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Research Article

EBV renders B cells susceptible to HIV-1 in humanized

mice

Donal McHugh1,* , Renier Myburgh2,*, Nicole Caduff1 , Michael Spohn3, Yik Lim Kok4,8, Christian W Keller5, Anita Murer1,

Bithi Chatterjee1, Julia Rühl1, Christine Engelmann1, Obinna Chijioke6,7 , Isaak Quast5, Mohaned Shilaih4,

Victoria P Strouvelle4,8, Kathrin Neumann4, Thomas Menter7 , Stephan Dirnhofer7, Janice KP Lam9 , Kwai F Hui9 ,

Simon Bredl4, Erika Schlaepfer4, Silvia Sorce10, Andrea Zbinden8, Riccarda Capaul8, Jan D Lünemann5, Adriano Aguzzi10 ,

Alan KS Chiang9 , Werner Kempf11 , Alexandra Trkola8, Karin J Metzner4,8 , Markus G Manz2 , Adam Grundhoff3,

Roberto F Speck4, Christian Münz1

HIV and EBV are human pathogens that cause a considerable

burden to worldwide health. In combination, these viruses are

linked to AIDS-associated lymphomas. We found that EBV, which

transforms B cells, renders them susceptible to HIV-1 infection in

a CXCR4 and CD4-dependent manner in vitro and that CXCR4-

tropic HIV-1 integrates into the genome of these B cells with the

same molecular profile as in autologous CD4+ T cells. In addition,

we established a humanized mouse model to investigate the in

vivo interactions of EBV and HIV-1 upon coinfection. The re-

spective mice that reconstitute human immune system compo-

nents upon transplantation with CD34+ human hematopoietic

progenitor cells could recapitulate aspects of EBV and HIV

immunobiology observed in dual-infected patients. Upon coin-

fection of humanizedmice, EBV/HIV dual-infected B cells could be

detected, but were susceptible to CD8+ T-cell–mediated immune

control.
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Introduction

EBV-associated lymphomas are a considerable threat for individ-

uals infected with the HIV type-1 (HIV-1) and constitute an AIDS–

defining condition (1). With more than 90% of the adult human

population being latently infected with the oncogenic γ-herpesvirus

EBV (2), coinfection with EBV is the norm rather than an exception for

people infected with HIV-1 (3). Nevertheless, studies exploring ex-

perimental HIV-1–EBV coinfections are lacking.

After primary infection, EBV establishes a life-long latent in-

fection within the memory B-cell compartment with minimal viral

gene expression. To gain access to this persistence reservoir, the

virus relies on the expression of up to eight latency-associated

genes (EBV nuclear antigens [EBNA] -1, -2, -3A-C, and -LP, and latent

membrane proteins [LMP] -1 and -2) and two clusters of small

noncoding RNAs (EBV-encoded RNAs [EBERs] and viral miRNAs),

which promote proliferation, transformation, and confer resistance

to apoptosis and immune eradication. Despite the strong B cell–

transforming capacity of the virus, only few infected individuals

develop EBV-associated lymphomas because of continuous re-

striction by EBV-specific immune responses. This immune control

seems to be mainly mediated by T cells because iatrogenic

T-cell–directed immune suppression leads to the increased oc-

currence of EBV-associated B cell lymphoproliferative diseases,

which can be cured by adoptive transfer of in vitro–expanded EBV-

specific T cells (4).

Chronic infection with HIV-1 results in the progressive failure of

the immune system that culminates in AIDS (5). The rate of EBV

association with non-Hodgkin lymphomas (NHL) in patients with

AIDS is higher than with NHL in immunocompetent individuals,

reaching up to 90% and 100% for systemic immunoblastic diffuse

large B-cell lymphoma and central nervous system lymphoma,

respectively (1, 4). The emergence of EBV-associated central ner-

vous system lymphomas correlates with the HIV-1–induced loss of

EBV-specific CD4+ T cells rather than overall CD4+ T-cell loss (6). It
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has been suggested that this loss of EBV-specific CD4+ T cells leads

to an exhausted CD8+ T-cell population that can no longer control

EBV-mediated lymphoproliferation, resulting in a progression to-

ward NHLs (7).

Although current combined anti-retroviral therapy (cART) leads

to sustained suppression of HIV RNA copy numbers in patients,

poor adherence results in viral rebound because of the existence of

latently HIV-1–infected cells (8). The main targets for HIV-1 repli-

cation are CD4+ T cells, and these represent the major cell subset

harbouring silent HIV-1 (8). However, HIV-1 infection is not solely

restricted to CD4+ T cells, and other cell types are also susceptible to

the virus (8, 9, 10). Susceptibility to HIV-1 infection requires the co-

expression of CD4 and either CCR5 (R5) or CXCR4 (X4) receptors on

the cellular surface (11). In vitro, HIV-1 can infect IL-4– and/or

CD40L-activated primary B cells because of the expression of

CD4 and CXCR4, and infection may be enhanced in PMA-activated B

cells via binding of HIV-1 in immune complexes by complement

receptors CD21 and CD35 (12, 13, 14, 15). Also, HIV-1 infection of EBV-

transformed and EBV-negative B cell lines has been described

previously (16, 17, 18, 19, 20, 21). Although direct interactions between

HIV-1 and B cells have been reported several decades ago (22, 23),

there are, to our knowledge, no reports of HIV-1 replication in B cells

in vivo or experimental coinfection of HIV-1 with EBV in vivo, as

reviewed in reference 24.

In this study, we aimed to characterize the influence of EBV

infection on HIV-1 susceptibility and possible HIV-1 integration in

EBV-transformed B cells for lentiviral reservoir generation, as well

as its influence on viral and host gene transcription in comparison

to CD4+ T cells in vitro. Humanized mice have been successfully

used to separately investigate HIV-1 and EBV infection, patho-

genesis, and immune control, and we and others could recapitulate

the protective value of CD4+ or CD8+ T cells against EBV-mediated

lymphoproliferation in these models (25, 26, 27, 28). Here, we

modelled and investigated the effect of HIV-1 on EBV-specific

immune control via coinfection of humanized mice. This in vivo

model then allowed us to examine whether EBV-transformed

primary B cells serve as target cells for HIV-1 replication upon

dual virus infection.

Results

EBV-transformed B cells are permissive to X4-tropic but not

R5-tropic HIV-1 infection in vitro

We analyzed the capacity of HIV-1 to infect EBV-transformed B cells

(lymphoblastoid cell lines; LCLs) in comparison to autologous

PBMCs. As expected, we observed viral replication over time,

quantified by the HIV-1 p24 antigen in the supernatant, in CD19-

depleted PBMCs but not CD19-purified B cells inoculated with the

R5-tropic (JR-CFS) or X4-tropic (NL4-3) HIV-strains (Fig 1A). Autol-

ogous LCLs generated by in vitro EBV (B95-8 strain) infection of B

cells were able to sustain X4-tropic HIV-1 (NL4-3 and HBX2) and

dual-tropic HIV-1 (89.6) replication, as were LCLs derived from EBV-

infected (B95.8 or M81 strain) humanized mice (Figs 1A and B and

S1A and B). These results are in line with data reported previously

for several EBV-positive and EBV-negative B cell lines (14, 22, 29, 30).

Despite the fact that none of the LCL donors was a carrier of the

CCR5delta32 deletion (Fig S1C), LCLs were not susceptible to R5-

tropic HIV-1 strains (YU-2 and JR-CSF), evidenced by the lack of p24

in the culture supernatant and the absence of HIV-1 mRNA tran-

script splice variants (Figs 1B and S1B). In line with the selective

susceptibility of LCLs to X4-tropic HIV-1 infection, we found that a

large fraction of the LCLs expressed CD4 on their surface and

retained expression of CXCR4 at lower levels upon EBV transfor-

mation, whereas transcript levels of CCR5 were very low in selec-

tively sequenced LCLs as previously reported (Figs 1C and S1D) (31,

32, 33). The combined surface expression of CD4 and CXCR4 of

individual LCLs correlated strongly with HIV-1 replication over time

in vitro (Fig 1D). Furthermore, upon FACS, pure populations of CD4+

and CD4− LCLs either lost or gained CD4 expression, respectively,

within days of in vitro culture, indicating that the CD4+ cells are

unlikely derived from a clonal population. The resultant CD4high LCL

subcultures were more susceptible to X4-tropic HIV-1 replication

compared with the autologous CD4low subcultures (Fig S1E and F). In

addition, X4-tropic HIV-1 replication was efficiently suppressed by

anti-retroviral treatment (ART: Efavirenz & AZT) in vitro in both

donor LCLs and autologous CD4+ T cells (Fig S1G and H). To assess if

EBV infection can induce CD4 expression in humans, we investi-

gated PBMCs from healthy blood donors, patients with infectious

mononucleosis, that is, the primary symptomatic infection with EBV,

or EBV+ B cell posttransplant lymphoproliferative disorders (PTLDs)

and found that patients with EBV-associated diseases had more

frequent CD4+ B cells than controls (Fig 1E and Table S1). Moreover,

in a separate cohort of 10 EBV+ B cell PTLDs, we found evidence of

CD4 surface expression on EBV-infected (EBER+) cells in two pa-

tients (Fig 1F and Table S2). These previously described PTLDs were

also positive for CXCR4 (34). In summary, EBV transformation can

induce B-cell susceptibility to HIV-1 infection in vitro in a CD4- and

CXCR4-dependent manner, similar to IL-4 and/or CD40L stimulation

of B cells as shown previously (12, 14) and CD4 can be detected on

peripheral blood B cells and lymphoma cells in EBV-associated

diseases.

X4-tropic HIV-1 host genome integration profile in LCLs is similar

to autologous T cells

HIV-1 proviral integration into the host cell genome is an essential

part of the retroviral life cycle and lentiviral reservoir generation

(35). Therefore, we investigated HIV-1 integration into the host

genome of LCLs and whether integration profiles differ between

LCLs and CD4+ T cells. Purified CD4+ T cells and autologous LCLs

enriched for CD4 expression by FACS were infected with X4-tropic

HIV-1 for 2 d. HIV-1 integration sites were amplified with a non-

restrictive linear amplification-mediated PCR (nrLAM-PCR) (36, 37),

sequenced, and reads were mapped using the Integration Site

Analysis Pipeline (37). We found that HIV-1 integrates into the

genome of LCLs with an overrepresentation of sites within tran-

scriptional units similar to CD4+ T cells (37, 38, 39) (Fig 2A and Table

S3) and monocytes/macrophages (37, 40). We observed the HIV-1

signature weakly conserved palindromic nucleotide sequence

(GT(A/T)AC) in the host genome upstream of HIV-1 integration in

both the CD4+ T cells and the LCLs (Fig 2B), as previously described
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for T cells (37, 41, 42, 43). In line with previous findings (39, 42), we did

not observe a preference for the orientation of the HIV-1 provirus

relative to the transcriptional direction of host genes in CD4+ T cells

and LCLs (Fig 2C). To correlate HIV-1 proviral integration with gene

transcription in LCLs and CD4+ T cells, RNA sequencing was per-

formed with LCLs and autologous CD4+ T cells 2 d after infection

with X4-tropic HIV-1 or mock infection. Upon ranking host gene

expression in mock-infected CD4+ T cells and autologous LCLs

Figure 1. X4-tropic HIV-1 replicates in EBV-transformed B cells in
vitro.
(A) Quantification of p24 via ELISA in supernatants collected over 10 d
from in vitro HIV-1–infected CD19+ B-cell–depleted PBMCs, purified
CD19+ B cells and lymphoblastoid cell lines (LCLs) from two donors.
Cells were either mock-infected, infected with JR-CSF (R5-tropic HIV-
1), or NL4-3 (X4-tropic HIV-1). Data from two donors are depicted.
Adjusted P-value summaries for comparison of NL4-3 and JR-CSF
versus Mock are indicated in blue and grey, respectively, from two-
tailed unpaired t tests, corrected by the Holm–Sidak method.
(B) Quantification of p24 in supernatants collected over 15 d from
HIV-1–infected LCLs derived from four donors and two EBV-infected
humanized mice reconstituted with fetal liver-derived CD34+ cells.
Cells were infected with YU-2 (R5-tropic HIV-1) or NL4-3. The area
under the curve (AUC, p24 in the supernatant versus time
postinfection) was compared via two-tailed unpaired t test with
Welch’s correction. (C) Representative flow cytometry plots and
histograms of LCLs and autologous purified B cells stained for CD45,
CD4, and CXCR4. (D) Correlation of NL4-3 HIV-1 replication in different
LCLs with the level of CXCR4 and CD4 surface expression before
infection. HIV-1 replication was approximated via analyzing the AUC
for each LCL as shown in (B). Relative surface expression of HIV entry
receptors for each LCL was approximated by multiplying the
frequency of CD4+ cells with the median fluorescence intensity of
CXCR4 as determined by flow cytometry immune phenotyping.
Correlation, **P = 0.0074, Pearson’s r = 0.9287. (E) Representative
flow cytometry immune phenotyping logarithmic contour plots and
quantification of CD4 surface expression on CD19+ B cells from
controls (healthy blood donors and 1 EBV− hemophagocytic
lymphohistiocytosis [HLH] patient) and EBV+ infectious
mononucleosis or EBV+ posttransplant lymphoproliferative disorder
(PTLDs) patients. Events were pre-gated on single cells/
lymphocytes/CD3−/CD19+ cells. **P = 0.001 (Mann–Whitney test).
(F) Dual EBER in situ hybridization (blue) CD4 immunohistochemistry
(IHC, brown) on tissue microarrays of two cases of EBV+ PTLD. I-2-l
and I-3-a are separate sections from the same PTLD. Scale bar: 20 μm.
Inserts are a 2× magnification of a section of the main image. In
(A, B, C), data are represented as mean ± SEM and were performed
in triplicate. Results representative of four donors. P-values are
reported as ns > 0.05, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.
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based on reads per kilobase of RNA transcript per million mapped

reads (RPKM), we grouped these genes into eight bins of equal sizes

and observed that integration sites were overrepresented in bins

containing actively transcribed genes (Fig 2D). These data indicate

that HIV-1 favors integration in actively transcribed genes in both

LCLs and CD4+ T cells confirming previous reports for CD4+ T-cell

infection (38, 44). We also observed a trend toward reduced inte-

gration in the most transcriptionally active set of genes. Because of

their more central location in the nucleus, highly transcribed genes

may be less accessible for viral integration, which often occurs

close to the nuclear pore (44). HIV-1 integration in LCLs was found to

be enriched in genes for endosomal trafficking (gene ontology [GO]

term: 0006895, Golgi to endosome transport, 9.89-fold enriched,

false discovery rate [FDR] = 0.003; GO term: 0032456, endocytic

recycling, 7.32-fold enriched, FDR = 0.011), whereas HIV-1 integration

in CD4+ T cells was primarily enriched for genes of the choline

transport (GO term: 0015871, 51.24-fold enriched, FDR = 0.019; Table

S2). However, in both LCLs and T cells, HIV-1 proviruses also targeted

genes that regulate mitotic cell cycle phase transition (GO term:

1901990; LCLs: 2.15-fold enriched, FDR = 0.013, T cells: 3.69, FDR = 0.048),

indicating frequent integration into cell cycle–associated genes. These

genes are actively transcribed in LCLs as well as activated T cells

and are thus likelymore accessible to HIV-1 integration (Table S4). It

remains, however, unclear if these integration events alter the

expression of the respective host genes and thereby affect lym-

phocyte growth behaviour. No HIV-1 integrations into the EBV

genome were detected. In summary, the integration profiles of X4-

tropic HIV-1 in the host genomes of CD4+ T cells and LCLs follow the

same pattern.

CD8+ T cells expand but do not control EBV during EBV/HIV dual

infection of humanized mice

Because in vitro infection of cells cannot fully recapitulate the

effects of EBV plus HIV-1 dual infection with respect to the induced

immune responses, we investigated EBV–HIV-1 interactions in an in

vivo model of infection and immune control. NOD-scid γc
−/− Tg(HLA-

A2) (NSG-A2) mice with human immune system components (hu-

manized mice) reconstituted from CD34+ hematopoietic progenitor

cells (HPCs) were infected with EBV (B95-8 (45)) and 1 wk later with

HIV-1 (NL4-3). The experiment was terminated at 4 wk post-EBV

infection because of the considerable weight loss of EBV/HIV dual-

infected mice (Figs 3A and S2A). Conventional H&E and immuno-

histochemistry (IHC) staining of splenic sections from dual-infected

animals revealed the presence of tumor-like lesions containing

CD20+ B cells with a high frequency of EBNA2-positive cells and

similar CD8+ T-cell infiltration comparedwith EBV-infectedmice (Fig

3B). No significant differences were detected in the relative ex-

pression of latent and lytic EBV transcripts in non-tumorous splenic

B cells isolated from either EBV or EBV/HIV dual-infected mice (Fig

S2B). We observed a small but significant loss of CD4+ T cells in the

blood of HIV-infected mice, an expansion of both CD8+ and CD4+ T

cells in EBV-infected mice, and a similar expansion of CD8+ but not

CD4+ T cells in EBV/HIV dual-infected mice (Fig 3C). Particularly, the

memory CD8+ T cells were increased, as determined in the spleen

(Fig S2C). Further analysis of splenic CD8+ T cells revealed a trend

towards an activated, but exhausted phenotype in EBV/HIV dual-

infected mice with enhanced surface expression of HLA-DR, PD1,

and Tim3 (Fig S2D). Although serum cytokine levels of IFNγ, TNFα, IL-

6, and IL-10 were similarly high in EBV and EBV/HIV–infected mice

(Fig S2E), the ex vivo EBV-specific IFNγ release from CD19-depleted

splenocytes challenged with autologous LCLs was lower in dual-

infected animals (Fig 3D). These findings mirror data comparing

Figure 2. X4-tropic HIV-1 host genome integration profile in lymphoblastoid
cell lines (LCLs) and autologous T cells.
(A) Distribution of HIV-1 integration sites in the host genome comparing CD4+ T
cells and autologous LCLs 2 d post in vitro infection with NL4-3 (n = number of
integration sites). (B) Nucleotide sequence consensus upstream of HIV-1 59LTR
in the host genome. (C) Transcription orientation of intragenic HIV-1 relative to
the host gene. HIV-1 integration events in loci of transcript variants or more than
one gene with different features of interest are classified as undetermined.
(D) Frequency of HIV-1 integrations in genes of autologous donor CD4+ T cells and
LCLs. Host genes in noninfected LCLs and CD4+ T cells were ranked from non-
expressed to highly expressed genes based on reads per kilobase of RNA
transcript per million mapped reads (RPKM). The host genes were grouped into
eight bins of equal size based on RPKM. Only the grey bins contain genes with an
RPKM value greater than 0. The relative distribution of the total HIV-1
integration sites among the eight bins is summarized for the CD4+ T cells and
LCLs. ***P < 0.0001 (Chi-squared test). (A, B, C, D) Data derived from three donors:
two LCLs and three CD4+ T cells each with two separate HIV-1 or mock
infections; two of the T cells were autologous to the investigated LCLs.
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IFNγ release of EBV-specific CD8+ T cells derived from HIV-1–

infected individuals that either remained long-term asymptomatic

or progressed to AIDS due to opportunistic infections (46). As such,

despite a comparable CD8+ T-cell expansion in EBV and EBV/HIV

dual-infected mice, T cells from a dual-infected environment did

not seem to react to EBV-infected cells as efficiently. Furthermore,

macroscopically visible tumors in the spleen, pancreas, and liver

weremore frequent in EBV/HIV dual-infectedmice than EBV single-

infected mice and coincided with a trend towards higher EBV

burden in the spleen (Fig 3E and F). Moreover, CD8+ T-cell depletion

via OKT8 treatment (Fig S2F and G) only exacerbated the EBV

disease burden in EBV single-infected mice, whereas in EBV/HIV

dual-infected animals, OKT8 treatment did not result in a further

increase in tumor burden or EBV viral load (Fig 3E and F). In contrast

to a previous study in which HIV-1–specific immune control was

compromised upon antibody-mediated CD8+ T-cell depletion at 2

and 5–7 wk post-HIV-1 infection (47), in our hands, CD8 depletion

1 wk post-HIV-1 infection did not lead to measurable differences

in serum HIV-1 copy numbers at 2 wk post-depletion (Fig 3G).

In summary, these data indicate that CD8+ T cells expand and

can control EBV during EBV-single infection and despite expand-

ing in EBV/HIV dual-infected mice, they seem to partially lose

EBV-specific immune control leading to enhanced EBV-disease

progression.

B cells from EBV/HIV dual-infected humanized mice can transmit

HIV-1 infection to autologous humanized mice

Based on the ability of HIV-1 to infect LCLs in vitro (Fig 1), we aimed

to determine whether HIV-1 infects EBV-infected B cells in hu-

manized mice. Co-IHC detecting the B-cell lineage specific tran-

scription factor PAX5 and the HIV-1 p24 antigen on splenic sections

revealed the presence of PAX5+ cells positive for cytoplasmic p24 in

EBNA2+ regions of the spleens of dual-infected animals when CD8+ T

cells were depleted (Fig 4A). EBNA2+/p24+ cells observed in dual-

infected animals were present at a significantly higher frequency in

CD8-depleted mice and comprised a larger fraction of all the HIV-

infected cells within tumors than non-tumorous spleen tissue (Fig

4B and C). In line with these findings, multiple spliced HIV-1 RNA

transcripts were detected more frequently in purified B-cell frac-

tions from dual-infected CD8-depleted animals (Fig S3A). We aimed

to determine whether in vivo EBV/HIV coinfected B cells actively

replicate HIV-1 upon transfer to a HIV-1 naı̈ve host. To this end,

humanized mice were infected with EBV and 1 wk later with X4-

tropic HIV-1, followed by treatment with either CD8+ T-cell–depleting

antibody or PBS at week 2 and 4 post-EBV infection (Fig 4D). From

these dual-infectedmice, splenic CD19+ B-cell fractions were purified

by repeating magnetically activated cell sorting twice, to ensure low

T-cell contamination (Fig S3B). These B-cell fractions or an equal

number of CD19-depleted splenocytes obtained from dual-infected

non–CD8-depleted or dual-infected CD8-depleted donor mice were

transferred to individual humanized littermates reconstituted with

the same human fetal liver (HFL)-derived CD34+ HPCs. Emergence of

EBV and HIV was monitored in the blood and plasma of recipient

animals for 6–7 wk and, upon euthanizing, in the spleen via IHC for

EBNA2 and p24 (Fig 4D). As expected, most of the mice that received

the CD4+ T-cell containing CD19-depleted fractions from both donor

groups developed HIV-1 plasma viral loads (Fig 4E). Supporting our

finding that B cells can harbour HIV in EBV/HIV dual-infected hu-

manized mice, some recipients of CD19+ B-cell fractions from dual-

infected CD8-depletedmice developed detectable HIV-1 RNA loads in

the plasma, whereas recipients of B cells from dual-infected non–

CD8-depleted mice did not (Fig 4E).

Next, we investigated the potential of EBV+ B cells to function as a

reservoir for latent HIV-1 infection upon cART treatment in vivo in

the absence of T-cell immune control. We infected LCLs derived

from humanized mice with HIV-1 and transferred these cells into

NSG mice, which we then either treated with cART via the drinking

water or normal drinking water for 2 wk, followed by another 2 wk of

normal drinking water. To control for effective HIV-1 suppression,

humanized mice infected with HIV-1 for 4 wk were subjected to the

same 2-wk cART treatment (Fig S3C). We found evidence of HIV-1

persistence in cART-treated mice either by IHC for p24 in the tumor

tissue, HIV-1 DNA integration, spliced HIV-1 RNA, or quantification of

HIV-1 genomes in the plasma (Fig S3D). In summary, these data

indicate that during conditions of reduced CD8+ T-cell–mediated

immune surveillance, HIV can readily infect EBV-infected B cells,

and these cells can either contribute to viremia or potentially serve

as a reservoir for HIV-1 during cART treatment.

HIV-1–infected LCLs are more susceptible to elimination by

autologous T-cell clones in vitro

To investigate the effect of HIV infection on the host transcriptome

in LCLs and CD4+ T cells, the aforementioned RNA sequencing was

mined for differentially expressed host and viral genes. This gene

expression analysis revealed differential transcription of HIV genes

in the two cell types. The nef gene was highly expressed in CD4+ T

cells compared with other HIV genes and in contrast to the HIV gene

expression pattern found in LCLs (Fig 5A). Conversely, hierarchical

clustering analysis based on the EBV transcriptome did not show

clustering of HIV-1–infected and noninfected LCLs, respectively (Fig

S4). In general, HIV-1 affected the host transcriptome of LCLs less

than that of CD4+ T cells. However, gene set enrichment analysis

detected significant disparate expression of genes included in GO

sets related to antigen processing and/or presentation of peptide

antigen via MHC class I between HIV-1–infected T cells and LCLs

relative tomock-infected controls (Fig 5B and Table S5). Specifically,

genes related to “antigen processing and presentation of peptide

antigen via MHC class I” were significantly down-regulated in HIV-

1–infected CD4+ T cells and up-regulated in HIV-1–infected LCLs

upon GO enrichment analysis. This GO set is composed of 90 genes

including genes encoding for TAP1, calreticulin, and subunits of the

immunoproteasome, including Mecl-1, the large multifunctional

peptidases 2 and 7 (LMP2 and 7), and the proteasome activator

components Pa28α and β (Fig S5A). Based on these changes in

genes involved in enhanced antigen processing and presentation

via MHC class I in LCLs, we investigated whether HIV-1 infection

renders LCLs more susceptible to elimination by CD8+ T cells. Five

EBV-specific CD8+ T-cell clones isolated from four EBV+ donors with

specific reactivity toward endogenously processed EBV latent an-

tigens (Fig 5C) were cultured with autologous or HLA class I–

matched X4-tropic HIV-1–infected LCLs. After 18 h of co-culture with

the EBV-specific CD8+ T-cell clones, the fraction of p24+ LCLs in the
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Figure 3. EBV/HIV dual-infection of humanized mice.
(A) Experimental setup: newborn NSG-A2 mice were irradiated and received intrahepatic injection of human CD34+ hematopoietic progenitor cells. Before infection,
baseline blood lymphocyte composition was determined by flow cytometry and mice were grouped. At day 0, mice were infected i.p. with EBV or PBS and 1 wk later with
HIV-1 or PBS. At week 2 post-infection, mice received a single injection of a CD8-depleting monoclonal antibody (OKT8) or an isotype control antibody. In one experiment,
mice were left untreated. Mice were euthanized 4 wk post-EBV infection. (B) Representative histological panel of formalin-fixed, paraffin-embedded spleen sections
from EBV and EBV/HIV–infected huNSG-A2 mice depicting H&E, CD4, CD8, CD20 and EBNA2 IHC stainings. Scale bar: 100 μm. Quantification of EBNA2+ cells per square
millimeter with n = 7 and 5 mice, respectively. *P = 0.030 (Mann–Whitney test, MWT). (C) Number of CD8+ and CD4+ T cells per ml blood at week −1 and at week 4. Mock; CD8+

*P = 0.049. HIV; CD4+ *P = 0.042. EBV; CD8+ **P = 0.001 and CD4+ *P = 0.021. EBV/HIV; CD8+ **P = 0.007 (two-tailed paired t test). (D) EBV-specific T cell ELISpot assay. Mean
IFNγ release was quantified upon co-culture of CD19-depleted splenocytes derived from humanized mice of the indicated groups with autologous EBV-transformed
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total LCL population decreased, indicating a more efficient elimi-

nation of HIV-1–infected cells than the non–HIV-1–infected LCLs (Fig

5D). Interestingly, cell surface expression levels of HLA class I were

down-regulated in both HIV-1–infected LCLs and autologous HIV-

1–infected CD4+ T cells despite lower relative abundance of nef in

LCLs, which has been described to down-regulate MHC class I

surface expression (48) (Fig S5B). These data indicate that HIV-1–

infected LCLs are highly sensitive to CD8+ T-cell immune control

despite global HLA class I down-regulation. HIV-1–infected LCLs

were also clearly susceptible to HIV-specific CD8+ T-cell clones

derived from three individual donors (Fig S5C), whereas influenza-

specific CD8+ T cells did not react to HIV+ LCLs preferentially (Fig

S5D). Thus, EBV/HIV coinfected B cells appear to be more effi-

ciently targeted by CD8+ T cells specific for HIV-1 and EBV in

comparison to EBV single-infected B cells. The enhanced vul-

nerability of EBV-infected B cells upon HIV-1 coinfection may

explain why these coinfected cells were preferentially observed

upon CD8 depletion in vivo, and point toward HIV-1 superinfected

EBV-transformed B cells being efficiently controlled by CD8+ T

cells, even if their activity to protect from EBV-induced lympho-

mas is compromised by loss of CD4+ T-cell help due to HIV-1

infection.

Discussion

There is increasing evidence that cell types other than CD4+

memory T cells have the potential to constitute a fraction of the

overall HIV-1 latency reservoir (8, 10). To date, efforts to identify and

phenotype cells that make up the HIV-1 reservoir have located HIV-1

provirus in tissue-resident macrophages during cART treatment of

a humanized mouse model, in which only human myeloid and B

cells develop from a human CD34+HPC graft (49). Furthermore, HPCs

have been reported to sustain HIV-1 infection both in vitro and in

vivo in patients and in a humanized mouse model (50, 51). We

believe that activated B cells could serve as HIV-1 target cells,

especially upon infection with the ubiquitous γ-herpesvirus EBV. As

such, HIV-1 could potentially directly contribute to malignant

transformation or reside latently in the long-lived EBV-transformed

memory B cells hidden from the immune system and thus con-

stitute a potential additional long-lived reservoir for HIV-1 la-

tency. Indeed, we found a similar integration profile of X4-tropic

HIV-1 in autologous LCLs and CD4+ T cells in vitro. Furthermore, we

provide evidence that EBV-transformed cells may harbour HIV-1 in

vivo after ART treatment, during which no peripheral HIV-1 RNA

load can be detected. Dual-infection, however, is likely a rare

event as it pertains solely to X4-tropic viruses which occur in only

50% of patients at late-stage disease (52) and only a fraction of the

EBV-infected B cells express the requisite surface receptors CD4

and CXCR4. Furthermore, we found that dual-infected cells are

highly susceptible to immune control via CD8+ T cells in vitro and

may only contribute to HIV-1 viremia when CD8+ T-cell function is

severely impaired. Because we found that the conditions for X4-

tropic HIV-1 susceptibility were met in patients with acute EBV

infection or EBV-related lymphomas, future studies could inves-

tigate whether HIV infection of EBV+ B cells occurs in people living

with HIV, especially during cART.

We found no evidence that HIV-1 infection perturbs EBV gene

expression directly in B cells derived from EBV/HIV dual-infected

animals. Similarly, upon in vitro infection of LCLs with HIV-1, the

abundance of different EBV transcripts did not indicate a shift in the

latency program or an induction of the EBV lytic cycle. This is in

contrast to the enhanced EBV lytic gene expression and plasma cell

differentiation observed upon EBV/KSHV dual-infection (53). We did

observe differential HIV-1 gene expression upon HIV-1 infection in

LCLs compared with autologous HIV-1–infected CD4+ T cells, which

may be explained by different HIV-1 replication dynamics in LCLs

compared with T cells (54, 55, 56). This was accompanied by discrete

changes in the host transcriptome, whereby genes related to MHC-

I–mediated antigen presentation were enriched in HIV-1–infected

compared with noninfected LCLs in contrast to HIV-1–infected

versus noninfected T cells. Thus, dual-infections of EBV-infected B

cells with either HIV-1 or KSHV have a different impact on both EBV

and host gene transcription.

Infection of humanized mice with a dose of EBV as used in this

study leads to detectable EBV DNA levels, relatively asymptomatic

EBV persistence with the development of few EBV-driven tumors

and an EBV-specific T-cell response. CD8+ T cells expand and in-

filtrate EBV-associated tumors to a similar degree upon EBV single-

and EBV/HIV dual-infection. However, the additional burden of

HIV-1 infection resulted in less CD4+ T-cell infiltration, an increase in

EBV-associated tumors and a trend towards an exhausted CD8+

T-cell phenotype. The latter observation has also been made in

humanized mouse infections with HIV-1 over longer experimental

periods (57). Furthermore, we observed a reduced EBV-specific T-cell

response and CD8 depletion did not lead to a higher EBV-associated

tumor burden in dual-infected animals. These results, modelled

within a very short time frame, mirror the compromised EBV-specific

immune control preceding EBV-associated lymphomagenesis that has

been observed in HIV-1–infected patient cohorts (6, 7). As such, we find

this animal system informative for investigating these human lym-

photropic viruses because it recapitulates features of human EBV-

specific CD8+ T-cell dysfunction associated with HIV-1.

However, some CD8+ T-cell function was retained upon dual

infection. When CD8+ T cells were depleted in EBV/HIV dual-infected

mice, an increased number of EBNA2/p24 double-positive cells

could be found in the spleen compared with non-depleted

dual-infected mice. This points to a preferential immune control

B cells (lymphoblastoid cell lines or LCLs) or medium (R10). Mock versus EBV ***P < 0.001; HIV versus EBV/HIV *P = 0.013; EBV versus EBV/HIV *P = 0.045 (MWT).
(E) Presence of macroscopically visible EBV-associated tumors in animals from the indicated experimental groups. *P = 0.016 (MWT for tumor score). (F) Total splenic EBV
DNA burden was determined for eachmouse by qPCR for EBV BamHI W fragment and plotted relative to EBV-infected animals. EBV versus EBV OKT8 treated *P = 0.005; EBV
versus EBV/HIV P = 0.060; EBV versus EBV/HIV OKT8 treated **P = 0.035; EBV/HIV versus EBV/HIV OKT8 treated P = 0.583 (MWT). (G) Serum HIV RNA copy numbers were
determined by RT-qPCR at week 4 (MWT). (B, C, D, E, F, G) Represents pooled data from three experiments. (F, G) Individual values for eachmouse andmedian are depicted.
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Figure 4. EBV/HIV dual-infected humanized mice replicate HIV-1 in B cells.
(A) Representative IHC stainings of EBNA2, CD20, CD4, CD8, and co-IHC for PAX5 (brown, nuclear stain) and p24 (red, cytoplasmic stain) of formalin-fixed, paraffin-
embedded spleen sections from EBV/HIV–infected and EBV/HIV–infected OKT8-treated mice (EBV/HIV OKT8). (B) Representative co-immunohistochemistry stainings for
EBNA2 (red, nuclear staining) and p24 (brown, cytoplasmic staining). (A, B) Scale bar: 40 μm. Inserts are a 2×magnification of a section of the main image. (C) Quantification
of PAX5+/p24+ (left) and EBNA2+/p24+ (mid) cells in the spleen from the indicated experimental groups and EBNA2+/p24+ as % of total p24+ (right) cells in non-tumorous
spleen and tumor tissue within the EBV/HIV OKT8 group. N = respectively; Mock: 4 & 5, HIV: 6 & 3, HIV OKT8: 7 & 5, EBV/HIV: 14 & 12, EBV/HIV OKT8: 15 & 14, “Spleen”: 5,
“Tumor”: 4. PAX5+/p24+ P = 0.112; EBNA2+/p24+: **P = 0.006, Spleen versus Tumor: *P = 0.032 (Mann–Whitney test). (D) Experimental setup for cell fraction transfer assay:
Newborn NSG mice were irradiated and transplanted with fetal liver derived CD34+ hematopoietic progenitor cells. Donor mice were infected with EBV and 1 wk later
with X4-tropic HIV-1. At week 2 and 4, donor mice either received the CD8-depleting antibody (OKT8) treatment or PBS. At week 5 or 6, the donors were sacrificed, and
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of HIV-1 coinfected over EBV single-infected B cells by CD8+ T cells.

Indeed, latently EBV-infected B cells minimize their recognition by

CD8+ T cells with low latent EBV antigen expression, resulting in less

than one peptide presented on MHC class I molecules per cell for

some T-cell epitopes of EBNA3C, the antigen which our HLA-B*4402-

restricted CD8+ T-cell clone recognized in this study (58). This often

allows for only 30% maximal specific lysis by CD8+ T-cell clones,

such as the HLA-B*0850-restricted EBNA3A-specific T-cell clone

used in this study (59). Finally, EBNA1, recognized by two HLA-

B*3501-restricted CD8+ T-cell clones in this study, limits its own

translation and proteasomal degradation through β-sheet for-

mation with its glycine–alanine repeat domain (60, 61). Upon super-

infection with replication competent HIV-1, many HIV-1 proteins

are expressed, and it is conceivable that a professional antigen-

presenting B cell may protect itself from this high protein pro-

duction by inducing the immunoproteasome by default. As such,

the observed transcriptional up-regulation of antigen processing

for MHC class I presentation seems to enhance latent EBV antigen

recognition by CD8+ T cells. The resulting immunoproteasome in-

duction has indeed been described to increase the process of

cytosolic proteolysis for optimal MHC class I ligand generation (62,

63, 64, 65, 66). This suggests that HIV-1 coinfection increases antigen

processing of viral antigens, rendering the coinfected B cells

susceptible to immune control in part because of improved EBV-

specific recognition and additionally via HIV-1–specific CD8+ T-cell

recognition. Thus, HIV-1 can use EBV-infected B cells for integration,

replication, and transfer in vivo, but in turn, this target cell for HIV-1

is efficiently controlled by CD8+ T cells.

Humanized mice have the ability to recapitulate certain aspects

of the human immune system in vivo. However, a number of

limitations in immune function should be mentioned at this point,

which may preclude direct transfer of these results to human in-

fections (reviewed in reference 25). Importantly, reconstituted

human immune system components show similarities to cord

blood immune cells. Although cell-mediated immune responses

can be mounted, the magnitude of these responses may be lower

than in human adults, and isotype switched antibody responses are

only rarely observed and steady state levels of IgG are a 1,000-fold

lower than in adult human serum. As such, HIV-1 binding on the

surface of B cells as immune complexes, as previously described for

noninfected B cells (67), may only be poorly modelled in this

system. Because EBV-infected cells down-regulate CD21, the extent

to which EBV-infected B cells bind immune-complexed HIV-1 via

CD21 and thus facilitate infection of susceptible cells, as described

previously for non–EBV-infected B cells will have to be further

evaluated. Furthermore, this model system cannot fully recapitu-

late the spatioanatomic aspects of human viral infection and lymph

nodes and mucosal secondary lymphoid tissues are poorly de-

veloped. In this study, we focused our investigations on particular

recombinant strains of type 1 EBV (B95-8) and X4-tropic HIV-1 (NL4-

3), respectively. It will be necessary to validate these findings using

other EBV and HIV-1 strains in future studies to reflect the strain

diversity of both viruses in infected human individuals. Interest-

ingly, type 2 EBV has been described to infect T cells in vitro, in

humanized mice, and in healthy infected children, thus expanding

further the cellular repertoire within which direct interaction of

these two important human pathogens could occur (68, 69, 70).

Materials and Methods

Humanized mouse generation and infection

NOD/LtSz-scid IL2Rγnull-tgA2 (NSG-A2, Stock# 009617) and NOD/

LtSz-scid IL2Rγnull (NSG, Stock# 005557) mice were obtained from

The Jackson Laboratory, bred, and maintained at the Institute of

Experimental Immunology, University of Zurich, under specific

pathogen-free conditions, with a maximum of five adult animals

per cage. Newborn mice (1–5 d old) were irradiated with 1 Gy. 5–7 h

after irradiation, mice were injected with 1–3 × 105 CD34+ human

HPCs derived from HFL tissue obtained from Advanced Bioscience

Resources. Isolation of human CD34+ cells from HFL tissue was

performed as described previously (27, 71) by positive selection for

CD34 with magnetic separation according to the manufacturer’s

recommendations (Miltenyi Biotec). Both male (n = 48) and female

(n = 80) mice were used. Individual mouse cohorts were recon-

stituted with cells derived from six different donors and NSG-A2

mice were reconstituted specifically with CD34+ cells from HLA-A2+

HFL samples. Reconstitution of human immune system compo-

nents in mice was analyzed 3 mo after HPC injection and again 1 wk

before the start of the experiments by flow cytometric immune

phenotyping of PBMCs for huCD45, huCD3, huCD19, huCD4, huCD8,

and HLA-DR as previously described (72). Apart from weighing and

tail vein bleeding for analysis of human immune cell reconstitution

in peripheral blood, humanized mice were not involved in any

procedures before viral infection. Once human immune cell re-

constitution was confirmed, humanized mice were injected with 104

Raji Infecting Units (RIUs) of EBV or PBS, and 1 wk later with 0.25 × 106

tissue culture infecting dose 50 (TCID50) of HIV-1 or PBS intraper-

itoneally. For CD8+ T-cell depletion, mice received intraperitoneal

injections of purified anti-CD8 antibody, clone OKT-8.SUP obtained

from hybridoma culture in-house (73) diluted in PBS (total of 150 μg

per mouse) at week 2 (1 wk after HIV infection). Experiments were

performed with a cohort of mice reconstituted with CD34+ cells from

a single donor, and animals were distributed to experimental

groups to ensure a similar ratio of females to males (62.5% females

to 37.5% males) and overall similar human immune reconstitution

in the peripheral blood. Animals were euthanized 4 wk post-EBV

infection. Investigators were not blinded regarding the viruses used

for infection of the animals. Virus-inoculated mice with no EBV DNA

load in the blood and spleen and without nuclear EBNA2 staining in

formalin-fixed, paraffin-embedded (FFPE) splenic sections or with

splenic lymphocytes were MACS separated into CD19+ and CD19-depleted fractions. Recipient mice received either CD19+ or CD19-depleted cells i.p. from either EBV/HIV
or EBV/HIV OKT8-treated mice. Recipient mice were monitored up to week 12 for HIV-1 RNA in plasma and for EBV DNA in whole blood. (E) The highest number of HIV-1 RNA
copies measured in plasma of individual-recipient mice and the frequency of recipients with detectable HIV RNA in the plasma and EBV DNA in the peripheral blood after
receiving either CD19+ or CD19-depleted cells from either EBV/HIV or EBV/HIV OKT8-treated donor mice.
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no HIV RNA load in the peripheral blood and HIV cytoplasmic p24

staining in FFPE splenic sections at 4 wk postinfection were con-

sidered noninfected. The tumor frequency in humanized mice was

assessed by a tumor score: no macroscopic tumors observed = 0;

tumor observed = 1; multiple tumors observed = 2. For autologous

cell transfer into humanized mice, see the following paragraphs.

HIV and EBV virus production

HIV viral stocks were produced by polyethylenimine-mediated

transfection (Polysciences) of 293T cells with X4-tropic NL4-3 and

HBX2, R5-tropic YU-2 and JR-CSF, and dual-tropic 89.6 plasmid DNA,

respectively, provided through the NIH AIDS Research and Reference

Figure 5. Susceptibility of HIV-1–infected lymphoblastoid cell lines (LCLs) to T-cell clones in vitro.
(A) Heat map depicting the HIV transcriptome in HIV-1–infected LCLs (2 donors) and three PB CD4+ T cells. Two of the CD4+ T cells investigated were autologous to the
LCLs. Two separate infections were performed for each cell type. (B) Bar chart depicting selected results from gene set enrichment analysis of HIV-1–infected T cells and
LCLs relative tomock-infected controls. (A, B) RNA was extracted 2 d after HIV-1 infection. (C) Reactivity of 5 EBV-specific CD8+ T-cell clones from four donors with or without
autologous or HLA-matched LCLs (auto/match) measured by IFNγ ELISA of the culture supernatant. Donor and specificity for EBV protein: D1 EBNA1, D2 LMP2, D3 EBNA1,
D5 EBNA3A, and D5 EBNA3C. Mean ± SD (two-tailed unpaired t tests, corrected by the Holm–Sidak method). (D) Representative flow cytometry plots from intracellular
staining for p24 of mock-infected LCLs, HIV-1–infected LCLs, mock-infected LCLs mixed with an autologous EBV-specific CD8+ T-cell clone and HIV-1–infected LCLs mixed
with an autologous EBV-specific CD8+ T-cell clone indicating percentage of p24-positive of total LCL population. Plots were pre-gated on live, single, total LCLs-labelled
before co-culture with a lipophilic membrane dye (PKH67). Specific elimination of p24+ autologous or HLA-matched LCLs by individual EBV-specific CD8+ T-cell clones
expressed as percentage loss of % p24+ cells in cocultures with T-cell clones compared with conditions without. Pooled from eight individual experiments, each condition
was performed with 2–4 technical replicates (Wilcoxon matched pairs test). (C, D) P-values are reported as ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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Reagent Program. 48 h after transfection, viruswas harvested, filtered

(0.45 μm, TPP syringe filter) and frozen at −80°C until use. Virus titers

were determined as previously described (74). Briefly, TCID50 was

determined by infecting human CD8+ T-cell–depleted PBMCs from

three donors, which were stimulated by PHA and anti-CD3 beads

(Dynal 11131D; Life Technologies). p24 in the postinfection culture

supernatants were determined via ELISA. EBV B95-8-GFP (EBVwt,

p2089 (75)) was produced in 293 HEK cells and titers of virus con-

centrates (in RIU) were determined by flow cytometric analysis of

GFP+ Raji cells 2 d after infection in vitro on a BD FACSCanto II (BD

Biosciences) as previously described (72, 76).

Primary cell cultures

PBMCs were obtained from whole blood of donors after red blood

cell removal by density-gradient centrifugation using Ficoll-Paque

(GE Healthcare) following the manufacturer’s instructions. CD19+ B

cells were isolated from PBMCs by magnetic selection using the

MACS CD19+ isolation kit according to the manufacturer’s instruc-

tions (Miltenyi Biotec) after prior incubation with the FcR blocking

reagent (included in the CD34+ Isolation Kit; Miltenyi Biotec) for 15

min at 4°C. Two MACS columns were used in succession. For the

HIV-1 integration site and RNA transcriptome analysis, donor CD4+ T

cells were isolated by negative magnetic selection using the

EasySep human CD4+ T-cell isolation kit (Cat. no. 17952; Stemcell

Technologies) following the manufacturer’s instructions. LCLs and

CD19-depleted PBMCs were cultured in RPMI 1640 (Gibco) medium

supplemented with 10% FCS (PAA Laboratories), 50 U/ml penicillin–

streptomycin, 25mMHepes, 2 mM L-glutamine (R10), and in the case

of PBMCs and T cells, 20 IU/ml recombinant IL-2 (Peprotech) was

included. CD19+ B cells were cultured as previously described (77) in

RPMI 1640 (Gibco) medium supplemented with 10% FCS (PAA

Laboratories), 50 U/ml penicillin–streptomycin, 25 mM Hepes, 2 mM

L-glutamine, IL-4 (10 ng/ml), IL-2 (50 ng/ml), IL-10 (10 ng/ml), and

sCD40L (300 ng/ml). All cells were cultured in a humidified incu-

bator at 37°C and 5% CO2.

HIV infection of cells in vitro

For in vitro HIV infections of CD19-depleted PBMCs, purified CD4+ T

cells were stimulated overnight in R10 supplemented with 5 μg/ml

PHA and 20 IU recombinant human IL-2 (Peprotech). Cells were

resuspended in HIV virus stocks pre-diluted in R10 at a multiplicity

of infection of 1. Cells were centrifuged with the virus at 1,200g for

2 h at 24°C, and then washed in PBS. CD19-depleted PBMCs and

purified CD4+ T cells were maintained in R10 supplemented with

20 IU/ml of recombinant IL-2 (Peprotech). LCLs were maintained in

R10. CD19+ B cells were maintained in R10 supplemented with IL-4

(10 ng/ml), IL-2 (50 ng/ml), IL-10 (10 ng/ml), and sCD40L (300 ng/ml)

as described previously (77). HIV p24 antigen levels in cell culture

supernatants were determined using a twin-site sandwich enzyme-

linked immunosorbent assay (ELISA) performed essentially as

described previously (78). Briefly, a polyclonal antibody was

adsorbed to a solid phase to capture p24 antigen from detergent

lysates of culture supernatants. Bound p24 was visualized with an

alkaline phosphatase–conjugated anti-p24 monoclonal antibody

and luminescent detection system. Time point zero for the p24

assay was collected after the final washing step. For in vitro ART

experiments, the medium was supplemented with 1 μM Efavirenz

and 5 μM AZT (provided through the NIH AIDS Research and Ref-

erence Reagent Program) from day 5 postinfection until the end of

the experiment on day 10.

CCR5 genotyping of LCLs

Genotyping was performed as previously described by reference 79.

Briefly, PCRs were performed using 1 μl of donor LCL derived DNA

andprimersflanking the 32-bpdeletion: 59-GTCTTCATTACACCTGCAGCTCTC-

39 and 59-GTCCAACCTGTTAGAGCTACTGC-39 (79). DNA was extracted

from a known CCR5Δ32 heterozygous individual and included as a

control. The amplified products (wild-type CCR5: 311 bp and CCR5Δ32:

279 bp) were analyzed on a 3.0% agarose/TAE gel by electrophoresis

and visualized with gel red DNA staining.

HIV-1 integration site analysis

Genomic DNA and total RNA were extracted from HIV-1 NL4-3–

infected and noninfected CD4+ T cells and CD4high LCLs (60% CD4+)

with DNeasy Blood & Tissue kit and RNeasy Mini kit (QIAGEN), re-

spectively, according to the manufacturer’s protocol 2 d post-HIV-1

infection. 59 HIV-1 integration junctions were amplified from 400 to

1,300 ng of genomic DNA with the nrLAM-PCR (Table S6) (36, 37). A

total of 12 pM cell type–specific pooled amplicons were sequenced

with the Illumina MiSeq platform using the MiSeq Reagent Kit v2

(300 cycles) (Illumina) with 8% PhiX. Sequencing reads were

mapped to the human genome assembly GRCh37.p13 using the

Integration Site Analysis Pipeline (InStAP) (37). True 59 HIV-1 inte-

gration junctions were identified based on the following criteria: (i)

presence of nrLAM-PCR adaptor and 59 HIV-1 LTR in the sequencing

reads, (ii) host DNA begins within three nucleotides from the end of

59 HIV-1 LTR, and (iii) ≥98% identity from ≥85% of the sequencing

read lengths. Testing for integration of HIV into the EBV DNA ge-

nome was performed by utilizing the same bioinformatics pipeline

InStAP, exchanging the target genome from the human genome, to

the EBV genome (National Center of Biotechnology Information

[NCBI] taxid:10376). The default settings for BLAST did not return any

hits. The use of BLASTn (suitable for similar sequences) resulted in

some hits with similarities that were, however, not statistically

significant. Nucleotide conservation plots were prepared using

WebLogo (80, 81). Overrepresentation of GO terms among HIV-1

integration sites in genes in NL4-3–infected LCLs and CD4+ T cells

was performed with a PANTHER Overrepresentation Test (Version

20171205) with the GO database version (2018-02-02) with Fisher’s

exact test with FDR multiple test correction.

RNA transcriptome analysis

RNA was extracted from cells as described in “HIV-1 integration site

analysis.” High-throughput sequencing and RNA-seq analysis was

performed essentially as previously described (49). Sequenced

reads were mapped to a merged genome consisting of EBV

(NC_007605.1), HIV-1 (AF324493.2), and Homo Sapiens (GRCh38.p7)

using STAR (v2.5.2a) (82). The option “--quantMode GeneCounts”

was enabled to count the reads per gene simultaneously, resting

EBV: HIV in humanized mice McHugh et al. https://doi.org/10.26508/lsa.202000640 vol 3 | no 8 | e202000640 11 of 19



upon the annotations from GenBank (EBV and HIV-1) and Ensembl

Release 86 (Homo Sapiens). Based on these counts, statistical

analysis of differential gene expression was performed with R/

Bioconductor package DESeq2 (v1.16.1) (83) because low HIV-1 in-

fection LCL-sample 3–11 was excluded. The obtained P-values were

corrected for multiple testing by the Benjamini–Hochberg proce-

dure, genes with a mean absolute fold change of minimal 1.5 and a

corrected P-value lower than 0.1 were considered differentially

expressed. For gene set enrichment analysis, R/Bioconductor

package gage (v2.20.1) was applied (84), gene sets were obtained

from the Gene Ontology Consortium. Gene sets with a Benjamini–

Hochberg–corrected P-value lower than 0.001 were considered

enriched. Heat maps were generated with the normalized counts

provided by DESeq2 using R package gplots (v3.0.1). Non–HIV-1–

dependent differences between the donors have been removed with

R/Bioconductor Package sva (v3.22.0) before plotting, using HIV-1

infection as a surrogate variable. The complete RNA-seq data from

this article have been deposited in the European Nucleotide Archive

(http://www.ebi.ac.uk/ena). The accession number for the RNA-seq

data is PRJEB25772.

Quantification EBV and HIV burden in humanized mice

EBV infection in mice was monitored by qPCR of DNA from splenic

tissue and whole blood. DNA was extracted using DNeasy Blood

and Tissue Kit (QIAGEN) and NucliSENS (BioMerieux), respectively,

according to the manufacturer’s instructions. Quantitative anal-

ysis of EBV DNA in humanized mouse spleens and blood was

performed by a TaqMan (Applied Biosystems) real-time PCR as

described previously (85) with modified primers (59-CTTCTCAGTC-

CAGCGCGTTT-39 and 59-CAGTGGTCCCCCTCCCTAGA-39) and the fluoro-

genic probe (59-(FAM)-CGTAAGCCAGACAGCCAATTGTCAG-(TAMRA)-39)

for the amplification of a 70-base pair sequence in the conserved

BamHI W fragment of EBV. The PCR was run on an ABI 7300

Thermocycler (Applied Biosystems) and samples analyzed in du-

plicates. HIV infection in humanized mice was assessed by RT-qPCR

for HIV copy numbers in plasma or serum (AmpliPrep/COBAS

TaqMan HIV-1 test; Roche). HIV-1 copy numbers in plasma of

non-reconstituted NSG mice transplanted with HIV-infected LCLs

and humanized controls were assessed by an in-house RT-qPCR

assay. 60 μl of plasma or serum of mice was diluted in 80 μl of

water. RNA was extracted following the QIAamp Viral RNA Mini

Kit manufacturer’s instructions (QIAGEN). Reverse transcription

was performed using 12 μl of RNA using the SKCC1B primer 59-

TACTAGTAGTTCCTGCTATGTCACTTCC-39 (86). The reaction was per-

formed in a final volume of 20 μl:0.25 μM SKCC1B primer, 4 μl 5×

iScript selection reaction mix, 2 μl gene specific primer enhancer

solution, 1 μl iScript reverse transcriptase (Bio-Rad). The thermal

cycler was set to 42°C for 60min followed by inactivation at 85°C for

5 min. The real-time quantitative PCR was performed using 3 μl of

cDNA prepared during the reverse transcription step as previously

described (87) using the ts59gag 59-CAAGCAGCCATGCAAATGT-

TAAAAGA-39 and SKCC1B primers as well as the mf319tq 59-

TGCAGCTTCCTCATTGATGGT-39 probe. The real-time quantitative PCR

reaction was performed in a final volume of 12.5 μl:3.8 μM of each

primer, 1.15 μM of the probe, and 6.25 μl DreamTaq Hot Start PCR

master mix. Thermal cycling was performed with a C1000 Touch

CFX384 Real-Time platform (Bio-Rad) starting with 95°C for 4 min

and 50 cycles of the following steps: denaturation at 95°C for 5 s,

annealing at 55°C for 5 s, and elongation at 60°C for 30 s.

Serum cytokine quantification

Serum aliquots were collected during euthanizing animals and

stored at −80°C until use. Cytokine concentrations in the serum

were determined with the V-plex Mesoscale Discovery Human

Proinflammatory Panel 1 (Cat. no. K15049D) and was performed as

per the manufacturer’s instructions in duplicates; standard dilu-

tions of the calibrator blend were performed in quadruplicates.

Flow cytometry

Total white blood cells in whole blood were counted using a

Beckman cell counter according to the manufacturer’s instructions.

Mouse whole blood was collected in K2 EDTA tubes (BD) and lysed

twice with ACK lysis buffer (Lonza) for 5 min and washed in PBS.

Mouse splenocyte cell suspensions were obtained by mechanical

disruption of the spleen through a 70-μmnylonmesh, lysis with ACK

lysis buffer for 10 min, and washing with PBS. Cells from mouse

whole blood and spleens or in vitro–cultured cells were labelled

with mixtures of fluorochrome-labelled antihuman monoclonal

antibodies in PBS (Table S7). Acquisitions were performed on an LSR

Fortessa (BD) flow cytometer and data were analyzed with FlowJo

(v9). Cellular debris and dead cells were excluded by their light-

scattering characteristics, as well as fixable live dead stains.

RT-qPCR

Total RNA was isolated from in vitro–infected B cell lines or hu-

manized mice derived CD19+ splenocytes using the RNeasy Mini Kit

(QIAGEN) according to the manufacturer’s instructions. Contami-

nating genomic DNA was removed with a 15-min on-column DNase

treatment during RNA isolation (RNase-Free DNase Set; QIAGEN).

The purified RNA was immediately reverse-transcribed with

GoScript Reverse Transcriptase (Promega) according to the man-

ufacturer’s recommendations in a 20-μl volume for 1 h at 42°C using

a primer mix combining previously described 39 gene-specific RT

primers (53, 88) and reverse primers for HIV transcripts listed in

Table S6 at concentrations of 10 μM each. After 15-min heat in-

activation at 70°C, 0.2 U RNase H (Thermo Fisher Scientific) was

added for 20 min at 37°C, followed by RNase H heat inactivation for

20 min at 65°C and freezing of the cDNA at −20°C. Amplifications of

Cp/Wp-EBNA1, EBNA2, LMP1, LMP2A, BZLF1, GAPDH, and SDHA were

carried out in triplicate with equal volumes of input RNA and

TaqMan universal PCR reagents (Applied Biosystems) using either

previously published primer sets with 59FAM/39TAMRA (88) or

59FAM/39MGB labelled probes for SDHA (TaqMan Applied Bio-

systems Gene Expression Assay [Hs00417200]). Primers and probes

for quantification of HIV-unspliced, unspliced and single-spliced,

and multiple-spliced transcripts (89, 90) are listed in Table S6.

Thermal cycling was performed with a C1000 Touch CFX384 Real-

Time platform (Bio-Rad) starting with 2 min at 50°C and 10 min at

95°C, followed by 50 cycles of amplification (95°C for 15 s and 60°C

for 1 min). Cq values were determined with the CFX-manager
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software (Bio-Rad) using a regression algorithm. Levels of EBV

transcripts in B cells from infected humanizedmice were calculated

relative to the geometric mean of the two reference genes, GAPDH

and SDHA, and then normalized to the mean value of the EBV+

single-infected animals. Mock-infected control animals were

negative for EBV transcripts. For HIV-1 splice variant RNA quanti-

fication in infected LCLs, absolute HIV-1 transcript numbers were

calculated using dilutions of an all-in-one HIV-1 standard DNA

containing the HIV-1 RNA splice variants as described and calcu-

lated previously (91).

EBV-specific IFN-γ release assay (ELISPOT)

EBV-specific T-cell responses were analyzed using an IFNγ ELISpot

assay, essentially as previously described (27, 92). Briefly, splenocytes

were depleted of human CD19+ cells using anti-CD19 microbeads

(Miltenyi Biotec). The CD19-depleted fraction was stimulated with

autologous LCLs at a ratio of 1:4 for 18 h and incubation with R10 and

PMA/ionomycin served as negative and positive controls, respec-

tively. Each condition was performed in duplicates or triplicates.

Spotswere counted on an ELISPOT reader system (ELR02; Autoimmun

Diagnostika GmbH).

Immunohistochemistry

Immunohistochemistry (IHC) was performed on sections obtained

from FFPE-humanized mouse spleen and tumor tissue with a

BOND-MAX automated IHC system (Leica Microsystems). Sections of

3 μm from FFPE blocks were deparaffinized, and then antigen re-

trieval was performed by incubation in Bond Epitope Retrieval

Solution 2 (ER2; Leica) for 30 min at 100°C followed by incubation

with antibodies against p24 (M0857, dil. 1:40; Dako), EBNA2 (Ab90543,

dil. 1:200; Abcam Ltd.), CD20 (120R-16, dil.1:300; Cell Marque Life-

screen Ltd.), CD4 (104R-16, dil.1:100; Cell Marque Lifescreen Ltd.), or

CD8 (108R-16, 1:500; Cell Marque Lifescreen Ltd.), respectively, which

were detected with the Refine-DAB-Kit (Leica). For double IHC of p24

and EBNA2, DAB+ p24–stained sections were incubated in ER2 for 10

min at 95°C before incubation with themouse anti-EBNA2 antibody,

which was detected with the Refine AP-Kit and new fast red (Leica).

For double IHC of PAX5 and p24, sections were incubated in ER2 for

20 min at 95°C before incubation with the mouse anti-PAX5 anti-

body (PA0552, dil. 1:20; Leica) for 30 min, which was detected with

the Bond Polymer Refine Detection Kit and DAB (Leica), then in-

cubated with the mouse anti-p24 antibody (M0857, dil. 1:10; Dako)

for 30 min, which was detected with the Bond Polymer Refine Red

Detection Kit and new fast red (Leica). Nuclei were counterstained

with hematoxylin (AP refine Kit; Leica or JT Baker Hämatoxylin;

Leica). EBER in situ hybridization and CD4 co-immunohistochemistry

was performed on 3 μmFFPE PTLD sections from a tissuemicroarray

block (34) using a Benchmark Ultra automated slide stainer

(Ventana). Briefly, tissue sections were pretreated with protease 3

before incubation with an EBER-specific probe (Ventana), which

was detected via the ISH iView Blue Detection Kit (Ventana).

Subsequently, tissue sections were incubated with cell conditioner

1 for antigen retrieval, rabbit monoclonal antibody against human

CD4 (clone SP35), and visualization performed with OptiView DAB

IHC Detection Kit (Ventana). All images presented in this article were

white set point adjusted with Adobe Ps CS5 V12.1.

Quantification of immunohistochemistry

PAX5/p24 and EBNA2/p24 co-stainings were analyzed with a Vec-

tra3 automated quantitative pathology imaging system (Perki-

nElmer) using Vectra and InForm software (PerkinElmer). Images

were acquired via an automated scanning protocol created with

InForm tissue segmentation to recognize the tissue. Images were

acquired with 20× objective lens with a CCD camera using the

scanning protocol. Images taken were used to set up algorithms in

inForm to recognize and count PAX5/p24– or EBNA2/p24–positive

cells, respectively. For comparison of tumor tissue and non-

tumorous spleen, the regions of interest were defined manually.

Single chromogen control stains were used to eliminate signal

cross-talk. The number of positive cells was determined per 1 mm2.

Autologous transfer experiments

Once human immune cell reconstitution was confirmed, 3 mo after

reconstitution, donor humanized mice were injected i.p. with 105

EBV RIU or PBS and 1 wk later with 5 × 105 NL4-3 HIV-1 TCID50 or PBS.

Mice received 150 μg OKT8 antibody (purification described below)

or PBS i.p. at week 2 (1 wk after HIV infection) and at week 4. Animals

were euthanized between 5 and 6 wk post-EBV infection. Spleens of

donormice weremashed through a 0.75 μMnylonmesh followed by

red blood cell lysis using ACK buffer (Lonza) as per the manufac-

turer’s instructions. CD19+ B cells were isolated from total sple-

nocytes as described for PBMCs above. The labelled B-cell fraction

was passed over two MACS columns in succession. The non-labelled

T-cell–containing CD19-depleted fraction was also collected. Purity

was confirmed via flow cytometry immunophenotyping. Equivalent

numbers of CD19+ B cells or CD19-depleted splenocytes were in-

jected into autologously reconstituted (same HFL donor-derived

CD34+ HPCs) recipient humanized mice (in one case the respective

cell fractions from two mice were pooled). Autologous HPC-

reconstituted recipient animals were chosen to avoid an allogenic

T-cell response. Recipient mice were euthanized 6–7 wk post-donor

cell transfer.

HIV-1 latency experiments

Non-reconstituted 9–18-wk-old NSG mice received 1–2 × 105 in vitro

NL4-3 HIV-1–infected LCLs via i.p. injection. LCLs were derived from

EBV-infected humanized mice via ex vivo outgrowth in R10 medium.

The B cell identity of these LCLs was confirmed via RNA-seq (Sample

E4-3 (53)). Control humanized mice or non-reconstituted NSG mice

were injected i.p. with 5 × 105 NL4-3 HIV-1 TCID50. cART was applied

via the drinking water in MediDrop Sucralose solution, and briefly

abacavir (ABC) (100 mg/kg/day), lamivudine (3TC) (150 mg/kg/day),

and dolutegravir (DTG) (15 mg/kg/day) pills were reduced to

powder and solubilized in MediDrop Sucralose solution for 15 min

on amagnetic stirrer. Final amount of drugs per 500 ml of MediDrop

Sucralose solution was 0.54 g of ABC, 0.622 g of 3TC, and 1.86 g of

DTG. Control humanized mice received cART 4 wk post-HIV-1 in-

fection for 2 wk and then were switched back to normal drinking
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water for 2 wk. LCL-bearingmice received cART on the day of HIV-1+ LCL

transfer for 2 wk and then were switched back to normal drinking

water for 2 wk. All animals were euthanized 4 wk post-start of cART

treatment. Spleens and tumor material of mice were disrupted

mechanically through a 0.75-μMnylonmesh followedby redblood cell

lysis of splenocytes using ACK buffer (Lonza) as per themanufacturer’s

instructions. Total genomic DNA (for ALU-gag LTR qPCR) and RNA (for

HIV-1 copy number RT-qPCR) was simultaneously extracted using the

RNeasy Midi Kit (QIAGEN) as previously described (93). Briefly, the

disrupted spleen and tumor material was resuspended in RLT lysis

buffer (QIAGEN) as per the manufacturer’s instructions. After RNA

isolation, genomic DNA was eluted from the RNeasy gel-silica

membrane by addition of DNA- and nuclease-free isolation buffer

(8.0 mM NaOH). Columns were left at 55°C for 10 min and centrifuged

at 5,000g for 3 min at room temperature. pH of samples was adjusted

with Hepes to pH 7–8 and supplemented with 1.0 mM EDTA.

HIV-1 Alu-PCR integration assay

Genomic DNA were extracted from splenocytes of HIV-1 NL4-3–

infected humanized NSG mice and from tumors derived from NSG

mice engrafted with HIV-1 NL4-3–infected LCLs. A two-step PCR

amplification was performed as described (94). The first PCR am-

plification was performed on 300 ng of genomic DNA, or no template

controls with the genomic Alu forward 59-GCC TCC CAA AGT GCT GGG

ATT ACA G-39 and HIV gag reverse 59-GTT CCT GCT ATG TCA CTT CC-39

primers. The reactions were performed in 50 μl: 1× PCR buffer, 1.5

mM MgCl2, 0.3 mM dNTPs, 0.1 μM Alu forward primer, 0.6 μM gag

reverse primer, and 0.05 units of Jump start Taq DNA polymerase/μl

(Sigma-Aldrich). The thermal cycler ABI 7500 (Applied Biosystems)

was programmed to perform a 2-min hot start at 95°C and then 20

cycles of the following steps: denaturation at 95°C for 30 s,

annealing at 50°C for 30 s, and elongation at 72°C for 3 min and 30 s

with a final extension at 75°C for 5 min. The second-round real-time

quantitative PCR was performed using 10 μl of the reaction from the

first PCR amplification with the LTR (R) forward 59-TTA AGC CTC AAT

AAA GCT TGC C-39; LTR (U5) reverse, 59-GTT CGG GCG CCA CTG CTA GA-

39 primers. The wild-type probe primer sequence was 59-FAM-CCA

GAG TCA CAC AAC AGA GGG GCA CA-TAMRA-39. Reaction was carried

out in 20 μl reaction mix that contained 1× PCR buffer, 3.5 mM MgCl2,

0.005 μM carboxy-X-rhodamine (ROX; Molecular Probes), 0.3 mM

dNTPs, 0.25 μM LTR forward and reverse primers, 0.1 μM wild-type

probe, and 0.125 units of JumpStart Taq DNA polymerase/μl (Sigma-

Aldrich). The reactions were performed on an ABI 7500 instrument

(Applied Biosystems) with the following thermal program: 5 min hot

start at 95°C and then 50 cycles of the following steps: denaturation

at 95°C for 15 s and annealing and elongation at 60°C for 30 s. The

ABI 7500 measurement point was at elongation 60°C-30 s.

Purification of mouse antihuman CD8 antibody

The OKT-8 hybridoma cells (mouse IgG2a; ATCC) (73) were gradually

adapted to the serum- and protein-free PFHM-II medium (Cat. no.

12040-077; Thermo Fisher Scientific, [formerly Gibco]). Adapted cells

were cultured in BD CELLineTM 1000 flasks (Cat. no. 353137; BD)

according to the manufacturer’s recommendation. Antibodies were

precipitated from the culture supernatant by addition of an equal

volume of saturated ammonium-sulfate solution. After buffer ex-

change to PBS using PD-10 desalting columns (Sephadex G25medium;

GE Healthcare), antibodies were sterilized by filtration through 0.2 μm

(Filtropur S 0.2; Sarstedt) and stored at 4°C until use. Antibody purity

was assessed by PAGE and Coomassie Brilliant Blue staining, protein

concentration was determined by OD280 nm measurement (using an

extinction coefficient of 1.37 (at 1 g/l) for concentration calculation)

and CD8-binding was confirmed by flow cytometry.

CD8+ T-cell cloning and restimulation

The LMP2426–434–specific CD8+ T-cell clone that detects the

CLGGLLTMV epitope presented on HLA-A*0201 used in this study has

previously been described (72). CD8+ T-cell clones specific for EBNA1

were generated from freshly isolated PBMCs which were depleted

of CD4+ T cells using anti-CD4 conjugated MACS microbeads and

magnetic selection (Miltenyi Biotec). Additional CD8+ T-cell clones

specific for EBNA3A and –C were generated without prior CD4+ T-cell

depletion. PBMCs were stimulated with 5 μMof EBNA1 HPVGEADYFEY

peptide or EBNA3A–C peptide mix (EBNA3A: FLRGRAYGL, RPPIFIRRL,

YPLHEQHGM, RLRAEAQVK; EBNA3B: IVTDFSVIK; and EBNA3C: RRIY-

DLIEL, EENLLDFVRF) for three to 4 h. Responding cells were enriched

by IFN-γ secretion assay (130-054-201; Miltenyi Biotec) and were

cloned by limiting dilution at 3 and 30 cells per well on HLA-

matched gamma-irradiated LCLs (104/well) loaded with the relevant

peptide or peptide mix at 5 μM and allogeneic gamma-irradiated,

PHA-treated PBMCs (105/well) in IL-2-supplemented (150 IU/ml)

medium with 10% pooled human sera (T cell medium). Growing

microcultures were screened for peptide reactivity by IFN-γ ELISA

(3420-1H-20; Mabtech). Selected CD8+ T-cell clones were expanded

on autologous gamma-irradiated LCLs loaded with the relevant

peptide at 5 μM and allogeneic gamma-irradiated, PHA-treated

PBMCs in T-cell medium. Clones were maintained in the T-cell

medium. Every 2–3 wk, CD8+ T-cell clones were restimulated with

gamma-irradiated peptide-pulsed autologous LCLs and allogenic PHA-

treated PBMCs. To control for specific recognition of target cells, 5,000

CD8+ T-cell clones were co-cultured with 50,000 autologous LCLs. After

overnight incubation, co-culture supernatants from single wells were

tested by ELISA for IFN-γ content. The resulting additional CD8+ T cell

clones used in this study were specific for EBNA1407-417 (HPVGEADYFEY,

HLA-B*3501, clones from two donors), EBNA3A325-333 (FLRGRAYGL,

HLA-B*0850), and EBNA3C281-290 (EENLLDFVRF, HLA-B*4402). The

CD8+ T-clone–specific for Influenza MP(58-66) GILGFVFTL presented on

HLA-A*0201 described previously (95) was kindly provided by Jean-

Francois Fonteneau, Nantes, France. The CD8+ T clones D11 and D12

specific for HIV-1 gag peptide SLYNTVATL and HIV-1 pol peptide

ILKEPVHGV presented on HLA-A*0201, respectively, were kindly

provided by Yanchun Peng and Tao Dong, Oxford, UK. The CD8+ T

clone D13 specific for HIV-1 gag peptide SLYNTVATL presented on

HLA-A*0201 was kindly provided by Arnaud Moris, Paris, France.

In vitro killing assay

Cytotoxic activity of CD8+ EBV-specific T-cell clones against autol-

ogous or HLA class I–matched HIV-1–infected LCLs was assessed by

in vitro killing assays. X4-tropic HIV-1–infected LCLs and nonin-

fected LCLs were labelled with a lipophilic membrane dye (PKH67,
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Cat. no. MINI67; Sigma-Aldrich, or CellVue Claret Far Red, Cat. no.

MINCLARET-1KT; Sigma-Aldrich) according to the manufacturer’s

instructions. Infected and noninfected LCLs were incubated with

EBNA1-, EBNA3A-, EBNA3C-, or LMP2-specific CD8+ T-cell clones for

18 h at an effector to the target ratio of 5:1. Cells were stained with

the Zombie NIR live cell/dead cell discrimination dye (Cat. no. 423105;

BioLegend) and treated with the BD fixation/permeabilization kit for

intracellular staining of HIV-1 p24 core antigen using the HIV-1 p24

(Beckman Coulter) antibody. Specific lysis of HIV+ LCLs was deter-

mined by using the formula: % lysis = 100 ×([% p24+ of PKH67+ LCLs

without effectors − % p24+ of PKH67+ LCLs with effectors]/% p24+

PKH67+ LCLs without effectors). All culture conditions were run at least

in duplicates and when possible in triplicates, or higher replicates.

Statistics

Data were analyzed using GraphPad Prism software (v8.3.1). Nor-

mally distributed data were analyzed with a two-tailed t test, with

Welch’s correction if variances were significantly different as de-

termined by the f test. Paired data sets were compared with a two-

tailed paired t test or Wilcoxon matched pairs test. Mann–Whitney

test was used for non-normally distributed data to compare the

means of data sets. Multiple t tests were corrected by the Holm–

Sidak method. Two-tailed chi-squared (n > 10,000) test or Fisher’s

exact test (n < 10,000) was used for categorical data. Differences

were considered significant at P < 0.05 in two-tailed tests. For

analysis of RNA sequencing data, see RNA transcriptome analysis.

Study approval

Studies using HFL samples as well as peripheral blood samples of

healthy HIV-negative donors were reviewed and approved by the

Cantonal Ethics Committee of Zurich, Switzerland (protocols no.

KEK-StV-Nr.19/08 and 2019-00837). Studies using blood samples of

EBV+ PTLD donors and EBV+ infectious mononucleosis or control

donors, upon receipt of written informed consent, were reviewed

and approved by the Institutional Review Board of the University of

Hong Kong/Hospital Authority Hong Kong West Cluster (IRB ref-

erence no. UW 16-508 and EC 1940-02). The study of PTLD patient

tissue microarray material was reviewed and approved by the

Ethics Committee of Northwestern and Central Switzerland (pro-

tocol no. EKNZ 2014-252). Research was conducted in accordance

with the Declaration of Helsinki. Animal protocols were approved by

the veterinary office of the canton of Zurich, Switzerland (protocol

nos. 148/2011, 209/2014, 93/2014, and 81/2017).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000640.
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Landtwing V, Quast I, Styles CT, Spohn M, et al (2017) Persistent KSHV
infection increases EBV-associated tumor formation in vivo via
enhanced EBV lytic gene expression. Cell Host Microbe 22: 61–73.
doi:10.1016/j.chom.2017.06.009

54. Collin M, Gordon S (1994) The kinetics of human immunodeficiency
virus reverse transcription are slower in primary human macrophages
than in a lymphoid cell line. Virology 200: 114–120. doi:10.1006/
viro.1994.1169

55. Fernandez-Larsson R, Srivastava KK, Lu S, Robinson HL (1992)
Replication of patient isolates of human immunodeficiency virus type 1
in T cells: A spectrum of rates and efficiencies of entry. Proc Natl Acad Sci

U S A 89: 2223–2226. doi:10.1073/pnas.89.6.2223

56. Srivastava KK, Fernandez-Larsson R, Zinkus DM, Robinson HL (1991)
Human immunodeficiency virus type 1 NL4-3 replication in four T-cell
lines: Rate and efficiency of entry, a major determinant of
permissiveness. J Virol 65: 3900–3902. doi:10.1128/jvi.65.7.3900-3902.1991

57. Palmer BE, Neff CP, LeCureux J, Ehler A, DSouza M, Remling-Mulder L,
Korman AJ, Fontenot AP, Akkina R (2013) In vivo blockade of the PD-1
receptor suppresses HIV-1 viral loads and improves CD4+ T cell levels
in humanized mice. J Immunol 190: 211–219. doi:10.4049/jimmunol.
1201108

58. Crotzer VL, Christian RE, Brooks JM, Shabanowitz J, Settlage RE, Marto JA,
White FM, Rickinson AB, Hunt DF, Engelhard VH (2000)
Immunodominance among EBV-derived epitopes restricted by HLA-B27
does not correlate with epitope abundance in EBV-transformed
B-lymphoblastoid cell lines. J Immunol 164: 6120–6129. doi:10.4049/
jimmunol.164.12.6120

59. Subklewe M, Sebelin K, Block A, Meier A, Roukens A, Paludan C,
Fonteneau JF, Steinman RM, Münz C (2005) Dendritic cells expand
Epstein Barr virus specific CD8+ T cell responses more efficiently than
EBV transformed B cells. Hum Immunol 66: 938–949. doi:10.1016/
j.humimm.2005.07.003

60. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein
G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the
internal repeat region of the Epstein-Barr virus nuclear antigen-1.
Nature 375: 685–688. doi:10.1038/375685a0

EBV: HIV in humanized mice McHugh et al. https://doi.org/10.26508/lsa.202000640 vol 3 | no 8 | e202000640 17 of 19



61. Yin Y, Manoury B, Fahraeus R (2003) Self-inhibition of synthesis and
antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301:
1371–1374. doi:10.1126/science.1088902

62. Basler M, Kirk CJ, Groettrup M (2013) The immunoproteasome in antigen
processing and other immunological functions. Curr Opin Immunol 25:
74–80. doi:10.1016/j.coi.2012.11.004

63. Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH,
Stevanovic S, Schild H, Rammensee HG (1996) Coordinated dual
cleavages induced by the proteasome regulator PA28 lead to dominant
MHC ligands. Cell 86: 253–262. doi:10.1016/s0092-8674(00)80097-5

64. Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and
expression of MHC genes regulate peptide hydrolysis by proteasomes.
Nature 365: 264–267. doi:10.1038/365264a0

65. Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee
HG, Koszinowski UH, Kloetzel PM (1996) A role for the proteasome
regulator PA28alpha in antigen presentation. Nature 381: 166–168.
doi:10.1038/381166a0

66. Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E, Delgado JC, Welsh
RM, Karow ML, Murphy AJ, Valenzuela DM, et al (2011) Mice completely
lacking immunoproteasomes show major changes in antigen
presentation. Nat Immunol 13: 129–135. doi:10.1038/ni.2203

67. Moir S, Malaspina A, Li Y, Chun TW, Lowe T, Adelsberger J, Baseler M, Ehler
LA, Liu S, Davey RT, Jr, et al (2000) B cells of HIV-1-infected patients bind
virions through CD21-complement interactions and transmit infectious
virus to activated T cells. J Exp Med 192: 637–646. doi:10.1084/
jem.192.5.637

68. Coleman CB, Wohlford EM, Smith NA, King CA, Ritchie JA, Baresel PC,
Kimura H, Rochford R (2015) Epstein-Barr virus type 2 latently infects
T cells, inducing an atypical activation characterized by expression
of lymphotactic cytokines. J Virol 89: 2301–2312. doi:10.1128/jvi.03001-
14

69. Coleman CB, Daud II, Ogolla SO, Ritchie JA, Smith NA, Sumba PO, Dent AE,
Rochford R (2017) Epstein-Barr virus type 2 infects T cells in healthy
Kenyan children. J Infect Dis 216: 670–677. doi:10.1093/infdis/jix363

70. Coleman CB, Lang J, Sweet LA, Smith NA, Freed BM, Pan Z, Haverkos B,
Pelanda R, Rochford R (2018) Epstein-Barr virus type 2 infects T cells and
induces B cell lymphomagenesis in humanized mice. J Virol 92:
e00813–e00818. doi:10.1128/jvi.00813-18

71. White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C,
Savoldo B, Coutinho R, Bodor C, Gribben J, et al (2012) EBNA3B-deficient
EBV promotes B cell lymphomagenesis in humanized mice and is found
in human tumors. J Clin Invest 122: 1487–1502. doi:10.1172/jci58092
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