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Processing and Analysis of Large Volumes of Satellite-Derived 
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Reducing the large volume of TIROS-N series advanced very high resolution radiometer-derived data 
to a practical size for application to regional physcial oceanographic studies is a formidable task. Such 
data exist on a global basis for January 1979 to the present at approximately 4-km resolution (global 
area coverage data, :::, 2 passes _Per day) and in selected areas at high resolution Oocal area coverage and 
h1gh-resolut1on picture transm1ss10n data, at ""I-km resolution) for the same period. An approach that 
�as been successful for a number of studies off the east coast of the United States divided the processing 
mto two procedures: preprocessing and data reduction. The preprocessing procedure can reduce the data 
volume per satellite pass by over 98% for full-resolution data or by :::, 84% for the lower-resolution data 
while the number of passes remains unchanged. The output of the preprocessing procedure for the 
examples presented is a set of sea surface temperature (SST) fields of 512 x 1024 pixels covering a region 
of approximately 2000 x 4000 km. In the data reduction procedure the number of SST fields (beginning 
with one per satellite pass) is generally reduced to a number manageable from the analyst's perspective 
(of the order of one SST field per day). This is done in most of the applications presented by compositing 
the _data mto 1- or 2-day groups. The phenomena readily addressed by such procedures are the mean 
pos1t10n. of the _Gulf Strea_m, the envelope of Gulf Stream meandering, cold core Gulf Stream ring 
traJectones, statistics on diurnal warming, and the region and period of 18°C water formation. The 
flex1b1hty of this approach to regional oceanographic problems will certainly extend the list of appli­
cations quickly. 

INTRODUCTION 

In the past several years, the use of satellite-derived data for 
oceanographic research has increased dramatically owing to 
two major developments. First, three satellites carrying sen­
sors of practical value to oceanographers were launched in 
late 1978. Seasat had a number of active microwave sensors in 
addition to a visible and infrared radiometer and a passive 
microwave radiometer (see the special issue on Seasat 1 sen­
sors, Journal of Oceanic Engineering, volume OE-5, pages 72-
176, 1980). Nimbus 7 [Madrid, 1978] was equipped with one 
sensor designed to measure ocean color for use in chlorophyll­a studies and one sensor designed to measure passive micro­
wave radiation. TIROS-N [Schwalb, 1978] had the advanced 
very high resolution radiometer (A VHRR), capable of mea­
suring sea surface temperature (SST) to better than 1 °c. 
TIROS-N was the prototype of the third series of operational 
polar-orbiting meteorological satellites and has been followed 
by NOAA 6 through NOAA 10, all carrying an A VHRR or a 
slightly improved version of this sensor, the A VHRR/2. Digi­
tal data from these three satellites became readily accessible 
soon after their launch; since then a constant stream of digital 
data has been acquired from the operational satellites in the 
TIROS-N series. A large volume of the acquired data has been 
archived by the National Environmental Satellite, Data, and 
Information Service (NESDIS) of the National Oceanographic 
and Atmospheric Administration (NOAA) in Suitland, Mary­
land. 

The second major development was the design and en-
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coding of algorithms capable of processing data from these 
satellites and the emergence of inexpensive 32-bit minicompu­
ters running virtual operating systems on which these codes 
were implemented. The continued improvements of these soft­
ware packages with the addition of user-friendly interfaces 
such as that developed at the Rosenstiel School for Marine 
and Atmospheric Studies (RSMAS) of the University of 
Miami has made the integration of satellite-derived data into 
oceanographic research not only possible but practical and, 
more importantly, productive. As satellite oceanography has 
matured, researchers have realized that large numbers of satel­
lite passes are required to detail the spatial and temporal evo­
lution of the phenomena under study. When this became ap­
parent, the groups at RSMAS and the Graduate School of 
Oceanography (GSO) of the University of Rhode Island (URI) 
combined their resources to develop an archive of A VHRR 
passes of the western North Atlantic off the east coast of 
North America. Since January 1, 1982, an archive of over 6000 
AVHRR passes has been acquired; this effort continues with 
the addition of over 1500 passes per year. For many research 
projects a small number of the passes have been used at full 
resolution [e.g., Lilley et al., 1986; Flament et al., 1985]. With 
the archive in hand, however, it has become apparent that 
other projects heretofore not undertaken were possible and 
offered significant scientific contributions if the data in the 
archive could be reduced to a manageable size of regularly 
spaced estimates of the SST field in the areas of interest. 

In this paper we focus on the strategy of preprocessing and 
data reduction that we have adopted to this end and briefly 
discuss several of the more recent applications as examples of 
the possible uses of the reduced data set. We present only 
those examples using coarse-resolution (:::; 4) SST fields. These 
fields were derived from the high-resolution data in the 
RSMAS-GSO archive, but they could have been derived as 
easily from the coarse-resolution global data (:::; 4-km resolu­
tion) available from NESDIS. In particular, we note that tech­
niques have been developed to deal with moderate numbers of 
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Fig. 1. Preprocessing steps. 

satellite passes at full resolution [Evans et al., 1985] but that these techniques are not as readily extended to very large numbers of lower-resolution images. All of the data used were from the A VHRR sensor [Schwalb, 1978] carried aboard the TIROS-N satellite series. All the processing was performed using software developed at RSMAS with modifications made at GSO. Some of the processing was performed on the 
RSM AS VAX 11/780 and the remainder on the GSO VAX 11/750. 

DATA ANALYSIS 

Processing of the data is logically divided into two pro­cedures: preprocessing and data reduction. First, a standard set of algorithms is applied to the data from each pass. This results in an SST value for each pixel in the original pass and a significant reduction in the total volume of data per pass but not in the number of passes in the data set. In the !\econd procedure the number of SST fields in the data set is reduced in one fashion or another depending on the phenomena being studied. 
Preprocessing 

Figure 1 shows the steps involved in preprocessing, steps common to all of the applications presented below. The data are ingested or read into the computer (step 1 in Figure 1 and Table 1). The data ingested are complete AVHRR high resolu­tion picture transmission (HRPT) passes downlinked (ac­
quired from the satellite in real time) at Wallops Island, Vir­
ginia. An HRPT pass consists of the approximately 11 min of data collected by the satellite and immediately transmitted to a ground receiving station while the receiving station is within 
the field of view of the satellite. Two other data formats are 

possible from the AVHRR: local area coverage (LAC) data, which are recorded on the satellite and transmitted to a re­
ceiving station on command at some later time, and Global Area Coverage (GAC) data, which are processed on the satel­lite to a reduced spatial resolution, recorded on board, and ,hen downlinked on command to a receiving station. LAC data are similar to HRPT data in all respects except for their remote acquisition; LAC and HRPT data are both collected at the full resolution of the sensor. GAC data are recorded in complete orbits and are of degraded resolution, but in all other respects they are similar to HRPT and LAC data. We return to this point later. As was stated above, all of the processing begins with HRPT data. Although either four or five channels of data are available, only channel 4 for TIROS-N, NOAA 6, NOAA 8, and NOAA 10 or channels 4 and 5 for NOAA 7 and NOAA 9 were used for the processing discussed here; hence only these data were read into the system. All 10 bits were retained in this step. Keeping only one or two of the five channels results in a reduction in the data volume of between 60% and 75% (Table 1). In the second preprocessing step, only the warmest pixel in each 4 x 4 pixel square was retained. This results in approxi­mately 4-km resolution at nadir (the point directly beneath the satellite) and a reduction in the volume of data remaining after step I of over 97% (Table 1). The spatial resolution of the decimated data is similar to that of GAC data. This means that all of the applications discussed below as well as future applications of the same nature could have been accomplished as easily with GAC data. In preprocessing GAC data, step 2 would have been omitted, while all remaining steps in the 
sequence would have been the same. This is significant, since GAC A VHRR data are available in digital form on a global basis from January 1979 to the present, while HRPT and LAC data are available only for selected regions and periods. In the analysis of individual passes or small numbers of passes where the location of features from one day to the next is important, the images are carefully navigated (Earth­·tocated). This results in a root-mean-square (rms) uncertainty in the geographic location of any pixel in the image of less than 1.5 km. In the processing described here, careful navi­
gation of the data was not performed because of the fairly coarse resolution resulting from step 2. The location of pixels in the unnavigated images (i.e., using only the estimate of satellite location available from other sources but no manual correction for satellite attitude) was found to vary from satel­lite to satellite with a maximum rms error for NOAA 7 of 9.6 km (both months in Table 2 are combined for NOAA 7). Thus on the average, even without careful navigation, the location of any pixel in the decimated data is known to within three pixels. 

TABLE 1. Data Reduction in Preprocessing Steps 
A VHRR Four-Channel Radiometer A VHRR/2 Five-Channel Radiometer 
Bits of Data Bits of Data Remaining at Percentage Remaining at Percentage End of Step, of End of Step, of Step x 106 Original x 106 Original 

328.0 100.0 410.0 100.0 
I 81.9 25.0 164.0 40.0 2 5.2 1.6 10.5 2.6 3 4.2 1.3 4.2 1.0 4 4.2 1.3 4.2 1.0 



CoR ILLON ET AL: SATELLITE THERMAL INFRARED DATA 12,995 

TABLE 2. avigational Accuracy Statistics 

Satellite Month N t:lx u, t:ly u, 

OAA 6 May 1983 19 2.62 3.16 2.45 6.25 
NOAA 6 July 1984 21 2.82 6.84 4.31 4.84 
NOAA 7 May 1983 29 -1.18 3.27 4.75 5.38 
NOAA 7 July 1984 45 6.98 5.88 0.30 5.09 
NOAA 8 May 1983 23 1.73 3.78 1.66 2.35 
NOAA 8 July 1984 22 2.24 4.38 0.72 2.18 

Following decimation of the data, the N ESDIS [ 1982] algo­rithm, designed to compensate for atmospheric attenuation in the retrieval of SST values from the radiometric data, was 
applied to the NOAA 7 and NOAA 9 data (step 3 in Figure 1 and Table 1 ). A review of the theoretical basis and the history of the development of this algorithm as well as a number of forms that the algorithm might take are given by McMillin 

and Crosby [ 1 984]. The input to step 3 consists of two 10-bit data values for each pixel, one for channel 4 and one for channel 5. The output is one 8-bit temperature value for each 
pixel, hence an additional 60% reduction in the data volume. 
For TIROS-N, NOAA 6, NOAA 8, and NOAA 10, the 
channel 4 brightness temperature is simply converted to an 
equivalent SST value on a pixel-by-pixel basis with no at­tempt to compensate for atmospheric attenuation. The input 
in this case is one 10-bit channel and the output is one 8-bit SST value, yielding a 20% reduction in the data volume. For data from all of the A VHRR sensors, the increased path length through the atmosphere at the edge of a scan line (swath edge) is significantly larger than it is directly beneath the satellite (nadir). This results in a significant depression for 
retrievals seen at the swath edge, relative to in situ measure­ments, from both five-channel and four-channel radiometers. Theoretical as well as empirical characteristics of the relation­
ship between the nadir angle to the pixel and the SST are discussed by Maul [ 1983] and Llewellyn-Jones et al. [ 1984]. Basically, because the path length increases inversely with the 
cosine of the angle between the normal at the pixel of interest ·and the vector from the pixel to the satellite, the difference 
between SST retrievals and in situ measures is expected to increase inversely with the cosine of this angle. The coefficient for this cosine term was determined from 2 1 2  NOAA 7 re­trievals compared with simultaneous, cloud-free in situ obser­vations available from a mooring located at 34°N, 70°W. The equation used was 

T.' = T. + r(-1- - 1) +, cos e (1) 

where T,' is the corrected T, value; T, is the derived surface temperature, assuming no scan angle dependence; y and ( art constants; and 8 is the angle from the normal to the Earth's 
surface at the pixel of interest. The constants y and ( were 
determined by regressing the satellite-derived values on in situ 
data obtained from a fixed mooring. The rms deviation of the 
satellite-derived SST values about the buoy data was reduced from l.37°C to 0.5 1 °C using this equation with regression values of y = -2. 172 and ( = 0.623. (These coefficients were obtained for the western Sargasso Sea and may differ in other 
regions of the world ocean.) The SST retrievals for all 
NOAA 7 passes were corrected for limb darkening (step 4 in Figure 1 and Table 1 )  using ( 1 ). This resulted in no reduction in the volume of data but improved the temperature estimates. 

The total decrease in the data volume in the first four steps is over 98% for both the four-channel and five-channel radi­
ometers. The results of the preprocessing procedure are saved 
for further data reduction in the second stage of data pro­
cessing. 
Data Reduction 

The first step in the data reduction procedure (Figure 2) consists of remapping all the passes to a common coordinate system. This step does not result in a reduction in the number 
of SST fields but does result in a reduction in the volume of data; hence it might have been included in the preprocessing 
group. However, because the output of this step differs from study to study, it has been included here. The actual coordi­
nate system and its center, pixel spacing, and geometric characteristics depend on the study. This step results in an 
additional reduction of 50% in the volume of data passed from the preprocessing procedure. For all the studies dis­cussed below, the common characteristics of the remapped 
images are as follows: 5 1 2  x 5 1 2  pixels, rectangular coordi­
nate system in longitude and latitude, and pixel spacing of between 0.02° ad 0.04° latitude. Note that this yields pixels separated by less than the separation of pixels provided from 
the previous step, an apparent increase in resolution. In fact, 
the amount of information has not been increased; pixel 
values have simply been repeated where necessary by the re­
mapping algorithm. This was done to provide the maximum 
visual coherence when the images were displayed on the moni­tor in the processing steps. 

The next step differs significantly from study to study. In the applications presented below, three different approaches have been used. They are similar in that they all involve a substan­tial reduction in the number of images or in the dimensions of 
the images to be analyzed to a manageable, coherent set. Except for the study of l8°C water formation, each study involves compositing images to reduce the impact of clouds and to develop SST fields at regular intervals. This turns out to be a key step. For studies such as the evolution of the Gulf 
Stream northern edge, the lack of continuity of the edge along with the irregularly spaced (in time) images made analysis of 
the data extremely difficult. From the composited data, fea­tures emerged that were not readily apparent in visual inspec­tion of the original images. 

The compositing of several images consists of retaining the warmest pixel at each location from among the set of images. 
Because clouds are colder than the SST, this step tends to reduce cloud contamination. In this compositiong step, the 
scan angle correction is of particular importance. Details of the data reduction, following remapping of the 
satellite passes to a common coordinate system, are covered in the discussion of specific applications given below. The ad­ditional reduction in the volume of data in these steps exceeds 95% in the four examples presented below. 

APPLICATIONS 
Gulf ::icream Path 

For studies of the Gulf Stream path including such phe­
nomena as meandering of the stream, mean path position, ring formation, etc. , we have found that 2-day composites retain 
the important short-term phenomena while at the same time 
providing a significant reduction in the number of images to be analyzed and decreasing the adverse impact of cloud cover on the analysis. All of the TIROS-N series AVHRR data were 
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included in these composites. In general, the RSMAS/GSO archive contains an average of five images per day ; hence 
compositing all the passes over 2 days results in a reduction of 
1 order of magnitude. For the period studied, April 1982 through September 1984, the number of SST fields was re­
duced from approximately 4000 to 408 in this step. Next, the 
northern edge of the Gulf Stream was digitized subjectively. Subjective location was found to be more accurate than any of 
the conventional objective algorithms used to locate the Gulf 
Stream [ Cornillon and Watts, 1987]. The rms difference be­
tween the northern edge of the Gulf Stream east of Cape Hatteras and west of 70°W located subjectively and the lo­
cation of the 15°C isotherm at 200 m (T1 5), determined from 
inverted echo sounders (IES), is less than 15 km [Cornillon and 

Watts, 1987]. 
Figure 3 shows the positions of the Gulf Stream's northern 

edge relative to a rhumb line from 36°N, 74°W to 39°N, 60°W 
for 1982 to 1984. Downstream propagation of meanders is seen throughout the time period. The heavy line extending 
from April to December 1983 shows such a meander. The two changes of slope of the line represent changes in the phase speed of the wave. Large meanders that break off and form Gulf Stream rings (discussed in more detail below) are also 
evident, e.g., at 69°W in April 1984. The continuity of the data 
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Fig. 3.  Positions of the Gulf Stream northern edge relative to a 
rhumb line from 36°N, 74°W to 39°N, 60°W from 1982 to 1984 
[ Cornillon, 1986]. One realization is plotted for every 2 days. 

is evident, with long breaks only in August 1983 and February 1984 for the western half of the region. For the eastern half, 
which exhibits more extensive cloud cover and lower thermal 
contrast, breaks in continuity appear during the first and Ia:st 
several months of 1983. 

The data have been replotted in Figure 4 to display the 
envelope of northern edges. The 1982 data show an envelope wider than that of 1983. The 1982 data also show a quasi­
permanent meander (at 38°N, 66°W ;  evident in the mean 
track, the white line), which is not present in 1983. The data of the two years have some similarities. For example, all frames of Figure 4 exhibit a relative minimum in the width of the 
envelope at approximately 70°W. 

Contrary to previous perceptions, the data indicate that 
there is no significant increase in the envelope of meandering from 68° to 58°W [Cornillon, 1986]. This is evident in each year plotted and also in all 30 months combined. Cornillon [1986] also shows that the convolution within the envelope continues to increase downstream of the New England Sea­
mounts at nearly the same rate as it does upstream. The data 
indicate that the impact of the New England Seamounts ori Gulf Stream meandering appears to be small statistically. 

Cold-Core Ring Tracks 

Using the same data set compiled for Gulf Stream path studies, the trajectories of cold-core Gulf Stream rings were 
determined. The 2-day composites allowed for continuity in 
the tracking of cold-core rings, even more so than in determin­ing the Gulf Stream path. The lack of continuity in the indiv­
vidual images had made the tracking of cold-core rings diffi­cult or impossible, depending on the time of year, the age of the ring, and its distance from the Gulf Stream. Cold-core rings form when southern meanders of the Gulf 

75° 70° 65° 60° 

Fig. 4. Gulf Stream northern edges as in Figure 3, but superim­
posed on one another, for (top) April 19 to December 3 1 ,  1982, 
(middle) all of 1 983, and (bottom) April 1 9, 1 982, to September 30, 
1 984 [Cornillon, 1986]. The grey spots on the bottom plot represent 
water shallower than 3000 m (i.e., the New England Seamounts). The 
white line in the. middle of each set represents the mean track for that 
set. 
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Plate l .  Sequential two-day composite images showing formation of a cold-core ring from a southern meander of the 
Gulf Stream. (The color version and a complete description of this figure can be found in the separate color section in this 
issue.) 

Stream pinch off and separate from the main current. Plate 1 ,  
a sequence of images obtained from the 2-day composites used 
in the study, reveals such an event. (Plate 1 is shown here in 
black and white. The color version can be found in the sepa­
rate color section in this issue.) Once these cyclonically rotat­
ing rings are independent of the Gulf Stream, they propagate 
through the Sargasso Sea for up to several years [Lai and Richardson, 1977]. The rings later decay under the following 
mechanisms: dispersion, instability, interaction with mean 
flow, small-scale friction, and heat exchanges [Ring Group, 
198 1]. It has been estimated that five to eight cold-core rings 
form each year [Lai and Richardson, 1977], with up to 10 
rings drifting in the Sargasso Sea at any one time. 

Tracking cold-core rings as they move away from the Gull 
Stream is made especially difficult by the low thermal contrast 
between the rings and the surrounding Sargasso Sea water, 
intermittent cloud cover, and the relatively large number of 
rings in the area. Until recently, satellite infrared imagery has 
proven valuable in identifying only newly formed rings or 
rings adjacent to the Gulf Stream, which have entrained warm 
Gulf Stream water around themselves [Lai and Richardson, 
1977]. Although at the time that a ring is formed, the thermal 
contrast between it and the surrounding water is high, it is 
soon capped with a relatively warm layer that substantially 
decreases the thermal contrast. When the contrast is weak, a 
clear unobstructed view of the entire ring is required to identi-
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Plate 1 [Cornillon et al.]. Sequential 2-day composite images showing formation of a cold-core ring from a southern 
meander of the Gulf Stream. The northern edge of the Gulf Stream is outlined in yellow. 
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fy it in satellite-derived SST fields. Because clouds often ob­

scure parts of the ring, such clear views are rare. This results 

in detection of a given ring at irregularly spaced intervals 

(weeks). Given the relatively large number of rings in the 
region and the long intervals separating observations, it be­

comes difficult or impossible to associate a given observation 

with a given ring. The compositing of images described above 

often shortens the interval of time between "clear" views of the 

ring, thus allowing for the association of an observation with a 

previously detected ring. This has enabled us to determine 

long-term tracks of the ring's positions. Figure 5 shows cold­

core rings tracked between April 1982 and November 1984. 

While the general movement of the rings is to the southwest, 

specific tracks often deviate in direction and frequently make 

complete reversals. For example, one ring (Figure 5, inset), 

which formed in June 1982, made several abrupt reversals in 

direction. After leaving the Gulf Stream, the ring traveled to 

the west from 65° to 69°W with an average speed of approxi­

mately 5 km/d. It then attached itself to the Gulf Stream and 

traveled in an anticyclonic loop. Once again free of the Gulf 

Stream, the ring propagated between 68° and 72°W at a uni­

form speed of 1 2  km/d. This speed is higher than the previous 

estimated maximum speed of cold-core rings [Lai and Rich­

ardson, 1 977]. The ring later attached itself to the Gulf Stream 

twice more before decaying. 

The rings we observed rarely traveled in a uniform direction 

throughout their life cycle. Only a few failed to attach to the 

Gulf Stream and consequently reverse direction. One notable 

exception is a ring which formed in April 1 982, traveled due 
south, circled to the east around Bermuda, and then drifted 

southwest across the Sargasso Sea (Figure 5). 

Diurnal Warming 

Day-night SST differences in excess of 3°C under conditions 

of very low wind and high solar insolation have recently been 

reported by Stramma et al. [ 1986] using a small number of 
full-resolution satellite A VHRR passes. In a second study, Cor­

nillon and Stramma [1 985] obtained statistics on the location 
and frequency of occurrence of such events in the western 
Sargasso Sea. Because the SST retrievals possible from an 

instrument with two spectral channels in the 10- to 1 2-µm 

atmospheric window are superior to those with only one 

Bermuda 
, 

+ �tli ����A�ED BY 

• RING FORMED 

30°N L--"-���� __J'--����-'---�����-'--� �  

Fig. 5. Long-term tracks of cold core rings between April 1982 
and November 1984. The inset shows the track of one ring which 
formed in June 1 982. 

channel [McMillin and Crosby, 1984], only data from the 

NOAA ?-borne A VHRR were used. Figure 2 (center) shows 

the data reduction steps for diurnal warming studies. The re­

mapped images, centered on 29°N, 67.5°W and with a grid 

spacing of 0.044° latitude and 0.050° longitude, are com­

posited into daytime images and nighttime images. Consecu­

tive pairs of nighttime composites are then composited and 

subtracted from the intervening daytime composite. The result 

is an estimate of the day-night SST difference for the given day 

in one image per day, a reduction of about 66% in the number 

of images. These images were then screened manually (the 

only subjective step) to eliminate extraneous day-night SST 

differences resulting either from incorrect temperature re­

trievals at the edge of clouds in one or more of the passes or 

from the displacement of mesoscale oceanographic features 
such as rings or the edge of the Gulf Stream. SST differences 

were then binned in 1 °C intervals between 1 ° and 5°C (day 
warmer than night). The final step consisted of counting the 

fraction of times each month that a given pixel showed diurnal 

warming in excess of 1 °, 2° , 3°, and 4°C. The result for July 

1982 is shown in Plate 2. (Plate 2 is shown here in black and 

white. The color version can be found in the separate color 

section in this issue.) The analysis was performed for the sum­
mers (April through September) of 1982 and 1983 [Cornillon 

and Stramma, 1 985]. 

Formation of l8°C Water 

A further application of this method of data processing re­

lates to the region and time during which l 8°C water (or 

Subtropical Mode Water) is formed. The analysis performed 

thus far is for the winter and spring of 1983. Of the examples 

presented, this is the only one in which the images were not 

composited in one fashion or another. The starting point was 

the same as for the diurnal warming work, i.e., only NOAA 7 

passes resulting from the preprocessing step were used. The 

data were remapped to a coordinate system rectangular in 
longitude and latitude and centered on 35.5°N, 66.5°W (Figure 

2, right). The grid spacing used was 0.030° of latitude and 

0.037° of longitude. Each pixel therefore represents an area of 

about 1 1  km2 . Because good SST estimates are critical to this 

study and because clouds depress the temperature, it is neces­

sary to mask clouds where possible. An SST value was re­

moved as possibly cloud contaminated on the failure of one of 
two statistical tests made on the 3 x 3 pixel square centered 

on the pixel in question. If the mean SST value of the square 

was less than 1 5°C, an unrealistic value for areas south of the 

Gulf Stream, or if the maximum minus minimum SST values 

exceeded 2°C, the center pixel of the square was masked in 
subsequent calculations. This is different from algorithms of 

others such as McClain et al. [ 1985] or Kelly and Davis 

[1986] in that only the SST values were used as opposed to all 

spectral channels. In the next step the mean SST, excluding 
masked pixels, was calculated in 64 x 64 pixel (approximately 

2 1 5  x 2 1 5  km) squares, resulting in new very-coarse­

resolution, 8 x 8 pixel images. Over 450 such images were 

obtained for the period from January 1983 through May 1 983. 

The mean SST for each of the new pixels was then plotted as a 

function of time. Figure 6 shows the plots of 35 such time 

series for pixels seaward of the Gulf Stream. The time series 

were smoothed with a 3 x 3 median filter. Comparisons of the 

resulting smoothed SST time series with in situ surface tem­

perature measurements show that the satellite-derived SST 
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July 82 

.. 

Plate 2. Probability distribution map of dirunal warming in excess of l°C for July 1982. (The color version and a 
complete description of this figure can be found in the separate color section in this issue.) 

values represent very well the surface temperature of the west­

ern Sargasso Sea. 

Note the decrease in SST for the square centered at 

36°28'N, 58° 1 8'W (Figures 6 and 7) from more than 20°C on 

January 1 ,  1983, to L8°C on February 1 5  and then the increase 
in SST beginning on April 20 and continuing to the end of the 

record. From February 1 5  through April 20 the SST in this 

area remained very slightly below 1 8°C;  hence l 8°C water 

formation would have been possible for this period. Satellite­

derived SST fields are an ideal way to observe l 8°C water 

formation, since ships are not able to collect data covering 

large horizontal scales repeatedly over extended periods of 

time. 

CONCLUSION 

The task of applying the large volume of satellite data cur­

rently available to regional oceanographic problems can often 

be difficult and time consuming. We have presented one ap­

proach to this problem that we have found to be successful in 

a number of applications. Several results of these applications 

have been presented as an example of the flexibility and utility 

of this general approach. The processing is divided into two 

logical procedures : preprocessing and data reduction. In the 

preprocessing, all the operations are the same for each appli­

cation and are not dependent on the intended application of 

the data. These operations result, at least for the regional 

studies discussed here, in a reduction of over 98% in the 
volume of data, from numbers such as 1 08 bytes for a 3-year 

set of over 4000 A VHRR passes of the western North Atlantic 

to 2 x 106 bytes. The output of the preprocessing is SST fields 

of 5 12  x 1024 pixels covering an area of 2000 x 4000 km. The 

important consideration in preprocessing is the reduction in 

resolution to pixels separated by approximately 4 km in the 
along-scan and across-scan directions at nadir. This resolution 
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Plate 2 [Cornillon et al.]. Probability distribution map of diurnal warming in excess of 1 °C for July 1982. The color 
key is grey for the masked area, black for 0%, red for 1 %-5%, green for 6%-10%, yellow for 1 1  %-15%, blue for 
16%-20%, white for 2 1  %-25%, and pink for more than 25%. The horizontal grid lines represent 20°, 25°, 30°, and 35°N 
from bottom to top. The vertical grid lines represent 60°, 65°, 70°, and 75°W from right to left. 
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Fig. 6 .  Time series plots for 35 pixels seaward of  the Gulf Stream in 1983. Gulf Stream tracks for April 1982 through 
September 1984 are included as a reference. 

is sufficiently fine for the applications discussed while at the 
same time not so fine that the volume of data retained is unneccessarily cumbersome. The data reduction steps varied depending on the intended application, but always resulted in a reduction in the number of SST fields in the data set. Except for the work on l8°C water formation, this reductiou is accomplished by composi­ting images into either 1- or 2-day sets. For the study of Gulf Stream path dynamics and of-cold-core ring trajectories, 2-day 
composites appear to be appropriate, since the scales of motion associated with the 4-km spatial resolution are re­tained, while at the same time clouds are often composited out of the images. A longer interval of compositing would result in the loss of temporal information associated with the Gulf 

Fig. 7. 

24 
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Magnification of the time series plot in Figure 6 for the pixel 
centered on 36°28'N, 58° 1 6'W. 

Stream, while shorter intervals would have significantly in­creased gaps due to clouds. The relatively continuous time 
series was seen to make a critical contribution toward facili­tating interpretation of the data. Also of importance is the fact that the resolution of data 
used in our studies is similar to that of GAC data. These data are available globally from January 1979 to the present in the 
federal archive at NESDIS and can be applied in a fashion similar to that described in this manuscript anywhere on the earth's surface. 

In summary, to use the large volume of satellite data for oceanographic studies, the volume of data must be reduced for 
processing, and the number of SST fields must be reduced for the analyst. Accomplishing both of these objectives will in­crease the practicality of using satellite data for future oceano­graphic research. 
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