of inverter and grid during sag and swell of grid voltage 

It’s clearly shown from Fig.4.14 that the current injected to the grid has no change due to sag and swell 

of the grid voltage, the voltage error of C1 has a slight difference but still small and within the 

acceptable range, the voltage error of C2 has a very slight change and the output power changes due 

to the difference of the input voltage. 
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Fig.4. 14: Injected current, VC1, VC2, and output power waveforms during sag and swell of grid voltage 

 

Fig.4.15 illustrates that the injected current error has no change in cases of sag and swell. 

 

Fig.4. 15 Injected current error sag and swell of grid voltage 



 

35 
 

CHAPTER FIVE  

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

In this thesis PUC9 multilevel inverter topology controlled by FCS-MPC technique is theoretically 

analyzed, mathematically modeled and simulated using MATLAB/SIMULINK software.  

Simulation results shows that the PUC9 multivariable can be simultaneously controlled by FCS-MPC 

technique. The weighting factor (α) is tuned successfully based on decreasing THD of the injected 

current while balancing the capacitors’ voltages at their nominal values. 

The proposed controller behaves as stable and efficient reference current tracking and has the capability 

of maintaining the capacitors’ voltages at their desired values during steady state and transient 

response.  

The robustness analysis has shown that the step change in the injected current, parameters’ 

mismatching and grid voltage sag and swell does not have a significant effect on the model 

performance.   

 

5.2 Future work 

This study is carried out based on simulation, so this model can be experimentally implemented in 

order to validate the simulation results. 

Also, this topology with 4 pairs of switches can generate 15 different voltage levels, so, by making 

some changes and using another type of controllers, the distortion of voltage waveform and the stress 

on switches can be decreased. 
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Matlab/Simulink model 
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Appendix B 

PUC9 topology in MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 


