A44A-2685

Do climate feedbacks in the tropical East Pacific impact emissions of biogenic halocarbons?

<u>H Hepach</u>^{1*}, B. Quack¹, E. Atlas², A. Fiehn¹, S. Tegtmeier¹, A. Bracher³, A. Engel¹, S. Fuhlbrügge¹, and K. Krüger⁴ * hhepach@geomar.de+ + + + + + + + +

Atmospheric halocarbons

GEOMAR

Proposed pathway of halocarbon production via dissolved organic matter (DOM) or direct emission from algae, and photoproduction of CH_3I . Chemical degradation products Br_x and I_v of halocarbon emissions take part in atmospheric chemistry.

(based on FLEXPART with ERA-Interim input)

CHBr₃ [ppt] CH₃I [ppt]

 10 day backward trajectory analysis (left side): southwesterly winds in both cases

Mean atmospheric mixing ratios

- CHBr₃: 2.9 vs 3.3 ppt and CH₃I: 1.5 vs 1.2 ppt
- Difference is due to higher CHBr₃ and lower CH₃I sea-toair fluxes and stability of the marine atmospheric boundary layer (MABL) (less pronounced during ASTRA-OMZ).

El Niño influenced oceanic emissions of halocarbons!

- During the ENSO neutral year 2012, higher oceanic CH₃I than CHBr₃ was measured, while during the EI Niño year 2015 sea surface CHBr₃ largely exceeded lower CH₃I.
- Higher emissions of CHBr₃ and lower emissions of CH₃I during EI Niño along with less pronounced MABL heights led to larger atmospheric CHBr₃ and slightly lower CH₃I in October 2015.

M91, RV Meteor, Lima – Lima (Peru), December 1 – 26 2012 (*ENSO neutral*)

ASTRA-OMZ, RV Sonne, Guayaquil (Ecuador) – Antofagasta (Chile), October 3 – 23 2015 (strong *El Niño*)

Open questions

- Is the neutral / El Niño difference a recuring phenomenon?
- What causes the difference in oceanic halocarbons? E.g. phytoplankton speciation and DOM composition?
- How do varying emission scenarios during different ENSO phases influence tropospheric halogen chemistry?

Sea-to-air fluxes for **December 2012** and October 2015:

- CHBr₃ 131 (-550-2201), CH₃I 956 (21-4686) pmol h⁻¹ m⁻²
- CHBr₃ 1588 (-841-15488), CH₃I 290 (-22-2490) pmol h⁻¹ m⁻²
- October 2015 was 3.3 times lower for CH₃I and 12.1 times higher for CHBr₃ with moderate winds during both cruises (5.6 and 7.1 m s⁻¹, respectively).

Oceanic halocarbons

Seawater concentrations for December 2012 and October 2015 (mean (min – max)):

- CHBr₃ 6.5 (0.2 − 21.5), CH₃I 9.8 (1.1 − 35.4) pmol L⁻¹
- CHBr₃ 20.1 (0.1 − 103.0), CH₃I 2.7 (0 − 15.0) pmol L⁻¹
- October 2015 was characterized by 3 times higher CHBr₃ and 3.6 times lower CH₃I despite similar SST and ChI *a*.

Correlation of environmental parameters for December 2012 and October 2015 (bold numbers significant, different DOM components include uronic acids and combined high molecular weight carbohydrates):

Spearman's rank correlation	CH₃I	CHBr ₃
SST	-0.52 / -0.45	-0.29 / -0.39
Chl a	0.73 / 0.22	0.48 / 0.13
DOM	0.48 – 0.84	-0.06 – 0.39
CHBr ₃	0.66 / 0.37	

References

Fuhlbrügge, S., Quack, B., Atlas, E., Fiehn, A., Hepach, H. and Krüger, K.: "Meteorological constraints on oceanic halocarbons above the Peruvian Upwelling", ACPD, doi: 10.5194/acpd-15-20597-2015, 2015.
Hepach, H., Quack, B., Tegtmeier, S., Engel, A., Bracher, A., Fuhlbrügge, S., Galgani, L., Atlas, E. L., Lampel, J., Frieß, U. and Krüger, K.: "Biogenic halocarbons from the Peruvian upwelling as tropospheric halogen source", submitted to ACP, 2016.

Acknowledgements

The authors acknowledge Tom Browning for providing Chl *a* data and Gert Petrick for technical assistance with halocarbon measurements. We thank the BMBF for funding the ASTRA-OMZ and OASIS-Sonne projects.

Affiliations

- 1 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany
- 2 Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, USA

3 Alfred-Wegener-Institute (AWI) Helmholtz Center for Polar and Marine Research, Bremerhaven and Institute of Environmental Physics, University of Bremen, Germany
4 Department of Geosciences, University of Oslo, Norway

Ocean Sciences Meeting 2016, New Orleans, 21 – 26 February

Surface Ocean Processes in the Anthropocene Putterher Akademischer Austausch Dienst Componentie Service

