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Abstract   

   

 Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative 

disorder characterized by progressive gait and, limb ataxia, cardiomayopathy, 

diabetes mellitus, optic atrophy and hearing loss.  It is most often caused by 

homozygous expanded (GAA)∙(TTC)n repeats within intron 1 of the FXN gene, 

resulting in severely reduced levels of frataxin protein.  The exact mechanisms of 

how the expanded (GAA)∙(TTC)n repeats reduce FXN transcription are not fully 

understood.  However, many studies have suggested that the expanded repeat may 

induce epigenetic modifications that cause the FXN transcription inhibition to occur. 

In the past few years, epigenetic modifications have been given considerable 

attention as an important mechanism that is contributing to the aetiology of FRDA.  

This thesis investigated histone acetylation and methylation in three different regions 

of the FXN gene: FXN promoter, upstream GAA and downstream GAA, using 

chromatin immunoprecipitation (ChIP) and quantitative reverse transcriptase PCR 

(qRT-PCR) of the human and transgenic mouse brain tissues.  Furthermore, the 

frataxin mRNA levels were investigated in autopsied brain tissues from an FRDA 

patient and FXN transgenic mouse brain, heart and liver tissues.  In addition, a 

preliminary study that investigated the effect of a histone deacetylase inhibitor 

(HDACi) on FXN transcription and histone modifications (acetylation) of transgenic 

mouse brain, heart and liver tissues was conducted.   

Results showed an overall significant decrease in the acetylation pattern of 

H3K9ac and H4K16ac residues in all three regions within FXN gene.  Moreover, a 

significant increase in the di- and trimethylation pattern of the H3K9me2 and the 

H3K9me3 residues was identified in all three regions of the FXN gene.  The results 

were comparable between the FRDA patient and transgenic mouse (YG8, YG22) 

brain tissues.  The FXN mRNA levels showed a significant decrease in all transgenic 

mouse brain, heart and liver tissues, which is comparable with the FXN mRNA level 

of the FRDA patient brain and heart tissues.   
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Results for the preliminary HDACi study showed an approximate 20-30 % 

increase in the FXN mRNA level in different transgenic mouse tissues after 3 days 

intake at 150mg/kg dose. In addition, there was an increase in the acetylation pattern 

of the H3K9ac and the H4K12ac in the HDACi treated transgenic mouse brain 

tissues.  

These studies will aid the understanding of FXN epigenetic modifications and 

their contribution to FRDA disease; this is an exciting challenge leading to a new 

effective FRDA therapeutic pathway. 
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Chapter 1 

Introduction 

 
1.1 Ataxia  

The word ataxia originates from the Greek language meaning "lack of order".  

It is a neurological dysfunction of motor coordination that can affect muscle 

movements (Taroni and DiDonato 2004).  Ataxia may affect the fingers and hands, 

the arms or legs, the body, speech or eye movements.  It is a specific clinical 

manifestation implying dysfunction of parts of the nervous system that coordinate 

movement.  This includes cerebella, sensory, and vestibular ataxia.  Several possible 

causes exist for these patterns of neurological dysfunction, such as hereditary ataxia.  

Dystaxia refers to difficulty in controlling voluntary movements (Harding 1984). 

 

1.1.1 Inherited progressive ataxia disorders 

There are different types of progressive ataxias.  The inherited ataxias are 

characterized by problems of balance and coordination, hearing and vision as well as 

swallowing, slurred speech, weakening of the heart, diabetes, scoliosis (Box et al. 

2005).  There are two groups of hereditary ataxias.  Firstly, autosomal recessive 

ataxias, such as Friedreich ataxia (FRDA) and ataxia with isolated vitamin E 

deficiency (AVED) disorders.  These are mainly categorized by inactivating 

mutations leading to loss of cellular protein function, which will affect the energy 

process and oxidative stress in living cells.  Secondly, autosomal dominant 

spinocerebellar ataxias (SCAs).  These are categorized primarily by an expansion of 

CAG-triplet repeats in the coding region of the potential gene; this will cause an 

excess production of longer polyglutamine mutant protein, termed gain of function 

effect (Taroni and DiDonato 2004; Thompson 2008).  

http://en.wikipedia.org/wiki/Greek_%28language%29�
http://en.wikipedia.org/wiki/Neurology�
http://en.wikipedia.org/wiki/Muscle�
http://en.wikipedia.org/wiki/Nervous_system�
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The most common inherited progressive, neurodegenerative ataxia disorder in 

the United Kingdom is Friedreich ataxia (FRDA) (Harding 1981; Delatycki et al. 

2000; Puccio and Koenig 2002; Gomez-Sebastian et al. 2007). 

 

1.2 Friedreich  ataxia (FRDA)  

 Friedreich ataxia is a slow progressive, demoralizing ataxia (De Biase et al. 

2007b) which can lead to life in a wheelchair and early death as a result of 

cardomiopathy.  It is a rare autosomal recessive disease, affecting males and females 

equally (Andermann et al. 1976; Campuzano et al. 1996; Delatycki et al. 2000; 

Pandolfo 2003). 

 

1.2.1 The identification of FRDA  

The identification of FRDA began in the 1850s, when Nicholaus Friedreich, a 

professor of medicine, noted his observations on ataxia on nine members of three 

families (Friedreich 1876; Friedreich 1877; Chakravarty 2003).  In 1863, the disease 

was first described by Friedreich in his published papers as a ‘degenerative atrophy 

of the posterior columns of the spinal cord’ causing progressive ataxia, sensory loss 

and muscle weakness, frequently associated with scoliosis, foot deformity and heart 

disease (Friedreich 1863a,b; Friedreich 1863c; Pandolfo 1998).  By the end of the 

nineteenth century a significant number of cases were diagnosed as having FRDA 

and the disorder was first discussed at the Medical Society of London in 1880. 

 

1.2.2 Clinical Features 

 In Professor Nicholaus Friedreich’s time, and later in the nineteenth century, 

there was a debate on the different diagnostic criteria for FRDA.  It was extremely 

important to have a strict set of diagnostic criteria to make sure that all of the patients 

diagnosed with FRDA were fully suitable for further FRDA research studies.   
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 A different set of diagnostic criteria for FRDA proposed by Geoffroy 

(Geoffroy et al. 1976) and Harding (Harding 1981) are shown in Table 1.1.  The 

diagnostic criteria of Harding are more liberal, allowing the diagnosis of FRDA in 

the early stages of the disease (Delatycki et al. 2000). 

 Previously, patients observed with the following symptoms were considered 

to be affected with FRDA.  In most cases, the onset is around puberty (Harding 1981; 

Muller-Felber et al. 1993; Pandolfo 2003).  Early and late onset also exist (De 

Michele et al. 1994; De Michele et al. 1996; Pandolfo 2003).  

Table 1.1:  Different diagnostic criteria for FRDA proposed by Geoffroy (Geoffroy et al. 

1976) and Harding (Harding 1981).  The table is adapted from (Delatycki et al. 2000). 

 

Criteria Geoffroy et al, 1976 Harding, 1981 

Primary       

(essential 

 for 

diagnosis) 

 

 

1-Onset before the end of puberty. 

(never after the age of 20years) 

2-Progressive ataxia of gait. 

3-Dysarthria. 

4-Loss of joint position or vibration 

sense. 

5-Absent tendon reflexes in the legs. 

6-Muscle weakness. 

1-Age of onset of symptoms before the age of 

25 years 

2-Progressive unremitting ataxia of limbs and 

of gait. 

3-Absence of knee and ankle jerks. 

Secondary 

 

1-Extensor plantar responses. 

2-Pes cavus. 

3-Scoliosis. 

4-Cardiomyopathy. 

1-Dysarthria. 

2-Extensor plantar responses. 

 

Additional 

 

 If secondary criteria are absent, the following 

have to be present:  

1-An affected sib fulfilling primary and 

secondary criteria. 

2-Median motor nerve conduction velocities 

of greater than 40 m/s thus excluding cases of 

type I hereditary motor and sensory 

neuropathy (HMSN). 
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 The main neurological symptoms are: loss of tendon reflexes in the lower 

limb, spasm in lower limb, distal amyotrophy, scoliosis, dysarthria, nystagmus, pes 

cavus, loss of sensory nerve action, loss of the central and peripheral sensory, 

progressive limb and gait ataxia, impaired ambulation after 15-20 years from the 

initial onset.  

Heart disease plays a vital role in disability and early death.  The most 

common symptoms of heart disease are shortness of breath in 40% of the patients 

and palpitation in 11% of FRDA patients.  10-25% of FRDA patients are more 

susceptible to develop diabetes mellitus.  30% of FRDA patients develop optic 

atrophy and 20% suffer from hearing loss (Boyer et al. 1962; Harding 1981; 

Scrimgeour et al. 1996; Cossee et al. 2000; Delatycki et al. 2000; Pandolfo 2003). 

In recent years, technological advances in the medical field have raised the 

standard of the clinical evaluation of several complicated diseases such as FRDA, 

consequently improving the routine diagnostic procedure of the disorder.  Molecular 

genetic tests for FRDA are available as a primary step for the diagnosis, followed by 

other clinical assessments such as, magnetic resonance imaging (MRI) to assess the 

degeneration in the brainstem, spinal cord and cerebellum (Pandolfo 2003; Della 

Nave et al. 2008a; Della Nave et al. 2008b).  Magnetic resonance spectroscopy 

(MRS) is also used in the clinical assessment to measure very low quantities of 

metabolites in vivo in skeletal muscle and heart (Pandolfo 2003).   

 

1.2.3 Pathology   

FRDA affects the central nervous system (CNS), heart, muscles and pancreas 

in the human body (Figure 1.1) (Brice 1998; Taroni and DiDonato 2004).  The 

remarkable and first pathological changes occur in the dorsal root ganglia (DRG) 

(Figure 1.2) when the large sensory neurons degenerate.  Following this, loss of 

axons in the posterior columns, spinocerebellar and pyramidal tracts of the spinal 

cord occur (Harding 1984; Cossee et al. 2000; Simon et al. 2004; De Biase et al. 

2007b).  In addition, atrophy of the Clarke’s column, and the dentate nucleus of the 
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cerebellum takes place (Delatycki et al. 2000; Pandolfo 2003; Seznec et al. 2004).  

The large myelinated sensory fibres in peripheral nerves also degenerate (Pandolfo 

2003; De Biase et al. 2007b).  In a recent study, Della Nave and colleagues showed 

that there is a significant loss of the white matter and grey matter in FRDA patients, 

and these structural changes relate to the interval and the severity of the disease 

(Della Nave et al. 2008a). 

FRDA patients commonly develop heart disease; the most common cardiac 

defect is hypertrophy (Delatycki et al. 2000).  Hypertrophy is more common in 

young and early onset patients and is milder in adult or late-onset patients (Seznec et 

al. 2004).  Five percent of the patients are affected with hypertrophic 

cardiomyopathy for 2-3 years before they show any neurological symptoms (Harding 

1981).  The main clinicopathological symptoms of FRDA patients are mitochondrial 

dysfunction and iron deposits in specific myocardial cells (Pandolfo 1998).  

The full explanation of organ specificity of pathology in FRDA is still 

inconclusive, but it can be clarified by the alignment of different patterns of frataxin 

expression in different tissues.  In addition, different requirements for different 

tissues and frataxin in dealing with the iron accumulation and oxidative stress in the 

mitochondria (Delatycki et al. 2000).      

 

 

        

 

 

 

 

 

 

 

 

 

Figure 1.1: 
Overview of the main sites of 
neuronal loss and organ 
dysfunction in Friedreich 
ataxia.  Prominent frataxin 
expression in the large primary 
sensory neurons of dorsal root 
ganglia.  Pathological features are 
shown for the brain, spinal cord 
(SC), heart (H) presenting as 
cardiac hypertrophy and pancreas 
(P) presenting as diabetes.  Large 
dots indicate more severe 
neuronal loss.  Adapted from 
(Taroni and DiDonato 2004). 

DRG 
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1.2.4 Epidemiology and prevalence  

  FRDA has a prevalence of 1 in 50,000 in the Caucasian population (Lopez-

Arlandis et al. 1995).  In addition, FRDA is found in North Africa, the Middle East 

and India, although the incidence of the disease in the Far East, sub-Saharan Africa 

and Native America is very low (Pandolfo 2003).  

  According to a study conducted by Scrimgeour and colleagues in 1996, the 

prevalence of FRDA in the Middle East, specifically in Saudi Arabia is higher due to 

the high rate of consanguinity (Scrimgeour et al. 1996). 

 

1.2.5 Genetic background   
 

1.2.5.1 Inheritance pattern  

Neurodegenerative FRDA is an autosomal recessive trinucleotide repeat 

disease (Pelletier et al. 2003; Taroni and DiDonato 2004; Wells et al. 2005; Hebert 

2007; Hebert and Whittom 2007), which is caused by a pathological trinucleotide 

repeat expansion.  Between 96-98 % of FRDA patients are homozygous for a non-

Mendelian mutation, which is a pathological (GAA)n∙ (TTC)n expansion, in the first 

intron of the frataxin (FXN) gene (previously known as FRDA or X25).  This 

pathological expansion contributes to reduce the expression level of frataxin protein 

Figure 1.2:  

Dorsal root ganglion neurons of  

an embryonic rat (100X) (Paves 

2003). 
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by inhibiting the transcription of its corresponding gene (Pelletier et al. 2003; Seznec 

et al. 2004; Taroni and DiDonato 2004; Al-Mahdawi et al. 2006).  

2 to 4% of patients are compound heterozygotes, having an expanded repeat 

in the first allele and a point mutation (missense or splice site mutation) or a 

premature stop codon (non-sense mutation) in the second allele.  All missense 

mutations are in the C terminus, which is encoded by exon 4 and 5a (Section 1.2.5.5 

page 26).  These types of mutations will affect protein function or its interactions 

with other molecules, stability (Section 1.2.5.6 page 28) or expression.  Homozygous 

point mutations will cause a lethal phenotype (Bidichandani et al. 1997; Cossee et al. 

2000; Taroni and DiDonato 2004; Correia et al. 2006; Gottesfeld 2007; Hebert 

2007). 

 

1.2.5.2 FXN Gene mapping  

In 1988, the Friedreich ataxia gene was mapped to Chromosome 9, then localized in 

the long arm 9q13-21.1 by fine mapping and subsequent linkage studies (Figure 1.3) 

(Pandolfo 2003; Seznec et al. 2004; Correia et al. 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3:  

Ideogram of the human chromosome 9. Cytogenetic Location of frataxin 

gene: 9q21.1 (Yellow arrow).  Molecular Location: base pairs 70,840,163 to 

70,878,771 from pter (Mysid 2007). 

http://en.wikipedia.org/wiki/Chromosome_9_%28human%29�
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1.2.5.3 FXN Gene structure  

The FXN gene encodes for the frataxin mitochondrial protein which is 

composed of 210 amino acids (Campuzano et al. 1996; Cossee et al. 2000; Taroni 

and DiDonato 2004).  The FXN gene consists of seven exons spread over 95 

kilobases (kb) of genomic DNA.  Six exons (1,2,3,4,5a,5b) are coding regions and 

one exon (exon 6) is non-coding.  The gene is transcribed in centromere  telomere 

direction, the most common transcript is from the first five exons (1-5a) and it is 103 

kb in size (Pandolfo 1998; Pandolfo 2003; Gomez-Sebastian et al. 2007).  By 

alternate splicing, another transcript, which is less common, from exon1-5b can be 

generated to give a theoretical 171 amino acid protein (Figure 1.4) (Pandolfo 1998; 

Delatycki et al. 2000).  

 

 

 

 

 

 

 

 

 

1.2.5.4 FXN gene expression  

The FXN gene is expressed in all cells (Pandolfo 2003), but it also shows 

tissue specific differences in expression and it is developmentally regulated.  Tissues 

having the highest level of frataxin expression during development are the atrophied 

tissues in FRDA patients (Jiralerspong et al. 1997; Pandolfo 1998).  

In the adult human, frataxin expression is very high in heart, with 

intermediate level in the liver, skeletal muscle, and pancreas.  The highest expression 

in CNS tissues occurs in the spinal cord, there is less expression in the cerebellum 

and is further reduced in the cerebral cortex (Pandolfo 2003). 

 

 

 

 

Figure 1.4:  

FXN gene structure including exons, intron and the promoter region.  In 

addition to the GAA repeat location. 
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In mice, the developing brain is highly loaded with frataxin mRNA, while the 

mRNA level is less in the adult mouse brain (Pandolfo 2003).  The frataxin 

developmental expression has been tested by using Northen blot analysis and RNA 

in situ hybridization.  In the neuroepithelium, a very faint expression was detected at 

embryonic day (E) 10.5, weak but detectable expression at E12.5 in the developing 

central nervous system (Jiralerspong et al. 1997; Koutnikova et al. 1997), while at 

E14.5 and post-natal time higher and constant expression was detected (Figure 1.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

At E14.5–E16.5 high frataxin expression was detected in the central nervous 

system (CNS), mainly in the spinal cord, forebrain and DRG (Figure 1.6).   

 

 

 

 

 

 

 

 

 

 

Figure 1.5: 
Northern blot analysis of frataxin 

mRNA in poly (A) RNA from total 

mouse embryos.  A 1.1-kb transcript is 

present in E14, but not in E10 embryos. 

A control hybridization of the same 

Northern blot with a β-actin probe is 

shown on the right. The position of RNA 

size markers is indicated on the left.  

Adapted from (Jiralerspong et al. 1997). 

 

 Figure 1.6: 
Frataxin expression at E16.5.  Strong 

expression is observed in the spinal cord 

(boxed area 1), in the forebrain (boxed 

area 2), in the dorsal root ganglia (drg), in 

the atria of the heart (boxed area 4), and 

in epithelial tissues, such as the tooth 

primordium of the lower incisor (boxed 

area 3). Expression is also observed in the 

midbrain and hindbrain (hbr) regions.  

Adapted from (Jiralerspong et al. 1997). 
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The highest level of frataxin expression was observed in spinal cord and large 

neuronal cells of the dorsal root ganglia (Figure 1.7a) (Jiralerspong et al. 1997; 

Koutnikova et al. 1997; Delatycki et al. 2000).  A high level of frataxin was 

observed in proliferating cells in the cortical plates, in the heart, in the axial skeleton 

(Figure 1.7b), in thymus, in some epithelial (skin, teeth) and in fat brown tissues 

(Figure 1.6) (Delatycki et al. 2000; Pandolfo 2003).  The presence of frataxin 

expression in the axial skeleton of the mouse embryo may be related to scoliosis, 

which is seen in most FRDA patients as a main clinical feature (Jiralerspong et al. 

1997).  However, differences in the frataxin expression system between human and 

mouse are considered likely.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: 

Frataxin expression in developing dorsal root ganglia.  

Hybridization of a frataxin antisense riboprobe to sagittal sections 

through the lower thoracic dorsal root ganglia of an E14.5 embryo. A, 

Strong expression is detected in large round cells in the dorsal root 

ganglia (drg) and in elements of the axial skeletons, including the 

cartilage primordia of ribs and vertebral bodies (arrow). B, Frataxin 

expression is strong in the cartilage primordia of vertebral bodies (vrt), 

but is absent in intervertebral discs (ivd). Notice also expression in the 

spinal cord (spc).  Adapted from (Jiralerspong et al. 1997). 

 

a b 
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Generally, the frataxin mRNA level is higher in mitochondria-rich cells, such 

as neurons and cardiomyocytes (Koutnikova et al. 1997; Pandolfo 2003).  The 

reduced level of mRNA causes the inhibition of the gene transcription process, and 

not at the post-transcriptional RNA stage. 

In addition, when the protein level was tested by western blot, the results 

showed a high frataxin level present in human and mouse brain and cerebellum 

(Pandolfo 2003).  In FRDA patients the protein level was very low in cerebral cortex, 

skeletal muscle, and lymphoblasts (Cossee et al. 2000; Delatycki et al. 2000).  

However, the presence of the frataxin protein at a very low level is important to 

allow the viability of the FRDA patients and the slowly progressive nature of the 

human disease (Cossee et al. 2000).  

Individuals who are heterozygous for the (GAA)n∙(TTC)n expansion have 

around 50% of normal FXN mRNA and frataxin protein level (Herman et al. 2006).  

FRDA patients express 5-35% of the normal level of frataxin, emphasizing the 

relationship between the frataxin level, disease phenotype and the size of the 

(GAA)n∙(TTC)n  repeats (Pook et al. 2001; Coppola et al. 2006).  Also an earlier 

study demonstrated the inverse correlation between the length of the (GAA)n∙(TTC)n  

repeats and the amount of RNA in vivo and in vitro (Delatycki et al. 2000; Sakamoto 

et al. 2001).  

Frataxin is an essential protein for survival, it is found in living organisms 

starting from purple bacteria to human (Musco et al. 2000).  This protein has an 

important role during embryonic development.  In FRDA patients, with lower levels 

of frataxin than normal, only those cells that are dependent on frataxin at some stage 

of their development are affected (Pandolfo 2001).  While the complete absence of 

frataxin causes early stage embryo cell death.  Cossee and colleagues observed this 

during the experimental stage of generation of a mouse model for the disease.  The 

group stated that the homozygous frataxin knock-out mice die at E7.5 (Cossee et al. 

2000; Pandolfo 2001).  The lethality problem was solved when Dr. Mark Pook and 

his group, succeeded in generating a rescued transgenic mouse with the normal 

human FXN gene (Pook et al. 2001).  More details about this mouse and other FRDA 

mice models are covered in the “Animal Model” section (1.4).   
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1.2.5.5 Frataxin structure  

In recent years, many researchers have dedicated their time and effort to build 

up the knowledge about frataxin protein structure based on biochemical experiments.  

This knowledge will lead to a clearer understanding of the protein, function and, 

more importantly, the role of frataxin deficiency in causing the clinical symptoms of 

the disease, eventually hoping to develop an effective therapy for Friedreich ataxia. 

Human frataxin is a nuclear encoded mitochondrial protein (Delatycki et al. 

2000) expressed in the cytoplasm.  Before its entry to the mitochondria it is 

processed by an enzyme known as mitochondrial processing peptidase (MPP).  

Firstly, MPP cleaves the protein to intermediate form of, ~17kDa, which contains 

(56-210 amino acids).  Secondly, the intermediate form has self-cleavage function 

that results in the mature frataxin protein (75 to 81-210 amino acids), ~14kDa in size 

that approximately equals 130 amino acids of protein.  The latter is found in the 

mitochondria matrix (Branda et al. 1999; Dhe-Paganon et al. 2000; Musco et al. 

2000; Babady et al. 2007).  

 The mature frataxin sequence contains: N-terminal and C-terminal 

sequences.  The N-terminal region is an unstructured and non-conserved region that 

contains the mitochondrial import sequence.  This region does not affect the folding 

stability of the C-terminal.  The C-terminal domain is the conserved region that can 

independently fold in to a compact α-β sandwich and has no grooves or cavities.  

The α-β sandwich composed of an N-terminal α helix, middle β sheet that 

contains seven β strands and a C-terminal α helix.  The axis of the two helices are 

parallel to each other and to the β sheet (Figure 1.8) (Gordon et al. 1999; Dhe-

Paganon et al. 2000; Musco et al. 2000; Pandolfo 2001).  

 Hydrophobic amino acids are gathered (hydrophobic core) at the edge of β 

sheet and on the side of two helices contributing to form a stable folded protein by 

creating a significant charge dipole.  The 12-amino acids residues form an anionic 

surface on the protein.  Frataxin is a monomeric protein in solution (Dhe-Paganon et 

al. 2000; Musco et al. 2000).  
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Although it had been confirmed by many research studies that frataxin is 

involved in iron metabolism in the mitochondria, because of the iron accumulation in 

the mitochondria in case of frataxin deficiency in cells (Babady et al. 2007; Bencze 

et al. 2007; Hebert 2007), the monomer structure of frataxin does not have any cavity 

or pocket to hold the iron molecule.  In addition, the presence of high affinity iron-

binding sites in the frataxin structure has not been proved experimentally.   

Therefore, the presence of the conserved negatively charged side on the 

protein surface can be a possible site for positively charged iron to bind (Musco et al. 

2000; Pandolfo 2001). 

  

 

 

 

 

 

 

 

 

Figure 1.8: 

Structure of frataxin. Ribbon diagrams showing the fold of frataxin, 

a compact α β sandwich, with helices colored turquoise and β strands 

in green.  Strands β1–β5 form a flat antiparallel β sheet that interacts 

with the two helices, α1 and α2.  The two helices are nearly parallel to 

each other and to the plane of the large β sheet.  A second, smaller β 

sheet is formed by the C terminus of β5 and strands β6 and β7.  

Adapted from (Dhe-Paganon et al. 2000). 
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1.2.5.6 Frataxin function 

Research to date has not provided a clear understanding of frataxin function.  

However, numerous studies have reported and hypothesized that frataxin is a vital 

mitochondrial protein (Pandolfo 1998; Delatycki et al. 2000; Miranda et al. 2002; 

Simon et al. 2004; Al-Mahdawi et al. 2006; Hebert 2007) playing an important role 

in: mitochondrial iron homeostasis (Foury and Cazzalini 1997), iron storage (Gakh et 

al. 2006), iron transport, anti-oxidant activity (Karthikeyan et al. 2003), and 

biosynthesis of heme and iron sulphur (Fe-S) clusters (ISCs) (Huynen et al. 2001; 

Lesuisse et al. 2003; Pandolfo 2006; Babady et al. 2007).  It had been reported that 

frataxin’s function cannot be perceived by its amino acid sequence (Pandolfo 1998) 

Twenty years ago, iron deposits in myocardial cells from FRDA patients and 

iron accumulation in the dentate nucleus in the CNS had been reported (Lamarche et 

al. 1980; Waldvogel et al. 1999; Pandolfo 2003).  Another observation confirmed a 

reasonable increase in iron concentration in the mitochondria from FRDA fibroblast 

cells (Delatycki et al. 1999; Pandolfo 2001).  Oxidative stress was also observed in 

FRDA patients by measuring the increased concentration of lipid peroxidation, 

dihydroxybenzoic acid, and malondialdehyde in the plasma and 8-hydroxy-2-

deoxyguanosine level in the urine.  FRDA fibroblasts showed higher sensitivity to 

low doses of hydrogen peroxide (H2O2) than normal cells.  It induced cell shrinking, 

nuclear condensation, and cell death (Delatycki et al. 2000; Simon et al. 2004; 

Pandolfo 2006).  

  It is well known that the primary information about frataxin function was 

obtained from the knockout yeast frataxin homolog gene (ΔYFH1) model.  This 

model was developed, in 1997, to study genes involved in cellular iron metabolism 

(Foury and Cazzalini 1997; Koutnikova et al. 1997; Delatycki et al. 2000; Seznec et 

al. 2004).   ΔYFH1 as the model helped researchers to prove the occurrence of 

mitochondrial dysfunction in vivo in FRDA patients (Rotig et al. 1997; Pandolfo 

2003).  Relative to that, there is much evidence suggesting that FRDA is a result of 

mitochondrial iron accumulation causing cell death by the production of free radicals 

which are toxic to the cell (Figure 1.9).  This is called the Fenton reaction:  
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Fe2+ + H2O2  Fe3+ + OH‾ + OH∙  

This reaction produces a hydroxyl radical OH∙ that will become toxic by 

reacting with many intracellular component such as, protein, DNA, carbohydrate, 

and membrane lipids (Delatycki et al. 2000; Puccio and Koenig 2002). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

In 2003, Pandolfo proposed a similar pathogenic pathway (Figure 1.10).  

When less frataxin is available in the mitochondria, it directly affects the             

iron-sulphur clusters (ISC) synthesis, which causes the inhibition of iron export and, 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: 

 Suggested pathogenesis of FRDA. 

A, The normal situation in the mitochondrion is shown with iron influx 

and efflux maintaining low mitochondrial iron (Fe) and free radical (OH) 

levels. Frataxin is likely to be acting directly at the level of iron efflux. 

B, Reduced frataxin results in inhibition of the efflux of mitochondrial 

iron. This leads to reduced cytosolic iron, which results in induction of 

iron uptake systems and this in turn results in further iron uptake into 

mitochondria.  Explanation modified from (Delatycki et al. 2000). 
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Figure 1.10: 
Diagram showing the Pandolfo hypothesis about the cellular affect 

of frataxin efficiency in causing the mitochondrial dysfunction.  

 

as a result, iron accumulation.  Accumulated iron generates free radicals that cause 

extra damage to ISCs and decrease the enzyme activities of ISC-containing proteins 

(ISPs) such as aconitase.  As a consequence, the activities of the respiratory 

complexes and Krebs cycle enzymes are decreased.  This is followed by a further 

increase in the free radical production (Pandolfo 2003; Pandolfo 2006) that 

ultimately leads to impaired oxidative phosphorylation (Kulkarni and Wilson 2008).  

 

  

 

 

 

 

 

 

 

 

The way that frataxin deficiency controls iron homeostasis and ISC synthesis 

is still debatable.  Some studies showed that frataxin directly influences the iron 

efflux.  Other studies revealed indirect ways, as frataxin can either function as a 

carrier of antioxidant, a chaperone or an adapter of protein import processing (Rotig 

et al. 1997; Musco et al. 2000).  It is well known that frataxin function is involved in 

a multi-step cycle process in the mitochondria.  Some studies have  indicated that 

frataxin may act indirectly as a tumour suppressor gene (Hebert and Whittom 2007).  

In 2000, Dhe-Paganon and colleagues performed a crystal structure study; the 

study reveals that frataxin monomer has a novel folding profile, and it is binding 

non-specifically to the iron.  In addition, results show that one iron atom binds to a 
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frataxin molecule at His -177.  His-177 is a non conserved and a solvent exposed 

side chain, for these reasons, the iron binds to it loosely (Figure 1.11).  In conclusion, 

frataxin binds to iron to utilize the acidic patch on its surface (Dhe-Paganon et al. 

2000).  Another study showed that the binding capacity for a subunit of frataxin is 

ten iron atoms (Taroni and DiDonato 2004), while Nair and colleagues claimed that a 

frataxin molecule can bind to six or seven iron atoms (Nair et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recent research experiments confirmed the binding of the frataxin to the 

mitochondrial iron scaffold protein IscU2 to deliver the iron to the IscU2, and this is 

an initial step in ISC clusters synthesis.  Equally, frataxin binds to ferrochelatase, an 

enzyme needed to process last step in the heme synthesis.  These results were only 

observed in the presence of the iron atom (Napoli et al. 2006; Babady et al. 2007; 

Bencze et al. 2007). 

Recently, microarray analysis of FRDA cells revealed a decrease in the 

expression of many genes involved in sulphur amino acid and ISC pathways.  While 

another group of genes that related to apoptosis were up-regulated (Seznec et al. 

2004; Taroni and DiDonato 2004; Babady et al. 2007).  

It is important to mention that the frataxin level is altered by the (GAA)n∙ 

(TTC)n repeat expansion, while the frataxin function is directly affected by the 

Figure 1.11:  

Iron binding.  Adjacent 

frataxin molecules are colored 

green and yellow. Iron, depicted 

as a red sphere, is coordinated 

to His-177. Distances in Å 

(dotted lines) are between the 

nucleus of iron and its closest 

neighbours.  Adapted from 

(Dhe-Paganon et al. 2000).  
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heterozygous point mutations.  Point mutations affect the fold stability, by reducing 

the thermodynamic stability and refolding ability of the protein molecule.  As a result 

there is less functional frataxin in the mitochondria and more degradation of the 

mature frataxin (Figure 1.12) (Musco et al. 2000; Correia et al. 2006).  An alteration 

of the surface charge and eventually protein polarity has also been suggested (Dhe-

Paganon et al. 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: 

Diagram showing some of the ways that an amino-acid mutation can 

disrupt a protein’s structure or function.  The protein chains are 

depicted as curvy green tubes with the location of the mutation indicated 

by a red beacon. 1, A mutation that introduces a stop codon into the 

protein-coding region results in a truncation of the sequence, which might 

prevent it from folding or cause it to lose one or more of its functional 

domains. 2, A mutation to a residue in the protein’s core, or one that 

disrupts either a region of secondary structure or a disulphide bond, can 

also prevent the protein folding, possibly leading to aggregation. 3, One 

of the protein’s catalytic residues is altered, disrupting its function. 4-7, 

Mutations that disrupt the protein’s interactions with other molecules: 

metal binding (4), binding to ligand (5), disruption of dimerization (6), 

and binding to, or specific recognition of, DNA (7).  Adapted from 

(Laskowski and Thornton 2008). 
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In summary, to improve a rational therapy for FRDA patients it is necessary 

to focus on specific research on a cellular level, which will help to fully understand 

human frataxin structure and function in the mitochondria.  

 

1.2.5.7 The Pathogenic (GAA)n∙(TTC)n repeats 

The polymorphic (GAA)n∙(TTC)n trinucleotide repeats occur within an Alu 

sequence in the first intron (1.4 kb after exon 1) of the FXN gene.  These 

trinucleotide repeats are present in normal individual alleles, but if these repeats go 

above certain threshold they will become pathogenic.  Normal alleles have 

(GAA)n∙(TTC)n  repeats ranging from 6 up to 36 repeats, while FRDA alleles have 

expanded repeats ranging from approximately 66 to more than 1700 repeats.  The 

longer the repeat is, the more severe the disease (Delatycki et al. 2000; Pandolfo 

2003; Taroni and DiDonato 2004; Al-Mahdawi et al. 2006; Herman et al. 2006; 

Gottesfeld 2007).  Alleles that have repeats larger than those in normal alleles and 

smaller than those in FRDA alleles (larger than 36-and less than 66), are called 

premutation alleles or borderline alleles.  Premutation alleles, present in around 1 % 

of chromosomes, tend to have a large expansion in one generation, but in most cases 

they are not pathogenic because the second allele inherited from the other parent is 

expected to be normal (Friedreich 1876; Delatycki et al. 1998).  

The triplet (GAA)n∙(TTC)n  repeats in normal alleles can be categorized into 

two classes of alleles.  First, short normal alleles, which comprise about 80-85% of 

chromosomes in Caucasians, and contain (GAA)n∙(TTC)n  repeats ranging from 6 to 

12 repeats.  Second, large normal alleles, about 15% of chromosomes in Caucasians, 

and contain uninterrupted (GAA)n∙(TTC)n  repeats ranging from 12 to 36 repeats.  

The mechanism of the sudden expansion of the repeats from small normal alleles to 

large normal alleles is ambiguous, but it is been strongly suggested that the expanded 

FRDA alleles are raised from large normal alleles.  Large normal alleles had been 

observed to hyper-expand to hundreds repeats in one generation.  Few large normal 

alleles, which are interrupted by hexanulceotide repeat (GAGGAA), are stable from 

generation to generation (Delatycki et al. 2000; Pandolfo 2003).  From a population 
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genetics view it has been noticed that in Japan and China there is no (GAA)n∙(TTC)n  

repeat expansion, no large normal alleles, and consequently no FRDA disorder 

(Pandolfo 1998). 

Recently, it has been found that (GAA)n∙(TTC)n repeat is correlated with a 

transcriptionally silent chromatin and DNA replication, also it is contributing to 

mediate position effect variegation (PEV) (Saveliev et al. 2003; Baralle et al. 2008). 

   

1.2.5.8 The (GAA)n∙(TTC)n repeat expansion and instability 

The expansion and the instability of the repeat have a significant role in the 

progression process of the disease.  (GAA)n∙(TTC)n repeat is an unstable mutation 

when it is transmitted from parent to child.  When the repeat is transmitted 

paternally, it tends to contract by ~ 20 to 30% (Pollard et al. 2008).  FRDA male 

carriers have smaller (GAA)n∙(TTC)n  repeats in spermatazoa than (GAA)n∙(TTC)n  

repeats in lymphocytes.  In the case of maternal transmission, the (GAA)n∙(TTC)n  

repeat is equally as likely to contract or expand.  The size of the contraction is bigger 

when it is transmitted to a homozygote than when it is transmitted to a carrier.  In 

addition, the sperm of a premutation carrier has been shown to contain a smaller 

(GAA)n∙(TTC)n  repeats than that within his leucocytes, and his son’s smaller allele 

contains even less (Delatycki et al. 2000; Sharma et al. 2002; Pandolfo 2003).  

From previous findings, it was concluded that when the expansion occurs it 

leads to instability (Pianese et al. 1997; Pandolfo 2001).  The instability of the 

(GAA)n∙(TTC)n  repeats is meiotic and mitotic, and it is pre or postzygotic.  The 

mitotic instability of the expanded (GAA)n∙(TTC)n  repeats causes somatic 

mosaicism for expansion sizes noted in the fibroblasts, leukocytes, and brain of 

FRDA patients.  This somatic mosaicism is the possible reason for the variability in 

the phenotype between different individuals with the same diagnosis (Delatycki et al. 

2000; Sharma et al. 2002; Pandolfo 2003; De Biase et al. 2007a; De Biase et al. 

2007b; Mirkin 2007; Pollard et al. 2008). 



Daniah Trabzuni Page 35 

Sharma and colleagues have conducted a further study on a significant 

number of FRDA patients investigating the (GAA)n∙(TTC)n  triplet repeat instability 

in vivo.  They have shown a high level of somatic instability in the FRDA peripheral 

leukocytes, with a threshold length for somatic instability ranging from 26 to 44 

uninterrupted (GAA)n∙(TTC)n  repeats in vivo.  A proportional relationship between 

the somatic instability and the (GAA)n∙(TTC)n  repeat length has been demonstrated; 

the longer the allele is, the more variable it is.  Two other remarkable findings were 

that large expanded (GAA)n∙(TTC)n  alleles, which contain more than 500 repeats, 

have a high affinity to contract largely, whereas shorter alleles, which contain less 

than 500 repeats, illustrated the affinity to expand.  The large expanded alleles rarely 

can regress to the normal or premutation size range, as observed in peripheral blood 

cells and sperm.  However, these results were not seen when the study was continued 

to investigate the somatic instability in lymphoblastoid cell lines (Baldi et al. 1999; 

Sharma et al. 2002; De Biase et al. 2007a; Pollard et al. 2008).   

   In the dorsal root ganglia, the most affected tissue; there is a high tendency 

for a large expansion.  However, all other human tissues show a contraction bias (De 

Biase et al. 2007a; Pollard et al. 2008).  In addition, a recent study indicates that the 

somatic instability is age-dependent and tissue specific in cerebellum and DRG in 

transgenic mouse (Clark et al. 2007).  DRG shows a very high tendency to expand 

and a low tendency to contract.  The progressive accumulation of (GAA)n∙(TTC)n  

expansions together with a low frequency of a large contraction, especially in DRG 

of FRDA patients, is due to the somatic instability (De Biase et al. 2007a).  

Furthermore, somatic instability mostly takes place after early embryonic 

development and progresses throughout life (De Biase et al. 2007b).  As a result, 

progressive somatic instability is contributing to the pathogenesis and progression of 

the disorder.    

Studies have shown that several cis-elements and trans-acting DNA 

metabolic proteins, including the orientation and the position of the repeats in 

relation to the replication origins, cooperate in influencing the instability of the 

(GAA)n∙(TTC)n repeats (Baldi et al. 1999; Krasilnikova and Mirkin 2004; Napierala 

et al. 2005; Pearson et al. 2005; Mirkin 2007; Pollard et al. 2008).  An example of a 
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cis-element that may affect the instability is DNA methylation.  DNA methylation 

can alter DNA structure, protein binding, differentiation, and cellular activity 

(Pearson et al. 2005).  

Further substantial investigations on the instability mechanisms have been 

conducted by different laboratories and many evidences confirm the involvement of 

the non B-DNA structures and triplexes in the genetic instability behaviour and DNA 

repair-recombination function.  The results revealed that the conformation of the non 

B-DNA structures in vivo, which are localized in the repeat tracts and in the flanking 

sequence, is responsible for the genetic instability behaviour.  In addition, these 

structures enhance the slippage of the DNA complementary strands.  Furthermore, 

slipped DNA and unusual DNA structures act as targeted substrates to be recognized 

by repair proteins such as MSH2 and enzymes (more details are covered in section 

1.2.5.9) (Wells et al. 2005; Wells 2008).  Further specific studies, for better 

understanding of these phenomena, are essential to precedent to a better treatment 

approach.  

     

1.2.5.9 (GAA)n∙(TTC)n repeat expansion molecular mechanism and DNA 

replication, repair,  and recombination 

During the last few years, evidence has indicated that the (GAA)n∙(TTC)n 

repeat expansion is mediated by DNA replication, followed by the contribution of 

several enzymes involved in DNA repair, double-strand breaks (DSBs) and the 

influence of recombination processes.  In addition, it had been recognized that simple 

repeating sequences have the tendency to adapt triplexes, slipped structures and other 

unusual conformations (non-B DNA), which are involved in the expansion 

mechanism (Wells et al. 2005).  Mismatch repair (MMR), nucleotide excision repair 

(NER), DNA binding repair and DNA polymerases are considered factors that are 

involved in the expansion mechanism (Sinden et al. 2002).  

During transcription and replication processes, the DNA duplex unwinds, 

thus the chance for the single strand DNA (which contains the repeat sequence) to 
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fold back in an alternative way and form different non-B DNA structures is high.  As 

a result expansion takes place because of the stability of the misaligned intermediates 

(Wells et al. 2005).  

Extensive studies have proposed molecular models of how expansions arise, 

for example, Kunkel proposed the first model in 1993.  This model was based on 

DNA strand slippage during replication (Kunkel 1993).  The denaturation and 

renaturation processes of expanded repeat, which contains double stranded DNA 

fragments, promote the ‘Slipped-stranded’ DNA formation.  Slipped DNA has a 

different stability and different degree of flexibility.  In some studies, it had been 

shown that the binding of a slipped DNA structure to certain repair proteins such as 

MSH2 and other recombination repair proteins can lead to DSBs.  Later, the concept 

of an unusual DNA structure formation, from all expandable repeats, was recognized 

(Figure 1.13, A-E) (Baldi et al. 1999; Wells et al. 2005; Mirkin 2007).   

(GAA)n∙(TTC)n repeats have the ability to form both inter- and intra-

molecular triplexes.  The homopurine-homopyrimidine repeat can form an 

intramolecular triplex called H-DNA under the influence of negative super-coiling, 

the presence of Mg+2 and neutral pH.  Furthermore, another structure that can be 

formed with longer forms of this repeat which is called sticky DNA form (Figure 

1.13, D) (Gacy et al. 1998; Sinden et al. 2002; Mirkin 2007; Wells 2008). 

The sticky DNA structure was discovered in 1999.  It is a self-associated 

complex that is formed by the combination of two long (GAA)n∙(TTC)n repeats in 

the R∙R∙Y triplex construction .  The pyrimidine strands in the two R∙R∙Y triplex 

constructions are exchanging with each other to form an extremely stable unusual 

structure.  The formation of the sticky DNA structure required the same conditions 

that influence the triplexes structure formation.  Sticky DNA structure of the 

(GAA)n∙(TTC)n repeats is involved in inhibiting DNA replication, transcription and 

regulating gene expression and DNA metabolism (Sakamoto et al. 2001; Wells et al. 

2005; Baralle et al. 2008).   

 In addition, It has been suggested that the formation of unusual DNA 

structures  in vitro can cause DNA polymerisation blockage.  This blockage assists 
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misalignment between newly synthesized and template DNA strands, which leads the 

repeat to expand (Pelletier et al. 2003; Mirkin 2007).  Furthermore, mutations that 

affect DNA repair increase the probability of the repeat expansion. 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: 

Unusual DNA structures formed by all expandable repeats. 

The structure-prone strand of the repetitive run is shown in red, its 

complementary strand in green, and flanking DNA in beige. Different 

expandable repeats have the ability to form unusual DNA structures.  A, 

(CNG)n repeats (in red) form an imperfect hairpin structure.  B, (CGG)n 

repeats form a quadruplexlike structure.  C, (CTG)n•(CAG)n repeat form 

a slipped-stranded structure (in red) and the complementary (in green).  

D, (GAA)n•(TTC)n repeats form H-DNA and sticky DNA structures 

where the homopurine strand formed triplex structure. Black asterisks 

indicate Reverse Hoogsteen pairing. E, (ATTCT)n•(AGAAT)n repeats 

form a DNA-unwinding element (Mirkin 2007).  
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 Negative super-coiling density is an important factor in the expansion 

mechanism; the higher the level of the negative super-coil density, the more stable 

the non-B DNA structure is, and the greater the probability of the expansion to occur.  

A significant study demonstrated the role of the negative super-coiling density on the 

instability of triplet repeats in vivo.  An increase in the negative super-coiling density 

stimulates the triplet repeats instability by accelerating the formation of stable non-B 

DNA structures (Napierala et al. 2005; Wells 2008).   

 For a relatively short single strand of (GAA∙TTC)9-23 repeats, the formation 

of intramolecular triplex structure takes place and its instability increases with the 

increase of the super-coiling density.  Moreover the (GAA∙TTC)42 repeats can form a 

very stable bi-triplex structure (Sinden et al. 2002; Potaman et al. 2004; Napierala et 

al. 2005; Wells et al. 2005). 

 Investigating the mechanisms of the trinucleotide repeat expansion led to the 

recognition of DNA replication, recombination and repair processes contribution in 

the repeat instability mechanism (Napierala et al. 2005).  Figure 1.14 shows a model 

of how all these processes can contribute to influence the instability and finally 

causing the disease (Figure 1.14). 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: 

Model for the role of different biology processes in vivo 

and how it affects the instability of the expanded repeats.  
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1.2.5.9.1  DNA replication  

Many studies suggest that the repeat expansion arises during the DNA 

replication process for two main reasons.  Firstly, there is a rapid accumulation of 

repetitive DNA because of substantial amount of DNA synthesis.  Secondly, the fork 

replication progression part of the lagging strand template tends to be single 

stranded, and this facilitates the formation of DNA unusual secondary structures 

(Mirkin 2007).  These secondary structures cause DNA polymerase to halt causing 

the collapse of replication fork to occur; and finally the involvement of DNA repair 

and recombination processes to help restart the replication process (Wells et al. 

2005).  Following what has been mentioned previously, the super-coiling dependent 

non-B DNA structure formation can stop the replication fork progression; which can 

lead to nicks or double strand break formation and slippage events.  In addition, the 

unusual structures that exist on the leading or lagging strand during DNA replication, 

can be avoided by DNA polymerases causing repeat instability (Napierala et al. 

2005; Pearson et al. 2005; Gakh et al. 2006).  

To demonstrate the effect of triplet repeat on replication fork progression a 

direct study was carried out in vivo, in a eukaryotic system (Pelletier et al. 2003).  In 

2004, an experimental study demonstrated that the expanded (GAA)n∙(TTC)n  

repeats attenuate the replication fork progression in vivo, considering the length, the 

distance from the origin of replication and the orientation of the (GAA)n∙(TTC)n  

repeats.  The effect of the (GAA)n∙(TTC)n  repeats is orientation dependent when the 

homopurine strand of the repeats is in the lagging strand template for the replication 

process.    Furthermore, it had been proven that the replication blockage does not 

depend on the transcription status in vitro.  In addition, it had been assumed that the 

(GAA)n∙(TTC)n  expansion, which arises after replication stalling, is positioning in 

the leading and lagging strands template (Krasilnikova and Mirkin 2004; Mirkin 

2007; Pollard et al. 2008).  

Three hypotheses have been introduced by Mirkin and others to link the 

repeat expansion steps with the orientation and the position of this repeat through the 

replication process (Mirkin 2007).  The first hypothesis, “ori switch” it suggests that 

the inactivation of the replication origin on one side of the repeat is associated with 
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Figure 1.15:  
Three hypotheses to explain early events in repeat expansions.   

The structure-prone strand of the repetitive run is shown in red, its 

complementary strand in green, and flanking DNA in beige.  a, In the ori-switch 

model, the replication origin (shown in orange) in the repetitive region is 

reversed to be on the other side. That will cause the inactivation of the 

replication origin on one side and the recognition of the repetitive run as the 

lagging-strand template.  b, In the ori shift model, changing the position of the 

repetitive run within the OIZ (shown as blue brackets) is leading to change its 

location in respect to the replication origin because of a mobile element 

insertion (blue rectangle) . This will help to evoke the repeat expansion process. 

c, The fork-shift model arises when an epigenetic event within the repeat (blue 

oval) occurs. This event will cause in changing the repeat position in the OIZ 

region and result in the repeat expansion. (Mirkin 2007). 

 

 

the activation of a cryptic origin on the other side; thus triggering the repeat 

expansion by placing the structure prone strand of the repetitive run as the lagging 

strand (Figure 1.15a).  The second “ori shift” hypothesis assumes that the repeat 

expansion depends on the position of the repeat within the Okazaki initiation zone 

(OIZ), which is always single stranded, so changing the distance between the repeat 

and the replication origin could enhance the expansion to occur (Figure 1.15b).  The 

third hypothesis, is the “fork shift” model; this hypothesis presumes that changing 

the mode of the replication fork, by epigenetic event in the region of the repeat, could 

change the position of the repeat within the OIZ; as a result expansion takes place 

(Figure 1.15c) (Mirkin 2007).     
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 In addition, Krasilnikova and Mirkin explained one of the anticipated 

mechanisms, during the DNA replication.   A part of the single lagging strand 

template, which contains an expanded (GAA)n∙(TTC)n  repeats, folds back and 

forms a stable triplex structure along with the remaining double stranded part and 

this causes DNA polymerase to halt and dissociate (Figure 1.16) (Krasilnikova and 

Mirkin 2004).  Other replication protein molecules may contribute to the repeat 

expansion process together with DNA repair enzymes such as DNA polymerases or 

ligases to repair mutant tracts (Pearson et al. 2005).  Realistically, further substantial 

research is required to increase the known knowledge in this area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1.16: 

 A model for replication blockage by (GAA)n•(TTC)n repeats 

leading to their expansion.  Red line, homopurine strand; green line, 

homopyrimidine strand; black line, flanking DNA. Arrows depict 

Okazaki fragments. Yellow circles represent leading and lagging DNA 

polymerases. Orange circles symbolize genome guardians, such as DNA 

helicases, SSB proteins.  A, Part of the lagging DNA strand template 

containing (GAA)n run forming a stable triplex structure by folding, this 

folding stalls the DNA polymerase on the leading strand.  B, the 

formation of this triplex structure is associated with the polymerase 

dissociation and misalignment of the newly synthesized and template 

DNA strands.  C, The continuation of the DNA synthesis after the 

demolish of the triplex structure is leading to repeat expansion.  Adapted 

from  (Krasilnikova and Mirkin 2004). 
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1.2.5.9.2  DNA repair 

Although the genetic link between the defect in DNA repair pathways and 

neurological diseases has been established, many substantial studies have been 

conducted to give a conclusive proof of the DNA repair contribution in the repeat 

expansion mechanisms (Wells et al. 2005; Kulkarni and Wilson 2008).  

 The DNA repair pathways are meant to be a protective process for the 

genomic material against different types of mutations and any irregularity in these 

pathways causes the propagation of genomic instability.  In non-replicating 

differentiated cells such as neurons, the loss of genomic integrity leads to cell death 

followed by tissue degeneration.  Moreover, in these non-dividing cells the 

replication-dependent recombination repair process is not plausible; consequently 

cells utilize DSBs, MMR and NER as a viable repair mechanisms to maintain the 

genomic integrity in the cell (Kulkarni and Wilson 2008).  Subsequently, if there are 

any repetitive DNA intermediates left unrepaired after the replication fork passes on; 

the expansion of these intermediates takes place (Mirkin 2007).   

Some experiments have showed that in aging non-dividing cells, such as 

human and mouse brain and skeletal muscle cells, the repeat expansion takes place 

during DNA repair process of DNA nicks or gaps which is created by oxygen 

radicals (Figure 1.17, page 44) (Mirkin 2007).   

Repair of (DSBs), which are induced by replication pause, has a contribution 

to the repeat instability through gene conversion and single strand annealing (Pearson 

et al. 2005). 

The effect of the DSB repair on the (GAA)n∙(TTC)n  repeat somatic 

instability considering its location to the repeat tracts has been investigated by a 

recent study in mammalian cells (Pollard et al. 2008).  Pollard and colleagues 

revealed that when the DSB repair is within (in the center or off-center) the 

(GAA)n∙(TTC)n repeat tract, the frequency of the instability (deletion of nearly half 

of the repeat tract) increases significantly.  Whereas, when the DSB repair is 

immediately outside the repeat tract the frequency of the instability is not affected.   
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From these results, it was concluded that the DSB repair process is dependent 

on the physical properties of the repeat tract. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17: 

Gap repair model for repeat expansions in non-dividing cells. 

The structure-prone strand of the repetitive run is shown in red, its 

complementary strand in green, and flanking DNA in beige.                 

a, In the repetitive run a small gap is generated by an oxidizing radicals.  

b, Hairpin structure is formed at a repetitive flap and impaired the 

binding of the flap endonuclease-1 (FEN1) molecule during DNA-

repair process.  c, The repetitive hairpin is stabilized by the binding of 

MSH2-MSH3 molecule, which resulting in preventing flap removal.  d, 

The formation of a stable slipped stranded DNA intermediate is 

occurred by the time of  repair process is completed.  e, The slipped 

stranded DNA intermediate is converted into an expansion by a fault in 

the repair pathway.  Adapted from (Mirkin 2007). 
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The Mismatch repair (MMR) role in normal cells is to remove mismatches 

and small insertion or deletions that arise during replication or recombination.  The 

role of MMR in repeat instability was firstly identified and widely studied using 

transgenic mouse models for Huntington’s disease and Myotonic dystrophy.  The 

possible hypothesis was that MSH2 and MSH6 have the affinity to bind to the 

hairpin structures and this binding causes the sequester repair proteins stabilize these 

structure instead of repairing them (Kovtun and McMurray 2001; Mirkin 2007).   

Other experiments demonstrate mixed effects of mismatch repair on 

instability.  MMR repair takes place and MMR proteins, including MutSα [MSH2 

and MSH6] and MutSβ [MSH2-MSH3] heterodimer, bind to looped-out secondary 

structure when these DNA unusual structures formed and result in the mismatching 

of bases within the structure or in the flanking region (Genschel et al. 1998; Wells et 

al. 2005; Kulkarni and Wilson 2008).  The hypothesis was that mismatch repair has a 

key role in instabilities mainly through MSH2 or other downstream proteins (Wells 

et al. 2005).   

However, some studies showed there is no increase in the instability with 

human cell lines with mutations in MMR proteins at Myotonic dystrophy (DM1) and 

Fragile-X (FRAXA) loci, furthermore none of the MMR proteins have a conclusive 

link to the neurodegenerative disease to date (Kramer et al. 1996; Kulkarni and 

Wilson 2008). 

Nucleotide excision repair (NER) is a repair process specific for DNA 

helical alterations.  In some cells, the recognition for the helical alterations includes 

the recognition and the removing of DNA loops which are part of the secondary or 

non B-DNA structures.  This causes a DNA gap which requires repair process and 

consequently the repeat instability takes place (Parniewski et al. 1999; Wells et al. 

2005).  Previously, some studies had been conducted on bacterial models to clarify 

the NER role in the repeat instability. The results indicate that NER either preventing 

or enhancing large contraction for (CTG)n∙(CAG)n repeat sequence. In conclusion, 

NER contribution to repeat instability is dependent on the repeat tract and the 

transcription replication direction (Pearson et al. 2005; Wells et al. 2005). 

Furthermore, extra significant work is required to clarify this area; specially with 
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(GAA)n∙(TTC)n repeat tract.  Moreover, it is necessarily to contemplate other 

proposed mechanisms from different research studies related with different 

neurological disorders.  A co-excision mechanism had been proposed in 2000 by 

Rolfsmeier and collegues, from a yeast study explaining the loss of stabilizing 

interruption within expandable repeats (Figure 1.18) which is a possible mechanism 

for the repeat expansion in FRDA ataxia disorder (Rolfsmeier et al. 2000; Mirkin 

2007).  In addition, DNA repair proteins might be considered as a factor contributing 

to the repeat instability mechanism.  For example, MMR proteins interfere with NER 

process (Pearson et al. 2005).  Future studies are still required to decipher these 

biological processes roles in the body and their contribution to the disease.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18: 

Loss of stabilizing interruptions within expandable repeats. 

The structure-prone strand of the repetitive run is shown in red, its 

complementary strand in green, and flanking DNA in beige.  During the 

first DNA replication process a misalignment of nascent and template 

DNA strands in long-normal alleles can occur and this creates 

mismatches in both the hairpin and duplex part of the slipped-stranded 

structure.  Failure to repair them by co-excision repair leads to the 

generating of the non-interrupted expansion at the 3' end of the repetitive 

run.  Adapted from (Mirkin 2007). 
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1.2.5.9.3  DNA recombination 

 DNA recombination also has a limited contribution to the repeat expansion 

mechanism.  One of the possible models, which was explained by Mirkin, suggests 

that as a result of DNA synthesis-dependent strand annealing; a mitotic, unequal 

crossing over (intrachromosomal strand annealing) occur between the repetitive 

tracts on homologous chromosomes causing expansion or contraction (Figure 1.19) 

(Warren 1997; Pearson et al. 2005; Mirkin 2007). 

 

 

 

 

 

  

 

 

 

 

 

 

 

In addition, it been assumed that the stimulation of the recombination is 

dependent on the repeat orientation within the replicon.  Thus, after the pausing of 

the replication fork, the single stranded DNA fragment is generated.  This strand has 

the ability to infest the sister chromatid then the expansion takes place (Figure 1.20) 

(Mirkin 2007).  A positive correlation between increasing the length of the 

(GAA)n∙(TTC)n  repeat tracts and decreasing the frequency of the intramolecular 

recombination was discovered (Wells 2008). 

 

 

 

 

 

 

Figure 1.19: 

Recombination models for repeat expansions.  Homologous 

chromosomes are shown in beige and blue and repetitive DNA strands 

are shown in red and green. Reciprocal appearance of expanded and 

contracted repeats is the result of an unequal crossing-over in 

homologous chromosomes. Adapted from (Mirkin 2007). 
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Figure 1.20:  

Cleavage of a stable DNA structure on the lagging-strand template  

The structure-prone strand of the repetitive run is shown in red, its 

complementary strand in green, and flanking DNA in beige. Small arrows 

show potential cleavage sites. (left), during DNA replication, the cleavage 

of a stable DNA on the lagging-strand generates a single-stranded 3´ 

repetitive extension (centre) the single-stranded DNA invade a sister 

chromatid (right) as a result a repeat expansion or contraction may occur. 

Adapted from (Mirkin 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

At the end, it is difficult to determine the exact role of recombination in 

instability because of the difficulty of detecting the recombination events that have 

break points within the repeat (Pearson et al. 2005).  

In conclusion, understanding the molecular basis of the expansion instabilities 

mechanism is essential to know the origin and the progression of the disease.  Then, 

different creative approaches for treatment can be raised to control the progressive 

instability in some tissues in FRDA patients.   

 

1.2.5.10 The expanded (GAA)n∙(TTC)n repeats and its role in reducing FXN 

gene transcription 

Knowing the exact mechanism of how the expanded (GAA)n∙(TTC)n  repeats 

reduce the gene transcription is as important as knowing the (GAA)n∙(TTC)n  

expansion mechanism; since both will lead to a better concept of successful therapy. 
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It is well known, that the transcription process starts with the binding of    

pre-initiation complex at the gene promoter, then RNA synthesis begins followed by 

the elongation stage.  The transcription is usually regulated at the stage of the RNA 

polymerase (Pol II) recruitment to the promoter region, which is essential for gene 

activation (Muse et al. 2007; Tamkun 2007; Zeitlinger et al. 2007).  Relating to this 

fact, many suggested mechanisms had been proposed to explain the way the 

expanded (GAA)n∙(TTC)n  repeats modify gene transcription process. 

In 1998, the inhibitory effect of the expanded (GAA)n∙(TTC)n  repeats was 

investigated in vivo and the results showed a very low level of mature mRNA with 

no accumulation of the primary transcript in the plasmids with long (GAA)n∙(TTC)n  

repeats (Ohshima et al. 1998; Baralle et al. 2008; Wells 2008).  In addition, a lot of 

evidences prove that the expanded (GAA)n∙(TTC)n  repeats have an inherited ability 

to form a non B-DNA structures such as triplex, hairpin, parallel DNA and a triple-

helical (H-DNA) or sticky DNA (see previous section 1.2.5.9 and Figures 1.13, 

1.14).  A specific and persistent inhibitory d(TTC)n∙r(GAA)n hybrid and a 

heterochromatin mediated gene silencing effect had been reported.  Such 

intermediates have been shown to interfere with the gene transcription in vivo and in 

vitro and contribute to the aetiology of FRDA (Sakamoto et al. 2001; Al-Mahdawi et 

al. 2004; Krasilnikova and Mirkin 2004; Hebert and Whittom 2007; Baralle et al. 

2008; Wells 2008).  

It has been demonstrated that the sticky DNA structure has an essential 

function, in vivo, by interacting with proteins or interfering in metabolic pathways.  

Sticky DNA has an inhibitory effect, in vivo and in vitro, on the transcription process 

of the FXN gene, by inhibiting the synthesis of RNA.  Sakamoto and colleagues have 

explained the way the sticky DNA is involved in the RNA polymerase sequestration 

step.  They suggested that RNA polymerase is paused within sticky DNA structure 

during RNA synthesis and less free RNA polymerases are available for further 

transcription.  Another suggestion was that the sticky DNA structure has the ability 

to bind to an inactive RNA polymerase without transcription (Sakamoto et al. 2001; 

Baralle et al. 2008; Wells 2008). 
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Two mechanisms have been proposed to explain the role of the triplex 

structure in affecting transcription.  First, the triplex structure may physically block 

the transcription elongation process.  Second, the triplex structure may interfere with 

the binding of transcription factors (trans-acting factors) that control the transcription 

(Giovannangeli et al. 1996; Kovacs et al. 1996; Sakamoto et al. 2001; Saveliev et al. 

2003).  Wells and his colleagues have demonstrated that an expanded 

(GAA)n∙(TTC)n  repeats can form a DNA:RNA triplex that reduces transcription 

(Ohshima et al. 1996).  

Another well-explained (in vitro) experiment, which was conducted by 

Grabczyk and Usdin, showed how the RNA polymerase molecule is trapped in an 

R∙R∙Y triplex when it enters in an expanded (GAA)n∙(TTC)n  repeats area and 

produce negative super-coiling and that leads to form an intramolecular triplex 

structure.  As a result RNA polymerase stalls (Grabczyk and Usdin 2000; Hebert and 

Whittom 2007).  It is important to mention that RNA polymerase II stalling has a key 

regulatory role for gene transcription in the development stage (Muse et al. 2007; 

Zeitlinger et al. 2007) 

In 2007, Grabczyk and colleagues proposed another model, with the same 

principle, explaining the transcription coupled RNA∙DNA hybrid formation in an 

expanded (GAA)n∙(TTC)n  repeat area.  The template DNA strand d(TTC)n forms a 

stable RNA∙DNA hybrid with a moderate length, then the DNA triplex is dislodged, 

in the presence of the transcription complex, to give longer RNA∙DNA hybrid.  The 

formation of the stable RNA∙DNA hybrid and DNA triplex creates a pause site at the 

expanded (GAA)n∙(TTC)n repeat area (Figure 1.21, page 51) (Grabczyk et al. 2007; 

Wells 2008). 

At this stage, it is important to note that triplexes or sticky DNA have no 

obligatory role in the aetiology of FRDA, thus further investigations are required to 

clarify the direct relation between these unusual DNA structures and the transcription 

inhibition effect (Wells 2008). 
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Figure 1.21: 

Transcription-coupled RNA∙DNA hybrid formation in a 

(GAA)n∙(TTC)n repeat.  Model for transient transcription dependent 

triplex formation leading to an RNA polymerase pause and RNA∙DNA 

hybrid formation.  The purine (GAA or R) strand of the repeat is red, the 

pyrimidine (TTC or Y) strand is yellow, and the flanking DNA is gray. 

A, A standing wave of negative super-coiling follows RNA polymerase. 

At the transcription bubble, the non-template (GAA) strand is available 

to fold back in an R∙R∙Y interaction; the template strand is covered by 

RNA polymerase. B, Rotation of the helix (curved arrow) as it winds in 

the third strand relaxes the negative super-coils caused by transcription 

and leaves a length of the template single-stranded. C, RNAP is 

impeded at the distal template-triplex junction and the nascent transcript 

(green) can anneal to the single-stranded stretch of template. D, The 

RNA∙DNA hybrid displaces the much less stable triplex structure.  

Adapted from (Grabczyk et al. 2007). 
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 However, a recent study using a hybrid minigene system explained the 

composite affect of the transcribed (GAA)n repeat, that can form an intronic sticky 

RNA structure, affecting the normal intronic pre-mRNA processing.  This sticky 

RNA sequence can act as an exonic splicing enhancer (Baralle et al. 2008).  

In this study, the results showed that in the mammalian reporter gene, 

(GAA∙TTC)100 and (GAA∙TTC)217 repeats affect neither the polymerase ІІ 

transcriptional elongation step, nor pre-mRNA transcription abundance.  

Nevertheless, this pathogenic repeat results in a complex defect in pre-mRNA 

process by inhibiting the splicing efficiency.  Furthermore, the insertion of the GAA 

repeat at different locations (upstream and downstream) from the reporter exons has 

different effects on the splice site selection.  These repeats have the ability to bind to 

different trans-acting splicing factors, as a result enhancing the accumulation of an 

up-stream pre-mRNA splicing intermediates and stop the pre-mRNA from turning 

over to a mature form (mRNA), thus the degradation of the RNA molecules and 

lower level of mRNA.  Furthermore, the number of the repeat affects the severity of 

the splicing pattern, consistent with variable phenotypic expression of the disease.  

The affect of the GAA repeat depend on position and context manner. 

Insertion of the (GAA)n∙(TTC) repeat in the first intron of a frataxin minigene 

model has also been conducted.  The results revealed that the repeat did not block the 

transcription but it affected the splicing efficiency of the first frataxin intron. In 

addition, the repeat presence in its original context is not affecting the quality of the 

final transcript (Figure 1.22) (Baralle et al. 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22: 

Schematic representation of the frataxin minigene. 
 It contains the GAA or TTC (n = 100) repeats and showing the un-spliced 

(U, D, and D1) and spliced (S) amplification products.  Modified from 

(Baralle et al. 2008).  
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In addition to the DNA structure, DNA recombination, and DNA repair; 

epigenetic modifications may contribute to affect FXN gene transcription and 

contribute to the pathogenesis of FRDA (Pollard et al. 2008). 

 

 1.3 Epigenetics 

  In the last decade, because researchers have given considerable attention to 

the field of epigenetics, the amount of information about epigenetics and its 

implication in the aetiology of some human diseases has increased dramatically.  The 

main contribution to this knowledge has come from the development of molecular 

genetics approaches, for instance the use of the chromatin immunoprecipitation 

(ChIP) technique with genome-wide scan and mapping techniques, high-throughput 

DNA microarray and sequencing, serial analysis of gene expression (SAGE), and 

serial analysis of chromatin occupancy (SACO) (Bock and Lengauer 2008; Schones 

and Zhao 2008).   
 

1.3.1 The definition of epigenitics 

Epigenetic regulations have been implicated in normal development and 

human illness.  They are vital regulations for the normal functioning of genomes, for 

example, segregation of chromosomes in mitosis and regulation of gene activity.  If 

any misregulation takes place, then epigenetic regulations will be highly relevant to 

various complex non-Mendelian disorders (Jaenisch and Bird 2003; Feinberg 2007).  

In the 1940s, Conrad Waddington proposed the first theoretical concept about 

the term “epigenetics”.  That is ‘the interaction of genes with their environment, and 

how genotypes give rise to phenotypes during development’ (Waddington 1942; 

Murrell et al. 2005; Bird 2007; Crews 2008).  Later, in the 1970s the modern era of 

epigenetics, Robin Holliday used modern genetic methods to present a molecular 

model for inheritability of the gene activation and inactivation during development 

by DNA methylation and demethylation (Holliday and Pugh 1975; Holliday 1987; 

Crews 2008).   
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Epigenetic modifications are involved in aging and long term memory 

process such as, DNA methylation (Bird 2007; Santos-Reboucas and Pimentel 2007; 

Crews 2008).  The increase of the epigenetic modifications with age  have helped to 

explain the late age of onset in some complex diseases (Stuffrein-Roberts et al. 

2008).  

Then Arthur Riggs and colleagues defined epigenetics as ‘the study of all 

meiotically and mitotically heritable changes in gene expression that are not coded in 

the DNA sequence itself’ (Egger et al. 2004; Bird 2007; Bock and Lengauer 2008).  

Since then epigenetics is used in molecular and developmental genetics studies of 

gene function that is not attribute to the change in DNA sequence, so nowadays 

epigenetics refers to ‘the transmission of genetics information, other than that stored 

in the DNA sequence, from a cell to its daughter cells, and from an organism to its 

offspring’ (Laskowski and Thornton 2008). 

Epigenetic modifications are heritable, reversible, gradual and dynamic 

process that contribute to modify gene expression in the cell (Egger et al. 2004; 

Santos-Reboucas and Pimentel 2007; Crews 2008; Schones and Zhao 2008).  In 

more detail, in certain developmental stages or in some diseases; some cells undergo 

a major reprogramming step. This step involves the removal or the modulation of 

their epigenetic markers.  Otherwise, in normal cases, these epigenetic markers are 

fixed after cell differentiation or existence in the cell cycle (Bock and Lengauer 

2008; Nafee et al. 2008; Ptak and Petronis 2008).  Therefore, for each cell, there is a 

unique gene expression profile, which will determine its identity; this profile will be 

remembered and passed on to a daughter cell.  This is known as “Epigenetic 

inheritance” (Nafee et al. 2008; Schones and Zhao 2008).   

Epigenetic inheritance occur between generations of cells, which is mitotic 

inheritance, and between generations of species, which is meiotic inheritance.  

Mitotic inheritance is involved in cellular differentiation.  That is to say, the 

differentiated cells of the gremline reprogram epigenetic information in a parent-

specific way, before it is passed on to the daughter cells as sperm or egg.   
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While the meiotic inheritance is considered the result of the incomplete 

reprogramming in the early embryo stage that produces an epigenetic information 

from the parent to the offspring; that is to say across the germline generations (Bock 

and Lengauer 2008; Ptak and Petronis 2008). 

The advanced approaches have been used by international collaborations to 

identify epigenetic changes on a genome-wide scale, here the term “Epigenomics”.  

The epigenome covers two different areas: chromatin structure and DNA 

methylation.  Therefore, the epigenome can vary from cell to cell, can change over 

time, and depends on the tissue type and developmental stage.  Thus complex 

organisms, such as humans have a multiple epigenomes (Murrell et al. 2005; 

D'Alessio and Szyf 2006; Schones and Zhao 2008; Stuffrein-Roberts et al. 2008). 

 

1.3.2 Molar and Molecular epigenetics 

In both animal and human inheritance systems, epigenetic modifications take 

place at two different levels: the physiological and morphological level, which is 

molar epigenetics, and at the normal patterns of gene expression, which is 

molecular epigenetics.  These changes cause functional differences in brain and 

behaviour; thus, different genotypes arise. As a result, individual response to their 

environment is changing and the modifications will be on a higher level of biological 

organization.  Figure 1.23 shows the interaction between different epigenetic factors 

at different levels (Figure 1.23) (Holliday 2006; Crews 2008; Stuffrein-Roberts et al. 

2008).   

 Molar epigenetics is the study of how the environment stimuli affect the 

genome of the individual during its development followed by the observations of the 

individual’s interaction with its physical environment after birth (Gottlieb 2007; 

Crews 2008).  Numerous environmental factors can stimulate epigenetic 

modifications.  For example, nutrition, maternal behaviour, internal factors 

(hormones) and some drug treatments can influence gene expression by altering 

DNA methylation status.   
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Figure 1.23: 

The external environment interacts with the internal 

environment to influence fetal development with both 

immediate and life-long consequences.  Such environmentally-

induced changes can occur at all levels of biological organization, 

from the molecular to the organism’s behaviour, and tend to be 

amplified in their consequences as they ascend through these 

levels. Ultimately, these influences may be epigenetic in nature, 

inducing heritable alterations in gene expression without changing 

the DNA.  Adapted from (Crews 2008). 

A previous experiment explains the case of monozygotic twins (MZ) that 

showing a significant difference in the phenotypic outcomes, which comes from 

different level of genes expressions of the diseases causing genes due to the 

differences in epigenetic modifications, Although they are genetically identical 

(Fraga et al. 2005; Ptak and Petronis 2008; Stuffrein-Roberts et al. 2008). 

Molecular epigenetics is the study of heritable gene regulations during 

embryogenesis without involving the changes occur in DNA sequence (Crews 2008; 

Keverne and Curley 2008). 

In this research, our investigation concern only about the molecular 

epigenetic modifications and their involvements in the FRDA pathology, so any 

epigenetic modifications will be discussed later are referred to the epigenetic 

modifications at the molecular level. 
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Figure 1.24: 

Nucleosome structure.  Each nucleosome consists of two 

copies each of H2A, H2B, H3 and H4 (core histones) forming an 

octamer around which the DNA is wrapped.  The amino-terminal 

tails of core histones are exposed on the outside of the 

nucleosomes.  Adapted from (Stuffrein-Roberts et al. 2008). 

1.3.3 Mechanisms of molecular epigenetic regulations 

In recent years, the availability of the advanced databases for genome-wide 

DNA and RNA sequences, protein (3D) structures, DNA methylation patterns, ChIP-

sequence techniques and others, has helped to bring new insights of the epigenetic 

modification mechanisms that are associated with some human complex diseases; 

thus, a new era of research has arisen.  Studies that consider chromatin structures and 

nucleosome arrangement including the DNA molecule and its way of interaction 

with histone proteins have a great impact in elucidating the epigenetic mechanisms in 

affecting the transcriptional process in the cell.  However, more sophisticated studies 

are still needed in the next few years for a new expanded direction in the therapeutic 

and pharmacological fields.    

In eukaryotic cells, DNA is packaged in the form of chromatin.  Chromatin is 

composed from DNA, octamers of core histone proteins (H2A, H2B, H3, and H4) 

and non-histone proteins, which facilitate the DNA packing to form a higher order 

structure ‘nucleosome’.  Each histone has a flexible domain, which remains outside 

the nucleosome called histone tails (Figure1.24).  These tails can encode epigenetic 

information and store different distinct epigenetic information patterns, which are 

called histone code (More details about histone code definition are covered in section 

1.3.3.1, page 60) (Laskowski and Thornton 2008; Nafee et al. 2008; Ptak and 

Petronis 2008; Stuffrein-Roberts et al. 2008). 
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Figure 1.25: 
Properties of euchromatic regions.   

1- Less condensed.  

2- At chromosome arm. 

3- Gene rich.   

4- Contains unique sequence.  

5- Replicated throughtout S phase.  

6- Recombination during meiosis. 

Modified from (Grewal and Elgin 2007).    

There are two forms of chromatin: euchromatin, which is loose and accessible 

for the transcription factors to be recruited at the promoter regions, then transcription 

process is initiated (Figure 1.25).  It has been reported that the enhancers are more 

competitive in binding to the silencing factors than the promoters are, and that they 

maintain the euchromatin structure.  The heterochromatin form, which is more 

condensed, compact, stable (maintained through mitosis and meiosis) and 

inaccessible for the transcription factors to bind and function; as a result the 

inhibition of the transcription process takes place (Figure 1.26) (Grewal and Elgin 

2007; Stuffrein-Roberts et al. 2008).  The relationship between the heterochromatin 

formation and gene silencing has been derived from the loss of gene expression 

correlated with condensed packaging in position effect variegation (PEV).  PEV 

occurs when a gene, which is normally euchromatic, is abnormally close to 

heterochromatin that is characterized by the presence of H3K9me3 and histone tails 

hypoacetylation,  during rearrangement; resulting in variegating phenotype indicated 

that the gene has been silenced in a proportion of the cells in which it is normally 

active (Saveliev et al. 2003; Gottesfeld 2007).   
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Figure 1.26: 
Properties of heterochromatic regions.   

1- Highly condensed.  

2- At centromeres and telomeres. 

3- Gene poor.   

4- Contains repetitious. 

5- Replicated in late S phase.  

6- No meiotic recombination. 

Modified from (Grewal and Elgin 2007).    

In contrast, a genomic DNA microarrays study showed that compact 

chromatin fibres contain some active genes in addition to the heterochromatin 

(D'Alessio and Szyf 2006). 

 

 

 

 

 

 

 

 

 

 

 

Epigenetic mechanisms can have two different affects on the gene 

transcription process: activation (open chromatin; euchromatin) and that occurs when 

the histone acetylation signal such as, H3k9ac and H3K14ac is high.  Inactivation 

(condense chromatin; heterochromatin) occurs when the signal of the histone 

hypermethylation signal is high for example, H3K9me3 (Bock and Lengauer 2008). 

Histone modifications, DNA methylation, RNA-associated silencing, binding 

of non-histone proteins (such as, polycomb and trithorax group complexes) and 

action of methylation dependent sensitive insulators  are the suggested mechanisms 

that initiate the heritable epigenetic silence (Egger et al. 2004; Bock and Lengauer 

2008).
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1.3.3.1 Chromatin remodelling through histone modifications  

Chromatin remodelling plays an important role in regulating gene expression 

by controlling the recruitment of transcriptional and regulatory factors to the 

underlying DNA (Nafee et al. 2008; Ptak and Petronis 2008; Stuffrein-Roberts et al. 

2008).   

Over the past view years, post-translational histone modifications have been 

studied substantially.  In embryonic stem cells (ES) there are some regions termed 

‘bivalent domains’.  These domains contain both of these histone modifications, 

which are essential in ES cell differentiation and development by providing the 

potential for transcriptional activation or inhibition (Berger 2007; Spivakov and 

Fisher 2007; Schones and Zhao 2008). 

These modifications, which occur at various amino acid molecules on the 

histones N-terminal tail domains, include histone acetylation (lysine), 

phosphorylation (serine and threonine), methylation (lysine and arginine), 

ubiquitination (lysine), sumoylation and ADP-ribosylation.  These chemical 

modifications can alter the structure of the chromatin fibre, its degree of 

condensation, and then the interaction and the accessibility of the transcriptional 

proteins to the DNA within (Egger et al. 2004; Santos-Reboucas and Pimentel 2007; 

Bock and Lengauer 2008; Nafee et al. 2008; Ptak and Petronis 2008). 

Three models have been presented to explain the post-translational histone 

modifications (Schones and Zhao 2008).  First, histone code which is defined as 

‘multiple histone modifications occurring in the same region to generate a unique 

chromatin structure, which is compatible with specific level of gene expression’.  

These modifications function combinatorially to regulate downstream functions 

(Egger et al. 2004; Santos-Reboucas and Pimentel 2007; Nafee et al. 2008; Schones 

and Zhao 2008).  In addition, the histone code functions as epigenetic signals from 

the DNA to the cellular machinery including, gene regulation, DNA repair, and 

chromosome condensation (Stuffrein-Roberts et al. 2008).  Second, in more general 

aspect histone modifications can serve as signalling pathway to accelerate binding 

of enzymes for their function on the chromatin.  This model is providing specificity, 
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redundancy and combination through feedback loop.  Third, certain histone 

modifications such as, acetylating and phosphorylation initiate charge 

neutralization of the chromatin.  For example, acetylation of histones neutralize 

positive charge on DNA and phosphorylation adds negative charge, and this leads to 

a general decondensation of the chromatin fibre (Schones and Zhao 2008).      

Predominantly, the acetylation of the histone tail, such as H3K9, is related to 

an uncondensed chromatin structure and active transcriptionally regions, whereas 

hypoacetylation is related to inactive euchromatic or heterochromatic regions.  The 

balance between these two processes is controlled by an opposite activity of histone 

deacetylases (HDACs) and histone acetyltransferases (HATs) enzymes (Egger et al. 

2004; Santos-Reboucas and Pimentel 2007).  HAT enzyme acetylates the lysine 

residues on the N-terminal tail of the histone and neutralizes the positive charge of 

the protein, causing the formation of an open chromatin structure (euchromatin) that 

is accessible to the transcription regulatory factors.  Whereas, HDAC enzyme 

deacetylates the lysine residues, causes a chromatin condensation (heterochromatin) 

and inaccessible DNA for the transcription machinery (Ptak and Petronis 2008).  

Histone phosphorylation, is the addition of the negatively charged phosphate 

group to the histone tails, and the neutralization of the basic charge, which leads to 

reduce the histone affinity to the DNA.  It is seen in cell cycle progression during 

mitosis and meiosis.  For example, the phosphorylation of serine 10 in histone H3 

was related with gene activation in mammalian cells. In addition, the 

phosphorylation of the H2A, which occur after the activation of DNA-damage 

signalling step, will allow the chromatin to open and facilitate the DNA repair 

process (Santos-Reboucas and Pimentel 2007; Nafee et al. 2008).    

Histone methylation is a mark for both active and inactive regions of the 

chromatin, and different degrees of methylation are related with different levels of 

gene silencing.  Histone methylation of lysine residues can be monomeric, dimeric or 

trimeric.  These variations give rise to multiple combinations of different 

modifications ‘histone code’.  In addition, it was shown that histone methylation is 

reversible by histone demethylases as an oxidative process.  For instance, the 

trimethylation of the lysine residue 9 on the N terminus of histone 3 (H3-K9) is a 
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DNA silent mark and associated with constitutive heterochromatin.  This 

modification is spreading throughout certain heterochromatic regions such as 

telomeres and centromeres, while mono and dimethylation of the same position is 

associated with facultative heterochromatin.  On the other hand, the methylation of 

the lysine residue 4 on the N terminus of histone 3 (H3-K4) is an active mark at the 

promoter regions of active genes.  The suggested explanation for this variety is the 

specific binding of the heterochromatin protein 1 (HP1), which mediates H3K9 

methylation specifically but not H3K4 (Egger et al. 2004; Santos-Reboucas and 

Pimentel 2007; Nafee et al. 2008; Schones and Zhao 2008). 

Recent studies, which were performed on human and mouse, indicate that the 

histone methylation of  H3 lysine 9 H3K9, H3K27, H3K4 and H4K20 are implicated 

in heterochromatin formation and transcription inhibition.  The monomethylations 

signals of H3K4, H3K27, H3K9, and H4K20 found to be significantly high in the 

enhancers and transcribed regions, and correlated positively with the transcriptional 

activation, while the trimethylation of H3K27me3, H3K9me3 and H3K4me3 signals 

are inversely correlated with active promoters.   In addition, the localized distribution 

patterns of these histones were observed; H3K4me3 and H3K27me3 are spreading 

over large regions, while H3K9me3 and H4K20me3 are present near the boundaries 

of large heterochromatin domains (Heintzman et al. 2007; Santos-Reboucas and 

Pimentel 2007; Schones and Zhao 2008).  

    

1.3.3.2 DNA methylation 

In recent years, strong evidence has proven that DNA methylation is one of 

the major epigenetic modifications, which contributes to regulate many biological 

processes in the cell such as, chromatin structure, genomic imprinting, X 

chromosome inactivation, gene transcription and embryonic development.  In normal 

cells, it is vital for the mammalian development and for normal organism functioning 

for the adult to have established and maintained DNA methylation patterns.  

Moreover, the loss of the normal DNA methylation patterns in somatic cells leads to 

the loss of growth control (Robertson 2005; Schones and Zhao 2008).  Repetitive 
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Figure 1.27: 

Methylation of cytosine.  DNA methylation involves 

the addition of a methyl group to the 5-carbon position 

of cytosine residues. Adapted from (Stuffrein-Roberts et 

al. 2008). 

genomic regions are considered as preferable areas for the methylation process to 

occur.  Around 3% of the cytosines in human DNA are methylated (Robertson 2005; 

Nafee et al. 2008). 

DNA methylation is the only epigenetic change that affects the DNA directly; 

it is the replacement of the hydrogen atom of the cytosine base by a methyl group 

(Figure 1.27), which is established by the functional DNA methyltranferases 

(DNMTs) enzymes (Ptak and Petronis 2008; Schones and Zhao 2008; Stuffrein-

Roberts et al. 2008) 

  

 

 

 

 

  

 

 

 

DNA methyltranferases enzymes are responsible for establishing and 

maintaining DNA methylation. In addition, its contribution to the chromatin 

remodelling processes by establishing the binding site of HP1 through methylating 

H3K9.  Dnmt1 is responsible for maintaining the previous heritable methylated 

pattern of CpG of hemi-methylated DNA. It requires chromatin deacetylation before 

it can methylate DNA molecule, while the de novo Dnmt3a and Dnmt3b 

methyltransferases, which are highly expressed in embryonic cells, are responsible 

for starting DNA methylation during early embryonic development and establishing 
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the methylation pattern at previously unmethylated CpG sites (Saveliev et al. 2003; 

Robertson 2005; Santos-Reboucas and Pimentel 2007; Ptak and Petronis 2008). 

The methylated CpG expanded islands, which are hundred bases in size, are 

located in the promoter regions of 40% of mammalian genes and have the ability to 

generate a heritable transcriptional silencing (Egger et al. 2004; Nafee et al. 2008). 

Methyl-CpG binding proteins (MBPs) are involved in reading the 

methylation patterns and control the suppression process of the methylated islands, 

by recruiting chromatin remodelling factors, such as HDACs, as gene expression 

regulators.  Moreover, the right dosage of methylCpG binding protein 2 (MeCP2) in 

the CNS is vital for neuronal function.  For example, a slight over-expression of 

MeCP2 in neurons cause a severe symptom of motor dysfunction and seizures 

(Robertson 2005; Santos-Reboucas and Pimentel 2007). 

The methylation of the C5 position of cytosine residues within dinucleotides 

(CpG) has a fundamental importance as an epigenetic silencing mechanism by 

stimulating the formation of the heterochromatin structure which affects transcription 

factors binding.  The level of the DNA methylation is related with the level of the 

gene silencing.  The methylation pattern of a gene can be detected by sodium 

bisulphite sequencing or high performance liquid chromatography methodologies 

(Bock and Lengauer 2008; Nafee et al. 2008; Ptak and Petronis 2008). 

  DNA methylation pattern is a balance of methylation and demethylation 

reactions (D'Alessio and Szyf 2006).  Aberrant DNA methylation patterns in cells 

have been considered as a major element contributing to a wide range of human 

complex disorders such as, trinucleotide repeat (TNRs) diseases.  Many studies of 

repeat instability disorders demonstrate that only some of the TNRs have a higher 

susceptibility to be targeted for methylation process then the silencing mechanism.  

However, other studies showed that TNRs are targeted for silencing mechanism 

regardless what their sequence is. For example, in FRDA the expanded 

(GAA)n∙(TTC)n repeats adapt a heterochromatin structure.  Therefore, TNRs might 

be targeted for silencing at the chromatin level and then other factors may or may not 

stimulate the DNA methylation process (Robertson 2005; Ptak and Petronis 2008).    
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Interestingly, a recent study demonstrates that DNA methylation patterns can 

be mediated by the CCCTC-binding factor (CTCF) in addition to its primarily role, 

which is read the DNA methylation marks and ensures the allele specific gene 

expression.  CTCF is an 11-zinc factor protein that is ubiquitously expressed and it 

acts as a regulator of imprinted gene expression.  This protein can protect certain 

regions from DNA methylation and has a boundary element function by blocking the 

spread of heterochromatin (Robertson 2005).  Furthermore, DNA methylation 

patterns can also be mediated by H3K27 methyltransferase enzyme by the direct 

physical interaction with the DNA methylatransferase in human cell line (Schones 

and Zhao 2008).   

  

1.3.3.3 RNA-associated silencing 

Many studies showed that RNA is involved closely in regulating the gene 

expression process in FRDA and other human complex disorders; thus, many recent 

research areas are considering expanding the knowledge and the understanding of 

this mechanism is important. 

 RNA, which can lead to the heritable transcriptional silencing due to the 

formation of heterochromatin, is present in three forms: non-coding RNAs, antisense 

transcript RNAs and RNA interference (RNAi), (Hebert and Whittom 2007).   

The non-coding RNAs, regulate the binding of the HP1 protein to the 

chromatin and it involve in initiating X inactivation by DNA methylation and 

chromatin condensation.  Furthermore, the involvement of the antisense transcript 

RNAs in different silencing mechanisms has been observed.  A previous study 

showed that the antisense transcript has effect on the DNA methylation and silencing 

the intact HBA2 α-globin gene in a α-thalassaemia case (Egger et al. 2004; Santos-

Reboucas and Pimentel 2007; Schones and Zhao 2008). 

Whereas, RNAi is a highly conserved silencing machinery that regulates gene 

expression by the homology dependent degradation of the target mRNAs by using 

small double-stranded RNA (dsRNA) molecules as triggers, as a result the inhibition 
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of mRNA transcription (Robertson 2005; Kim and Rossi 2008).  In trinucleotide 

reapeat diseases with the repeat instability, the large repeats are targeted for 

methylation and the formation of hairpin RNA, which might be cleaved to a short 

hairpin RNA (shRNA) and recruit the RNAi silencing mechanism.  To date there are 

few clinical trials using RNAi as a treatment strategy for wide range of diseases, 

including neurodegenerative diseases (Santos-Reboucas and Pimentel 2007; Kim and 

Rossi 2008).   

 

1.3.3.4 Non-histone proteins 

 Non-histone proteins have an influence on the chromatin remodelling.  ATP-

dependent chromatin remodelling complexes can directly move or displace 

nucleosomes along the DNA, allowing the access of the transcription factors to bind 

within the chromatin and activating the transcription (Bird 2007; Bock and Lengauer 

2008). 

 Furthermore, Heterochromatin protein (HP1), Polycomb group (PcG) and 

Trithorax complexes (TrxG) are chromatin modifier proteins, which are part of a 

cellular memory system responsible for controlling chromatin accessibility and 

maintaining transcription in the first stages of embryonic life and throughout 

development.  PcG function as a stable repressor, while TrxG promote maintenance 

of gene activity.  They can bind to the DNA or to specifically modified histone tails 

and catalyze other histone modification or DNA methylation, as a result causing a 

gene silencing. For instance, polycomb protein catalyzes repressive histone 

methylation and recruit DNA methylation while it is interacting with DNA 

methyltransferases (Santos-Reboucas and Pimentel 2007; Bock and Lengauer 2008; 

Laskowski and Thornton 2008).  

In summary, histone modifications as a cellular mechanism are getting a 

significant attention in the genetic field, thus there are many ongoing studies using 

the advanced technologies to accumulate the knowledge about this area of research. 

In addition, according to the significant importance of the DNA methylation 
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mechanism more knowledge is still needed to fully describe its role in the disease 

aetiology.  Finally, additional studies are needed to fully understand the fundamental 

role of RNA molecule and the non-histone protien in silencing FXN expression in 

FRDA and other diseases.  All will lead to a new and wide applicable treatment 

approach in the future. 

 

1.3.4 The relationship between the different mechanisms of 

epigenetic regulations 

DNA methylation, histone modificationas, RNAs and DNA binding proteins 

are not independent elements. They function together to organize chromatin structure 

and they influence each other during dynamic regulations of cellulaer differentiation 

or pathological conditions (Figure 1.28) (Schones and Zhao 2008). 

An epigenetic study suggested that RNA could be the trigger for DNA and 

histone methylation modifications, resulting in stable and a heritable silencing.  

However, the exact sequence of DNA methylation, histone modifications and RNA 

in the concept of which initiates the recruitment of different epigenetic modifiers is 

currently unknown (Figure 1.29) (Egger et al. 2004). 

The correlation between DNA methylation and chromatin remodelling had 

been established long time ago.  A hypermethylated DNA profile is correlated with 

hypoacetylated, inactive chromatin.  Whereas, a hypomethylated DNA profile is 

correlated with active acetylated chromatin.  In addition, DNA methylation is related 

to the gene transcription directly or indirectly through chromatin remodelling.  As a 

conclusion a recent study suggests that the relation between these two epigenetic 

mechanisms is a bidirectional relationship (D'Alessio and Szyf 2006). 

In conclusion, having a comprehensive knowledge about the connection 

between different epigenetic mechanisms is vital to establish a valid research toward 

a more specific treatment for epigenetic complex diseases such as, trinucleotide 

repeat disorders.  
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Figure 1.28: 
The interaction of DNA methylation, histone modification and other 

factors such as small RNAs contribute to an overall regulation of the 

gene expression and allows cells to remember their identity.  

Heterochromatic regions are marked with H3K9me2 and H3K9me3, which 

serve as a platform for HP1 binding.  Small RNAs have been implicated in 

the maintenance of heterochromatin.  DNA methylation is persistent 

throughout genomes, and is missing only in regions such as CpG islands, 

promoters and possibly enhancers.  The H3K27me3 modification is present 

in broad domains that encompass inactive genes.  Histone modifications 

including H3K4me3, H3K4me2, H3K4me1 as well as histone acetylation 

and histone variant H2A.Z mark the transcription start site regions of active 

genes.  The monomethylations of H3K4, H3K9, H3K27, H4K20 and H2BK5 

mark actively transcribed regions, peaking near the 5′ end of genes.  The 

trimethylation of H3K36 also marks actively transcribed regions, but peaks 

near the 3′ end of genes.  Modified from (Schones and Zhao 2008). 
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Figure 1.29: 

Interaction between RNA, histone modification and DNA 

methylation in heritable silencing.  Histone deacetylation and 

other modifications, particularly the methylation of lysine 9 

within histone H3 (H3-K9) residues located in the histone tails, 

cause chromatin condensation and block transcriptional 

initiation.  Histone modification can also attract DNA 

methyltransferases to initiate cytosine methylation, which in 

turn can reinforce histone modification patterns conducive to 

silencing.  Experiments in yeast and plants have clearly shown 

the involvement of RNA interference in the establishment of 

heterochromatic states and silencing. RNA triggering of 

heritable quiescence might therefore also be involved in higher 

organisms.  Adapted from (Egger et al. 2004). 
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1.3.5 Molecular epigenetic mechanisms in Friedreich ataxia (FRDA) 

FRDA is one of the most thoroughly studied hereditary neurological disorders 

and it now has well-defined genetic and biochemical pathways.  As a result, this 

disorder is a full resource model to study the epigenetic mechanisms that are 

involved in the progression of the disease in more depth (Wells 2008). 

DNA methylation and histone modification are the main mechanisms, which 

have been studied and related to FRDA.  Therefore, only these two mechanisms will 

be discussed in this section. 

 

1.3.5.1 DNA methylation and its contribution to FXN gene transcription  

Considering that DNA methylation is an important epigenetic mechanism, an 

epigenetic study showed that the DNA methylation pattern of specific CpG sites 

upstream of the GAA repeat in intron 1 was more extensive by 50% in FRDA patient 

lymphoblastiod cell lines than it was in the control cell lines. Three CpG residues 

(termed 3, 6, and 13) were always methylated in FRDA cells by 75 to 100% of 

alleles; whereas, they were methylation free in the control cells.  One of these 

residues (residue 13) was located within the E-box in intron 1, which might be the 

binding site for certain transcription factors that contribute to gene’s promoter 

activity.  Consequently the methylation of these residues in intron 1 might affect 

transcription factors binding and lead to a reduction in frataxin expression  

(Gottesfeld 2007; Greene et al. 2007; Hebert and Whittom 2007; Al-Mahdawi et al. 

2008; Wells 2008).  This study also suggested that the increased methylation of 

residue 13 may be a secondary effect of a compact chromatin structure that blocks 

binding factors (Figure 1.30) (Greene et al. 2007).   

Another recent experiment using bisulfite sequence analysis had investigated 

the DNA methylation pattern in three occurrences in FXN gene: FXN promoter, 

upstream GAA and downstream GAA.  Results have demonstrated an altered DNA 

methylation pattern in FRDA brain and heart tissues, moving from hypomethylation 
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in the downstream GAA toward hypermethylation in the upstream GAA region (Al-

Mahdawi et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Up to date many substantial studies are continuing in order to have a better 

understanding about DNA methylation mechanism and its contribution to FRDA 

disorder.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.30: 

Model for chromatin organization in the region conataining 

residue 13 in normal and FRDA alleles.  Adapted from (Greene et 

al. 2007). 
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1.3.5.2 Chromatin remodelling (histone modifications) and its contribution to 

FXN gene transcription  

  Heterochromatin-mediated silencing mechanisms regulate the level of gene 

silencing; hence the clinical severity in the triplet repeat diseases (Saveliev et al. 

2003).  The expanded (GAA)n∙(TTC)  repeats correlates with heterochromatin 

formation at the promoter regions of the gene; thus mediating gene silencing.  In 

addition, heterochromatin structure has been observed in the surrounding regions of 

the expanded repeats in cells from FRDA patients (Saveliev et al. 2003; Wells 2008).  

A well structured experiment, which was conducted by Festenstein and 

colleages, revealed that (GAA)n∙(TTC) repeats induced positive effect varigation 

(PEV) in euchromatic and heterochromatic regions, resulting in gene silencing by 

stimulating the overexpression of HP1 to methylate H3K9 (Saveliev et al. 2003; 

Hebert and Whittom 2007).  

Another previous study showed a high level of H3K9me2 in FRDA cells with 

more repressive chromatin structure and low level of FXN mRNA level (10 to 30 %). 

A significant hypoacetylation of H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 

in FRDA cells upstream and downstream of the (GAA)n∙(TTC) repeats were 

observed. No significant changes in histone acetylation of the promoter region were 

found between FRDA and control cells (Gottesfeld 2007; Hebert and Whittom 2007; 

Wells 2008). 

The transcriptional inhibition seen on FXN is consistent with a high level of 

trimethylation of H3K9 and low level of methylation of H3K4 at the surrounding 

regions of the expanded (GAA)n∙(TTC) repeats (Herman et al. 2006).    

It has also been experimentally approved that the presence of the 

hypoacetylated histones at the expanded (GAA)n∙(TTC) repeats  can facilitate the 

accessibility to the chromatin remodelling protein molecules that leads to the 

heterochromatin formation and stimulates the GAA∙GAA∙TTC triplex formation 

(Wells 2008). 
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In summary, understanding the mechanisms of how the expanded 

(GAA)n∙(TTC) repeats inhibit FXN gene expression either through forming unusual 

DNA or heterochromatin structures  still to be investigated in more specific aspects 

(Figur 1.31).  This will support the researchers in the genetic field with a vital 

knowledge to further proceed with the therapeutic field research toward the right 

direction to help FRDA patients to have a better-adjusted life.   

 

 

 

 

 

 

 

 

 

 

Figure 1.31: 

The current understanding as to why GAA repeats reduce 

frataxin message levels.  GAA repeats can form non B-form 

DNA structures and RNA∙DNA hybrids (1) that impede 

transcription (2).  By a mechanism yet to be determined (3), it 

is thought that GAA repeats trigger heterochromatin formation 

(5).  One possible signal for heterochromatin formation could 

be alternative DNA structures induced by GAA repeats (4).  

Adapted from (Hebert and Whittom 2007). 
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1.4 Therapeutic approaches 

Friedreich ataxia is considered as a single gene disorder and that makes it a 

good candidate for experimental therapeutic research (Wells 2008).  Any therapy that 

can result in increased frataxin expression would be considered as useful. 

 

1.4.1 Antioxidant and iron chelation-based approaches  

Antioxidant drugs were developed to reduce the load of free radicals, protect 

the mitochondria from oxidative damage and slow the progress of the disease 

(Delatycki et al. 2000).  This type of drugs may benefit FRDA patients by treating 

later symptoms rather than directly increase frataxin expression (Gottesfeld 2007).  

Iron chelator, chelating iron from extracellular fluid and cytosol but not from the 

mitochondria (Pandolfo 2008).   

  

1.4.2 Gene based approach  

 1.4.2.1 DNA interacting binding compounds 

 Small molecules designed to recognize a predetermined DNA sequence such 

as, polyamides.  They have the specific ability to permeate cells and localize in the 

nucleus and downregulate target genes in the cell.  Such molecules may inhibit the 

protein-DNA interaction such as, HP1 thereby resulting in having an open chromatin 

structure. They could also target the expanded (GAA)n∙(TTC) n tract directly and 

disrupt or reverse the sticky DNA formation and increase the FXN transcription in 

FRDA cells.  Polyamides do not bind to single strand or duplex regions of RNA so 

no effect on RNA processing or translation of frataxin mRNA (Gottesfeld 2007; 

Hebert and Whittom 2007; Wells 2008).  
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1.4.2.2 Epigenetic drugs 

Histone deacetylase inhibitors (HDACi) have a positive and a negative 

effect on gene transcription on epigenetic level.  Various HDACis target various 

HDAC enzymes and regulate the level of acetylation of histone and non-histone 

chromosomal protein (Herman et al. 2006).  It has been suggested that HDACi has 

effect on pre-mRNA splicing rather than effect the transcription (Baralle et al. 2008). 

Many studies showed the effect of HDACi on FXN activity as treatment and 

its ability to reverse heterochromatin structure to an active form and restore the 

normal function of the gene (Gottesfeld 2007).  Herman and colleagues used 

different classes of HDACi and showed a significant increase in frataxin level and 

partial reverse of the silencing with an increase in the acetylation of H3K14, H4K5, 

H4K12 in the FRDA lymphocytes (Herman et al. 2006; Hebert and Whittom 2007). 

Another recent study indicates an increase in the acetylation of H3K14, 

H4K5, H4K8 and H4K16 of the homozygous knock-out (KIKI) mice brain, 

cerebellum and heart tissues; thus restoring the normal level of frataxin expression 

after HDACi treatment for three consecutive days (Rai et al. 2008).   

 DNA demethylating agents, there are many DNA methylation inhibitors one 

of these agents is 5-aza-2'-deoxycytidine which is a powerful inhibitor of DNA 

methylation, it induces gene expression and differentiation in cultural cells in S-

phase only (Egger et al. 2004).  It targets replicating DNA in place of cytosine and 

traps DNA methyltransferases (Santos-Reboucas and Pimentel 2007).  This 

compound had been used for fragile-X disorder and it showed an increase in the 

frataxin protein in fragile-X lymphoblasts in low doses because it has a cytotoxic 

effect (Chiurazzi et al. 1998; Hebert 2008).  For therapy that is more effective the 

combination between HDACi and DNA demethylating agents were used.  This 

suggestion was used as treatment for fragile-X lymphoblast. The experiment 

demonstrated that the level of transcription was increased and it has been suggested 

to be used for FRDA (Chiurazzi et al. 1999; Hebert 2008). 
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1.4.3 Molecules that increase frataxin mRNA or protien  

 There are several molecules have been reported to increase the frataxin 

expression such as, sodium butyrate, hemin, cisplatin and recombinant human 

erythropoietin (rhuEPO).  rhuEPO shows an increase in the frataxin expression in 

FRDA cells by increasing the translation, without any effect on mRNA expression 

(Sturm et al. 2005; Babady et al. 2007).  The molecular basic of this observation still 

not clear but there are clinical trials currently in progress (Gottesfeld 2007). 

1.4.4 Gene therapy approach   

Viral gene based approach, is a valid theoretic approach but it has its own 

technological limitations to apply it clinically. Adeno-associated viral and vector 

expressing frataxin cDNA shown a decrease in the sensitivity to the oxidative stress 

in FRDA primary fibroblast. Another promising approach for nervous system gene 

therapy (TOOL) was reported, herpes simplex virus type 1 (HSV-1) amplicon vector 

can express either the entire FXN genomic locus or frataxin cDNA and it can 

successfully restore the normal phenotype (Gomez-Sebastian et al. 2007; Lim et al. 

2007; Hebert 2008). 
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1.5 In vitro and in vivo models 

To facilitate having a comprehensive understanding of the frataxin deficiency 

and its contribution to FRDA disease pathology and progression there is a need for in 

vitro (cell lines) and in vivo (mouse) models as tools for  several talented groups have 

given the intention to evolve these models as reliable resources for FRDA 

researchers.   

    

1.5.1 In vitro models 

Recently, the Hebert group investigated a stable HeLa cell lines. These cell 

lines hold part of the first intorn of FXN, which contains (GAA∙TTC)15 or 

(GAA∙TTC)148 repeats, fused to the coding sequence for the enhanced green 

fluorescent protein (EGFP) gene.  Results demonstrated reduced levels of GFP 

expression in the (GAA∙TTC)148 cell line compared with the (GAA∙TTC)15 cell line 

(Grant et al. 2006).  In addition, a collection of established lymphoblast and 

fibroblast cell lines obtained from FRDA patients, their parents and siblings with 

different repeat numbers is available.  These cell lines are considered a useful 

resources to study FXN gene in its native chromosomal context (Gottesfeld 2007).  

  

1.5.2 In vivo models 

In order to study the FRDA disorder at all levels, mouse models are 

considered the most appropriate approach for the in vivo experiments.  The 

homologous mouse gene (Frda) has 73% similarity to the human frataxin and it 

shows a very high identity in exons 3 to 5 and less conservation in first two exons 

(Cossee et al. 2000). 

In 2000, Cossee and colleagues generated the first mouse model, the ‘Fxn 

knockout mouse’, by homologous recombination to delete exon 4 (98bp), leading to 

a framshift of the exon 5 coding sequence and resulting in severe truncation in 
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Figure 1.32: 

Two steps mating strategy.  In the first step, Y47 transgenic mouse 

(Y47+/ Frda+/+) was crossed with heterozygous knockout mouse 

(Frda+/-).  In the second step, the offspring (Y47+/ Frda+/-) was either 

crossed with (Frda+/-) or intercrossed.  Then the human transgenic 

mouse on null background was generated (Y47+/ Frda+/-).  

Explanation adapted from (Pook et al. 2001). 

frataxin.  The homozygous mouse (-/-) for the deleted Frdadel4 alleles showed an 

early embryonic lethality as early as E6.5 and morphological abnormalities, which 

indicates that frataxin is a vital protein for embryonic development.  However, the 

heterozygous mouse (+/-) for the deleted Frdadel4 was morphologically normal, viable 

and has a normal life span (Cossee et al. 2000). 

 To solve the embryonic lethality of the homozygous Frda knockout mouse 

Pook and colleagues have generated a human transgenic mouse, which contains the 

whole FRDA locus in a 370 kb human yeast artificial chromosome (YAC), to rescue 

the knockout mouse.  Results indicated that human frataxin showed an expression at 

a comparable level to the endogenous mouse gene, a successful functional 

replacement for it, a right posttranslational modification, and the right localization in 

the mitochondria.  In addition, the FXN human transgenic mouse (Y47) contains 

(GAA∙TTC)9 repeats and two copies of the gene, thus manifests a normal phenotype.  

Furthermore, to generate the transgenic rescued mice (Y47+/ Frda-/-), a two step 

strategy was used.  The strategy is well explained in Figure 1.32 (Figure 1.32) (Pook 

et al. 2001).  
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A valid step ahead after generating the human wild-type FXN transgenic 

rescued mouse was to generate a mouse model with an expanded (GAA)n∙(TTC)n 

repeat into the YAC clones.  In 2004, Pook and his group generated 2 lines of the 

human FXN transgenic mice models, YG8 and YG22, containing (GAA∙TTC)190+90 

and (GAA∙TTC)190 repeat expansions.  Then these mice were cross bred with the 

heterozygous knockout mouse (Frda+/-) and the offspring showed a reduced level of 

frataxin mRNA and protein expression.  In addition, these mice manifest the 

neurodegenerative and cardiac pathological phenotype.  In this model, it had been 

proven that YG22 have a single copy of the FRDA gene, while YG8 have two copies 

of the gene.  This model has showed a (GAA)n∙(TTC)n repeat age related somatic 

instability and repeat instability in the cerebellum. Therefore, this model is 

considered an excellent model to further investigate epigenetic modifications and 

potential therapeutic approaches (Al-Mahdawi et al. 2004; Al-Mahdawi et al. 2006; 

Babady et al. 2007).  Within this thesis, FXN expression levels, histone modification 

and epigenetic changes were investigated within the brain, heart and liver tissues 

from this mouse model. 

Other mouse models were generated by different research groups, For 

instance, Miranda and colleges generated the knock-in mouse in order to have a 

mouse model with a reduced frataxin level.  This mouse model was generated by the 

insertion of (GAA∙TTC)230 repeats within the mouse frataxin gene.  The homozygous 

knock-in mouse (KIKI) is showing a reduced level of frataxin by 64-75% only from 

the normal level and it is not associated with any obvious pathological phenotype. 

Then these mice were crossed with the frataxin knockout mice to produce a knock-

in/knockout model (KIKO) with more reduced level of frataxin expression, by 25% 

decrease (Miranda et al. 2002; Baralle et al. 2008).   

Furthermore, another mouse model, which was developed by Sarsero and 

colleagues using a 180kb modified bacterial artificial chromosome (BAC), 

containing an in frame fusion of the human FXN gene and EGFP reporter system.  

Although, these mice show a low level of frataxin, they do not develop any 

phenotype.  This model does not contain (GAA)n∙(TTC)n repeats (Sarsero et al. 

2005; Babady et al. 2007; Gottesfeld 2007). 
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Up to date, there is no mouse model that effectively parallels the progressive 

human neurological disease; therefore research is ongoing to develop further FRDA 

mouse models.  Using a different approach, a new conditional knockout mouse 

model was generated by the complete deletion for the mouse frataxin in specific 

tissues such as, heart, skeletal muscle and neurons.  This model demonstrates the 

accumulation of damaged mitochondria, degenerative mechanism in the DRG and 

the involvement of the frataxin in iron metabolism in the mitochondria.  This model 

is a very useful tool to study the mechanism of late-onset and slowly progressive 

neurodegenration of the disease (Simon et al. 2004; Coppola et al. 2006; Babady et 

al. 2007).  The availability of thses mice models is a great help and support toward a 

deep undertsatinding of the FRDA disorder at all levels.  

 

1.6 Aim of the study   

Friedreich ataxia (FRDA) is an autosomal recessive neurodegrantive disorder.  

It is most often caused by homozygous expanded (GAA)n∙(TTC) repeats within 

intron 1 of the FXN gene, as a consequence severely reduced level of frataxin 

protein.  Many studies have suggested that the expanded repeat may has the ability to 

induce epigenetic modifications that cause the FXN transcription inhibition to occur. 

In the past few years, epigenetic modifications have given a considerable 

attention as an important mechanism that is contributing to the aetiology of FRDA 

disorder.  Therefore, the aim of this project is to investigate the effect of the 

epigenetic changes such as, histone modifications including histone acetylation and 

methylation of H3 and H4 in three different regions: the FXN promoter, upstream 

GAA and downstream GAA within the FXN gene on the FXN mRNA transcription 

level.  In addition, investigate the effect of HDACi, which is an epigenetic promising 

treatment, on the FXN mRNA transcription level and histone acetylation in YG8 and 

YG22 transgenic mice brain, heart and liver tissues. 
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Chapter 2 

Material and Methods 

 

2.1 Genotyping of mice 

 

2.1.1 DNA extraction  

Genomic DNA was extracted from mouse-tails as described by Wang and 

Storm, 2006 (Wang and Storm 2006).  Tails 5 mm in length were collected in 1.5 ml 

tubes (Eppendorf).  Each tail sample was digested in 400 μl of digestion buffer (100 

mM Tris-HCl pH= 8.0 [Tris-hydroxymethylaminomethane], 5 mM EDTA [ethylene 

diamine titra acetic acid], 200 mM NaCl [sodium cholride], and 0.2% SDS [sodium 

dodecyl sulfate], [Sigma,UK]) + 10 μl of 50 mg/ml proteinase K (BDH), then 

incubated in a 55 °C waterbath overnight.  The incubated sample was then vortexed 

(Whirlimixer) for 15 seconds (s) and centrifuged (Eppendorf Micro Centrifuge 

Model 5415 R) at 13,000 rpm (16110 g) for 5 minutes (min) at room temperature 

(RT).  The supernatant was collected into a clean, labelled tube; 1 ml of absolute 

ethanol (Hayman,UK) was added, mixed and placed at -80 °C for 10-15 min.  The 

tube was centrifuged at 13,000 rpm for 30 min at 4 °C and the supernatant was 

discarded.  The pellet was washed with 1 ml of 70% (v/v) ethanol and centrifuged at 

13,000 rpm for 20 min at 4 °C; the ethanol was discarded.  The pellet was left to air-

dry for 10-15 min and then suspended in 50-100 μl T.E. (10 mM Tris, 1mM EDTA, 

pH= 8.0) buffer and stored at 4 °C.  

   

  2.1.2 (GAA) PCR  

A polymerase chain reaction (PCR) was performed on mouse genomic DNA 

samples to detect the genotype (Campuzano et al. 1996).  The following primers 

were used: 



Daniah Trabzuni Page 82 

GAA-F: 5'-GGGATTGGTTGCCAGTGCTTAAAAGTTAG-3' (Sigma GENOSYS) 

GAA-R: 5'-GATCTAAGGACCATCATGGCCACACTTGCC-3' (Sigma 
GENOSYS) 
  
  For each sample, the following reaction was set up in a 0.2 ml tube:   
 

 

 

 

 

 

 

 

 

Controls were included every time the PCR was performed and are described below: 

 1- Positive control  2- Negative control 3- Blank (water) control 

The amplification conditions were as follows: 

 

 

 

 

 

 

 

 

Reagents Concentration Quantity in μl 

Kapa Master mix 
(KapaBiosystem,UK) 

2X 12.5 

GAA-F  primer 50 mM 0.25 
GAA-R  primer 50mM 0.25 

dH2O - 11 
Sub-total - 24 

DNA - 1 
Total - 25 

Steps Temperature Duration Cycles 

Denaturation 94 °C 2 mins 1 

Denaturation 94 °C 

60 °C 

68 °C 

10 s 

30 s 

45 s 

10 Annealing 

Elongation 

Denaturation 94 °C 

60 °C 

68 °C 

10 s 

30 s 

1 min 

20 

With 20 s increments 
Annealing 

Elongation 

Extension 68 °C 10 mins 1 
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 Amplification was performed using a PTC-225 Peltier Thermal Cycler (MJ 

Research).  After amplification, 5-10 μl of PCR product was loaded on a 1 % (w/v) 

agarose mini-gel (1 g agarose [Invitrogen, UK] in 100ml 1X TBE [89 mM tris-

borate, 2 mM EDTA] buffer) (Sigma, UK), stained with 1.3μl of 10mg/ml ethidium 

bromide (EtBr) with 5 μl of  1 kb plus DNA ladder [Invitrogen, UK]  at 80 volts for 

30-45 min in a Flowgen mini-gel electrophoresis tank.  The photograph of the gel 

was taken and evaluated using an Alphaimage 2200, INNOTECH system.  

 

2.1.3 (FXN) knockout PCR  

 This PCR was performed  (Cossee et al. 2000) to identify the wild-type or 

knockout Fxn alleles.  The following primers were used:   

WJ5:    5'-CTGTTTACCATGGCTGAGATCTC-3' 

WN39: 5'-CCAAGGATATAACAGACACCATT-3' 

WC76: 5'-CGCCTCCCCTACCCGGTAGAATTC-3'  

For each sample, the following reaction was set up:  

 

 

 

 

 

 

 

 

 

 

Controls were included every time this PCR was performed.  They are as follows:  

1- Wild-type control   2- Heterozygous control 

3- Rescue control  4- Blank (water) control  

Reagents Concentration Quantity in μl 

Kapa Master mix 2X 12.5 
WJ5   primer 50 mM 0.5 
WN39  primer 50mM 0.5 
WC76   primer 50mM 0.1 

dH2O - 10.4 
Sub-total - 24 

DNA - 1 
Total - 25 
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The amplification conditions were as follows: 

  

 After amplification, 10μl of PCR product was loaded on a 2% (w/v) agarose 

mini-gel (2g agarose in 100ml 1X TBE buffer) stained with 1.3 μl of 10 mg/ml 

(EtBr) along with 5μl of the 1kb plus DNA ladder at 80 volts for 30-45 minutes in a 

Flowgen mini-gel electrophoresis tank.  The photograph of the gel was taken and 

evaluated using Alphaimages2200, INNOTECH system. 

  

2.2 RNA extraction using TRIZOL®Reagent  

RNA was isolated from brain, heart and liver mouse tissues that were 

between 50 -100 mg in weight (Chomczynski and Sacchi 1987).   The various tissues 

were collected and weighed in 1.5 ml RNAse-free eppendorf tubes.  All steps were 

performed on dry ice until the TRIZOL®Reagent (Invitrogen) was added.  Dr.Al-

Mahdawi (Brunel University, UK) had previously prepared the RNA and cDNA 

samples from the first group of mouse tissues (Heart, Brain, and Liver) and the 

human (heart and brain) tissues. 

 

2.2.1 Tissue homogenisation  

A) For brain and liver tissue 

A small piece of tissue was cut and weighed in a 1.5 ml tube.  250 μl of 

TRIZOL was added to the tissue and homogenised with an RNAse-free plastic 

Steps Temperature Duration Cycles 

Denaturation 94 °C 

54 °C 

72 °C 

20 s 

20 s 

20 s 

30 Annealing 

Elongation 

Extension 72 °C 6 mins 1 
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pastille.  In this step, the solution was homogenised until no big pieces remained.  A 

further 250 μl of TRIZOL was added and the tissue was again homogenised with the 

pastille.  Finally, 500 μl of TRIZOL was added and again the solution was 

homogenised.  

B) For heart tissue 

 Frozen tissue was ground into a powder consistency with a pestle and mortar, 

TRIZOL was added, or TRIZOL was added to the tissue in a bijou tube and 

homogenised with an electric homogeniser.  

 

2.2.2 Phase separation  

 The homogenised tissue sample was incubated in a 30 °C water bath for 5 

min.  After incubation, it was mixed gently and firmly by inversion 4-5 times.  200 μl 

of chloroform (CHCl3) (Sigma,UK) was added, the tube was mixed vigorously by 

hand for 15 s.  The tube was incubated in a 30 °C water bath for 15 min.  The sample 

was  centrifuged at 13,000 rpm for 15 min at 4 °C.  5 μl of the upper aqueous phase 

was transferred to a fresh-labelled tube to run in a 1% agarose mini-gel along with 1 

kb plus DNA ladder at 80 volts for 25-30 min.  The photograph of the gel was taken 

and evaluated.   

 

2.2.3 RNA precipitation and wash 

The aqueous phase (upper layer, with approximately 60 % of TRIZOL 

volume added) was transferred to a fresh-labelled 1.5 ml tube.  It should be noted 

that it is very important not to disturb the bottom phase.  RNA was precipitated by 

adding and mixing 500 µl of isopropyl alcohol to the aqueous phase, followed by 

incubation at 30 ºC in a water bath for 10 min.  The sample was then centrifuged at 

13,000 rpm for 10 min at 4 °C, where a small white pellet can be observed after 

stage.  The isopropyl alcohol was discarded and 1 ml of 75% (v/v) ethanol was added 
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to wash the RNA pellet.  The sample was vortexed and centrifuged at 13,000 rpm for 

5 min at 4 °C, and the supernatant was discarded.  The pellet was left to air-dry for 

10-15 min and then suspended in 50-100 μl of pre-heated elution buffer to 60°C.  

Finally, the sample was incubated in a 60 °C hot block for 10 min.  5μl of RNA 

sample was used to check the quality of the extracted RNA.  After incubation, the 

RNA sample can be used immediately for cDNA synthesis or stored at -80 °C for 

future use.  The tube containing the bottom phase was stored at - 20° C for DNA 

extraction in the future.  

 

2.2.4 RNA quality check  

 The quality of each RNA sample was checked by running 5 μl on  a 1 % 

agarose mini-gel along with 1 kb plus DNA ladder at 80 volts for 25-30 min.  The 

photograph of the gel was taken and evaluated. 

 In addition, the optical density (OD) of each RNA sample was measured at a 

wavelength of 260 nm.  The concentration of each sample was calculated, together 

with the ratio of absorbance at 260nm/280nm. 

 

 2.3 cDNA synthesis  

 RNA was synthesised into cDNA using the Cloned AMV First-Strand cDNA 

Synthesis Kit, (Invitrogen).  

 2.3.1 cDNA synthesis   
The first mix was prepared for each sample in a 1.5 ml tube on ice as follows:  

 

 

 

Reagents Concentration Quantity in μl 

Oligo (dT20) primers 50 pmoles 1 
dNTPs 10 mM 2 

DEPC-treated water - 7.5 
RNA - 1.5 
Total - 12 
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 The sample was incubated in a 65 °C water bath for 5 min, and placed 

directly on ice.  The second mix was prepared on ice for each sample in order to be 

added to the previous mix in a 1.5ml tube on ice as follows: 

 

 

 

 

 

 

 

 

 

 

8 μl of the second mix was added to each tube placed on ice ouse and the 

sample was incubated in a 50 °C water bath for 60 min.  The reaction was stopped by 

transferring the tube to a 85 °C hot block for 5 min.  The sample was then used 

immediately for PCR or stored at -20 °C for future use. 

 

2.3.2 cDNA quality check  

 Further PCR amplification was carried out in order to check the quality of the 

newly-synthesised cDNA sample, using different sets of primers depending on the 

expression profile to be tested and the sample type used.  The following sets of 

primers were used: 

 

FxnRT-m-F 5'-CAGAGGAAACGCTGGACTCT-3' 

FxnRT-m-R 5'-AGCCAGATTTGCTTGTTTGGC-3' 

Gapdh-m-F 5'-ACCCAGAAGACTGTGGATGG-3' 

Gapdh-m-R 5'-GGATGCAGGGATGATGTTCT -3' 

 

Reagents Concentration Quantity in μl 

cDNA synthesis buffer 5X 4 
DTT 0.1 M 1 

RNaseOUT 40 U/ μl 1 
DEPC-treated water - 1 

Cloned AMV RT 15 units/ μl 1 

Total  8  

Master mix 1  +12 
Final Volume   20 

Mouse 

Human 
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Gapdh-h-F 5'- GAAGGTGAAGGTCGGAGT -3' 

Gapdh-h-R 5'- GAAGATGGTGATGGGATTTC-3' 

FRTIb-F 5'- TTGAAGACCTYGCAGACAAG -3' 

RRTII-R 5'- CCAAACAAGCAAATCTGGCT -3' 

For each sample the PCR reaction mix was prepared in a 1.5 ml tube on ice as 

follows:  

 

 

 

 

 

 

 

Controls were included every time this PCR was performed.  They are as follows:  

 1- Human Placenta cDNA   2- Blank (water) control  

The amplification conditions were as follows: 

  

 10μl of PCR product was resolved on a 2% (w/v) agarose gel, which was 

photographed and evaluated.  The cDNA sample was stored at -20°C to be used for 

quantitative Real-Time PCR. 

Reagents Concentration Quantity in μl 

Kapa Master Mix 2X 12.5 
FW primer 5 mM 1 
RV primer 5 mM 1 

dH2O  9.5 
DNA - 1 
Total - 25 

Steps Temperature Duration Cycles 

Denaturation 94 °C 1 min 1 

Denaturation 94 °C 

60 °C 

72 °C 

20 s 

20 s 

30 s 

35 Annealing 

Elongation 

Extension 72 °C 10 mins 1 

Human
  

 
Mouse and Human  

 Y= C or T 
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2.4 Chromatin immuno-precipitation assay (ChIP)  

Histone modifications at three regions of FXN gene were detected by 

chromatin immune-precipitation assay (ChIP) (Al-Mahdawi et al. 2008).   Human 

and mouse brain tissues were included and were between 30-40 mg in weight.  They 

were collected and weighed in a 1.5 ml Eppendorf tube.  All steps were performed on 

dry ice until the 1X PBS (phosphate buffered saline, Sigma,UK) was added.  Dr.Al-

Mahdawi (Brunel University, UK) had previously prepared the first set of Brain 

ChIP samples (mouse and human) with different antibodies. 

 

2.4.1 Tissue homogenisation  

A) For brain 

 A small piece of tissue was cut and weighed in a 1.5 ml tube.  250 μl of 1X 

PBS was added to the tissue and homogenised with a plastic pastille.  In this step, the 

solution should be homogenised until there are no large pieces remaining in the 

solution.  

 

2.4.2  DNA and protein cross-linking  

 A further 722.9 μl of 1X PBS and 27.1 μl of 35% formaldehyde (Sigma,UK) 

were added to the sample , which was then left at RT on a shaker (Grant Boekel 

BFR25) for 20 min.  The cross-linking reaction was stopped by adding 62.5 μl of 

glycine (Sigma,UK) and the tube was mixed again on the shaker at RT for 5 min.  

The sample was then centrifuged at 5000 rpm for 2 min at RT, and the supernatant 

was subsequently discarded.  A small white pellet can be observed at this stage.  The 

pellet was washed twice with 500 μl of 1X cold PBS and then centrifuged at 5000 

rpm for 2 minat RT.  The PBS was discarded each time.  
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The pellet was resuspended in 250 μl of cell lysis buffer (10 mM HEPES [N-

2-hydroxyethylpiperazine-N'-2-ethanesulfonic Acid], 85 mM KCl [potassium 

chloride], and 0.5 % NP-40 [Nonidet P-40], [Sigma,UK]) and 10 μl of 25X ROCHE 

protease Inhibitor (RPI) and then the tube was incubated on ice for 10 min.  The tube 

was centrifuged at 5000 rpm for 5 min at 4° C and the supernatant was discarded.  

The pellet was resuspended 100 μl of nuclei lysis buffer (1 % SDS, 10 mM EDTA, 

and 50 mM Tris [Sigma,UK]) + 5 μl of 25 X ROCHE protease Inhibitor (RPI) and  

the tube was incubated on ice for 10 minutes.  As an optional step in this method, the 

sample can be homogenised again at this stage.  

5 μl of the sample was transferred to a fresh 1.5 ml tube labelled as “before 

sonication”, and kept on ice to be evaluated on a 1 % agarose gel in order to check 

the DNA sample before the sonication step.  

 

2.4.3 DNA shearing  

The DNA sample was sheared by sonication (Soniprep 150, MSE) three 

times for 12 s, each time at 18 amplitude.  After each sonication, the sample was kept 

on ice for 1-2 min to cool.  The sample was centrifuged at 13,000 rpm for 10 min at 

4° C.  The supernatant was collected in to a fresh labelled 1.5ml tube to be used in 

the DNA immuno-precipitaion step.  5 μl of the sample was transferred to a fresh 1.5 

ml tube labelled as “after sonication” and kept on ice to be evaluated on a 1% 

agarose gel, this is to check the DNA sample after the sonication step.  The two 

samples, before and after sonication, were run on a 1% agarose gel, which was 

photographed and evaluated.  

 

2.4.4 DNA immuno-precipitation  

DNA was immuno-precipitated with anti-acetylated histone H3 and H4 

antibodies: H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, H4K16ac, and 

H3K9me2 (Upstate, cell signalling solution, UK) and H3K9me3 (Diegenode).  
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Protein-A-agarose beads (Upstate, cell signalling solution, UK) were used and 

prepared for this step.  40 μl of the bead suspension was washed twice with 1 ml of 

1X PBS in a fresh 1.5ml tube, and then centrifuged at 5000 rpm for 2 min at RT.  

The PBS was discarded each time.  The supernatant from Section 2.4.3 was added to 

the beads and mixed gently by tapping without creating any bubbles.  The tube was 

incubated on the shaker for two hours at 4 °C and then centrifuged at 5000 rpm for 5 

min at 4 °C.  

The supernatant was transferred to a fresh labelled 1.5 ml tube; 10 μl of this 

supernatant was transferred to a new 1.5 ml tube labelled as “INPUT” and stored 

immediately at – 80 °C.  1.5 ml of dilution buffer (1 % triton, 150 mM NaCl [soduim 

chloride], 2 mM EDTA, and 20 mM Tris) + 60 μl of 25X of RPI was added to the 

supernatant, and mixed.  The mixture was divided into three 1.5 ml tubes, each 

containing approximately 550 μl.  One of the tubes was labelled as “minus antibody” 

containing only the mixture, and the other two tubes contained the mixture and 5 μl 

of each studied antibody.  Tubes were incubated on the shaker overnight at 4 °C.  

The following  day, each incubated mixture was transferred to a fresh 1.5 ml 

tube containing 60 μl of protein-A-agarose beads, washed twice with 1X PBS and 

mixed.  The tube was incubated on the shaker for two hours at 4°C.  After 

incubation, the tube was centrifuged at 6000 rpm for 30 seconds at RT.  The beads 

were washed with 1 ml of low salt buffer (1 % Triton, 0.1 % SDS, 150 mM NaCl, 2 

mM EDTA, and 20 mM Tris), the tube was mixed on the shaker for 5 min at RT  and 

then centrifuged at 6000 rpm for 30 s at 4 °C.  The buffer was discarded each time.  

This process was repeated three times.  

Finally, the beads were washed once with 1 ml of high salt buffer (1 % 

Triton, 0.1 % SDS, 500 mM NaCl, 2 mM EDTA, and 20 mM Tris). The tube was 

mixed on the shaker for 5 min at RT and centrifuged at 6000 rpm for 30 s at 4 °C, 

and the buffer was discarded.  150 μl of elution buffer (1 % SDS, and 100 mM 

NaHCO3) was added to each tube and mixed by tapping.  The tube was incubated in 

a 65 °C water bath for 10 min.  The tube was centrifuged at 6000 rpm for 30 s at RT.  

The supernatant was collected into a fresh labelled 1.5 ml tube.  A further 150 μl of 

the elution buffer was added and the tube was incubated in a 65 °C water bath for 10 
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min.  The supernatant was collected and combined with the first supernatant.  The 

total volume was 300 μl.  

300 μl of the elution buffer was added to the INPUT sample after thawing.  

30 μl of the sample was transferred to a fresh 1.5 ml tube labelled as “Western Blot” 

and stored at -80 °C for future use.  

1.2 μl of 50 mg/ml proteinase K was added to each sample.  The sample was 

incubated in a 37 °C water bath for 30 min and the  tube was transferred to a 65 °C 

water bath overnight (16 hours). This step was to reverse the DNA protein cross 

linking. 

 

2.4.5 DNA Phenol /Chloroform extraction  

Genomic DNA was extracted (Sambrook et al. 1989) by adding 270 μl of 

equilibrated phenol (Sigma) to each sample.  The sample was mixed on the shaker 

for 5 min at RT, and centrifuged at 13,000 rpm for 5 min at RT.  The upper aqueous 

phase was collected into a fresh 1.5 ml tube containing 300 μl of CHCl3 / IAA 

(chloroform/ isoamyl-alcohol). The tube was vortexed briefly and centrifuged at 

13,000rpm for 5 min at RT.  The aqueous phase was collected into a fresh 1.5 ml 

tube containing (4 μl of 20 μg/ μl glycogen + 30μl of 2 M sodium acetate + and 600 

μl absolute ethanol) and the sample was incubated at -80°C for 10 min.  The tube 

was centrifuged at 13,000 rpm for 30 min at 4 °C and the supernatant was discarded.  

The pellet was washed with 500 μl of 70% (v/v) ethanol and centrifuged as described 

previously; and the ethanol was discarded.  The pellet was left to air-dry for 10-15 

min and then suspended in 50 μl elution buffer (10 mM Tris, Qiagen), 100 μl for the 

INPUT, and stored at 4 °C or -20 °C to be used for the quantitative Real-Time PCR. 
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2.4.6 DNA quality check  

 Further PCR amplification was carried out to in order check the quality of the 

DNA sample, using 4 different sets of primers depending on the sample type used.  

The following sets of primers were used: 

 

FXN promoter PCR 

FXN proF 5'-CCCCACATACCCAACTGCTG-3' 

FXN proR 5'-GCCCGCCGCTTCTAAAATTC-3' 

GAA upstream PCR  

FXN upF 5'-GAAACCCAAAGAATGGCTGTG-3' 

FXN upR 5'-TTCCCTCCTCGTGAAACACC-3' 

GAA downstream PCR 

FXN downF 5'-CTGGAAAAATAGGCAAGTGTGG-3' 

FXN downR 5'-CAGGGGTGGAAGCCCAATAC-3' 

GAPDH (Human) PCR 

GAPDH F 5'-CACCGTCAAGGCTGAGAACG-3' 

GAPDH R 5'-ATACCCAAGGGAGCCACACC-3' 

GAPDH (Mouse) PCR 

GapdhM-F 5'-TGACAAGAGGGCGAGCG-3' 

GapdhM-R 5'-GGAAGCCGAAGTCAGGAAC-3' 

For each sample the PCR reaction mix was made as follows:  

 

 

 

 

 

 

 

 

Controls were included every time this PCR was performed.  They are as follows:  

Reagents Concentration Quantity in μl 

Kapa Master Mix 2X 12.5 
FW primer 5 mM 1 
RV primer 5 mM 1 

dH2O  9.5 
DNA - 1 
Total - 25 
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 1- Genomic human placenta DNA   2- Blank (water) control 

 

 The amplification conditions were as follows: 

 

  

 

 

 

  

 

 

  

  

 10μl of PCR product was resolved on a 2% (w/v) agarose gel, which was 

photographed and evaluated.  The ChIP DNA sample was evaluated and stored at      

-20 °C to be used for the quantitative Real-Time PCR. 

 

2.5 Relative quantitative Real-time qPCR   

 Quantification was performed by using an ABI Prism® 7900 HT real-time 

PCR instrument (Applied Biosystems). 

 

2.5.1 cDNA quantification  

 The cDNA sample from step 2.3.1 was quantified using real-time PCR in 

triplicate.  Primers were used in this experiment were the same sets of primers were 

used in Section 2.3.2.  

 For each DNA sample, two PCR reaction master mixes were prepared (Fxn-

RT + Gapdh) or (FRTIb + Gapdh) depending on the sample type used.  Reaction 

mixes were prepared as follows: 

Steps Temperature Duration Cycles 

Denaturation 94 °C 1 min 1 

Denaturation 94 °C 

60 °C 

72 °C 

20 s 

20 s 

20 s 

35 Annealing 

Elongation 

Extension 72 °C 10 mins 1 
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  Controls were included every time this PCR was performed.  They are as follows:  

 1- Human placenta cDNA   2- Blank (water) control  

The q-PCR amplification conditions were as follows: 

 After amplification, 10 μl of PCR product was resolved on a 2 % (w/v) 

agarose gel, which was photographed and evaluated. 

 

2.5.2 ChIP genomic DNA quantification  

The DNA sample from Section 2.4.5 was quantified using real-time PCR in 

triplicate.  Primers that were used in this experiment are the same that were described 

in Section 2.4.6. For each DNA sample, four PCR reaction master mixes were 

prepared; FXN promoter; GAA upstream; GAA downstream; and GAPDH (Human 

Reagents Quantity in μl Quantity in μl Concentration 

SYBR® Green Reagent 
Applied Biosystems 

12.5 12.5 2X 

FW primer 0.5 1 5 mM 
RV primer 0.5 1 5 mM 

dH2O 10.5 9.5  
cDNA 1 1 - 
Total 25 25 - 

Fxn-RT mix  Gapdh and FRTIb mixes 
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or Mouse) depending on the sample type used.  Reaction mixes were prepared as 

follows: 

 

 

 

 

 

 

 

 

Controls were included every time this PCR was performed.  They are as 

follows:  

 1- Genomic Human Placenta DNA   2- Blank (water) control  

The q-PCR amplification conditions were as follows:  

 

10μl of PCR product was resolved on a 2 % (w/v) agarose gel, which was 

photographed and evaluated.  All Results were analysed using the ABI PRISM® 

7900HT Sequence Detection System (SDS 2.1) software. 

  

Reagents Concentration Quantity in μl 

SYBR® Green Reagent 
Applied Biosystems 

2X 12.5 

FW primer 5 mM 1 

RV primer 5 mM 1 

dH2O  9.5 

 ChIP DNA - 1 
Total - 25 
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Chapter 3 

Results 
 

3.1 Genotyping of mice 

The DNA samples from the transgenic rescued mice were PCR genotyped for 

the introduced (GAA∙TTC)190 and (GAA∙TTC)190+90 repeats and for the wild-type or 

Fxn knockout alleles.  In order, to proceed with the project we had to make sure that 

we have the tissue sample, such as, brain, heart and liver from the transgenic mouse 

that contains the complete human FXN gene with the (GAA)n∙(TTC)n on a null 

background (knockout), therefore, this is an essential confirmation step to be 

processed.  

 

3.1.1 Screening for the (GAA)n∙(TTC)n repeats  

By using the GAA primers, we expected a PCR product size around 460bp, in 

addition to the (GAA)n∙(TTC)n  repeat size.  The size of the introduced expanded 

(GAA)n∙(TTC)n  repeat varies because of the genomic instability; as a result, 

different PCR products that range from approximately 800 bp to 1.6 kb were 

amplified.  Selected samples from both transgenic mice lines YG8 and YG22 were 

screened for the repeat (Figure 3.1) to be used in this project. 

  

3.1.2 Screening for the Fxn knockout alleles PCR  

The DNA samples were screened for the Fxn mouse alleles.  In this PCR we 

used three primers; the WJ5 and WN39 primers were used to amplify the normal 

allele and give a 520bp PCR product, whereas, the WJ5 and WC76 primers were 

used by the mutant allele to amplify and give a 245bp PCR product (KO).  Different 

genotyping results including wild-type, homozygous and heterozygous knockout 



Daniah Trabzuni Page 98 

 

 

 

 

 

 

 

 

Figure 3.1: 
 GAA genotyping PCR product. Selected PCR 
products represent the positive and the negative amplifications 
for GAA repeat.  Lanes 1-3, positive YG8 samples.  Lanes 4, 
5, 7-9, 11, 12, positive YG22 samples.  Lanes 6 and 10, 
negative YG8 samples.  Lane 13, a negative control for the 
GAA repeat.  Lane 14, a positive control.  Lane 15, a negative 
water control and Lane 16, 1 kb plus ladder. 

were observed.  The ratio between the three primers has to be adjusted to get an 

equal product from each allele and balanced intensity for each band.  In figure 3.2 

lanes 2, 5 and 6 represent this problem, the WT band is very weak compare with the 

KO band (Figure 3.2).  
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Figure 3.2: 
 Fxn knockout PCR.  Selected PCR products 
represent the amplification of the WT and the KO alleles.  It 
is showing two bands: the wild type band 520bp and the 
KO band 245bp.  Lanes 2, 5, 6, heterozygous knockout 
samples Lanes 3 and 4, wild-type samples.  Lane 7, a wild-
type control.  Lane 8, a KO heterozygous  control.  Lane 9, 
a KO homozygous control.  Lane 10, a negative water 
control.  Lanes 1 and 11, the 1 kb plus ladder.  
 

 

 

 

 

 

 

 

 

 
 

3.2 FXN mRNA level in the human brain and transgenic 

mice brain, heart and liver tissues 

The mRNA level in FRDA patients and in the transgenic mice was 

investigated previouslyby semi-quantitative RT-PCR.   Studies have indicated a 

decreased level of frataxin mRNA and frataxin protein in most of the tissues in 

human and mouse (Al-Mahdawi et al. 2006; Gottesfeld 2007).   

For a further more accurate investigation, we performed two quantitative RT-

PCR experiments to detect the frataxin mRNA levels in human and mouse in 

different tissues.  First, the detection of frataxin mRNA level in the brain tissue of a 

FRDA patient in comparison with a normal control.  Second, the detection of the 

frataxin mRNA level in the brain and heart of three transgenic mice lines (Y47, YG8, 

YG22).  RNA samples were extracted from the tissues, followed by the cDNA 

synthesis.  This was followed by the quantification of the frataxin mRNA from the 
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cDNA was performed using real-time qPCR with a designed set of primers that are 

specific for the human FXN gene, human GAPDH and mouse GAPDH for the 

normalization. 

 

3.2.1 RNA extraction quality check  

 A quality check step is an important procedure, ensuring us that there is a 

sufficient quantity and good quality of the RNA to further proceed with the 

experiment.  Extra care is required in the RNA extraction protocol, especially with 

respect to DNAse contamination, which may result in a certain degree of RNA 

degradation, as seen in all lanes in the picture (Figure 3.3).  The OD260 of the RNA 

samples was measured to check the purity of the RNA sample in addition to the 

quantity.  

  

 

 

 

 

 

 

 

 

 

 

3.2.2 cDNA synthesis quality check 

The cDNA was synthesized and the quality of the DNA was checked by 

performing a PCR reaction using any set of the cDNA primers that are listed on page 

87-88, Chapter 2).  For examples, see Figures 3.4 and 3.5.  

 

 

 

 

 

 

 

 
Figure 3.3: 
 RNA extraction.  Selected mouse brain RNA 
samples from HDACi study showing the two main 
expected RNA bands 28S and 18S.  Lanes 1-4, placebo 
YG8 mice.  Lanes 5-8, HDACi treated YG8 mice.  Lane 9, 
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Figure 3.4: 
 cDNA quality check PCR 1.  Selected PCR 
products represent cDNA mouse brain samples using 
cDNA mouse FXN primers.  Lanes 1-8, YG8 cDNA 
samples giving the right band size.  Lane 9, a positive 
control (human placenta cDNA).  Lane 10, a negative 
water control and lane 11, 1 kb plus ladder. 

 

 

 

 

 

 

 

 

Figure 3.5: 
 cDNA quality check PCR 2.  Selected PCR 
products represent cDNA mouse brain samples using 
cDNA mouse GAPDH primers.  Lanes 1-8, YG8 cDNA 
samples giving the right band size.  Lane 9, a positive 
control (human placenta cDNS).  Lane 10, a negative 
water control and lane 11, 1 kb plus ladder. 
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3.2.3  Relative quantitative, Real-time qRT-PCR  

Reverse transcriptase quantitative PCR (qRT-PCR) has been the key 

technology for analyzing the gene expression because of its quick, high throughput, 

easiness and lower cost.  The real-time PCR technique allows quantification of PCR 

products in real-time during each PCR cycle, so the quantitative measurement is 

accumulating during the reaction and then, a fluorescent detector molecule such as, 

SYBR green will carry out the measurement of the product.  SYBR green is an 

intercalating dye; it binds to the product and emits a strong fluorescence.  It is 

inexpensive, easy to use and can be used for any reaction (VanGuilder et al. 2008).  

The determination of the frataxin mRNA in the human and transgenic mouse tissues 

was conducted using this technique. 

 

3.2.3.1 FXN mRNA level in the human brain and heart tissues 

The FXN transcription level in the brain tissue of a FRDA patient with 

(GAA∙TTC) 750/650 repeats showed a dramatic decrease, it showed a mean value of 

9% compared with a normal control, which was normalized to a 100 % (Figure 3.6).  

The decreased level of the frataxin mRNA was expected especially in the brain, as it 

is considered to be the primary affected organ in the body. 

This result is in consensus with previous studies that indicated a reduced level 

of fratxin mRNA in different tissues in FRDA patients.  It has been suggested that 

many factors are involved in reducing the frataxin transcription such as, DNA 

methylation patterns that located at upstream, downstream and at the promoter region 

around the (GAA)n∙(TTC)n repeat.  In addition, the histone modifications increase 

the trimethylation of H3K9 and decrease the acetylation of other histones in FXN 

gene (Greene et al. 2007; Al-Mahdawi et al. 2008).   

The experiment for the human heart samples failed to produce a reliable mean 

values three consecutive times.  Further adjustment and troubleshooting were 

required to proceed with the these samples were performed using the brain samples. 

However, we did not proceed further because of the time factor, in addition of the 
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Figure 3.6: 
 qRT-PCR analysis of FXN mRNA in human 
brain tissue.  mRNA was isolated from brain samples of a 
FRDA patient and unaffected individual.  The samples were 
normalized to the human GAPDH as an endogenous control 
gene.  The mean values of the affected were normalized to 
the normal control values (100 %).  Each sample was 
analyzed and amplified in biological triplicate.  The error 
bars represent S.E.Ms.    

concerns regarding about the transgenic mice; thus, these experiments should be 

considered in the future work.   

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3.2 FXN mRNA level in the transgenic mice brain and heart tissues 

The same experiment was conducted on the transgenic mice Y47, YG8 and 

YG22 to compare the frataxin mRNA profile in mouse within these three model lines 

and with the human profile.  The frataxin mRNA level was investigated in the brain 

and heart tissues from each line.  The results showed that the frataxin mRNA level in 

YG8 and YG22 lines is decreased by approximately 65 to 68 % compare with the 

Y47, which contains the normal repeat size.  In addition, this pattern is similar to the 

human pattern in the previous section (Figure 3.7).  
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Figure 3.7: 
 qRT-PCR analysis of FXN mRNA in transgenic 
mouse brain tissues.  Showing the values mRNA level 
which was isolated from six brain samples from each of 
Y47(GAA∙TTC)9, YG8 (GAA∙TTC)190+90 and YG22 
(GAA∙TTC)190 repeat expansions.  The samples were 
normalized to the mouse GAPDH as an endogenous control 
gene.  The mean values of the affected were normalized to 
the normal control values (100 %).  Each sample was 
analyzed and amplified in biological triplicate.  The error 
bars represent S.E.Ms.    

In conclusion, this experiment confirms that the expanded (GAA)n∙(TTC)n 

repeats have a primary role in inhibiting frataxin transcription and it shows the effect 

of varying sizes of the repeat that can differentiate fratxin mRNA level.  In addition, 

it confirms that these mice models are a reliable and useful model for FRDA research 

because of it similarity to the human system.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar interpretation was made with the mouse heart samples, the frataxin 

mRNA level in YG8 and YG22 was reduced by approximately 20 to 24 % compared 

with Y47 (Figure 3.8).  The decreased range in the heart tissues is less than the 

decreased range in the brain tissues and that may explain that the cardiac symptoms, 
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Figure 3.8: 
 qRT-PCR analysis of FXN mRNA in transgenic 
mouse heart tissues.  Showing the values mRNA level 
which was isolated from six heart samples from each of Y47 
(GAA∙TTC)9, YG8 (GAA∙TTC)190+90 and YG22 
(GAA∙TTC)190 repeat expansions.  The samples were 
normalized to the mouse GAPDH as an endogenous control 
gene.  The mean values of the affected were normalized to 
the normal control values (100 %).  Each sample were 
analyzed and amplified in biological triplicate.  The error 
bars represent S.E.Ms.    

which manifest themselves later in life rather than the symptoms of the 

neurodegenaration in the brain.     

Due to the failure of the human heart experiment in (section 3.2.3.1), this 

result can be compared with a different semi-quantitative heart experiment that was 

conducted by Al-Mahadawi and colleagues, which indicated that a similar pattern of 

the frataxin mRNA level was observed in the heart tissues of two FRDA patients 

(Al-Mahdawi et al. 2008). 

  

 

 

 

 

 

 

 

 

 

 

 

 
The qPCR products were checked on an agarose gel, as a routine step 

(Figures 3.9 and 3.10).  In the qPCR reaction SYBR green was used as a detective 

fluorescent as, this molecule can intercalate with any double stranded product.  
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Therefore, any presence of the non-specific products or primer dimers in the reaction 

can interferes with the products and gives a false positive result. Therefore, this 

routine step is essential in order to have the right evaluation for the quality of the 

qPCR, which includes, primer design, choosing the right annealing temperature, and 

the right concentration of the PCR mix contents.   

 

 

 

 

 

 

 

 

Figure 3.9: 
 Quality check of the qPCR product 1.  
Selected PCR products amplified from mouse brain 
samples using cDNA human RT-FXN primers.  Lanes 1-
12, YG8 cDNA samples giving the right band size.  
Lane 13, 1 kb plus ladder. 
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Figure 3.10: 
 Quality check of the DNA qPCR product 2.  
Selected PCR products amplified from mouse heart 
samples using cDNA mouse GAPDH primers.  Lanes 1-8, 
YG22 cDNA samples giving the right band size.  Lane 10, 
1 kb plus ladder. 
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3.3 Histone modifications of FXN in human and 

transgenic mouse brain tissues 

Previous studies demonstrated that the heterochromatin formation and the 

histone modifications potentially regulate FXN transcription.  Heterochromatin 

structure can block the access of necessary transcription factors and alter the 

modifications of the histone tails.  In many studies it has been confirmed that very 

high trimethylation of H3K9 and hypoacetylation of H3K14, H4k5, H4K8 is a 

hallmark of the heterochromatin and gene silencing in FRDA (Gottesfeld 2007; 

Greene et al. 2007; Rai et al. 2008).         

 

3.3.1 Chromatin immuno-precipitation assay (ChIP) 

To investigate the histone modifications pattern in our mice model and 

compare the differences within the three different lines Y47, YG8, YG22 and with 

the human pattern, the chromatin immuno-precipitation assay (ChIP) was used.  

ChIP assay is quantitative, straightforward and is relatively standard.  It is widely 

applied for measuring the association of proteins with specific genomic region to 

predict modified peptide, for instance, acetylation, methylation and phosphorylation.  

In this experiment, the formaldehyde is used to cross-link between the protein 

(histone) and DNA, and then the DNA is fragmented by sonication to give an 

average DNA length between 300 to 600 bp.  Finally, samples are 

immunoprecipitated with a specific selected antibody (Struhl 2007).  After preparing 

the ChIP sample, it is ready for the real-time qPCR. 

 The primer sets were used in this experiment, cover three main regions: 

promoter, upstream and downstream the (GAA)n∙(TTC)n repeat  in the FXN gene.  

Therefore, the primer sets ‘genomic DNA ChIP primers’ were named as:  FXN pro, 

FXN up, and FXN down (Figure 3.11) (Al-Mahdawi et al. 2008).  In addition to the 

GAPDH primer sets for human and mouse to be used for the internal normalization 

control.  For each sample, the three regions were investigated.  The antibodies were 

anti- H3 and H4 acetylated and methylated (details in page 90, Chapter 2). 
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3.3.1.1 DNA shearing 

After the DNA sample was crossed with the protein a shearing step was 

performed.  The reslut of an ideal sharing step should give a range between 300 and 

600bp fragments.  In Figure 3.12 it is clear that more sonication was needed for the 

DNA samples, as seen in  lanes 2, 4, 6, and 8.  This step isconsidered the most 

critical stepas it, can determine the success of the ChIP experiment (Figure 3.12).   

 

3.3.1.2 DNA quality check  

The quality of the ChIP DNA samples were checked by performing a PCR 

reaction using any set of the genomic DNA ChIP primers that listed on page 93, 

Chapter 2 (Figure 3.13).  

 

 

 

 

 

 
 
 
 
Figure 3.11: 
 Schematic representation of 2.2 kb at the 5'end of the FXN 
gene.  This figure shows the promoter/exon 1 (Pro), upstream GAA 
(Up) and downstream GAA (Down) regions that were analysed by 
ChIP (black boxes). Numbers above indicate the position of CpG sites 
within the promoter and upstream GAA regions. The positions of the 
ATG translation start codon, exon 1 open reading frame and GAA 
repeat sequence within the Alu repeat sequence are shown. Numbers 
found below indicate the chromosome 9 base pair numbering 
according to the 2006 build of the UCSC human DNA sequence 
database.  Modified from (Al-Mahdawi et al. 2008) 
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Figure 3.12: 
 DNA sonication.  Selected DNA samples after the 
sonication.  Lanes 2, 4, 6, and 8, represent sonicated DNA 
samples.  Lanes 3, 5, 7, and 9, represent the same DNA 
samples before sonication.  Lane 1, 1 kb plus ladder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.13: 
 ChIP DNA quality check PCR.  Selected PCR 
products represent ChIP DNA human brain samples using 
DNA ChIP FXN promoter primers.  Lane 2, Input DNA.  
Lane 3, DNA samples which was precipitated with H3K9 
antibody.  Lane 4, with H4K12 antibody.  Lane 5, 
negative control (no antibody was added).  Lane 6, a 
positive control (genomic human placenta).  Lane 7, a 
water negative control and lane 1, 1 kb plus ladder. 
 



Daniah Trabzuni Page 111 

3.3.2  Relative quantitative, Real-time qPCR  

 Previous investigations reinforced the connection between the presence of the 

histone modifications and the formation of the heterochromatin structure, as a result 

gene silencing. These observation were reported in FRDA cell lines (Herman et al. 

2006; Gottesfeld 2007; Rai et al. 2008).   

In this experiment, the same theory was applied to investigate the connection 

between the histone modifications and the gene silencing in the human and 

transgenic mice with different GAA repeats using real-time qPCR and covering all 

three regions (Promoter, upstream, and downstream) of the repeat.  In addition, it 

was possible to compare the FRDA mouse histone modification profile with the 

human histone profile.   

 

3.3.2.1 Histone modifications in human brain tissues 

Histone modifications, such as acetylation and methylation, were investigated 

in a brain sample of FRDA patient with (GAA∙TTC) 750/650 repeats in comparison 

with a normal control using ChIP assay technology.  The results showed interesting 

patterns, such as that the histone acetylation pattern was highest in the promoter and 

upstream region compared with the downstream region (Figure 3.14).  Moreover, 

H3K9ac residue shows a dramatic decrease by 32, 65, and 84 % in the FXN 

promoter, upstream, and downstream, respectively.  In addition, H4K16ac residue 

has shown to be decreased by 20, 29, and 61 % in the three regions respectively.  The 

remaining four residues, H3K14ac, H4K5ac, H4K8ac, and H4K12ac all showed a 

slight increase in the FXN promoter and upstream region, whereas, they all showed a 

decrease between 40 to 90 % in the downstream area.  In summary, there was a 

general decrease in the histone acetylation profile, specifically in downstream region 

(Figure 3.14).  With regard to the methylation pattern, results indicated a dramatic 

increase in the H3K9me2 and H3K9me3 in all three regions in FXN gene in an 

FRDA patient.  The increase in the di- and trimethylation of H3K9 is around 2 to 3 

fold of the normal control (Figure 3.15).  For example, the H3K9me3 in the 
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downstream region increased from 50 % in normal control to around 145 % in 

FRDA sample, while H3K9me2 increased from 200 % to 400 %.  The methylation 

increase of residue H3K9me3 is more significant than the methylation of the 

H3K9me2 residue.  

 

 

 

   

 

 

 

  

 

 

 

 

 

 

 

Many factors were taken into consideration when these results were 

interpreted.  First, although each sample was investigated in biological triplicate, the 

results described are obtained only from one brain sample; thus, this experiment 

should be done with a larger number of samples in the future.  Secondly, analysing 

results for the real-time qPCR have to be handled carefully to avoid being misled by 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: 
 Histone acetylation analysis in human brain tissue. ChIP 
DNA qPCR product represent acetylayion profile in three regions: 
FXN promoter (Pro), upstream GAA (Up) and downstream GAA 
(Down).  All samples were normalized to the human GAPDH, then 
adjusted to the Upstream of normal control (100 %).  Results show an 
overall decrease in H3ac and H4ac pattern of FRDA brain tissue, 
particularly in the downstream GAA region. Each sample was 
analysed in biological triplicate, bars represent S.E.Ms. 
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the false positive results.  Thirdly, choosing the specific primers and the right 

endogenous control gene for the normalization could potentially affect the results.  

Finally, as with any other advanced techniques, the full attention is required in the 

experiment plan and with the calculations in the normalization of the anti-body 

precipitated DNA sample to the input DNA sample to obtain reliable results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2.2 Histone modifications in transgenic mouse brain tissues 

The same experiment were applied to the brain tissues from the transgenic 

mice Y47, YG8, YG22 by using the same techniques ChIP assay followed by real-

time qPCR.  Acetylation and methylation were investigated in the three regions in 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.15: 
 Histone methylation analysis in human brain tissue. ChIP 
DNA qPCR product represent methylation profile in three regions: 
FXN promoter (Pro), upstream GAA (Up) and downstream GAA 
(Down).  All samples were normalized to the human GAPDH, and 
then adjusted to the Upstream of normal control (100 %).  Results 
indicate a dramatic increase in the H3K9me2 and H3K9me3 pattern 
in all three regions in a FRDA patient. Each sample was analysed in 
biological triplicate, bars represent S.E.Ms. 
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FXN tansgene Pro, Up, and Down.  The results demonstrate that the acetylation of 

the H3K9ac residue decreased by around 15 % in the promoter and upstream regions, 

while it decreased more in the downstream region by around 25 to 30 % in both YG8 

and YG22 in compare with Y47 (Figure 3.16).  Moreover, the acetylation of H4K8ac 

in YG8 decreased slightly in all three regions, whereas it showed around 50% 

increase in YG22.  In addition, H4K12ac behaved the same way H4K8ac did.  

However, the acetylation pattern for H3K14ac was inconsistent at all levels and 

H4K5ac showed a slight decreased by around 10 to 12 %.  The last residue is 

H4K16ac which showed an increased by around 37, 62, 57 % in the FXN Pro, Up, 

and Down of YG8, respectively.  Nevertheless, in YG22 H4K16ac showed a very 

high level of increase by around 70 % in the downstream region, and no observed 

increase in the other two regions (Figure 3.16).   

 

  

 

 

 

 

 

 

 

 

 

 
 
Figure 3.16: 
 Histone acetylation analysis in transgenic mouse brain 
tissue. ChIP DNA qPCR product represent acetylayion profile in 
three regions: FXN promoter (Pro), upstream GAA (Up) and 
downstream GAA (Down). All samples were normalized to the 
mouse GAPDH, and then adjusted to the Upstream of Y47 (100 %).  
Results show a consistent decrease in H3K9ac pattern especially in 
downstream region and an overall increase in H4ac pattern in both 
YG8 and YG22 compared with Y47. Each sample was analysed in 
biological triplicate, bars represent S.E.Ms. 
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The histone methylation pattern in the transgenic mouse was also investigated 

in all three regions of FXN transgene.  Both H3K9me2 and H3K9me3 showed a 

noticeable increase in the three regions of YG8 and YG22 (Figure 3.17).  For 

example, the methylation of the H3K9me2 increased more significantly by 2 to 3 

fold in the downstream region that it did the other two regions.  Furthermore, 

H3K9me3 increased even more significantly by 3 to 5 fold than H3K9me2 did in all 

regions and more noticeable in YG8 than in YG22 (Figure 3.17). 

       

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.17: 
 Histone methylation analysis in transgenic mouse brain 
tissue. ChIP DNA qPCR product represent methylation profile in 
three regions: FXN promoter (Pro), upstream GAA (Up) and 
downstream GAA (Down).  All samples were normalized to the 
mouse GAPDH, and then adjusted to the Upstream of Y47 (100 %).  
Results indicate a consistent increase in H3K9me2 and H3K9me3 
pattern in both YG8 and YG22 compared with Y47. Each sample was 
analysed in biological triplicate, bars represent S.E.Ms. 
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 In summary, although there are some specific differences between the human 

and the transgenic mice systems, there is an overall similarity between the human 

and the transgenic mice in the methylation and acetylation patterns of H3K9 residue.  

This observation confirms the potential of using the transgenic mice Y47, YG8, and 

YG22 for further studies in histone modification in studies of FRDA. 

As a routine step, the qPCR products were checked and evaluated on agarose 

gel (Figure 3.18).  

    

The results presented in sections from 1.3 to 3.3 have recently published (Al-

Mahdawi et al. 2008) (see Appendix 1).

 

 

 

 

 

 

 

 
Figure 3.18: 
 Quality check of the DNA qPCR product 1.  
Selected PCR products amplified from mouse brain 
samples using DNA ChIP mouse GAPDH primers.  Lanes 
1-11, YG8 qPCR products giving the right band size.  
Lane 12, a negative water control.  Lane 13, 1 kb plus 
ladder. 
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3.4 An HDACi effect on FXN MRNA levels of in 

transgenic mouse brain, heart and liver tissues 

Many previous studies have shown that HDACis can be effective in restoring 

FXN levels in FRDA cell lines and animal models.  Many HDACis are currently 

under research investigations to be used as effective treatment in the future.  HDACis 

have shown the ability to cross the blood-brain barriers and this is considered to be 

an essential characteristic as a treatment (Gottesfeld 2007; Rai et al. 2008). 

For a further investigation of the role of HDACis in restoring FXN levels, we 

conducted a preliminary study to investigate the effect of one particular HDACi on 

the FXN mRNA transcription in our mice model.  This HDACi is a benzamide 

compound, which is under licence to Repligen Corporation (Waltham, MA, USA), 

and it will only be referred to in this thesis as “HDACi”.  Real-time qRT-PCR was 

used to detect the FXN mRNA level in brain, heart, and liver tissues of transgenic 

YG8 mice treated with three 150mg/kg doses of HDACi , given subcutaneously and 

orally (in water) once a day for three consecutive days.  Other members of the Pook 

Ataxia research group did all of the animal work and tissue collection. 

Different tissues were collected 24 hours after the last dose and then the 

mRNA was extracted using TRIZOL reagent followed by cDNA synthesis to have 

the cDNA samples ready for the quantification by real-time qRT-PCR reaction.  The 

real-time qRT-PCR results demonstrate the HDACi effect in increasing the FXN 

transcription in different tissues of the YG8 transgenic mouse.  In the brain tissues, 6 

samples were collected for each placebo and HDACi treated group.  The FXN 

mRNA indicated an increase of approximate 20 % in the treated group (Figure 3.19).  

Similar observations were reported in the heart and the liver tissues.  In the liver 

tissues the FXN mRNA level increased by 18 % (Figure 3.20), while, in the heart 

tissues the increase was around 33 % only (Figure 3.21).  These results concur with 

the previous studies that HDACi has a direct effect in activating the FXN 

transcription in vivo and in vitro.  However the differences between the HDACi 

treated and placebo results were not statistically significant.  
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When the brain tissues were been collected after only four hours from the last 

dose the result was surprisingly different.  The results showed a 49 % decrease in the 

FXN mRNA level in HDACi treated group (Figure 3.22), but again this was not 

statistically significant.     

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19:  

 HDACi effect on FXN mRNA of YG8 brain tissues.  
Each sample was analysed in biological duplicate. Bars 
represent S.E.Ms. 
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Figure 3.21: 
 HDACi effect on FXN mRNA of YG8 heart tissues.  
Each sample was analysed in biological duplicate, bars 
represent S.E.Ms. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: 
 HDACi effect on FXN mRNA of YG8 liver tissues.  
Each sample was analysed in biological duplicate, bars 
represent S.E.Ms. 
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In summary, this is only preliminary data and further experiments are 

required to have more statistically significant data for this area of research to 

understand the mechanism of the drug in more depth.   

 

 

 

 

 

 

 

 
Figure 3.22: 
 HDACi effect on FXN mRNA of YG8 brain tissues.  
After 4 hours from the last dose.  P value = 0.014. Each sample 
was analysed in biological duplicate, bars represent S.E.Ms. 
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3.5 The HDACi effect on histone modifications of FXN in 

transgenic mouse brain tissues 

 Chromatin structural changes and histone de-acetylation is involved in many 

neurological disorders, therefore, using HDACi as a treatment to reverse the 

heterochromatin region to an active form and restore the transcriptional activity is a 

recommended approach. 

 An earlier study using FRDA lymphoblastoid cells showed the affect of 

HDACis on the state of FXN transcription by modifying the histone acetylation 

profile.  It suggested that HDACis will inhibit HDAC enzymes and that will lead to 

the increase levels of FXN histine acetylation leading to increase FXN transcription 

(Herman et al. 2006; Gottesfeld 2007). 

We investigated the acetylation profile of H3K9ac and H4K12ac in the YG8 

transgenic mouse brain tissues for two groups: placebo and HDACi treated for three 

days at 150mg/kg dose.  Some samples were collected at 24 hours after the last dose 

and the other were collected at 4 hours after the last dose. Samples were processed 

for ChIP assay followed by the real-time qPCR to obtain our results; DNA samples 

were precipitated using H3K9ac and H4K12ac anti-bodies. 

   The results for this experiment are still in their infancy, so this experiment 

will be continued in the future.  However, the preliminary results indicated that the 

HDACi increased the acetylation pattern of the H3K9ac and the H4K12ac in the 

FXN promoter and upstream the GAA repeat, while, in the downstream region there 

was no noticeable change in the acetylation profile for both residues (Figure 3.23).  

The same pattern was observed with the 4 hours brain samples (Figure 3.24), but for 

this group there is only the preliminary acetylation results for H3K9ac.  Overall, 

these results suggest limited efficiency of the HDACi used in this thesis as a 

treatment for FRDA disorder.  Further HDACis will be explored in the future. 

     In conclusion, there are still many questions to be answered in this area of 

research and other areas that can interact to support us with valuable information to 

move forward toward eliminating the symptoms of neurodegenerative disorders.   
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Figure 3.23: 
 Histone acetylation in YG8 mouse brain tissues. 
Represent the acetylation of H3K9ac and H4K12ac after 24 hours 
from last dose.  Each sample was analysed only once in triplicate 
reactions, bars represent S.E.Ms.   

 

 

 

 

 

 

 

 

 

Figure 3.24: 
 Histone acetylation in YG8 mouse brain tissues. 
Represent the acetylation of H3K9ac after 4 hours from 
last dose. Each sample was analysed only once in 
triplicate reactions, bars represent S.E.Ms.   
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Chapter 4 

Discussion  

Epigenetic modifications and FXN mRNA transcription profile in FRDA human 

tissues and YG8 and YG22 transgenic mouse tissues 

Epigenetic modifications including histone acetylation and methylation in 

both FRDA human and transgenic mouse brain tissues were demonstrated using 

ChIP assay analysis and real-time qPCR.  The results are aligned with previous 

studies that showed a decrease in the acetylation pattern of H3K9ac, H3K14ac and 

H4K16ac in the upstream GAA region in FRDA human cell lines (Herman et al. 

2006; Greene et al. 2007; Rai et al. 2008).  Our results verify these changes in three 

regions of the FXN gene: FXN promoter, upstream GAA and more clearly, in the 

downstream GAA region of FRDA human and transgenic mice brain tissues.  In 

addition, the results confirmed the increase in the di- and trimethylation patterns of 

the H3K9me2 and the H3K9me3 residues in the all three regions of the FXN gene, 

which had been reported previously.  Moreover, the FXN mRNA transcription profile 

was investigated and indicated a reduced level of the transcription process in the 

brain, heart and liver tissues of the YG8 and YG22 transgenic mice and in a FRDA 

human brain tissue.  The reduced level of the FXN mRNA transcription had been 

referred previously to the presence of the (GAA)n∙(TTC)n repeat, as a consequence 

heterochromatin formation occur leading to the gene silencing.   

These results cover the integration of the chromatin modifications and the 

transcription and expression profile.  However, they represent only two sides of a 3-

dimension (3D) triangle.  In order to have a better understanding of the mechanisms 

by which the expanded (GAA)n∙(TTC)n repeats cause the heterochromatin 

formation, leading to FXN gene silencing, the integration of the third factor is 

required.  DNA methylation forms the third side of the triangle, contributing to 

FRDA disease mechanisms and its contribution is well explained in a recent study on 

FRDA human and YG8 and YG22 transgenic mice brain and heart tissues (Al-

Mahdawi et al. 2008).  Results showed an overall shift in the DNA methylation 
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profile, hypomethylation in the downstream the repeat and hypermethylation in the 

upstream GAA tracts.  As a result, DNA methylation is corresponding and 

correlating with the other changes: chromatin modifications and the expression 

profile.  However, further studies are required to more accurelty identify the 

relationship between these three factors.  Moreover, having a clearer understanding 

of the integration mechanisms between chromatin structure, DNA methylation and 

expression profiles will lead to a comprehensive understanding of FRDA disease 

progression and will lead to the identification of new therapeutic approaches. 

 

HDACi effect on epigenetic modifications and FXN mRNA transcription profile in 

YG8, YG22 transgenic mice tissues 

Our preliminary results that demonstrate that the effect of one particular 

HDACi, which is one of the promising therapeutic approaches, on FXN mRNA 

transcriptional levels and histone modifications (acetylation) in YG8 transgenic 

mouse brain,  heart and liver tissues are harmonized with the results from a previous 

study.  The results for this study, which was conducted using KIKI mouse brain, 

cerebellum and heart tissues, indicated an increase in the FXN mRNA level and in 

the histone acetylation patterns for 24 hours after last injection with a similar HDACi 

(Rai et al. 2008).  Our results showed an increase in the FXN mRNA level in 

different tissues such as, brain, heart and liver of the YG8 transgenic mice after 24 

hours from the last HDACi treatment.  Furthermore, an increase in the histone 

acetylation of H3K9ac and H4K12ac mainly in the FXN promoter, upstream GAA of 

the YG8 mice brain tissues was observed.  The only exception is the decrease of the 

FXN mRNA transcription level after 4 hours of the last HDACi dose was injected.  

Here the importance of further investigation of the drug mechanism in vivo in more 

detail becomes an essential step forward in the near future.    

In summary, although there are promising results described within this thesis 

and within other studies that HDACis have the ability to correct the frataxin 

deficiency and restore it to its normal level, the level of the specificity of the HDACi 

or any other epigenetic drug must be increased.  In our study, it was important to 
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have this point in our consideration because we used the GAPDH gene as an 

endogenous reference gene and effecting the expression of this gene will affect our 

results.  In a recent high-density microarray analysis study the results showed that 

other gene expression levels had been effected with HDACi drug treatment (Rai et 

al. 2008).  Therefore, it would be a good idea in future to repeat all of the 

quantitative PCR experiminets using a different housekeeping gene as the 

endogenouse referenc.  Furtheremore, the design of the epigenetic drug molecules to 

target a specific gene and to know the exact mechanism by which this drug interacts 

with the transcriptional factors and causes the change will require more substantial 

studies in the future.   

 

Further recommendations 

Due to the time limitation for this project it was not possible to investigate for 

all histone modifications in a larger sample number.  In future, it is important to 

obtain statistically significant results by analysing these modifications on a larger 

sample number and analysing each sample as a biological triplicate.  In addition, it 

would be intresting to expand the investigation of the acetylation and methylation 

modifications of different residues such as, H3K4me1, H3K4me2, H3K9me1 and 

H3K9me2 of the FXN locus in our transgenic mice model. A recent study showed 

that increase the methylation of H3K4me1,2 and decrease the methylation of 

H3K9me1,2 is related with the gene activation in human colon cancer cells (Huang 

et al. 2007).  What this research group need to obtain for a cancer therapy will be the 

opposite of what we need for FRDA therapy, so considering these histone 

modifications and expanding the knowledge about them may be a useful tool leading 

to another line of efficient therapy for FRDA.     

 In addition, experiments for the quantitation of the FXN mRNA 

transcriptional level and histone modifications (acetylation) patterns in the FRDA 

transgenic mouse brain are worth continuing.  This will provide important 

information about the mechanism and the activity of the epigenetic drugs in vivo, 

especially considering the unexpected effect that we saw of the HDACi drug after 4 
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hours from the last dose.  Moreover, it is sensible to design different experiments 

with different doses of the HDACi for different time ranges to check for the drug 

activity and toxicity.  Other such creative studies are currently underway to produce 

more efficient therapies for FRDA.  
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Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the
FXN gene, leading to reduced expression of frataxin protein. Evidence suggests that the mutation may induce
epigenetic changes and heterochromatin formation, thereby impeding gene transcription. In particular,
studies using FRDA patient blood and lymphoblastoid cell lines have detected increased DNA methylation
of specific CpG sites upstream of the GAA repeat and histone modifications in regions flanking the GAA
repeat. In this report we show that such epigenetic changes are also present in FRDA patient brain, cerebel-
lum and heart tissues, the primary affected systems of the disorder. Bisulfite sequence analysis of the FXN
flanking GAA regions reveals a shift in the FRDA DNA methylation profile, with upstream CpG sites becoming
consistently hypermethylated and downstream CpG sites becoming consistently hypomethylated. We also
identify differential DNA methylation at three specific CpG sites within the FXN promoter and one CpG site
within exon 1. Furthermore, we show by chromatin immunoprecipitation analysis that there is overall
decreased histone H3K9 acetylation together with increased H3K9 methylation of FRDA brain tissue.
Further studies of brain, cerebellum and heart tissues from our GAA repeat expansion-containing FRDA
YAC transgenic mice reveal comparable epigenetic changes to those detected in FRDA patient tissue. We
have thus developed a mouse model that will be a valuable resource for future therapeutic studies targeting
epigenetic modifications of the FXN gene to increase frataxin expression.

INTRODUCTION

FRDA is an autosomal recessive neurodegenerative disorder
that is predominantly caused by a homozygous GAA repeat
expansion mutation within intron 1 of the FXN gene (1).
Normal individuals have 5–30 GAA repeat sequences,
whereas affected individuals have from approximately 70 to
more than 1000 GAA triplets (2). The GAA repeat shows
somatic instability, with progressive expansion throughout
life, particularly in the cerebellum and dorsal root ganglia
(DRG) (3–5). The effect of the GAA expansion mutation is

to reduce the expression of frataxin (6), a mitochondrial
protein that acts as an iron chaperone in iron–sulphur
cluster and heme biosynthesis (7–9). Frataxin insufficiency
leads to oxidative stress, mitochondrial iron accumulation
and resultant cell death, with the primary site of pathology
being in the large sensory neurons of the DRG and the
dentate nucleus of the cerebellum (10). The outcome is
progressive spinocerebellar neurodegeneration, causing symp-
toms of ataxia, dysarthria, muscle weakness and sensory loss,
together with cardiomyopathy and diabetes. At present there is
no effective treatment for FRDA, and affected individuals
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generally die in early adulthood from the associated heart
disease.

Preclinical and clinical trials using antioxidants and iron
chelators have demonstrated some limited success in alleviat-
ing FRDA heart pathology (11–16). However, a more effec-
tive overall therapeutic strategy may be to target the
immediate effects of the GAA repeat expansion mutation
to restore normal levels of frataxin expression. The exact
mechanism by which the GAA repeat expansion leads to
decreased frataxin expression is unknown, but several
models have been put forward. First, it has been suggested
that the GAA repeat expansion may adopt abnormal DNA
or DNA/RNA hybrid structures that interfere with FXN
gene transcription (17–20). Secondly, there is evidence that
GAA repeat expansions produce a heterochromatin-mediated
gene silencing effect (21). Epigenetic mechanisms, such as
DNA methylation and the associated deacetylation and
methylation of histones are known to affect gene expression
by chromatin remodelling (22), and these epigenetic
changes are likely to underpin any GAA repeat-induced
heterochromatin-mediated gene silencing effects. In support
of this hypothesis, research has recently shown increased
DNA methylation of three specific CpG sites immediately
upstream of the expanded GAA repeat sequence in FRDA
patient lymphoblastoid cell lines and primary lymphocytes,
and one of the three CpG sites was identified as an important
enhancer of frataxin expression (23). Other studies have
identified specific histone modifications that are associated
with gene silencing within the GAA repeat expansion-
flanking regions of the FXN intron 1 sequence in FRDA lym-
phoblastoid cell lines and primary lymphocytes (23,24).
These changes include deacetylation of histone H3 and H4
lysine residues and increased di- and trimethylation of
H3K9. Based on the hypothesis that the acetylation state of
the core histones is responsible for gene silencing, novel
histone deacetylase (HDAC) inhibitor compounds have
been developed and have been shown to increase FXN tran-
scription in FRDA lymphoblastoid cells and primary lympho-
cytes (24).

These previous epigenetic studies have provided valuable
insights into the possible mechanism of GAA-induced tran-
scription inhibition, but they do not address the issue of
whether such epigenetic changes are actually present in the
most clinically relevant FRDA tissues. Therefore, we
decided to investigate epigenetic profiles of the FXN gene in
FRDA patient autopsy brain, cerebellum and heart tissue. By
bisulfite sequencing and ChIP analysis we now report
changes in DNA methylation and histone modifications that
are consistent with inhibition of FXN transcription. With a
view to future epigenetic-based FRDA therapies, we also
investigated the FXN epigenetic profiles within brain, cerebel-
lum and heart tissue from our Y47, YG8 and YG22 FRDA
YAC transgenic mouse models (25–27). We find that the
GAA repeat expansion-containing FRDA mouse models
(YG8 and YG22) exhibit comparable epigenetic changes to
those detected in FRDA patient tissue. Therefore, these
are excellent FRDA mouse models in which to investigate
the therapeutic effects of epigenetically acting compounds,
such as novel HDAC inhibitors or DNA methylation inhibi-
tors.

RESULTS

FXN gene DNA methylation profiles are distinctly altered
in human FRDA brain and heart tissues

A previous investigation of the FXN gene in FRDA patient
lymphoblastoid cell lines and blood samples has detected
hypermethylation at three specific CpG sites immediately
upstream of the expanded GAA repeat sequence. One of the
three CpG sites was further identified as an important enhancer
element for frataxin expression (23). This same study also
reported a lack of any DNA methylation in the promoter
region of either FRDA or unaffected cells.

However, cultured cells are known to often develop non-
physiological DNA methylation profiles. Furthermore,
FRDA is a systemic disorder that is known to have differen-
tially affected tissues and cell types. Therefore, we chose to
investigate the DNA methylation status in two of the
primary affected tissues in FRDA, namely brain and heart.
We obtained brain and heart autopsy tissues from two
FRDA patients (GAA repeat sizes of 750/650 and 700/700)
and two unaffected individuals, and we first determined the
FXN transcription levels of the samples by quantitative RT–
PCR. The FRDA brain and heart samples showed mean
values of 23 and 65% FXN expression, respectively, compared
with the unaffected samples (Fig. 1). We then analysed the
DNA methylation status of the samples by performing bisulfite
sequence analysis of three regions of the FXN gene: (i) a
475 bp sequence that encompasses part of the FXN promoter,
exon 1 and start of intron 1, containing 59 CpG sites; (ii) a
286 bp sequence upstream of the GAA repeat, containing
8 CpG sites and (iii) a 275 bp sequence downstream of the
GAA repeat, containing 12 CpG sites (Fig. 2). A comparison
of the bisulfite sequences from the FRDA patient and
control brain and heart tissues reveals a certain degree of
DNA methylation in all eight of the upstream GAA CpG
sites (Fig. 3C and D) and all 12 of the downstream GAA
CpG sites (Fig. 3E and F). However, the data show a

Figure 1. Quantitative RT–PCR analysis of FXN mRNA isolated from brain
and heart autopsy samples of two FRDA patients (750/650 and 700/700 GAA
repeats) and two unaffected individuals. The mean values of FRDA patient
tissue data are normalized to the mean FXN mRNA level of the unaffected
individuals taken as 100%. Two individual cDNA samples were analysed
for each tissue and each reaction was carried out in triplicate. Bars represent
SEMs.
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Figure 2. Schematic representation of 2.2 kb at the 50 end of the FXN gene, indicating the promoter/exon 1 (Pro), upstream GAA (Up) and downstream GAA
(Down) regions that were analysed by ChIP (black boxes) and bisulfite sequencing (hatched boxes). Numbers above indicate the position of CpG sites within the
promoter and upstream GAA regions. The positions of the ATG translation start codon, exon 1 open reading frame and GAA repeat sequence within the Alu
repeat sequence are shown. Numbers below indicate the chromosome 9 base pair numbering according to the 2006 build of the UCSC human DNA sequence
database.

Figure 3. DNA methylation analysis of the FXN promoter (A and B), upstream GAA (C and D) and downstream GAA (E and F) regions of human brain and
heart tissues. In each case for the FXN promoter and upstream GAA regions the mean percentage (þSEM) of methylated CpG sites is shown as determined from
the analysis of two FRDA patients and two unaffected individuals, with 7–12 independent cloned DNA sequences analysed for each. For the downstream region
the percentage of methylated CpG sites has been determined from one FRDA patient and one unaffected individual (12 independent cloned DNA sequences
analysed for each). Only eleven CpG sites are represented for the promoter region (A and B), as sites 11–22 and 24–59 did not show any methylation in
either FRDA or unaffected samples in brain or heart. FRDA brain tissues and both FRDA and unaffected heart tissues did not show any DNA methylation
at CpG site 23.
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consistent shift in the DNA methylation pattern around the
GAA repeat in both tissue types. The FRDA upstream GAA
CpG sites are comparatively hypermethylated, whereas the
FRDA downstream GAA CpG sites are comparatively hypo-
methylated (Fig. 3C–F). The greatest increases in DNA
methylation within the upstream GAA region are seen at
CpG sites 4, 5 and 6, the latter of which corresponds to the
previously described E-box enhancer element (23). We
observed 100% methylation at CpG site 6 in FRDA brain
tissues (FXN mRNA level of 23%, Fig. 1) compared with a
mean value of 90% methylation in heart tissue (FXN mRNA
level of 65%, Fig. 1). Thus, the upstream GAA DNA methyl-
ation changes in both FRDA brain and heart are consistent
with their proposed roles in inhibition of FXN transcription.
However, the finding of decreased DNA methylation in the
downstream GAA region (Fig. 3E and F) is somewhat unex-
pected, since all of the 12 CpG sites fall within an Alu
repeat sequence and such sequences are usually repressed by
heavy DNA methylation.

Another particularly interesting finding was the identifi-
cation of differential DNA methylation at three specific CpG
sites within the FXN promoter (sites 5, 7 and 8) and one
CpG site within exon 1 (site 23) (Fig. 3A and B). All of the
other 55 CpG sites in the total of 59 CpG sites analysed
show complete lack of DNA methylation, as to be expected
for a CpG island that is situated at the start of a gene. CpG
sites 5, 7 and 8 show incomplete methylation in the unaffected
heart, but complete methylation in the FRDA heart (Fig. 3B).
Therefore, these CpG sites may be involved in reducing
initiation of FXN gene transcription in FRDA heart.
However, the DNA methylation pattern is different in brain

tissue. Here we identified mean values of 10–35% DNA
methylation at the four CpG sites in the unaffected tissues,
but very little overall change of DNA methylation in FRDA
tissues, or even loss of methylation at CpG sites 5 and 23
(Fig. 3A). Furthermore, the fact that we have identified
some degree of DNA methylation at all in this region contrasts
with the previous report that DNA methylation is absent in the
FXN promoter region of both FRDA and unaffected lympho-
blastoid cells (23). Therefore, we have shown that the influ-
ence of DNA methylation on FXN gene expression is likely
to be complex, with some similarities (CpG site usage) but
also some distinct differences (degree of CpG methylation)
identified between different somatic tissues.

FXN gene histone modifications are altered in human
FRDA brain tissue

Previous studies of the promoter, upstream GAA and down-
stream GAA regions of the FXN gene have identified specific
histone modifications that are associated with gene silencing
within the GAA repeat expansion-flanking regions of the FXN
intron 1 sequence in FRDA lymphoblastoid cell lines and
primary lymphocytes (23,24). We have now investigated acetyl-
ated histone H3 and H4 and methylated histone H3K9 modifi-
cations by ChIP analysis of the FXN promoter, upstream GAA
and downstream GAA regions (Fig. 2) in autopsy brain tissues
from two FRDA patients and two unaffected individuals. Our
results show overall decreased histone H3 and H4 acetylation
of FRDA brain tissue, particularly in the downstream GAA
region (Fig.4). All of the six acetylated histone residues
that we have examined show a GAA-induced gradient of

Figure 4. Analysis of histone modifications in human brain tissue. ChIP quantitative PCR results for the FXN promoter/exon1 (Pro), upstream GAA (Up) and
downstream GAA (Down) amplified regions are represented as the relative amount of immunoprecipitated DNA compared with input DNA, having taken neg-
ligible 2Ab control values into account. FXN values were normalized with human GAPDH and all values have been adjusted so that all of the Upstream GAA
mean values from the unaffected individuals are 100%. In each case two individual ChIP samples from two FRDA patients and two unaffected controls were
analysed in triplicate. The means and SEMs of these values are shown.
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comparative acetylation that is highest in the FXN promoter and
lowest in the downstream GAA region. The single most altered
histone residue is H3K9, which exhibits progressive decreases
in acetylation to comparative levels of 56, 32 and 11% in the
FXN promoter, upstream GAA and downstream GAA
regions, respectively. There is also a consistently increased
H3K9 di- and tri-methylation of FRDA brain tissue in all
three of the FXN gene regions (Fig. 4). These changes concur
with the previous findings of increased H3K9 di- and tri-
methylation in the upstream GAA region of other cell types
(23,24). However, we have now extended these studies to
show that in FRDA brain the H3K9 di- and tri-methylation
spreads to both FXN promoter and downstream GAA regions.

DNA methylation profiles of FXN transgenic mouse brain
and heart tissues resemble the profiles of human tissue

Having determined the epigenetic profiles around the human
FXN gene, we then investigated the epigenetic profiles of the
FXN transgene in brain and heart tissue isolated from YG8
and YG22 GAA repeat expansion-containing FXN YAC
transgenic mice (26) compared with Y47 normal-sized
GAA repeat-containing FXN YAC transgenic mice (27).
Initial determination of FXN transgene expression showed
YG8 (90þ190 GAA repeats) and YG22 (190 GAA repeats)
to have mean decreased mRNA levels of �26 and 35% in
brain and 57 and 56% in heart compared with Y47
(Fig. 5). Thus, inhibition of FXN expression in transgenic
mouse brain and heart was comparable with the mean
values of 23 and 65% observed in the human FRDA brain
and heart samples, respectively (Fig. 1). DNA methylation
analysis was then performed on the GAA repeat expansion-
containing YG8 and YG22 GAA repeat transgenic mouse
tissue samples compared with the Y47 non-GAA repeat

controls (3–4 individual mice for each group). As the
mouse transgenes consist of entire human FXN gene
sequence, we were able to investigate the DNA methylation
profiles of exactly the same three regions of the FXN gene
that we had previously analysed in human tissue (Fig. 2).
Our data show that the DNA methylation profiles of upstream
GAA regions of both YG8 and YG22 transgenic mouse brain
and heart tissues closely resemble those found in human
tissues (Fig. 6C and D). Namely, there is a consistent hyper-
methylation of the upstream GAA region induced by the
GAA repeat expansion, with the most prominent hypermethy-
lation at CpG sites 4, 5 and 6. However, the degree of DNA
methylation at CpG sites 4 and 6 in YG8 and YG22 trans-
genic mouse brain tissue is less than that observed in
FRDA human brain tissue, and indeed YG8 shows no differ-
ence at all at CpG site 6. The downstream GAA region
differs from the human situation in that there is hypermethy-
lation at all CpG sites, which is retained upon introduction of
the GAA repeat expansion (Fig. 6E and F). Thus, there is no
GAA-induced decrease in DNA methylation as detected in
the human tissues. The promoter/exon 1 regions of the FXN
transgenes in both mouse brain and heart tissues show a simi-
larity to the human tissues in that DNA methylation is found
at only four specific CpG sites: 5, 7, 8 and 23 (Fig. 6A and
B). However, the changes in the DNA profiles of these four
CpG sites upon introduction of the GAA repeat expansion
differ markedly from those found in the human tissues.
This time, the brain tissue shows either no change (CpG
sites 5 and 7) or an increase (CpG sites 8 and 23) in DNA
methylation, whereas the heart tissue shows an overall
decrease in DNA methylation. Assessment of the entire
mouse DNA methylation data indicates a similar overall
DNA methylation profile around the start of the FXN gene
that is consistent with inhibition of FXN transcription.

Figure 5. Quantitative RT–PCR analysis of transgenic FXN mRNA isolated from Y47 (9 GAA), YG8 (190þ90 GAA) and YG22 (190 GAA) mouse brain and
heart tissues. Data are normalized to the mean FXN mRNA level found in the non-GAA transgenic control samples taken as 100%. Two individual cDNA
samples were analysed for each tissue from two mice of each line and each reaction was carried out in triplicate. The means and SEMs of these values are shown.

Human Molecular Genetics, 2008, Vol. 17, No. 5 739



However, there are also some specific differences, which may
result from epigenetic-control or transcriptional-control vari-
ations between the human and the mouse that will require
further investigation.

DNA methylation profiles of the upstream GAA region
in FXN human and transgenic mouse cerebellar
tissues are comparable and more severely altered
than in other brain tissue

To investigate potential variation within distinct regions of the
brain we further analysed the DNA methylation profiles within

the upstream GAA region of cerebellar tissue from one FRDA
patient compared with an unaffected control and two individ-
ual mice from each of the YG8 and YG22 lines compared with
the Y47 control line. We chose to investigate the cerebellum
because this structure is known to be involved in FRDA path-
ology (10) and we ourselves have observed increased GAA
repeat instability primarily within the cerebellum of both
human FRDA patient and FRDA transgenic mouse tissues
(3,5,25). The results (shown in Fig. 7) reveal similar DNA
methylation changes to those observed in both human and
mouse brain tissues. However, the degree of hypermethylation
change in the GAA repeat expansion-containing human and

Figure 6. DNA methylation analysis of the FXN promoter (A and B), upstream GAA (C and D) and downstream GAA (E and F) regions of Y47 (black
columns), YG8 (light grey columns) and YG22 (dark grey columns) transgenic mouse brain and heart tissues. In each case for the FXN promoter and upstream
GAA regions, the mean percentage value (þSEM) of methylated CpG sites is shown as determined from the analysis of 7–12 independent cloned DNA
sequences from each of 3–4 mice per group. For the downstream region the percentages of methylated CpG sites have been determined from one Y47,
YG8 and YG22 mouse (12 independent cloned DNA sequences analysed for each). Only eleven CpG sites are represented for the promoter region, as sites
11–22 and 24–59 did not show any methylation in either FRDA or unaffected samples in brain or heart. Y47 brain tissues did not show any DNA methylation
at CpG site 23, while YG22 heart tissues did not show any DNA methylation at any CpG site within the promoter region.
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mouse cerebellar tissue is more severe, particularly at CpG
sites 4, 5 and 6, compared with that seen in the brain tissues
as a whole (Fig. 7A compared with Fig. 3C, and Fig. 7B com-
pared with Fig. 6C). We have previously shown that frataxin
expression in cerebellar tissue is reduced at both mRNA and
protein levels compared with brain and brain stem tissue in
our FXN transgenic mice (26). Therefore, the DNA hyper-
methylation patterns that we have now observed concur with
the hypothesis that the upstream GAA region (CpG sites 4–
6 in particular) is somehow involved in down-regulation of
frataxin transcription.

Histone modifications of FXN transgenic mouse brain
tissue are comparable with histone modifications
of human tissue

Acetylated histone H3 and H4 and di- and tri-methylated
histone H3K9 modifications were detected by ChIP analysis
of the three regions of the FXN transgene (Fig. 2) in brain
tissue isolated from both YG8 and YG22 GAA repeat
expansion-containing FXN YAC transgenic mice (26) and
Y47 normal-sized GAA repeat-containing FXN YAC trans-
genic mice (27). Our results show overall GAA repeat-induced
decreases in histone H3K9 acetylation and increases in H3K9
methylation for both YG8 and YG22 transgenic mice (Fig. 8),
as we previously identified in human FRDA tissue (Fig. 4).
However, the level of deacetylation in the transgenic mouse
tissue was not as great as that seen in the human tissue, poss-
ibly as a consequence of the smaller transgenic GAA repeat
expansion sizes (190þ90 for YG8 mice and 190 for YG22
mice, compared with 750/650 and 700/700 for FRDA
patients). Also, H4K16 acetylation is actually increased in
all three FXN transgene regions of YG8 mouse tissue com-
pared with Y47. Furthermore, H4K8 acetylation and H4K12
acetylation are increased in all three FXN transgene regions
of YG22 mouse tissue compared with Y47, which is somewhat
different to the finding in human tissues. The greatest consist-
ent histone residue changes that we found between the
non-GAA (Y47) and both of the GAA (YG8 and YG22) trans-
genic brain tissue samples were decreases in acetylated H3K9

and increases in di- and tri-methylated H3K9. The H4K12
residue also showed a significant degree of deacetylation,
but only in the YG8 transgenic tissue. All of these major
histone residue changes in mouse brain tissue reflect the
GAA repeat-induced histone residue changes that we detected
in human tissue. Furthermore, as with the human samples, we
similarly identified a GAA repeat-induced gradient of
decreased H3K9 acetylation in both YG8 and YG22 trans-
genic mouse tissues, with the highest comparative levels of
acetylation in the FXN promoter and the lowest comparative
levels in the downstream GAA region. The increases in
H3K9 di- and tri-methylation were consistent throughout all
of the three FXN gene regions in both YG8 and YG22 trans-
genic mice, once again agreeing with our findings in human
FRDA tissue.

DISCUSSION

For the consideration of future FRDA therapy, it is first essen-
tial to understand the mechanism of GAA-induced inhibition
of FXN gene transcription. Previous studies of FRDA have
implicated epigenetic changes, including the detection of
increased DNA methylation of specific CpG sites upstream
of the GAA repeat and histone modifications in regions flank-
ing the GAA repeat that are both consistent with transcription
inhibition (23,24). However, no DNA or histone methylation
changes have previously been identified in the FXN promoter
or downstream GAA regions, and clinically relevant FRDA
brain and heart tissues have not previously been investigated.
Different trinucleotide repeat expansion mutations have been
shown to induce cis-acting epigenetic changes in several
other human disorders (28,29). Thus, DNA methylation of
the CGG repeat upstream of the FMR1 gene has been ident-
ified as a main epigenetic switch in Fragile X syndrome,
with histone acetylation playing an ancillary role (30).
Decreased Sp1 interaction associated with DNA hypermethy-
lation upstream of the CTG repeat in the DMPK gene has also
been reported for congenital myotonic dystrophy type 1 (29).
Furthermore, both CTG and GAA repeat expansions have

Figure 7. DNA methylation analysis of the upstream GAA regions of human (A) and transgenic mouse (B) cerebellar tissue. (A) In each case the mean percen-
tage (þ SEM) of methylated CpG sites is shown as determined from the analysis of two FRDA patients (black columns) and two unaffected individuals (grey
columns) with 10 independent cloned DNA sequences analysed for each. (B) Y47 (11 GAA) (black columns), YG8 (190þ90 GAA) (light grey columns) and
YG22 (190 GAA) (dark grey columns) transgenic mouse brain and heart tissues. In each case the mean percentage value (þSEM) of methylated CpG sites is
shown as determined from the analysis of 7–12 independent cloned DNA sequences from each of two mice per group.
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been shown to induce similar heterochromatin formation by
position effect variegation studies of transgenic mice (21).
However, it is still uncertain if different trinucleotide repeat
sequences produce similar overall epigenetic effects or not.

Our investigations of the FXN gene in both FRDA human
and transgenic mouse brain, cerebellum and heart tissues
have now confirmed the presence of previously described
DNA methylation changes (23) in the upstream GAA region
of these clinically important tissues. Furthermore, our data
have revealed an overall shift in the DNA methylation
profile, moving from hypomethylation in the downstream
GAA region towards hypermethylation in the upstream GAA
region. This shift in DNA methylation profile could be
explained by the known position of the GAA repeat within
an Alu sequence, since Alu sequences have been shown to
act as methylation centres leading to bi-directional spread of
DNA methylation (31). Thus, the hypermethylation detected
in the FRDA upstream GAA region may be due to the GAA
repeat mutation enhancing the effect of a putative methylation
centre at the 50 end of the Alu sequence. At the same time, the
addition of the GAA repeat sequence would put extra distance
between the methylation centre at the 50 end of the Alu
sequence and the downstream GAA region. This may
impede the spread of methylation to the downstream region
when the distance is large enough (e.g. 2.25 kb for 750
human GAA repeats), but not when the distance is smaller
(e.g. 600 bp for 190 transgenic mouse GAA repeats).

We have additionally identified differential DNA methyl-
ation at four specific CpG sites within the FXN promoter and
exon 1 regions that have not previously been reported. The
three CpG sites within the promoter region (sites 5, 7 and 8)

are immediately upstream of the ATG translation start site, at
nucleotide positions 227, 218 and 211, respectively. CpG
sites 5 and 7 are also contained within Sp1 transcription
factor binding sites (32). Interestingly, the region between
264 and the start of translation has previously been suggested
to contain sequences important for positive regulation of fra-
taxin production, although no candidate sequences were ident-
ified (33). Therefore, the three differentially methylated CpG
sites that we have now uncovered in the FXN promoter, and
in particular the two Sp1 recognition sites, are likely to rep-
resent these important regulatory sequences.

In comparison with other instances of trinucleotide
repeat-induced DNA methylation changes that inhibit tran-
scription (28,29), one would have predicted general hyper-
methylation to be associated with the FRDA GAA repeat
expansion mutation. However, we actually identified three
occurrences in human tissues (promoter and downstream
GAA regions in brain, and downstream GAA region in heart)
and one occurrence in mouse tissues (promoter region in
heart) where there was in fact GAA repeat expansion-induced
decrease in DNA methylation. This suggests the possible occur-
rence of demethylation and resultant active FXN gene
expression, at least for some cells within the tissue. DNA
demethylation has previously been shown to occur both pas-
sively due to DNA replication upon cell division (34) and
actively in a process that may involve RNA (35), although
the DNA demethylating activity has yet to be identified. DNA
demethylation has also previously been associated with pro-
cesses of DNA damage and repair. The formation of
8-OH-dG by oxidative DNA damage has been shown to
affect the activity of human DNA methyltransferase and

Figure 8. Analysis of histone modifications in transgenic mouse brain tissues. ChIP quantitative PCR results for the transgenic FXN promoter/exon1 (Pro),
upstream GAA (Up) and downstream GAA (Down) amplified regions are represented as the relative amount of immunoprecipitated DNA compared with
input DNA, having taken negligible 2Ab control values into account. FXN values were normalized with mouse GAPDH and all values have been adjusted
so that all of the upstream GAA values from the non-GAA transgenic mouse tissues (Y47) are 100%. In each case two individual ChIP samples were analysed
in triplicate from each of two mice per group. The means and SEMs of these values are shown.
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inhibit CpG methylation (36), and DNA demethylation has also
been shown to occur as a result of homologous recombination
repair of DNA damaged by double-strand breaks (37).
However, DNA demethylation has not previously been con-
sidered for FRDA. A close inspection of our data reveals that
potential DNA demethylation in the FXN promoter region
occurs when the degree of DNA hypermethylation change in
the upstream GAA region is greatest. Therefore, we now
propose that the shutdown of transcription due to major epige-
netic changes at the upstream GAA region may result in
attempts to upregulate FXN transcription by Sp1 binding and
subsequent DNA demethylation in the promoter region. In
support of this proposal, Sp1 binding is known to occur inde-
pendent of CpG methylation status (32), but at the same time
has been shown to inhibit CpG methylation (38). Furthermore,
DNA demethylation has previously been shown to occur when
there are few methylated CpG sites within a CpG island, but not
when all of the CpG sites are methylated (39), which is exactly
the situation that we find for the FXN promoter region.
However, the GAA repeat expansion-induced decreases in
DNA methylation at the FXN promoter are not consistent
throughout all human and mouse brain and heart tissues,
suggesting the involvement of other factors. Such factors may
include differential susceptibility of the brain and heart
tissues to DNA damage and/or GAA repeat instability.
Indeed, FRDA is a disorder that is known to involve both oxi-
dative DNA damage (40) and somatic instability of GAA
repeats (3–5). Therefore, cells that are initially methylated at
the FXN promoter region may lose this methylation as part of
the GAA repeat instability process, wherein demethylation sub-
sequent to DNA damage repair (37) may be selected for due to
beneficial effect of FXN expression and hence cell viability.
The GAA repeat expansion-induced decreases in DNA methyl-
ation that we have observed in the downstream GAA region of
human tissues, but not transgenic mouse tissues, are more likely
due to differently sized GAA repeats within the Alu sequence,
as we have previously discussed. However, potential DNA
demethylation in this downstream GAA region could also
indirectly lead to an increase in FXN transcription due to the
removal of inhibitory effects on RNA polymerase II elongation.

Our investigations of histone modifications within FXN
gene in both FRDA human and transgenic mouse brain
tissues have now confirmed the changes previously reported
for H3K9 deacetylation in the FXN promoter, upstream
GAA and downstream GAA regions and H3K9 methylation
in the upstream GAA region (23,24). Furthermore, we have
extended the H3K9 methylation analysis to include the FXN
promoter and downstream GAA regions that to our knowledge
have not previously been reported for any FRDA tissue. Our
findings from both human and transgenic mouse tissues indi-
cate significant H3K9 deacetylation, which becomes more
severe upon progression from the FXN promoter, through
the upstream GAA region to the downstream GAA region.
This correlates well with the results for both di- and tri-
methylation of H3K9, which show a generally similar gradient
of progressive increase from the FXN promoter, through the
upstream GAA region, to the downstream GAA region. The
only exception is the very high level of di-methylated H3K9
in the upstream GAA region of human FRDA brain tissue,
which is higher than that in the downstream GAA region.

All of the H3K9 changes correlate well with the DNA
methylation changes in both human and transgenic mouse
brain tissues. Thus, the patterns of progressively increasing
H3K9 deacetylation and increasing H3K9 di- and tri-
methylation in transgenic mouse brain correspond exactly to
the pattern of increasing DNA methylation. Similarly, the pat-
terns of progressively increasing H3K9 deacetylation and
increasing H3K9 tri-methylation in human FRDA brain with
a peak of H3K9 di-methylation in the upstream GAA region
equate very well to the corresponding DNA methylation pro-
files. Therefore, our combined data thus far indicate major
roles for DNA methylation, histone H3K9 deacetylation and
histone H3K9 methylation in the inhibition of FXN transcrip-
tion in brain and heart tissues, with a less prominent role for
deacetylation of other histone residues. The more severe epi-
genetic changes within the FXN intron 1 region compared
with the promoter region support a hypothesis of transcription
inhibition due to interference with elongation rather than
initiation. Further work will be required to determine the
exact relationships between DNA methylation, histone acety-
lation and methylation, heterochromatin formation and tran-
scription inhibition. However, our results are consistent with
the generally described pathway for gene inactivation
wherein initial histone H3K9 deacetylation leads to H3K9
methylation, recruitment of HP1, histone deacetylases, DNA
methyltransferases and eventual long-term shut down of tran-
scription by DNA methylation (41). However, this situation is
not likely to be universal for all trinucleotide repeat disorders,
as highlighted by research on the FMR1 gene which has shown
both histone deacetylation and H3K9 methylation in the
absence of DNA methylation without interfering in active
gene transcription (42).

For now, the exact mechanism by which the GAA repeat
mutation inhibits frataxin expression remains elusive.
However, accumulating evidence, including the findings of
this report, now highlights the importance of epigenetic
changes that lead to heterochromatin formation. The epige-
netic changes that we and others have now identified in
FRDA do not in any way negate the importance of any abnor-
mal DNA or DNA/RNA hybrid structures in the inhibition of
frataxin expression, but rather suggest the involvement of
several combined mechanisms. Indeed the existence of abnor-
mal DNA structures may help to explain why the GAA repeat
mutation induces epigenetic changes in the first place. Thus,
there are reports that non-B DNA structures such as hairpins
may induce DNA methylation (43,44), and GAA repeats
have been shown to form hairpins (45). Alternatively, small
double-stranded RNA (dsRNA) has also been shown to
induce transcriptional gene silencing through a mechanism
that involves DNA methylation (46,47). However, dsRNA
has failed to induce DNA methylation in a study of mouse
oocytes (48) and dsRNA targeted to the HD gene does not
induce DNA methylation at the target huntingtin genomic
locus in human cells (49). Thus, further studies are still
required to identify any possible involvement of non-B DNA
structures (such as GAA hairpins or triplex structures),
DNA/RNA hybrids or dsRNA in the establishment of epige-
netic changes and heterochromatin formation in FRDA.

In light of the epigenetic changes that we and others have
identified in FRDA tissues and cells, several novel epigenetic-
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based therapeutic approaches can now be considered for
FRDA. First, HDAC inhibitors can be used, and indeed these
have already shown considerable promise by increasing acety-
lation of histones and thereby increasing FXN transcription in
FRDA cells (24). Secondly, pharmacological approaches
could be taken to decrease H3K9 methylation, as have recently
been described for the combined use of mithramycin and cysta-
mine in Huntington disease mice (50). Thirdly, therapies to
decrease DNA methylation should now be considered for
FRDA, as have previously been tried for other trinucleotide
repeat disorders. In particular, 5-azadeoxycytidine (5-azadC)
has been shown to remove DNA methylation of the CCG
repeat expansion, increase H3 and H4 acetylation, decrease
H3K9 methylation, increase H3K4 methylation and reactivate
the FMR1 gene (30,51). Combined HDAC inhibitor and
5-azadC treatment has also been shown to synergistically
increase FMR1 gene activity (52). Finally, short dsRNA mol-
ecules complementary to promoter sequences have recently
been shown to induce gene activation (53,54), and such
approaches may also prove effective in increasing FXN tran-
scription. Our identification of a transgenic FRDA mouse
model that shows comparable epigenetic changes to those
seen in FRDA patients will now provide a valuable resource
in the study of all such epigenetic-based FRDA therapies.

MATERIALS AND METHODS

Tissues

Human brain, cerebellum and heart tissue samples were
obtained from autopsies of two FRDA patients (750/650 and
700/700 GAA repeats) and two non-FRDA individuals, in
accordance with UK Human Tissue Authority ethical guide-
lines. Mouse brain and heart tissues were dissected from our
previously reported FXN YAC transgenic mouse models: Y47
(two copies of nine GAA repeats); YG8 (2 copies of 90 and
190 GAA repeats) and YG22 (1 copy of 190 GAA repeats)
(25,27).

mRNA expression analysis

Total RNA was isolated from frozen tissues by homogenization
with Trizol (Invitrogen) and cDNA was then prepared by using
AMV Reverse transcriptase (Invitrogen) with oligo-dT primers.
Levels of human or mouse transgenic FXN mRNA expression
were assessed by quantitative RT–PCR using an ABI7400
sequencer and SYBRw Green (Applied Biosystems) with the
following primers: FxnRTF 50-CAGAGGAAACGCTGGAC
TCT-30 and FxnRTR 50-AGCCAGATTTGCTTGTTTGGC-30

(24). Human GAPDH or mouse Gapdh RT–PCR primers
were used as control standards: human: GapdhhF 50-GAAGG
TGAAGGTCGGAGT-30 and GapdhhR 50-GAAGATGGTGA
TGGGATTTC-30 mouse GapdhmF 50-ACCCAGAAGACTG
TGGATGG-30 and GapdhmR 50-GGATGCAGGGATGAT
GTTCT-30.

Bisulfite sequencing

Genomic DNA was isolated from frozen tissue by standard
phenol/chloroform extraction and ethanol precipitation. Two

micrograms of genomic DNA was digested with EcoRI prior
to bisulfite treatment using the CpGenome kit (Calbiochem).
Nested PCR was carried out on bisulfite-treated DNA to
amplify three regions of the FXN gene using the following
primers: Pro 1st primer pair: SL1F1 50-TAGTTTTTAA
GTTTTTTTTGTTTAG-30 and SL1R1 50-CAAAACAAAAT
ATCCCCTTTTC-30; Pro 2nd primer pair: SL1F2 50-GTTTT
TTTATAGAAGAGTGTTTG-30 and SL1R2 50-CAAAAACC
AATATAAATACAACC-30; Up 1st primer pair: F1G 50-GAG
GGATTTGTTTGGGTAAAG-30 and R1G 50-ATACTAAAT
TTCACCATATTAACC-30; Up 2nd primer pair: F2G 50-GA
TTTGTTTGGGTAAAGGTTAG-30 and R2G 50-CTCCCAA
AATACTAAAATTATAAAC-30; Down 1st primer pair:
NH1F 50-AAGAAGAAGAAGAAAATAAAGAAAAG-30 and
SLGR2 50-TCCTAAAAAAAATCTAAAAACCATC-30;
Down 2nd primer pair: NH2F 50-AGAAGAAGAAAATAAA
GAAAAGTTAG-30 and SLGR1 50-AAAACCATCATAAC
CACACTTAC-30. PCR products were then resolved on
agarose gels, purified with Geneclean (BIO101) and cloned
into pCR4.0 (Invitrogen) prior to DNA sequencing. A
minimum of seven clones were sequenced for each tissue
sample.

ChIP analysis

Histone modifications at the three FXN gene regions were
detected by ChIP analysis of FRDA human and mouse
tissues. This procedure involved initial cross-linking of DNA
and protein by formaldehyde treatment of homogenized
frozen tissue samples. DNA was then sheared by sonication,
followed by immunoprecipitation with commercially available
anti-histone and anti-acetylated histone H3 and H4 antibodies:
H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, H4K16ac
and H3K9me2 (Upstate), and H3K9me3 (Diagenode). For
each experiment, normal rabbit serum (SIGMA) was used as
a minus antibody immunoprecipitation control. After reversal
of cross-linking, quantitative RT–PCR amplification of the
resultant co-immunoprecipitated DNA was carried out with
SYBRw Green in an ABI7400 sequencer (Applied Biosys-
tems) using three sets of FXN primers (Pro, Up and Down)
and human GAPDH control for the human samples as pre-
viously described (24). For the analysis of transgenic mouse
samples, the same three sets of FXN primers were used
together with the following mouse Gapdh control primers:
GapdhMF, 50-TGACAAGAGGGCGAGCG-30 and GapdhMR,
50-GGAAGCCGAAGTCAGGAAC-30. Each tissue sample
was subjected to two independent ChIP procedures, followed
by triplicate quantitative PCR analysis.
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