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Abstract: Accurately quantifying species’ area requirements is a prerequisite for effective area-based conser-
vation. This typically involves collecting tracking data on species of interest and then conducting home-range
analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated.
Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a rela-
tionship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals,
we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61
globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block
cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were
underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated
by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that
was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the
allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the
least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed
home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required
an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not
a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate
estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for
autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed
substantially at the upper end of the mass spectrum.

Keywords: allometry, animal movement, area-based conservation, autocorrelation, home range, kernel density
estimation, reserve design, scaling

Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos

Resumen: La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que
la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de
la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocor-
relación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con
base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía
con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta
hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757
individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg.
Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la
distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media ∼15%
y las especies con una masa ∼100 kg fueron subestimadas en ∼50% en promedio. Por lo tanto, encontramos que
la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de
talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa
corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas
también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas.
Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la
autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área.
La reducción de datos requirió una pérdida de datos del ∼93% para lograr la independencia estadística con un
95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local
informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal.
Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección
de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el
escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.

Palabras Clave: alometría, autocorrelación, conservación basada en áreas, diseño de reserva, distribución local,
escalamiento, estimación de densidad del núcleo, movimiento de mamíferos
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Introduction

Globally, human-altered landscapes are restricting animal
movement (Fahrig 2007; Tucker et al. 2018), and habi-
tat loss and fragmentation are the principal threats to
terrestrial biodiversity (Brooks et al. 2002; Wilson et al.
2016). A key component to conserving species in in-
creasingly human-dominated landscapes is understand-
ing how much space is required to maintain stable, in-
terconnected populations (Brashares et al. 2001; Pe’er
et al. 2014). Area requirements are typically quantified
via home-range analysis (Burt 1943). This routinely in-
volves collecting tracking data on species of interest
(Kays et al. 2015) and then applying a home-range esti-
mator to these data (Fleming et al. 2015; Noonan et al.
2019). These range estimates can then be used to inform
recommendations on reserve sizes (Linnell et al. 2001),
to advocate for specific land-tenure systems (Johansson
et al. 2016; Farhadinia et al. 2018), and to make con-
servation policy recommendations (Barton´ et al. 2019).
However, tracking data are often strongly autocorrelated,
whereas conventional home-range estimators are based
on the assumption of independent and identically dis-
tributed data (Noonan et al. 2019).

When data are autocorrelated, the total number of data
points does not reflect the total amount of information
in the data set (i.e., effective sample size) (Fleming &
Calabrese 2017). Although the idea that autocorrelation
may affect home-range estimates is not new (e.g., Swi-
hart & Slade 1985; Fieberg 2007; Fleming et al. 2015),
only recent analyses have demonstrated the seriousness
of the problem. Using the largest empirical tracking data
set assembled to date, Noonan et al. (2019) found con-
ventional estimators significantly negatively biased when
used on autocorrelated data. Although any form of bias
is undesirable, the systematic underestimation of home-
range areas is a worst-case scenario from a conserva-
tion perspective. Any policy or management decisions
informed by underestimated home-range estimates could
result in failed conservation initiatives (Brashares et al.
2001; Gaston et al. 2008) or exacerbate negative human–
wildlife interactions at reserve boundaries (Van Eeden
et al. 2018).

Noonan et al. (2019) noticed that large-bodied species
tended to exhibit more negatively biased conventional
home-range estimates than small-bodied species. How-
ever, the species included in their study were not se-
lected to provide the broad range of body masses re-
quired to investigate allometric trends. We compiled an
extensive empirical data set of global positioning system
(GPS) locations from 757 individuals across 61 terrestrial
mammalian species with body masses ranging from 0.4
to 4000 kg. We used these data to investigate whether
the underestimation of home-range size scales with body
mass. To see the potential for this, consider that large
species have large home ranges (Jetz et al. 2004) that
tend to take longer to cross than smaller home ranges
(Calder 1983). In addition, range crossing time (τ p) in-
teracts with the sampling interval (dt) in determining
the amount of autocorrelation in tracking data (Fleming
& Calabrese 2017; Noonan et al. 2019). When dt ! τ p,
the resulting data are autocorrelated, whereas dt # τ p

results in effectively independent data. Finally, the mag-
nitude of the negative biases in conventional home-range
estimates increases in proportion to the strength of auto-
correlation in the data (Noonan et al. 2019). Combining
these facts, we arrived at the hypothesis that an allometry
in τ p drives autocorrelation and negative estimation bias
to scale with body size.

We examined this hypothesis in 2 ways. First, we
tested whether the chain of relationships that would
drive bias to scale with mass holds for empirical track-
ing data. Second, we explored how well 2 methods of
home-range estimation for autocorrelated data eliminate
the scaling of home-range estimation bias. These meth-
ods were model-informed data thinning, which removes
autocorrelation from the data prior to home-range es-
timation, and autocorrelation-informed home-range esti-
mation, which statistically accounts for autocorrelation
in movement data. We then used model selection to de-
termine whether significant allometry bias remains in
the data for each approach and identified whether one
of these corrections offers improved performance over
the other. Finally, in light of our findings, we revisited
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Figure 1. Distribution of study sites for the empirical

global positioning system tracking data set spanning

757 individuals across 61 mammalian species.

the concept of home-range allometry (e.g., McNab 1963;
Jetz et al. 2004; Tucker et al. 2014). Mammalian home-
range area (H) scales positively with body mass (M) as
H = B0Mb, where B0 is a normalization constant and b

is the scaling exponent (McNab 1963). Despite decades
of research, however, there has been little consensus
on whether the allometry is linear (i.e., M1), or super-
linear (i.e., M>1). Historically, this scaling relationship
has been calculated by compiling home-range areas esti-
mated via conventional estimators, which are subject to
varying levels of autocorrelation-induced bias (Noonan
et al. 2019), whereas no one has assessed this relation-
ship directly from tracking data. Although consistent bias
across the mass spectrum would lead only to a change
in the normalization constant, differential bias across the
mass spectrum could alter the scaling exponent, funda-
mentally changing the properties of the relationship. As
such, we tested for any significant deviations from linear
(M1) scaling.

Methods

All analyses were based on precollected tracking data
sets obtained under appropriate permits and that were
based on Institutional Animal Care and Use Committee
approved protocols.

Data Compilation

To investigate whether biases in home-range estimation
scale with body size, we compiled GPS tracking data
for 61 globally distributed terrestrial mammalian species,
comprising 6.94 × 106 locations for 757 individuals col-
lected from 2000 to 2019 (Fig. 1). Individual data sets
were selected based on the criterion of range resident
behavior (i.e., area-restricted space use), as evidenced
by plots of the semivariance in positions as a function
of the time lag separating observations (i.e., variograms)
with a clear asymptote at large lags (Calabrese et al.

2016). When data do not indicate evidence of range res-
idency, home-range estimation is not appropriate (Cal-
abrese et al. 2016; Fleming & Calabrese 2017), so we
excluded data from migratory or nonrange resident in-
dividuals. The visual verification of range residency via
variogram analysis was conducted using the R package
ctmm (version 0.5.3) (Calabrese et al. 2016). Further de-
tails on these data are given in Supporting Information.

For each of the species in our data set, we compiled
covariate data on that species’ mean adult mass in kilo-
grams. We also identified the main food source for each
species and classified them as carnivorous or omnivorous
or frugivorous or herbivorous. Data from these 2 dietary
classes were analyzed separately. Mass and dietary data
were from the EltonTraits database (Wilman et al. 2014).

Tracking-Data Analyses

Our conjecture that the underestimation of home-range
areas increases as body size increases was based on 2
well-established biological and one methodological rela-
tionship: the positive correlation between body mass and
home-range area (Jetz et al. 2004); the positive correla-
tion between home-range area and range crossing time,
τ p (Calder 1983); and the negative correlation between
range crossing time and the effective sample size for area
estimation, Narea (i.e., equivalent number of statistically
independent locations [Noonan et al. 2019]). We hypoth-
esized that these conspire to drive 2 previously untested
relationships: a potential negative correlation between
body mass and Narea and a potential negative correlation
between body mass and home-range estimator accuracy.

Testing for these relationships first required estimating
the autocorrelation structure in each of the individual
tracking data sets. To accomplish this, we fitted a series
of range-resident, continuous-time movement models to
the data with the estimation methods developed by Flem-
ing et al. (2019). The fitted models included the indepen-
dent and identically distributed process, which features
uncorrelated positions and velocities; the Ornstein–
Uhlenbeck (OU) process, which features correlated po-
sitions but uncorrelated velocities (Uhlenbeck & Orn-
stein 1930); and an OU-foraging (OUF) process, featuring
both correlated positions and velocities (Fleming et al.
2014). We used model selection to identify the best fit-
ting model given the data (Fleming et al. 2014) from
which τ p and Narea were extracted. To fit and select the
movement models, we used the R package ctmm and ap-
plied the workflow described by Calabrese et al. (2016).

We estimated home-range areas for each of the 757
individuals in our tracking database via kernel density
estimation (KDE) with Gaussian reference function band-
width optimization because this is one of the most com-
monly applied home-range estimators in ecological re-
search (Noonan et al. 2019). The KDE home ranges were
estimated via the methods implemented in ctmm, and
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the further small-sample-size bias correction that was
introduced in area-corrected KDE (Fleming & Calabrese
2017).

Our primary aim was to determine the extent to which
autocorrelation-induced bias in conventional home-range
estimation might increase with body size. This required
an objective and statistically sound measure of bias. We
applied the well-established technique of block cross-
validation (Noonan et al. 2019) to quantify bias in em-
pirical home-range estimates.

By determining the extent to which the results of an
analysis generalize to a statistically independent data set,
cross-validation is an effective tool for quantifying bias
(Pawitan 2001). For this approach, each individual data
set was split in half, and a home-range area was esti-
mated from the first half of the data only (i.e., training
set). Next, the percentage of observations in the second
half of the data (i.e., held-out set) that fell within the
specified contour (here 50% and 95%) of the estimated
home range was calculated. If the percentage of points
included came out consistently higher or lower than the
specified contour, then it would suggest positive or neg-
ative bias, respectively.

As a further measure of bias, we identified the con-
tour of the home range estimated from the training set
that contained the desired percentage of locations in the
held-out set (i.e., 50% and 95%) and compared the area
within that contour to the estimated area at the specified
quantile. For example, consider that the 95% area esti-
mated on the training data contained only 90% of the
locations in the held-out set, whereas the 97% contour
contained 95% of the locations. To measure bias, we
would take the ratio between the 97% area and the 95%
area. Cross-validating home-range estimates in this way
can also be seen as providing a measure of how well a
home-range estimate can be expected to capture an ani-
mal’s future space use, assuming no substantial changes
in movement behavior.

Block cross-validation is based on the assumption that
data from the training and held-out sets are generated
from the same processes. To confirm this assumption, we
used the Battacharryya distance implementation in ctmm
(Winner et al. 2018) as a measure of similarity (range 0–
∞) between the mean area and covariance parameters of
movement models fitted to the training and held-out data
sets and determined whether the confidence intervals on
this distance contained 0 (details are given in Appendix
S1 in Noonan et al. [2019]). Using this method, we deter-
mined that 160 of 757 individuals had movement models
with significantly different parameter estimates between
the first and second halves of the data, so we excluded
these from our cross-validation analyses. We found no
significant relationship between whether or not a data
set was excluded from our analyses and which species
the data were from (p = 0.52) or between exclusion
and how long an individual was tracked (p = 0.39). This

confirmed that the subsampling required to meet the as-
sumptions of half-sample cross-validation did not bias our
sample.

Correction Factors

We explored 2 potential solutions to the allometric scal-
ing of autocorrelation and home-range estimation bias:
thinning data to minimize autocorrelation and using
autocorrelation-informed home-range estimation.

Conventional kernel methods are based on an assump-
tion of independence; however, they can provide ac-
curate estimates for autocorrelated processes when the
sampling is coarse enough that the data appear uncor-
related over time (Hall & Hart 1990). Thus, data thin-
ning presents a potentially straightforward solution to
autocorrelation-induced bias, but requires a balance be-
tween reducing autocorrelation and retaining sample
size. We, therefore, explored model-informed data thin-
ning as a means of mitigating size-dependent home-range
bias. As noted above, the parameter τ p relates to an indi-
vidual’s range-crossing time and quantifies the time scale
over which positional autocorrelation decays to insignif-
icance. More specifically, because positional autocorrela-
tion decays exponentially at rate 1/τ p, the time required
for the percentage of the original velocity autocorrela-
tion to decay to α is τα = τ pln(1/α). Conventionally, data
are thinned to independence with a 95% level of con-
fidence, and approximately3τ p is the time it takes for
95% of the positional autocorrelation to decay. Conse-
quently, we thinned each individual’s tracking data to a
sampling frequency of dt = 3τ p. We then used autocor-
relation functions to quantify how much autocorrelation
remained in the thinned data and evaluated the perfor-
mance of KDEs on these thinned data.

As opposed to manipulating the data to meet the as-
sumptions of the estimator, the second potential solu-
tion was to use an estimator that explicitly modeled the
autocorrelation in the data. Autocorrelated-KDE (AKDE)
is a generalization of Gaussian reference function KDE
that conditions upon the autocorrelation structure of
the data when optimizing the bandwidth (Fleming et al.
2015). Following the workflow described by Calabrese
et al. (2016), AKDE home-range areas were estimated
conditioned on the selected movement model for each
data set, via the methods implemented in ctmm, with
the same small-sample-size bias correction applied to the
conventional KDE area estimates (Fleming & Calabrese
2017). The AKDE is available via the web-based graphical
user interface at ctmm.shinyapps.io/ctmmweb/(Dong
et al. 2017).

Correction Factor Performance

To test for body-size-dependent biases in cross-
validation success, we fitted 3 regression models to the
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cross-validation results as a function of log10-scaled mass.
The models included an intercept-only model (i.e., no
change in bias with mass), linear model, and logistic
model. We then identified the best model for the data
via small-sample-size corrected quasi-Akaike information
criterion (Burnham et al. 2011).

Species may exhibit similarities in traits due to phy-
logenetic inertia and the constraints of common ances-
try; thus, controlled comparisons are required (Harvey
& Pagel 1991). Accordingly, we did not treat species data
records as independent; rather, we used the phyloge-
netic distances among species to construct a variance–
covariance matrix and defined the correlation structure
in our allometric regressions with the R package nlme
(version 3.1-137) (Pinheiro et al. 2018). Phylogenetic re-
lationships between eutherian mammalian orders were
based on genetic differences and taken from Liu et al.
(2001). Intraorder relationships were taken from more
targeted studies aimed at resolving species-level rela-
tionships, including Price et al. (2005) for Artiodactyla,
Matthee et al. (2004) for Lagomorpha, Steiner and Ryder
(2011) for Perissodactyla, Barriel et al. (1999) for Pro-
boscidea, Perelman et al. (2011) for Primates, and Agnars-
son et al. (2010) for Carnivora. For Canidae, however,
we took relationships from Lindblad-Toh et al. (2005),
due to better coverage of the species in our data set.
The phylogenetic tree was built with the R package ape
(version 5.2) (Paradis & Schliep 2019), and branch
lengths were computed following Grafen (1989). Phylo-
genies are given in Supporting Information.

Results

Allometric Scaling of Bias

Out of 757 data sets, only one was independent and
identically distributed and free from significant autocor-
relation. Conventional KDE 95% home-range areas cross-
validated at a median rate of 88.3% (95% CI 87.2–90.1),
which was below the target 95% quantile and demon-
strated a tendency to underestimate home-range areas
on average. Similarly, KDE 50% home-range areas cross-
validated at a median rate of 41.5% (95% CI 39.4–43.3),
which was again below the target 50% quantile. The
magnitude of KDE’s underestimation worsened as body
mass increased (t = 2.30, p = 0.02) (Fig. 2a), carnivores
and herbivores did not differ significantly (t = 0.31; p =

0.75). Cross-validation success of 50% home-range areas
across the mass spectrum was best described by a lin-
ear decay model with an intercept of 47.2 (95% CI 39.9–
54.5) and a slope of –3.9 (95% CI –7.0 to –0.8). In other
words, for every order of magnitude increase in body
mass, home-range estimates captured approximately4%
less of an individual’s future space use.

When comparing the 95% area estimates with the
area estimates for the contours that contained 95% of
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Figure 2. Cross-validation of conventional kernel

density estimation (KDE) across the mammalian

body-mass spectrum: (a) percentage of locations from

the second half of the data (held-out set) included in

KDE 50% home ranges estimated from the first half of

the data (training set) as a function of body mass

(dashed line, target 50% quantile; solid line,

phylogenetically controlled regression model fit to

cross-validation results; shading, 95% CI of the fit) and

(b) regression model describing the accuracy of 95%

KDE area estimates across the mass spectrum.

Accuracy was quantified as the ratio between

estimated 95% area of the training set and the area

contained within the contour that encompassed 95%

of locations in the held-out set. The horizontal dashed

line represents an unbiased area estimate. The x-axes

in are log scaled.
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Figure 3. Mechanisms driving body-size-dependent estimation bias: (a) positive allometry of home-range areas,

(b) correlation between home-range area and range-crossing time (τp), (c) negative correlation between τp and

effective sample size (Narea) governed by duration of observation period (T) and τp such that Narea ≈ T/τp, and

(d) resulting negative allometry of Narea (axes, log scaled; lines, phylogenetically controlled fitted regression

models). From (a) to (d), 1 axis is preserved from the previous panel to demonstrate the inherent link between

each of these relationships (arrows, visual aid of link; top-left arrow, end of the chain).

locations, KDE accuracy across the mass spectrum was
best described by linear decay (Fig. 2b). Consequently,
whereas the home-range areas of mammals weighing
<10 kg were underestimated by 13.6% (95% CI 6.3–
18.6), those of species weighing >100 kg were under-
estimated by 46.0% on average (95% CI 36.7–51.4).

Mechanisms Driving Body Size-Dependent Estimation Bias

We found significant positive relationships between body
mass and home-range area (regression parameter: β =

1.18, 95% CI 0.92–1.43, t = 9.09, p <0.0001) (Fig. 3a)
and between home-range area and range crossing time,
τ p (β = 7.09, 95% CI 4.78–9.41, t = 6.00, p < 0.0001)
(Fig. 3b) and a negative relationship between τ p and the
effective sample size, Narea (β = −0.65, 95% CI –0.70 to
–0.60, t = 25.46, p <0.0001) (Fig. 3c). The former 2 scal-
ing relationships differed significantly between carnivo-
rous and herbivorous mammals (t = 3.08, p <0.005 and
t = 2.37, p = 0.02, respectively). Carnivores tended to
have larger home ranges and shorter range crossing times
than comparably sized herbivores, and herbivores tended
to have longer range crossing times. The relationship

between Narea and mass did not differ between dietary
classes (t = 0.82, p = 0.06). The Narea was governed by
both τ p and sampling duration, T, such that Narea ≈ T/τ p.
Although we noted a positive correlation between body
mass and T in the studies we sampled (β = 0.24, 95%
CI 0.09–0.39, t = 3.17, p < 0.005), this was not enough
to counter the positive correlation between mass and τ p.
Consequently, the net result was a negative relationship
between body mass and Narea (β = –0.23, 95% CI –0.39
to –0.08, t = 2.98, p < 0.005) (Fig. 3d).

Correction Factors

Model-informed data thinning served to reduce the mean
autocorrelation at lag 1 from 0.96 (95% CI 0.96–0.97)
to 0.32 (95% CI 0.30–0.35) (Fig. 4). Hence, an indepen-
dent and identically distributed model was the best fit
for 167 of the 463 individuals for which sufficient data
(>2 locations) remained after data thinning. The remain-
ing individuals were best described by OU and OUF pro-
cesses whose autocorrelation parameters were not sig-
nificant. Although thinning mitigated the correlation be-
tween bias and body mass (β = –2.41, 95% CI –6.08 to
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1.26, t = 1.29, p = 0.20), the median cross-validation
rate of 95% home ranges estimated using the thinned
data was only 85.1% (95% CI 83.6–86.5). This approx-
imately3% decrease in performance, as compared with
conventional KDE on the full data, was likely the result
of the small sample size. Model-informed data thinning
resulted in a mean data loss of 93.2% (95% CI 92.1–94.3),
and the median number of approximately independent
locations left in each data set after thinning was only
23 (95% CI 18–26). Furthermore, in approximately20%
of the individuals, ≤2 locations remained after thinning,
making it impossible to estimate a home-range area on
the thinned data.

Autocorrelation-Informed Home-Range Estimation

Like model-informed data thinning, autocorrelation-
informed home-range estimation via AKDE also elimi-
nated the correlation between cross-validation success
and body mass (β = –0.51, 95% CI –1.88 to 0.86, t =

0.73, p = 0.47). However, without the data loss required
by the thinning approach, AKDE resulted in a median
cross-validation rate of 95.2% (95% CI 94.2–95.9) for 95%
home ranges and 51.3% (95% CI 49.26–54.36) for 50%
home ranges. In other words, AKDE exhibited consistent
accuracy across species, irrespective of the allometries
in autocorrelation time scales and effective sample sizes.

Table 1. Estimates of the scaling exponent (b) of mass to home-range
area relationship

∗

.

Category KDE (95% CI) AKDE (95% CI)

All mammals 1.20 (0.95–1.45) 1.28 (1.01–1.54)
Herbivores and frugivores 1.26 (0.99–1.52) 1.38 (1.09–1.66)
Carnivores and omnivores 1.23 (0.95–1.50) 1.27 (1.01–1.56)
∗

Abbreviations: KDE, kernel density estimation; AKDE,
autocorrelated-kernel density estimation.

Scaling of Mammalian Space Use

When regressing home-range area against mass with con-
ventional KDE estimates, we documented no significant
difference from linear scaling for either herbivores or
carnivores (Table 1). For AKDE-derived area estimates,
however, we detected that the scaling exponent was
significantly >1 for both taxonomic groups, suggesting
home-range area scales with mass according to a power
function.

Discussion

The importance of autocorrelation in animal-tracking
data has been an active area of research for decades
(Swihart & Slade 1985; Fieberg 2007; Fleming et al.
2015). We, however, are the first to demonstrate
that mass-specific space requirements driven by
autocorrelation-induced underestimation of home-range
areas are worse for larger species. From a fundamental
perspective, the continuous nature of animal movement
means quantities, such as positions, velocities, and
accelerations, are necessarily autocorrelated (Fleming
et al. 2014). Autocorrelation time scales (τ ) should,
therefore, be viewed as explicit attributes of an
animal’s movement process (Gurarie & Ovaskainen
2015) that are revealed when the temporal resolution of
measurement becomes !τ . As technological advances
continue to permit ever-finer sampling (Kays et al. 2015),
persistent autocorrelation is likely to become the norm
in animal-tracking data. Pairing data from inherently
autocorrelated processes with statistical approaches that
ignore autocorrelation not only risks biasing any derived
quantities, but also effectively negates the technological
advances that are improving data quality. Unless analyses
that are informed by autocorrelation become adopted
by movement ecologists and conservationists, the issue
of autocorrelation-induced bias will only worsen. Con-
versely, properly harnessing the wealth of information
provided by autocorrelation can dramatically improve
the accuracy of tracking-data-derived measures (see
also Fleming & Calabrese 2017; Winner et al. 2018;
Noonan et al. 2019). Our findings, therefore, highlight
the need for more statistical estimators that can handle
biologically induced variance without introducing bias.
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Implications of Size-Dependent Bias

From a conservation perspective, the underestimation of
home-range areas is a worst-case scenario. When reserves
are too small, relative to their target species’ area require-
ments, the probability of local populations undergoing
declines or extirpations increases significantly (Brashares
et al. 2001; Gaston et al. 2008). Undersized protected ar-
eas resulting from poorly estimated space needs also risk
exacerbating the issue of negative human–wildlife inter-
actions at reserve boundaries (Van Eeden et al. 2018) as
animals move beyond reserve boundaries to meet their
energetic requirements (Farhadinia et al. 2018). It is thus
of critical importance that policy actions be well in-
formed about species’ spatial requirements. To this end,
we analyzed a broad taxonomic and geographic range of
data and identified a strong correlation between home-
range underestimation and body size when autocorrela-
tion was ignored; average bias was approximately 50%
at the upper end of the mass spectrum. In this regard,
the majority of home ranges are estimated via methods
based on the assumption of statistically independent data
(Noonan et al. 2019). Combined with the facts that hu-
mans are the dominant mortality source for terrestrial
vertebrates globally (Hill et al. 2019), that this mortality is
higher for large-bodied species (Hill et al. 2020), and that
megafauna are experiencing more severe range contrac-
tions (Tucker et al. 2018) and extinction risk (Cardillo
et al. 2005), the most threatened species are also likely to
be those with the least accurate home-range estimates, a
worrying combination.

Based on these findings, we suggest that any conserva-
tion initiatives or policy based on home-range estimates
derived from estimators based on the assumption of sta-
tistically independent data be revisited, especially where
large-bodied species are involved. To facilitate this, we
developed HRcorrect, an open-access application that al-
lows users to correct a home-range area estimate for their
focal species’ body-mass-specific-bias with a correction
factor calculated from our cross-validation regression
models. The current version of HRcorrect is freely avail-
able from https://hrcorrect.shinyapps.io/HRcorrect/.
However, there are numerous factors beyond body
mass that influence an individual’s home-range size. For
instance, mammalian home-range areas are well known
to covary with the spatial distribution of resources
(Litvaitis et al. 1986; Boutin 1990), social structure
(Lukas & Clutton-Brock 2013), sex (Cederlund & Sand
1994; Lukas & Clutton-Brock 2013; Noonan et al. 2018),
age (Cederlund & Sand 1994), population density
(Adler et al. 1997), and reproductive status (Rootes
& Chabreck 1993; Noonan et al. 2018). Furthermore,
if an individual’s space use changes over time (e.g.,
interseasonal and -annual variation), a home-range area
estimated from a single observation period may not be
representative of its long-term area requirements. As

such, the deterministic trend-based correction provided
by HRcorrect is not a substitute for more rigorous data
collection and home-range estimation and should only be
used for cases where the underlying tracking data are not
accessible.

Allometries and Conservation Theory

The metabolic theory of ecology (West et al. 1997) sug-
gests that body mass represents a super trait that governs
a wide range of ecological processes. Prime among these
is the relationship between body mass and home-range
area, an allometry that has guided ecological theory for
more than 50 years (McNab 1963; Calder 1983; Jetz et al.
2004). More recently, attempts have been made to in-
tegrate this allometry into conservation theory. For in-
stance, Hilbers et al. (2016) incorporated the home-range
allometry into a method for quantifying mass-specific ex-
tinction vulnerability, and Hirt et al. (2018) highlighted
how allometries in movement and space use can be used
to make testable predictions of movement and biodiver-
sity patterns at the landscape scale. Similarly, Pereira et al.
(2004) used allometries of space use and movement rates
to predict species-level vulnerability to land-use change.
If the underlying allometries are biased, however, hy-
pothesis testing and conservation planning in this con-
text can fail even if the logic behind the experimental
design is perfectly sound. Although the earliest deriva-
tion of the home-range allometry proposed a metabol-
ically determined M0 .75 allometry (McNab 1963), subse-
quent revisions showed no support for a purely energetic
basis for home-range scaling (Calder 1983; Kelt & Van
Vuren 2001; Jetz et al. 2004; Tucker et al. 2014; Tambu-
rello et al. 2015). Although all these studies concluded
that home-range area should scale with an exponent
greater than the 0.75 predicted by metabolic require-
ments alone, there has been little consensus on whether
the allometry is linear (M1) or superlinear (M>1). Our
results suggest that at least part of the confusion can
be attributed to the increasing bias in underestimating
home ranges with increasing body size. Ours is the first
study to estimate this relationship directly from track-
ing data by applying a consistent estimator across all
individuals and, crucially, correcting for any potential
autocorrelation-induced bias (Noonan et al. 2019). In
doing so, we documented a super-linear relationship
between body mass and home-range area (exponent of
approximately 1.25 for M). This shift from linear to
power-law scaling fundamentally changes the behavior
of the relationship, particularly at the upper end of the
mass spectrum. Although we did not investigate the
mechanisms behind the deviation from the metabolically
determined M0 .75, we encourage future work on this
subject be based on the assumption of a superallom-
etry, as opposed to linear allometry. Accurately quan-
tifying species’ area requirements is a prerequisite for
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successful, area-based conservation planning. Our results
highlight an important yet hitherto unrecognized aspect
of home-range estimation: autocorrelation-induced neg-
ative bias in home-range estimation that is systemati-
cally worse for large species. Crucially, however, our
findings also outline a readily applicable solution to the
problem of size-dependent bias. We demonstrated that
home-range estimation that properly accounts for the
autocorrelation structure of the data is currently the
only consistently reliable solution for eliminating allo-
metric biases in home-range estimation (see also Noo-
nan et al. 2019). We emphasize that the differential
scaling of autocorrelation across the mass spectrum
be a key consideration for movement ecologists and
conservation practitioners and suggest avoiding home-
range estimators that assume statistically independent
data.
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