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The species inventory of Recent benthic foraminifera is considered 
rather static in most areas. The foraminiferal assemblage composi-
tion and population density is governed by abiotic and biotic envi-
ronmental factors. In particular, seasonal fluctuations of food 
supply, oxygen, water turbulence and substrate properties have 
been reported to influence variability in species’ abundances 
(Murray 2006). However, marginal seas and Nordic fjords with 
sluggish circulation have recorded pervasive faunal changes. The 
elimination of established faunal elements and immigration of 
other foraminiferal species has been recognized over the course of 
multi-annual to decadal variability of thermohaline water column 
structure or severe hypoxic events (e.g. Schönfeld & Numberger 
2007; Nikulina et al. 2008). Recently, the propagule concept has 
been proposed, suggesting that gamonts of numerous species are 
resting in surface sediments worldwide, which represent a so-
called ‘propagule bank’ (Alve 1999; Alve & Goldstein 2003). 
Propagules start to grow and reproduce when exposed to appropri-
ate environmental conditions and may be transported passively by 
currents (Goldstein & Alve 2011). This concept has been used to 
explain the uniformity of abyssal benthic foraminiferal assem-
blages (Pawlowski et al. 2007), whereas the relevance of prop-
agules for the dispersal of subtidal to shelf species is not sufficiently 
constrained to date. In addition, the introduction of alien species by 
ships’ ballast water, sediment in ballast tanks, anchor mud, hull 
fouling or commercial aquaculture has been suggested as explana-
tions for new faunal elements breaching wide biogeographical bar-
riers (Teeter 1973; Williams et al. 1988; Carlton & Geller 1993; 
McGann & Sloan 1996; McGann et al. 2000; Calvo-Marcilese & 
Langer 2010; Schweizer et al. 2011).

The Skagerrak–Kattegat area hosts the highest number of intro-
duced non-indigenous biological species recorded in Nordic 
waters (Weidema 2000). Some of the most extreme examples are 
the Pacific oyster Crassostrea gigas, introduced in the 1970s (e.g. 
Wrange et al. 2010); the Japanese seaweed Sargassum muticum 
first recorded in 1984 (Christensen 1984); and the eastern 
American comb jelly Mnemiopsis leidyi first recorded in 2006 
(e.g. Boersma et al. 2007; Jaspers et al. 2015). The first two were 

introduced with aquaculture (Weidema 2000), whereas the latter 
may have been transported both in ship ballast tanks and by coastal 
currents (Faasse & Bayha 2006; Oliveira 2007). Another example 
is a diatom Coscinodiscus wailesii, which was introduced either 
with ballast waters or through oyster import in 1977 (Reise et al. 
1999) and became a significant member of the northeastern 
Atlantic diatom community (Edwards et al. 2001).

To date there is a substantial lack of data on invasive protozoan 
species (Weidema 2000; Pettay et al. 2015), despite their docu-
mented high abundance in ship ballast tanks (Galil & Hülsmann 
1997). In the present short note, we provide new data on the intro-
duction of the eastern Pacific foraminifer Nonionella stella 
Cushman & Moyer, 1930 into the northeastern Atlantic, and evalu-
ate the species’ migration considering propagule dispersal and 
marine traffic.

Material and methods

The present study comprises faunal data from surface sediment 
samples from the Skagerrak–Kattegat and adjacent fjords taken by 
the authors (Appendix B) as well as a data compilation from litera-
ture and web-based resources (Fig. 1). The samples SK3 and 
OVS300714-7A were retrieved from Alsbäck Deep, Gullmar fjord 
(Fig. 1), with a Bowers & Connelly Maxicorer (8 tubes; 98 mm Ø) 
in August 2013 and with a Mini Muc K/MT 410 (4 tubes; 100 mm 
Ø) in July 2014. In 2013, the surficial sediment from the 0–1 cm 
level was taken, preserved in a 2 g l−1 rose Bengal-ethanol solution 
for 8 days, and washed through 125 and 2000 µm sieves. The  
125–2000 µm residue was examined wet for well-stained (living) 
benthic foraminifera. In 2014, the 0–3 cm sediment was taken and 
immediately washed with seawater through 125 and 2000 µm 
sieves. The 125–2000 µm residue of one core was stained in a rose 
Bengal-ethanol solution, washed after two months with tap water 
to remove the excess dye, and wet picked for well-stained 
foraminifera by using by a Duffield–Bogorov tray (Duffield & 
Alve 2014). A short core (St. 10A) and a surface (0–1 cm) sample 
(D14-30F) were taken south of the Skagerrak–Kattegat front and 
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in the Dynekilen Fjord (Fig. 1; Appendix A) in June 2013 and 
September 2014, respectively, by using a Gemini corer (2 tubes, 
80 mm Ø). The D14-30F sample was freeze-dried, washed over 63 
and 1000 µm sieves and dry picked for total foraminiferal faunas. 
The core St. 10A was sliced in 1 cm intervals down to 10 cm, pre-
served and stained with a rose Bengal-ethanol solution for 2 weeks, 
washed over 63 and 1000 µm sieves, and dry picked for living 
(stained) foraminifera. The variety of methods used primarily 
reflects the different study purposes: teaching (SK3, D14-30F), 
collection for physiological experiments (OVS300714-7A) and a 
microhabitat study (St. 10A).

Study material is stored at the University of Gothenburg  
(G113-091; st.10A; D14-30F) and at GEOMAR, Kiel (SK3; 
OVS300714-7A).

Nonionella stella occurrence in northern 
Europe

Nonionella stella was discovered in the living fauna >125 µm frac-
tion in surface sediment samples SK3 and OVS300714-7A from 
Alsbäck Deep, Gullmar Fjord, in August 2013 and July 2014. 
Furthermore, we found abundant living N. stella in the >63 µm 
fraction of surface sediments from the Skagerrak–Kattegat front 
area sampled in June 2013. Living specimens were recorded down 
to 10 cm in the sediment (Appendix A). In addition, in September 
2014 N. stella was discovered as a dominant species (11%) of the 
total foraminiferal fauna >63 µm in surface samples from 
Dynekilen Fjord at 37 m water depth. All specimens were bright 
green and included younger individuals (Pl. 1, figs 9–10). The eco-
logical parameters (sediment type, temperature, salinity and oxy-
gen concentration) at which N. stella occurred at all three locations 
are given in Appendix B.

Recent geographical distribution and ecology

Nonionella stella is a free-living, calcareous, thin-walled and shal-
low infaunal foraminiferal species common in the oxygen mini-
mum zones of the eastern Pacific since the early Pleistocene (Bandy 
& Arnal 1957; Phleger 1964; Bandy et al. 1965; Ingle et al. 1980; 

Resig 1990; Kato 1992; Bernhard & Bowser 1999; Murray 2006; 
Mallon, J. 2012, unpublished PhD Dissertation, Christian-
Albrechts-Universität zu Kiel. http://d-nb.info/1020284048/34). 
The species occurs from mid-shelf to bathyal depths and is particu-
larly frequent in anoxic basins off California. Despite its relatively 
high respiration rates (Geslin et al. 2011), Nonionella stella usually 
lives in 0–2 cm sediment depth in dysoxic to anoxic (0–15 µmol l−1 O2) 
microhabitats (Bernhard et al. 1997, 2000). The species stores high 
amounts of nitrate in the cytoplasm to be used as the final electron 
acceptor under anoxic conditions (Risgaard-Petersen et al. 2006). It 
is also known to sequester chloroplasts from diatoms (Grzymski 
et al. 2002) and uses these plastids for denitrification (Bernhard 
et al. 2012).

Though oxygen minimum zones also exist in the Atlantic Ocean, 
they usually do not reach anoxic conditions (Stramma et al. 2010). 
Indeed, there are only three records of living Nonionella stella: from 
the Namibian Shelf (Leiter, C., 2008. unpublished Dissertation 
Ludwig-Maximilians-Universität München. edoc.ub.uni-muenchen.
de/9551/1/Leiter_Carola.pdf), the Gulf of Guinea (Schiebel 1992) 
and the NW African shelf off Cape Barbas (Lutze 1980). In the west-
ern tropical, northwestern and northeastern Atlantic this species is 
almost absent. This has been proven by our own studies and an 
extensive literature survey including material collected in the north-
eastern Atlantic during 1913–2004 (Schönfeld 1997, 2002; Murray 
2006, online appendix; Dorst & Schönfeld 2013 and references 
therein). There are, however, two recent records of Nonionella stella 
from the Iberian seas deserving attention. Firstly, in 1997–98 the 
species was recognized in surface sediments from Ria de Vigo (Diz 
& Francés 2008). Nonionella stella occurs there at water depths of 
>30 m and shows a patchy distribution with high abundances in 
September under upwelling conditions. The other record is from the 
outer shelf in the northern part of the Gulf of Cadiz where the species 
dwells with variable proportions in sandy muds at 50–100 m water 
depths (Mendes et al. 2012). Again, it occurs in patches with occa-
sionally high abundances under temporary upwelling. In both Ria de 
Vigo and the Gulf of Cadiz, this species was not recorded in earlier 
studies of Recent foraminifera (Colom 1952; Van Voorthuysen 
1973; Ubaldo & Otero 1978; Levy et al. 1995; Schönfeld 2002). 
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Fig. 1. Occurrence pattern of Recent Nonionella stella (dark grey circles), first appearances (crosses) and new findings in the northeastern Atlantic 
and adjacent seas (light grey circles). Compiled after (a) Bandy & Arnal (1957), (b) Ingle et al. (1980), (c) Lutze (1980), (d) Culver & Buzas (1985, 
1986), (e) Oki (1989), (f) Kato (1992), (g) Schiebel (1992), (h) McDougall & Lagoe (1993), (i) Kuhnt et al. (1999), (j) Maas (2000), (k) Mazumder 
et al. (2003), (l) Erbacher & Nelskamp (2006), (m) Diz & Frances (2008), (n) Leiter (2008 unpublished), (o) Sabbatini et al. (2010), (p) Mallon (2012 
unpublished), (q) Mendes et al. (2012), and (r) this study.
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Furthermore, N. stella was first recorded in the northern Adriatic Sea 
in 2006 (Sabbatini et al. 2010), but was not found there in extensive 
foraminiferal distribution studies until 1991 (Daniels 1970; Jorissen 
1988; Cimerman & Langer 1991).

Nonionella stella has not been reported from either Gullmar 
Fjord, Dynekilen or the Skagerrak before. However, there was an 
earlier record documented by a scanning electron microscope 
image of a specimen from Gullmar Fjord identified as ‘Nonionella 
turgida’ by Gustafsson & Nordberg (2001, pl. 1, fig. 4). The 
 morphology of the specimen is clearly distinguishable from that of 
N. turgida Williamson, 1858 (see discussion below). The specimen 
was collected at their site G116 close to Alsbäck Deep in Gullmar 
Fjord between August 1993 and December 1994. Similar Nonionella 
morphotypes were not reported by Höglund (1947), who studied 
surface samples from Gullmar Fjord taken in 1927. It is conceiva-
ble that Nonionella stella immigrated to the area between the late 
1920s and early 1990s. We therefore re-examined samples from 
core G113-091, which was taken near Alsbäck Deep in 2009 
(Polovodova Asteman & Nordberg 2013), and has an age model 
based on 210Pb-dated sedimentation rates and relative age markers 
established for core GA113-2Aa from the same location (Filipsson 
& Nordberg 2004). Nonionella stella appears for the first time in 

sample 10–11 cm, corresponding to c. 1985 and is present in higher 
abundances between c. 1985 and 1995 (Fig. 2). The first occurrence 
seems to follow after a severe hypoxic event (<44 µmol l−1 O2) in 
1984, and the highest abundances co-occur with the following 
 episodes of severe hypoxia in the winters of 1987–88, 1988–89, 
1990–91 and 1994–95 (Filipsson & Nordberg 2004).

Transient advance to European waters during 
the late Holocene

There is also evidence for a late Holocene appearance of N. stella off 
western Iberia (Martins et al. 2006, 2007). Both papers refer to a 
sediment core from the Galician mud deposit, which goes back to 
4.8 ka. However, in their dataset these authors lump together three 
Nonionella species, which with absent census data make it difficult 
to estimate true N. stella abundances. Nonionella stella is mentioned 
to co-occur with N. turgida and both were slightly more abundant 
during c. 2200–1200 years BP. In an earlier paper, Martins & Gomes 
(2004) mention the occurrence of this species in three other cores 
from the Galicia and northern Portuguese margin. They explicitly 
say that N. stella occurs only in fossil assemblages with abundances 
of less than 11% in the >63 µm fraction. Surprisingly, less than 
300 km further south, Bartels-Jónsdóttir et al. (2006a, b) did not 
record N. stella in a core from very similar sedimentary environ-
ments of the Tagus Prodelta covering the last 2.2 ka, nor did they 
recognize the species in the living fauna from surface samples taken 
in April 2002. Unless more detailed information is available, it 
appears likely that N. stella immigrated to the western Iberian mar-
gin during the mid- to late Holocene, disappearing again between 
200 and 750 AD, during the Dark Ages, when climatic conditions 
were colder than today. The earlier, Holocene invasion could be 
facilitated or at least promoted by an episodically, narrow, warm, 
northward Iberian Poleward Current, which extends to 400 m depth 
and may even reach the southern Bay of Biscay in autumn and win-
ter (Haynes & Barton 1990; Garcia-Soto et al. 2002). Today, autumn 
is not the time of high primary production, food flux to the seafloor 
and subsequent reproduction of opportunistic benthic foraminiferal 
species off western Iberia. The Iberian Poleward Current and its 
southern tributaries may once have been a persistent, perennial phe-
nomenon under different climatic conditions in the past (e.g. 
Mojtahid et al. 2013), and a proliferation of N. stella propagules 
may have been possible north up to the Bay of Biscay.

Taxonomy and morphology

Discerning Nonionella stella from the often co-occurring Nonionella 
turgida has proven difficult. We strictly followed J.A. Cushman’s 
definition and determined only those specimens as N. stella (Pl. 1, 
figs 1–14) that exhibited a hand-shaped, lobate extension of the final 
chamber covering the umbilicus with clearly developed finger-like 
processes over the sutures (Cushman & Moyer 1930). In N. turgida, 
the extension is straight, often parallel to a previous chamber (Pl. 1, 
figs 16, 18) or rounded and drop-shaped (Pl. 1, figs 17, 20). 
Furthermore, the largest specimens of N. turgida are about half the 
size of N. stella in our samples, and the coloration of rose Bengal-
stained specimens is light rose in N. stella and dark ruby-red in 
N. turgida. The California form of N. stella has a more rounded test 
with fewer and broader chambers (Cushman 1939, pl. 9, fig. 10; 
Bernhard & Bowser 1999, fig. 1A), whereas in our  samples most 
N. stella are slightly elongated (Pl. 1). Cushman (1939) also illus-
trated specimens as N. turgida characterized by a big drop-shaped 
extension of the last chamber with voids between less developed 
fingers (see Cushman 1939, pl. 9, figs 2–3). This might have caused 
the confusion in the literature about the species concept of N. stella. 
Furthermore, the distinction from another closely related species, 
Nonionella pulchella Hada, 1931, should be noted. N. pulchella has 
far more chambers in the last whorl than N. stella, and the test is 
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Fig. 2. Downcore abundance of Nonionella stella and the chronology for 
core G113-091 from Gullmar Fjord (Polovodova Asteman & Norberg 
2013). The age model is based on sediment accumulation rates obtained 
by 210Pb for the core GA113-2Aa from the same location (Filipsson 
& Nordberg 2004). The black triangle is a relative age marker, which 
represents a decline in foraminiferal species common for the Skagerrak–
Kattegat area (aka S–K fauna) and an increase in Stainforthia fusiformis, 
both dated to c. 1979/80 (Nordberg et al. 2000).
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Explanation of Plate 1. figs 1–14. Scanning electronic microscope (SEM) images and light micrographs of Nonionella stella: 1–3, SEM of N. 
stella from surface sediments (0–3 cm) in Gullmar Fjord on the Swedish west coast (location G113); 4–6, micrographs of N. stella from Gullmar 
Fjord (location OVS300714-7A); 7–8, N. stella from Dynekilen Fjord (location D14-30F) (7A, enlargement of the umbilical area covered by finger-
shaped processes shown in 7; 8A, enlargement of the spiral side shown in 8); 9–10, young individuals of N. stella from Dynekilen Fjord, identified 
as Nonionella sp., 11–14, living (stained) N. stella from Skagerrak–Kattegat front (location St. 10D, 0–1 cm) (14A, enlargement of the umbilical area 
showing numerous diatom frustules concentrated around the umbilicus). figs 15–21. SEM images and light micrographs of Nonionella turgida: 15–17, 
N. turgida from Skagerrak–Kattegat front (location St. 10D, 0–1 cm); 18–21, N. turgida from Gullmar Fjord (location OVS300714-7A).

more compressed than in the latter species. In N. pulchella (Cushman 
1939, pl. 9, fig. 11) the sutures on the umbilical side are curved while 
they are straight in N. stella. The umbilical extension of the last 
chamber is bow-shaped and thin in N. pulchella, whereas it is 
straight and somewhat inflated in N. stella.

We argue that only an integrative view that considers morphol-
ogy, size and staining pattern accurately identifies the species 
unless genetic analyses of topotypic specimens and intergrade 
morphotypes from other areas are available, which would then 
establish other differential characters in morphology.
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Constraints on the immigration to northern 
European waters

When Nonionella stella evolved in 1.55 Ma in the northern Pacific 
(Kato 1992), the Isthmus of Panama was already closed (Fig. 1). 
Dispersal to the sporadic occurrences in the eastern Atlantic Ocean 
would have been possible by propagules only through the Agulhas 
Leakage around the Cape of Good Hope. Indeed, N. stella has been 
recorded from the oxygen minimum zones of the northern Indian 
Ocean (Maas 2000; Mazumder et al. 2003; Erbacher & Nelskamp 
2006) and has been recognized underneath the upwelling off Namibia 
(Leiter, 2008 unpublished). A further proliferation to the western 
African Margin and further north to the Iberian shelf could only be 
facilitated by northward subsurface and surface currents in the north-
eastern Atlantic. An alternative route by the South Equatorial, 
Guyana, Caribbean Current and Gulf Stream seems unlikely because 
N. stella has never been found in the Caribbean (Murray 2006, online 
appendix). The predominant surface current direction along the west-
ern European seaboard and Morocco is southwards (Fig. 1: Canary 
Current). Unless a perennial Iberian Poleward Current prevails, this 
would largely impede a further northward dispersal of propagules. A 
closer look at the occurrences of N. stella off Iberia reveals, however, 
that they are all under the main shipping routes or, in the case of Ria 
de Vigo, directly under the Vigo Bay Anchorage. The same applies 
to the Skagerrak–Kattegat boundary, where intense shipping activity 
prevails. There are numerous examples of other invertebrates trans-
ported to the North Sea and Kattegat by ships’ ballast tanks during 
the last century (Reise et al. 1999). We therefore hypothesize marine 
traffic and, in particular, ballast water and sediment as the possible 
vector of N. stella immigration into northern European seas and its 
Recent, secondary introduction to the Iberian shelf and rias. The suc-
cessful recruitment of N. stella is favoured by local environmental 
conditions, such as the seasonal upwelling off Iberia, high diatom 
production and thus chlorophyll availability at the Skagerrak–
Kattegat front or periods of strong hypoxia in Gullmar Fjord. Most 
likely, local dispersal and interchange between Gullmar Fjord, 
Dynekilen and the Skagerrak is also effected by the propagules.
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Appendix A. Occurrence of living (stained) Nonionella stella in a 
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For coordinates, water depth and ecological parameters see Appendix B.

Appendix B. Ecological parameters for habitats of  Nonionella stella in 
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Dynekilen 
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2014
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Salinity (PSU) 30.8 34.9/34.0 33.6

Temperature, salinity and oxygen were measured in near-bottom waters at the 
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