

measure un measurable, compare un comparable

Anastasija Zaiko Anastasija.Zaiko@cawthron.org,nz

Personal profile

* MISSION:

Background:

PhD in ecology and environmental research

Specialization:

Aquatic ecology and biological invasions

Teaching and supervising:

Undergraduate and postgraduate students LT,ES,IR,IT,R/V "Polarstern"

Skills and techniques:

Field work in marine, estuarine and freshwater environments (including SCUBA), laboratory experiments, biostatistics, project management, proposal writing

..... molecular analyses and metabarcoding

EU challenge: Marine Strategy

MSFD in a nutshell

But in fact....

Challenge #1: develop indicators

Descriptor 2: NIS introductions

"Beaufort Scale" for bioinvasion impacts?

Available online at www.sciencedirect.com ScienceDirect Marine Pollution Bulletin 55 (2007) 379-394

VLAIRIINE

www.elsevier.com/locate/marpolbul

"The tens rule"

(Holdgate 1986, Williamson 1996).

Assessment of biopollution in aquatic ecosystems

Sergej Olenin a,*, Dan Minchin b, Darius Daunys a

Biopollution assessment – the concept

Impact comparisons among species

* MISSION:

Who: Balanus improvisus
Where: Gulf of Finland, Baltic Sea

When: 1990-2009 BPL: 3 (strong)

Why: get more information from

BINPAS

Who: Orconectes limosus

Where: Vistula Lagoon, Baltic Sea

When: 1990-2009 BPL: 2 (medium)

Why: get more information from

BINPAS

Impact comparisons among ecosystems

* MISSION:

- BPL ranged from "moderate" (BPL=2) to "strong" (BPL=3)
- The highest scores in the coastal lagoons, inlets and gulfs
- The highest number of impacting alien species
 (BPL>0, i.e. weak, moderate and strong impacts) in the coastal lagoons and inlets too

ORIGINAL PAPER

Assessment of bioinvasion impacts on a regional scale: a comparative approach

Anastasija Zaiko · Maiju Lehtiniemi · Aleksas Narščius · Sergej Olenin

Challenge #2: test the response

BQI response to eutrophication

* MISSION:

Environment parameters	BQI response (coastal area)	BQI response (plume zone)
Chl-a concentrations	0.75 (Acceptable)	0.56 (Poor)
(TP) concentrations	0.74 (Acceptable)	0.56 (Poor)
(TN) concentrations	0.70 (Acceptable)	0.87 (Excellent)

The steps denote proposed threshold values (strict -2.45, the most accurate -2.56 and lenient -3.05). Numbers in brackets indicate specificity and sensitivity values respectively.

Application of signal detection theory approach for setting thresholds in benthic quality assessments

Romualda Chuševė ^{a,*}, Henrik Nygård ^b, Diana Vaičiūtė ^a, Darius Daunys ^d, Anastasija Zaiko ^{a,c}

Challenge #3: assess the bias

Benthic quality and invasive species

g

journal homepage: www.elsevier.com/locate/ecolind

Invasive ecosystem engineers and biotic indices: Giving a wron impression of water quality improvement?

Anastasija Zaiko^{a,*}, Darius Daunys^{a,b}

Suggested index corrections

- Exclude species found exclusively with zebra mussels
- Exclude samples with extremely high zm abundances (>1000 ind/m2)
- Apply abundance corrections for species a highly correlating with zm

Challenge #4: set the targets

Framework for setting targets

* MISSION:

- Define the natural (pressure-free) range of the indicator
- Define R: largest acceptable time to recovery (e.g. human generation time)

THEN:

The target range – is the range of values from where the mean time to reach the natural range (if all pressures are removed) is <R

Thank you!

People:

Sergej Olenin, Darius Daunys, Romualda Chuseve, Axel G. Rossberg, Diana Vaiciute