
Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), 1998
Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 157
2. SEISMIC STRUCTURE OF THE VOLCANIC APRON NORTH OF GRAN CANARIA1
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ABSTRACT

High-resolution reflection seismic profiles through the volcanic apron north of Gran Canaria collected during Meteor
Cruise 24 were interpreted in the light of results from Leg 157 (Sites 953 and 954). The shape of the submarine island flanks of
Gran Canaria and the two adjacent islands of Fuerteventura to the east and Tenerife to the west were reconstructed by interpre-
tating seismic profiles that penetrated the sediments covering the deeper portions of the volcanic pedestals. The ~4750-m-deep
flank of Fuerteventura is the oldest submarine island flank, influencing the subsequent shield-building of Gran Canaria to the
east, whose 16- to 15-Ma shield is ponded against Fuerteventura, forming a topographic barrier between the islands. The asso-
ciated reduction of the current cross section has caused strong bottom currents, indicated by erosional features and contourites.
To the north, the flank of Gran Canaria extends 60 km seaward to a depth of ~4500 m. The shield of the Anaga massif on north-
east Tenerife onlaps the flank of Gran Canaria to the east. Seismic correlation of the feathered edge of the Anaga shield (~50
km off Tenerife at a depth of 4000 m) to the bio- and magnetostratigraphy at Site 953 results in an age of ~6 Ma.

The surrounding sedimentary basin is characterized by chaotic and discontinuous reflection patterns of the slope facies,
turning into well-stratified basin facies ~30–40 km off the coast. The westward decrease of reflectivity in the northern apron is
interpreted to be caused by the submarine ridge off Galdar at the western limit of the north coast of Gran Canaria, through
which mass flows from Gran Canaria entering the sea in the north were diverted to the northeastern part of the apron. The vol-
canic activity correlates with the sedimentation rates in the apron. The lowest rate corresponds to the volcanic hiatus on Gran
Canaria (9–5 Ma) with 3–4 cm/k.y., and the highest rate (up to 12 cm/k.y.) was found during the voluminous Miocene volcan-
ism on the island. A number of large mass-wasting events could be identified, interbedded with the pelagic background sedi-
mentation. The basaltic breccia drilled at Site 954 (lithologic Unit IV) is interpreted to represent the deposits associated with a
slope failure at the northern flank of Gran Canaria at 12 Ma. The seismic mapping reveals >60 km3 of debris advanced at least
70 km into the apron. The volume fits well with the dimensions of an amphitheater at the northern flank of Gran Canaria. The
Quaternary volcanism on La Isleta at northeast Gran Canaria extends further seaward, where the seismic data show young lava
flows. Other submarine volcanism occurred in the channel between Gran Canaria and Fuerteventura.
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INTRODUCTION

The Canarian Archipelago is built on the African continental
slope and rise and extends 450 km from east to west (Fig. 1). The vol-
canic aprons surrounding the islands consist of material derived
through volcanic activity, slides, and erosion on the islands, interca-
lated to the background sedimentation. The aprons south of the Ca-
nary Islands contain slumped material from the African continental
margin (von Rad, Ryan, et al., 1979; Schmincke, Weaver, Firth, et al.,
1995), contrasting the northern basin, which is shielded from such in-
flux by the East Canary Ridge (Fuerteventura, Lanzarote, and Con-
ception Bank), forming a morphological barrier. The sedimentary ba-
sin north of the Canary Islands extends ~200 km up to the Selvagem
Islands, corresponding to the lateral extent of the moat because of the
load of the Canary Islands (Watts, 1994).

High-resolution seismic reflection data collected during Meteor
Cruise 24 over the northern apron of Gran Canaria (Fig. 2) offer the
opportunity to extrapolate the one-dimensional drilling results at
Sites 953 and 954 across the apron up to a distance of 100 km from
the shore. Correlation with the bio- and magnetostratigraphy at the
drill sites was obtained by synthetic seismograms that were matched
to the observed seismic data (Funck and Lykke-Andersen, Chap. 1,
this volume; Funck, 1996).

The aim of this study was to analyze the structure of the volcanic
apron north of Gran Canaria, whose volcaniclastic deposits contain a
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ifax, Nova Scotia, B3H 4J1, Canada. tfunck@is.dal.ca).

3Department of Earth Sciences, University of Århus, Finlanders 8, 8200 Århus
Denmark.
record of the evolution of Gran Canaria and the two neighboring is-
lands, Fuerteventura and Tenerife. The goal was to broaden the
knowledge about the volcanic evolution of these islands, to deter-
mine their submarine dimensions, to study how the volcanism and
erosion is reflected in the surrounding sediments, and to detect large
mass-wasting events associated with the destruction of the islands.

GEOLOGICAL SETTING

The island group of the Canaries is located between magnetic
anomalies M21 (148 Ma) and S1 (Fig. 1). Roest et al. (1992) interpret
the anomaly S1 as true oceanic crust, and Klitgord and Schouten
(1986) date the anomaly at 175 Ma. The location of S1 coincides with
the seaward extent of a series of salt diapirs, marking the approximate
landward edge of oceanic crust (Hinz et al., 1982).

The Canary Island volcanism is much younger than the underly-
ing oceanic crust. The earliest submarine volcanics are Late Creta-
ceous to early Tertiary (Le Bas et al., 1986). The oldest subaerial vol-
canic activity occurred on Fuerteventura (20 Ma; Coello et al., 1992),
whereas the westernmost island Hierro is as young as 1 Ma (Fús
al., 1993). The volcanic apron north of Gran Canaria also repres
the deposition area for volcaniclastic material from the two neighb
ing islands, Tenerife and Fuerteventura. The volcanic activity 
these three islands is therefore briefly summarized below.

Three major magmatic/volcanic cycles have been distinguish
on Gran Canaria, and these have been further subdivided into se
stages (Schmincke, 1976, 1982, 1994; Hoernle and Schmin
1993a, 1993b). All subaerially exposed volcanic and intrusive ro
were formed during the last 15 m.y. (McDougall and Schminck
1977). The subaerial Miocene Cycle, with rapid formation (0.5 M
of the shield basalts, was followed by magmatism of the Mog
phase (14.1–13.5 Ma) and the Fataga phase (~13–9.5 Ma). The 
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Figure 1. Location map of Sites 953 through 956 (Leg 
157) and Site 397 (Leg 47) in the vicinity of the Canary 
Islands shown together with the magnetic anomalies 
(Verhoef et al., 1991) and the limits of the salt diapir 
zone between the eastern Canaries and Africa (Hinz et 
al., 1982). The square box is the study area (Fig. 2). 
Bathymetric contour interval is 1000 m.
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cene Cycle was followed by a major volcanic hiatus until the
Pliocene Cycle, which began at ~5 Ma, with peak activity ~4 Ma
(Roque Nublo Group). The bulk of the Roque Nublo volcanics was
deposited in the northern half of the island. Quaternary volcanism oc-
curred exclusively in the northern part of Gran Canaria.

Two major formations can be distinguished on Fuerteventura: an
emerged basal complex and a younger subaerial volcanic series
(Coello et al., 1992). The submarine volcanics of the basal complex
are as old as 48 Ma (Le Bas et al., 1986). The subaerial shield basalts
were formed by three independent edifices (Coello et al., 1992): (1)
the southern edifice—closest to our seismic net—with main activ
between 16 and 14 Ma; (2) the central edifice, with three erupt
cycles between ~20 and 17 Ma, and, ~15 and 13 Ma; and (3) 
12
y
e
he

northern edifice, where main activity occurred between 14 and
Ma. A major temporal gap separates these basalts from the p
Miocene volcanic activity (<5 Ma) in the central and northern r
gions.

The oldest visible unit on Tenerife is that of the shield basa
(Anaga, Teno, and Roque del Conde massifs; Ancochea et al., 1
The Anaga massif in the northeast, adjacent to the investigated a
was formed between 6.5 and 3.6 Ma, with major activity occurr
between 6 and 4.5 Ma. Voluminous Quaternary volcanic activity
Tenerife was concentrated in the center of the island (Cañadas
cano, 1.9–0.2 Ma) and to a chain of basaltic eruption centers from
central volcano to the northeast (Cordillera Dorsal, peak activity ~
Ma).
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SEISMIC REFLECTION DATA

Data Acquisition

Meteor Cruise No. 24 in April and May 1993 (Schmincke and
Rihm, 1994) was the main presite survey for Leg 157. A total of 2117
km of high-resolution reflection seismic data were recorded along 50
profiles around the entire island of Gran Canaria. Some of the seismic
data were already interpreted without knowledge of the drilling data
in a more general overview by Funck et al. (1996). For the purpose of
this paper, the lines north of Gran Canaria and in the northern part of
the channel toward Fuerteventura were studied in detail (Fig. 2).

The seismic source was a sleevegun cluster consisting of four
guns with a volume of 0.65 L each. Bubble oscillations were effec-
tively suppressed by the narrow gun clustering of 0.5 m, increasing
the signal to noise ratio. The signal was recorded by means of a 
channel” streamer, with a group spacing of 6.25 m resulting in a t
length of 143.75 m. The data were bandpass-filtered (20–360 Hz)
sampled at 1-ms intervals. The firing rate was chosen dependin
the water depth to maximize the shot frequency and thereby g
maximum fold of stack. The firing rates of 5, 7.5, and 10 s correspo
to a nominal shotpoint distance of 12.5, 18.75, and 25 m, respect
ly, with a ship speed of 2.5 m/s.

Data Processing

The prestack processing of the seismic data was carried out a
University of Århus, Denmark. Because of the great water depth 
the short streamer length, no intensive velocity analysis was poss
The goal of the following processing at GEOMAR, Kiel, German
was to obtain time-migrated sections. A migration velocity analy
was carried out to get a velocity model along the seismic line, serv
as input for the final finite-difference migration in the time-space (t
domain or in the frequency-space (fx) domain. Before migration, 
data were resampled from 1 to 2 ms, because the amplitude sp
showed that the seismic energy lies between 20 and 240 Hz. In
horizontally layered parts of the profiles, usually two or four comm
midpoint (CMP) traces were stacked together to enhance the signa
noise ratio. Both processes reduced the central processing unit 
necessary for migration.

Because the island flanks are characterized by a rough morp
ogy, some energy is reflected and diffracted from structures out of
plane of the profile. Such three-dimensional features cannot be tr
ed properly with the applied two-dimensional migration, and hen
remnants of these side echoes are occasionally visible. Finally, ti
variant frequency filtering was applied. The display of the lines
Figures 3–10 is with Automatic Gain Control (window length 50
200 ms).

SEISMIC STRUCTURE OF THE APRON

To gain a detailed insight into the structure of the volcanic ap
north of Gran Canaria, a set of characteristic seismic lines are
scribed below and a summary of the two drill sites in this area (S
953 and 954) is also given. The location of the profiles and drill si
is shown in Figure 2.

Site 953

The sedimentary sequence at Site 953 ranges in age from mi
Miocene to Holocene and is 1159 m thick (Schmincke, Weav
Firth, et al., 1995). The sequence is subdivided into seven litholo
units (Fig. 3). Unit VII (1159–969 meters below seafloor [mbsf
consists entirely of early Miocene hyaloclastite tuffs, lapillistone
and breccias, probably formed by a shallow submarine eruption
basaltic magma. Unit VI (969–889 mbsf) consists largely of thic
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bedded basaltic sandstone, lapillistone, and breccia. It represent
outermost flank of the shield volcano of Gran Canaria, compris
deposits of both subaerial and shallow submarine volcanism. The
placement of material occurred through debris flows and turbid
currents. Lithologic Units V through I (889–0 mbsf) represent pela
sediments with interbedded volcaniclastic layers emplaced by gra
flow processes (turbidites) and eolian transport.

The vertical seismic facies changes in the vicinity of Site 953 ha
been used to distinguish seven seismic units (Units 1–7) in the s
ments above the island flank, which are not identical with the lith
logic units. Reflectors at the base or close to the base of promi
reflector bands showing a good correlation in the apron serve to
fine boundaries between the seismic units. These reflectors are c
M (13.9 Ma, deposited during Mogan phase of volcanism), F (1
Ma, deposited during Fataga phase of volcanism, H (9.5 Ma, dep
ited during the transition from the Fataga phase to the large Mioc
hiatus of volcanism on Gran Canaria), T (5.3 Ma, deposited dur
the shield stage of Tenerife), RN (3.6 Ma, deposited during 
Pliocene Roque Nublo phase), and Q (0.8 Ma, Quaternary dep
(Fig. 3; see also Funck and Lykke-Andersen, Chap. 1, this volum

Line 134

Line 134 (Fig. 4) is located radial to Gran Canaria in a sou
southwest–north-northeast direction (Fig. 2). Its southern end is
km away from La Isleta peninsula, which is characterized by Qua
nary volcanism (Schmincke, 1994). The division into several fac
units can be recognized on this profile. Following the definition 
Schmincke (1994), a volcanic apron peripheral to an oceanic isl
consists of three main facies:

1. The core or flank facies is characterized by rough topograp
and discontinuous reflectors (chaotic seismic facies; Wi
mann [1979] and Holik and Rabinowitz [1991] have used t
term “volcanic apron” exclusively for this facies).

2. The proximal or slope facies is characterized by slumps, d
continuous bedded units, debris flows, and erosional chann
and so forth.

3. The slope facies grades laterally into the basin facies, whic
characterized by well-developed reflectors and groups of 
flectors and consists of diverse types of volcaniclastic depo
including fallout ash layers, debris flows, distal ignimbrite
and lahars, and other volcaniclastic rocks generated by e
tions and erosion of volcanic rocks.

The volcaniclastic deposits are interbedded with biogenic and
siliciclastic terrigeneous sediments forming the background se
mentation to the volcaniclastic influx from the islands.

The flank facies comprising the volcanic edifice is characterized
steep flanks up to a dip of 32° close to Gran Canaria on Profile 
(Fig. 4). Toward the basin, the dip decreases to 0.5° close to the fe
ered edge of the volcanic edifice. The flat flank is defined by a h
amplitude, long-period reflector with a discontinuous mounded str
ture.

The southernmost volcanic edifice on Line 134 is formed by tw
volcanic cones, which seem to represent the offshore continuatio
the volcanism on La Isleta. The cone at CMP 1000 is the star
point for three radial ridges interpreted as lava flows (Funck, 199
two of which are crossed by the seismic line (between CMP 1700 
4800). Both lava flows are almost reflection-free and downlap o
the seafloor. They are therefore very recent features (<<1 Ma) i
cating ongoing volcanism at the La Isleta submarine complex.

On a large scale, the entire sedimentary sequence shows 
characteristics with onlap onto the flank of Gran Canaria. The sl
facies is characterized by chaotic patterns in the lower third of the
quence above the volcanic shield, succeeded by relatively reg
stacks of mounded structures in the upper part. Outside the s
13
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14
facies, which extends some 40 km from Gran Canaria, the seismic
facies changes to a more regular basin-fill facies with parallel or bas-
inward diverging reflectors. Individual reflectors can be correlated
within the slope facies, where the correlation gradually decreases by
a transition into more complex patterns.

Further seaward, the reflections become almost horizontal above
reflector M. Below reflector M, there is a small islandward dip
(<0.5°). Reflections below the island flank are discontinuous, and
amplitude decreases with the thickening of the volcanic pedestal.
ward the south-southwest, the dip of these reflectors becomes a
more or less horizontal, but this is probably because of a pull up ef
caused by the thickening of the high velocity shield on the time s
tion. Beneath the voclanic shield at Site 953, thick hyaloclastite 
bris flows with several internal reflectors were found (lithologic Un
VII). The internal reflectors are caused by variations in the compo
tion of individual debris flows and they can be correlated towa
Fuerteventura, where they onlap onto the flank of the Amanay Ba

The thickening of the transparent facies below reflector R
toward the north indicates a decreasing depositional energy for
period 4.9–3.6 Ma, with a reduced volcaniclastic sediment supply
the distal area of Gran Canaria.

An erosional channel with truncations at both flanking walls 
located between CMP 6900 and 9400. The channel is crossed 
quely, its true width is ~3.5 km, and it is cut ~200 m into sedimen
In the upper 150 ms two-way traveltime (TWT) below the chann
bed, several unconformities were identified, forming lows that we
subsequently filled again by sediments. This indicates complex in
action between erosion and sedimentation in the channel. Analys
these patterns and correlation toward Site 953 results in the est
tion that erosional processes have been active since at least 5 M

Line 203

Line 203 (Fig. 5) is the seaward continuation of Profile 134 (F
2). The line shows a well-stratified sedimentary basin with two str
ing features.

At the northeastern end of the profile, two domal uplift structur
are seen, updoming the overlying strata up to the lower half of s
mic Unit 6 and possibly piercing layers at deeper levels. The 13
million-year-old reflector band M forms a 30 ms, TWT, deep ri
syncline, a feature that is usually associated with diapirism. The 
tial uplift therefore must have taken place around that time. The 
gin of the uplift is discussed in Funck et al. (1996). Gravity and m
netic data, as well as the occurrence of a rim syncline, exclude a m
matic origin. The remaining possibilities comprise mud or s
diapirism. In the case of a salt structure, one has to explain the or
of the salt. Hinz et al. (1982) have mapped a north-northwest–so
southeast trending zone of salt diapirs east of Fuerteventura (Fig
The western limit of this zone roughly coincides with the limit of th
flank of Fuerteventura mapped by Wissmann (1979). Possible 
diapirs beneath Fuerteventura would be seismically masked by
overlying volcanic basement, and hence, the salt deposits may 
extend further to the west. On the other hand, mud diapirism invol
mud and overpressured multiphase pore fluids (water and meth
Brown, 1990). At Site 953, closest to the uplift structures, the me
ane concentration is below 34 ppm (Schmincke, Weaver, Firth, et
1995), whereas values of up to 54,965 ppm were recorded at Site
The same is true for Deep Sea Drilling Project Site 397 (Whel
1979). In summary, the methane content can change over short
tances, and considerable concentrations can occur locally. Sedim
close to the continental margin have especially high methane con
suggesting a relation to the sediment supply from the continen
high methane content in the deep northern basin below the dril
penetration thus is conceivable, as there are sediments that 
deposited before the buildup of the topographic barrier of the Eas
Canary Islands, which protects the area from sediment supply f
Africa.
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The second interesting feature on this profile is reflector band M,
representing an unconformity with almost horizontal strata above and
south-southwest dipping reflectors below. Several onlap termina-
tions onto the reflector band can be seen. The dip of the reflectors
below reflector M is ~0.3°. The formation of Gran Canaria is thoug
to be responsible for the subsidence of the originally horizontally la
t
-

ered sediments below reflector M. Subsequent to the rapid shie
building phase of the island, the underlying lithosphere has 
sponded to the volcanic load by flexure (Funck et al., 1996). T
related moat was later filled by horizontally layered sediments. Wa
et al. (1997) show a similar flexure on their reflection seismic profi
around Tenerife.
15
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The hyaloclastite unit of Site 953 (lithologic Unit VII) can be cor-
related up to CMP 4000, where the otherwise high amplitudes de-
crease and the unit thins out. The last point to mention on this line is
the prominent reflector band in the lower portion of the profile. In the
northeast, its depth is ~6 s, and in the southeast 6.2 s, following the
general dip of the reflectors below reflector band M. Identification of
this reflector on Lines 202 and 205 shows a westward decrease in the
thickness of the unit, and a source in the east can be assumed. Depo-
sition was before the shield phase of Gran Canaria, and hence, this
may be a volcaniclastic debris flow from the early buildup of the East
Canary islands of Fuerteventura and Lanzarote.

Site 954

The sedimentary succession drilled at Site 954 (Fig. 6) is 446 m
thick and is subdivided into four lithologic units (Schmincke,
Weaver, Firth, et al., 1995): Units I through III (0–408 mbsf) a
Pleistocene to late Miocene in age and consist of pelagic sedim
16
nts

with volcaniclastic interbeds deposited by gravity flows. Unit I
(408–446 mbsf) is middle Miocene in age (~14 Ma) and compri
exclusively basaltic breccia. It is separated from Unit III by a hia
(~10.7–14 Ma). The breccia are a mixture of subaerially derived 
shallow-water volcanics, which typically occur during the emerge
phase of volcanic islands.

On the JOIDES Resolution, Unit IV was interpreted to represen
the island flank of Gran Canaria, and the hiatus was explained
removal of the missing sediments because of slumping (Schmin
Weaver, Firth, et al., 1995). The detailed analysis of the seismic 
after the cruise, however, suggests an alternative explanation, w
is presented below in the description of Line 210.

By means of a synthetic seismogram, Funck (1996) correla
some of the reflectors with the lithology at Site 954. Lithologic Un
II (a 2-m-thick lapillistone unit) corresponds to the strong reflec
band ~4850 ms TWT (Fig. 6), representing reflector RN (3.6 M
The second prominent reflector band ~4740 ms is also caused 
lapillistone interbed (80.2 mbsf; Core 157-954B-1R).
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Line 210

The orientation of Line 210 (Fig. 7) is northwest-southeast, which
is roughly tangential to Gran Canaria (Fig. 2). This orientation, per-
pendicular to the dip of the island flank with reflections from out of
the plane of the line, is responsible for the diffuse patterns of this sec-
tion. Amplitude and continuity of the basement reflector (top of vol-
canic shield) are considerably lower than on the two crossing radial
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Figure 6. A 220-m-wide stacked portion of seismic Line 210 around Site
954. The right column shows the division in lithologic units (I through IV)
and the left side the seismic interpretation. Correlation between the seismic
data and the lithology was achieved by synthetic seismograms (Funck, 1996).
Lines 134 and 301. The flank has a mounded structure, and its depth
increases toward the northwest as the distance from the island in-
creases.

The sedimentary fill shows a gradual change from slope facies in
the southeast to a transition zone between slope and basin facies in
the northwest. The chaotic patterns in the southeast (between CMP
6000 and 12000) are probably intensified by numerous side echos.
The frequent mounded structures with a width of 1 to 2 km indicate
the significance of radial slides and debris flows for the construction
of the sediment unit.

Below reflector band Q several toplap terminations of low ampli-
tude reflectors indicate a period of erosion or nondeposition. This fits
with the observed hiatus at ~80 mbsf at Site 954 (Schmincke,
Weaver, Firth, et al., 1995).

The most interesting feature on Line 210 is lithologic Unit IV
drilled at Site 954 (see above and Fig. 6). In the seismic data this unit
is seen as a mounded, high-amplitude reflector (HAR) band. The unit
is interpreted as a debris flow and onlaps onto the island flank at CMP
5200. West of CMP 1500, the amplitudes weaken. Between the
debris flow and the island flank several hummocky, discontinuous
reflectors are visible, representing sediments overridden by the debris
flow. The age of the debris flow is slightly older than 12 Ma, inferred
from the strata in which the unit is interbedded and which can be cor-
related toward Site 953. At first glance, this contradicts the age of 14
Ma of the foraminifers found in the unit; because the island flank lies
below the debris flow, lithologic Unit IV may represent 14 m.y.-old
material of the basaltic island flank of Gran Canaria, which was
deposited at Site 954 by a large mass-wasting event at 12 Ma. The
reported hiatus between lithologic Units III and IV therefore did not
last from 14 to 10.7 Ma, but from 12 to 10.7 Ma. The reason for the
hiatus can be seen in the location of the drill site, at the top of a mound
formed by Unit IV. The surrounding strata show onlap terminations
onto the mound until 10.7 Ma, when the sediments covered the top of
the mound, indicating that the hiatus at Site 954 was finished.

Line 205

Line 205 (Fig. 8) is radial to the northeastern tip of Tenerife
(Anaga massif) and crosses the entire apron north of Gran Canaria at
a distance of ~60 km from the shore (Fig. 2). The flank of Tenerife
shows HARs with a good continuity. The slope of the flank decreases
seaward and is almost horizontal at CMP 19200, where the reflection
from the shield fades out (~50 km northeast of Tenerife). The deter-
mination of the stratigraphic position of the feathered edge of the
shield in the basin is hampered by the low reflectivity in the western
part of the line. Nevertheless, the parallel and almost horizontal bed-
ding in the basin allows for a good estimate of the age of the flank,
which is ~6 Ma. The maximum K-Ar dates given by Ancochea et al.
(1990) are 5.7 Ma for the eastern part of the subaerial Anaga massif
and 6.5 Ma for the western part, which is further away from the seis-
mic line. Rapid growth of the submarine shield of Anaga is indicated
by the fact that there is no discernible age difference between the sub-
marine and subaerial portions.

At first glance, the sedimentary basin shows a very uniform pat-
tern with a number of horizontal reflectors outside the flank area of
Tenerife. When examined in more detail, the lateral changes are sig-
nificant and allow some conclusions on the origin of the deposits. The
most important lateral change is the general westward decrease of re-
flectivity in the sedimentary sequence, starting between ~CMP 6000
and 8000. This is a general feature in the apron north of Gran Canaria
and can be correlated toward a submarine ridge north of Galdar at the
northern flank of Gran Canaria (Fig. 2). The westward decrease of re-
flectivity is therefore interpreted as caused by the influence of the
Galdar Ridge on the sedimentation paths of volcaniclastics entering
the sea at the northern flank of Gran Canaria. Reflectors affected by
this systematic westward decrease are interpreted to have originated
17
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from Gran Canaria. These patterns are visible between reflector
bands Q and F, with reflector RN as the main exception. Reflector
RN is the most prominent reflector in the apron and can be correlated
across almost the entire northern survey area. It is formed by lapilli-
stones of the voluminous Pliocene Roque Nublo volcanism on Gran
Canaria, which is probably responsible for those sedimentation paths
not affected by the Galdar Ridge. The power of the Roque Nublo vol-
canism is emphasized by the height of the Roque Nublo volcano,
which was built on the deeply eroded Miocene volcanic edifice and
exceeded >3000 m above sea level (Mehl, 1993; García Cacho e
1994). Today, the highest peak on Gran Canaria is 1949 m, illus
ing the amount of erosion.

The uppermost seismic unit between the seafloor and reflecto
(seismic Unit 7) is composed of volcaniclastics from both Gr
Canaria and Tenerife. Northeast of CMP 9000, a number of horiz
tal reflectors occur with low to medium amplitudes, a narrow cy
breadth, and excellent continuity. These reflectors are interprete
be caused by the coarse beach sands found at Sites 953 an
18
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(Schmincke, Weaver, Firth, et al., 1995). The increase of their gr
size toward Gran Canaria and the westward fading of the reflect
suggest a source on Gran Canaria. Input from Tenerife can be ide
fied in three debris flows with downlap onto the seafloor at CM
25000, 23500, and 9000. Thicknesses of these flows are ~20, 7,
10 m, respectively. The reflector band Q itself shows a change
reflection patterns between CMP 16000 and 11200, where am
tudes and continuity decrease. This disturbance may be cause
currents radial to the profile as the disturbed area represents
approximate continuation of the deepest part of the channel betw
Gran Canaria and Tenerife.

At a depth of 5550 ms TWT, a conspicuous parallel reflector ba
can be seen between CMP 17500 and 10500. This HAR band is c
acterized by good continuity, abrupt disappearance in the northe
and gradual thinning southwest of CMP 16000. The reflector ba
corresponds to the basaltic debris flow drilled as lithologic Unit IV 
Site 954, constraining the northward extent of the flows, >70 k
away from Gran Canaria.
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The debris flow from the East Canaries at a depth of 6050 ms
TWT fades out to the southwest (CMP 8000), as well as the south-
westward thinning hyaloclastite unit (lithologic Unit VII at Site 953).

Line 130

The remaining two profiles to be described are located in the
channel between Gran Canaria and Fuerteventura. It is necessary to
include the channel in a description of the northern apron, because it
has influenced the shape of the island flank of Gran Canaria and the
sedimentation in the northern apron. Line 130 (Fig. 9) represents a
complete cross section through the channel (Fig. 2). The profile has
a southwest-northeast direction and crosses the Amanay Bank, which
is the most prominent feature on the profile. The plateau of the
Amanay Bank is roughly 12 km in diameter and 60 m deep. The bank
is connected with the southern edifice of Fuerteventura (Fig. 2),
which is characterized by erosion lasting 14 m.y. (Coello et al.,
1992). The slope of the flank of the Amanay Bank is up to 24°. Deb
from the eroded surface has been deposited in prograding clinofo
on the southwestern edge of the plateau.

The volcanic basement on Line 130 is formed by Fuertevent
(Amanay Bank) in the northeast, with the younger shield of Gr
Canaria onlapping the flank of Fuerteventura from the west up
CMP 17000, where the increased slope of the Amanay Bank prev
ed further transport of products from Gran Canaria. The surface o
shield of Gran Canaria shows a distinct hilly relief with a typic
wavelength between 1 and 3 km.

A large portion of the rough volcanic basement relief betwe
Gran Canaria and Fuerteventura is covered with sediments. 
channel between CMP 2500 and 6000 shows very complex in
structures caused by the interaction of high energy sedimentary i
from Gran Canaria, erosion, and bottom currents. Strong bottom 
rents were caused by the reduction of the cross section betwee
islands, when the volcanic basement formed an only 1550 m d
barrier. The erosional channel at the toe of the southwestern flan
the Amanay Bank is caused by the diversion and strengthening o
currents around the southwestern tip of Fuerteventura.

The sediments between CMP 8000 and 16500, show in m
parts, well-stratified infill patterns with parallel to divergent or wav
reflection configurations. The amplitudes are generally high, and 
continuity is excellent. In the lower part of the sequence some fa
have developed with vertical displacements of <5 m, whereas ero
has influenced the upper part of the sequence, especially close t
Amanay Bank. Because of the isolated location of the sedimen
infill structure, it is impossible to correlate any reflector directly in
the apron north or south of Gran Canaria. Nevertheless, there
some consistencies in the vertical spacing of reflectors between
area and around Site 953, which suggest that the infill started at 
Ma.

The sediments northeast of the Amanay Bank have been in
enced by mass wasting from the bank as well as from the south
part of Fuerteventura, whose flank is dipping perpendicular to 
seismic line. Input from Gran Canaria is shielded by the Aman
Bank.

Line 133

Line 133 (Fig. 10) is also located in the channel between G
Canaria and Fuerteventura (Fig. 2). The northwestern end of the 
file crosses the submarine ridge offshore La Isleta, whereas the so
eastern end lies in the stratified sedimentary basin discussed a
for Line 130. The submarine ridge of La Isleta has a slope of up
24° and is covered with a sequence of some 100 ms TWT thick d
tus with low amplitudes, discontinuous reflectors, and a contor
configuration. The erosional channel between CMP 10000 and 12
is filled with some detritus and three slide blocks, which are so
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700 m wide and 60 m high. The channel can be traced basinw
where it crosses Line 134.

Between CMP 10000 and 4000, the volcanic basement sh
three elevated features, which are interpreted as part of a subm
volcanic complex. The two elevations at CMP 7000 and 4800 rep
sent volcanic cones, the latter one with a slope of 30° and an eleva
of 840 m above the adjacent basement. The elevation at CMP 9
does not have a typical cone shape on the seismic image, but m
be a volcanic cone as well, possibly located out of the line.

Sediments with a chaotic reflection pattern were deposited at
base of the erosional channel to the east of the volcanic complex
tween CMP 3600 and 4400). The sedimentary sequence southea
the channel thins toward the channel, indicating the influence of c
rents, which must have originated, or at least noticeably stren
ened, after the buildup of the volcanic complex. Exact age correla
of the sediments on this line is not possible. However, taking 
thickness of the sediments into account, which are influenced by
channel currents, and assuming sedimentation rates similar to t
in the apron, currents must have been active since at least 5
which gives the minimum age of the volcanic complex. The two c
into the upper part of the sedimentary sequence ~CMP 2400 and
represent erosional truncations, eroding the sediments which to
above the surrounding basement structures. This indicates that
tom currents occur in the entire channel between Gran Canaria
Fuerteventura.

The sediment unit covers two basement elevations at CMP 1
and 400. Several reflectors of the surrounding sediments cross t
basement structures. This three-dimensional effect indicates tha
features are surrounded by sediments. They are either volcanic c
(completely surrounded by sediments) or tips of ridges (partly s
rounded by sediments). With regard to the nearby cones to the w
a cone shape seems to be more likely.

MAPPING OF THE VOLCANIC APRON

Mapping of the prominent reflectors and seismic units contribu
to the understanding of the three-dimensional structure of the ap
The conversion from TWT to depth was done by a smoothed veloc
depth function for Site 953 assuming a linear increase of velocity w
depth (v = v0 + cz, with v0 the velocity at 0 mbsf, c the velocity in-
crease, and z the depth below seafloor). The best fit was achieved w
c = 1.22 s–1 and v0 = 1532 ms–1. The relation between z and TWT is
given by z = v0/c·(ec·TWT/2-1), that is z[mbsf] = 1256·(e0.00061·TWT[ms]-1).
This relation is plotted together with the original data (derived from
physical properties and downhole logging velocities) in Figure 11 and
is used as the regional velocity function in the apron north of Gran Ca-
naria. Lateral velocity changes are not considered, but comparison
with Site 954 shows that the deviations are <5 m.

The Submarine Island Flanks

The submarine flanks of Gran Canaria, Tenerife, and Fuerteven-
tura are represented in the northern apron of Gran Canaria. The top of
the massive island flanks is the most remarkable feature in the reflec-
tion seismic lines because of the mostly strong reflection amplitude
and the unconformable contact with the overlying units with numer-
ous baselaps.

Lithologic Unit IV at Site 953 (Fig. 3) is interpreted to represent
the thin outermost flank of the shield volcano of Gran Canaria. The
age of the unit is middle Miocene, ~15 Ma, indicating a rapid growth
of the shield because subaerial volcanism started around the same
time. The feathered edge of the flank of Fuerteventura (Amanay
Bank) lies stratigraphically just below the penetration depth at Site
953. The biostratigraphy (Schmincke, Weaver, Firth, et al., 1995)
gives a minimum age of 15.8 Ma for the bottom of the drill hole; the
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Figure 9. Time-migrated seismic section and line drawing for Line 130, which is located in the channel between Gran Canaria and Fuerteventura (Fig. 2).
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maximum age is 17.4 Ma. The age of the submarine part of southern
Fuerteventura therefore can be estimated between 16 and 18 Ma, fit-
ting with the maximum K-Ar age of 15.8 Ma (Coello et al., 1992) at
the subaerial southern edifice of Fuerteventura. The submarine flank
of northeast Tenerife is interbedded in the sedimentary basin north-
west of Gran Canaria (Fig. 8) at a stratigraphic position of ~6 Ma.

The temporal succession of the submarine shield stages of the is-
lands—Fuerteventura as the oldest, followed by Gran Canaria 
Tenerife—has influenced the shape of the individual island shie
(Funck et al., 1996). The building of Fuerteventura to the west w
into the open ocean; no preexisting islands could influence the de
sition of the volcanic material. Gran Canaria, however, had to its e
the shield of Fuerteventura, hampering the growth of the shi
toward that direction. This effect can be well seen in Figure 12, wh
shows the depth of the submarine island flanks. The growth of G
Canaria began approximately at the end of the shield-building ph
of the southern edifice of Fuerteventura. Volcanic material depos
to the east of Gran Canaria had to be transported uphill at the so
western flank of Fuerteventura, causing a ponding of the G
Canaria shield against the submarine flank of Fuerteventura. T
ponding can be seen on seismic Line 130 (Fig. 9), located betw
the two islands, and in the gentle dip of the Gran Canaria flank tow
the east compared to the uninfluenced north (Fig. 12). The limi
eastern depositional space was filled up until the material reached
steep flank of Fuerteventura. This depositional barrier diverted 
volcanic deposits to the north and the south. The northward diver
can be seen in Figure 12, where the isolines north of Gran Canari
not radially symmetric, but extend northward when moving to t
east.

The western part of the Gran Canaria shield grew into the o
ocean, limiting the depositional space for the later emerging islan
Tererife. This resembles the relation between Fuerteventura and G
Canaria, namely a ponding of the Tenerife deposits against the f
of Gran Canaria. The main difference is that the area of the later c
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nel between Gran Canaria and Tenerife was filled with pelagic se
ments and volcaniclastics from Gran Canaria for some 8 m.y. be
the growth of Tenerife, whereas there was almost no gap between
shield-building stages of Fuerteventura and Gran Canaria.

In general, volcanic flanks overlain by younger shields could n
be detected because of the relatively weak acoustic source in the
mic system used during the Meteor 24 survey. That is the reason wh
the extent of the western flanks of Gran Canaria and Fuerteven
cannot be mapped completely: they are partially masked by 
younger flanks of the adjacent western island.

The depths of the feathered edges of the island flanks in the no
ern basin are ~4750 m for Fuerteventura, between 4500 and 460
for Gran Canaria, and 4000 m for Tenerife. The flank of Gran Cana
extends some 60 km seaward in the northern basin, to the east its
is closest to the shore (44 km), where the growth of the shield 
limited by the preexisting shield of Fuerteventura. The extent of 
flank of Fuerteventura is 85 km from the shoreline, or ~50 km fro
the plateau of the Amanay Bank. Tenerife extends ~50 km to 
northeast.

Quaternary Seismic Unit 7

Seismic Unit 7 comprises the sedimentary sequence between
seafloor and reflector Q, that is, the last 0.8 m.y. Reflector Q as
lower boundary layer can be correlated up to 34 km toward G
Canaria and Tenerife, and as close as 25 km to the Amanay B
The low volcaniclastic input from the Amanay Bank results in a le
distinctive slope facies, and therefore correlation is possible eve
more proximal distances.

Figure 13 shows the thickness of seismic Unit 7, which var
between 30 and 65 m. The thick black line marks the position of 
downlap of a debris flow from Tenerife on the seafloor, identified 
Profiles 202 and 205 (Fig. 8). The thickness of Unit 7 decreases 
by some 10 m. The area covered by the debris flow is at least 
21
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km2, so that the minimum volume of the flow is ~8 km3. Further to
the east, the thickness of seismic Unit 7 increases again to 65 m on
Profile 135, where a number of debris flows from Fuerteventura (in-
cluding the Amanay Bank) have thickened the unit.

Sedimentation Rates

With the thickness of the seismic units, sedimentation rates can be
computed by means of the ages given by the bio- and magnetostratig-
raphy at Site 953 (Brunner et al., Chap. 9, this volume). These rates
are not corrected for compaction. The porosities at Site 953 can give
an idea about the amount of compaction. They are ~65% close to the
mudline and ~50% above the island flank (Schmincke, Weaver,
Firth, et al., 1995). This corresponds to a compaction of some 30%.
The computation of the sedimentation rates is made on the assump-
tion that the upper and lower boundaries of the unit are of the same
age throughout the area. This assumption is justified because the re-
flectors represent thin individual mass-flow units.

The minimum sedimentation rates were observed in seismic Unit
4 (Fig. 14), where they vary between 3 and 4 cm/k.y. Unit 4 (5.3–
22
.5

Ma) roughly corresponds to the volcanic hiatus on Gran Cana
This gives the comparatively low sedimentation rates because of
decrease of volcaniclastic input into the sedimentary basin. Clos
Site 953, the unit has a maximum thickness of up to 170 m (i.e., a 
imentation rate of >4 cm/k.y.), formed by a mound in the upper p
of the unit. The mapped area of the unit is restricted to the northe
ern part of the apron. This is caused by the mentioned westward
crease of reflectivity in the apron (see Line 205, Fig. 8), which infl
enced the boundary reflectors of the unit. The landward limit is de
mined by the transition from the basin to the more chaotic slo
facies, where the reflectors cannot be correlated.

The maximum sedimentation rates of the mapped seismic Uni
through 7 were observed in Unit 2 (Fig. 15). The sedimentation r
and thickness of Unit 2 increases from the northeast toward G
Canaria. In the northeast, where the uplift structure observed on P
file 203 (Fig. 5) is responsible for the thinning, the sedimentation r
is as low as 4 cm/k.y. Close to Site 953, the lower boundary reflec
of the unit (reflector M, 13.9 Ma) onlaps the flank of Gran Canar
and here the unit is ~230 m thick, resulting in a sedimentation rate
11 cm/k.y. Responsible for this high rate are both the high volca
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clastic input during the Mogan phase of volcanism, and the flexure of
the lithosphere as response to the volcanic load of Gran Canaria. The
flexure caused a local depression along the outer rim of the island
flank, which was subsequently a preferred area of deposition until the
low was filled.

Sedimentation rates in the other units reflect the volcanic activity
on Gran Canaria in a similar way, that is, lower volcanic activity
results in low volcaniclastic sediment supply and, consequently, in
low sedimentation rates.

DISCUSSION

Mass Wasting

Mass wasting is the main mechanism for the deposition of volca-
niclastic deposits in volcanic aprons around ocean islands. This in-
cludes slides (slumps and debris avalanches) and debris flows, which
may turn into turbidity currents under appropriate hydrodynamic
conditions. Moore et al. (1989) use the following distinction between
slumps and debris avalanches: slumps are slow moving, wide, and
thick with transverse blocky ridges and steep toes, whereas debris
avalanches are fast moving, long (compared to width), and thinner.
They commonly have a well-defined amphitheater at their head and
hummocky terrain in the lower part. In case of the Hawaiian Islands,
as many as 68 landslides >20 km long are known (Moore, Normark,
et al., 1994), contrasting with the only three major slides at the
Canary Islands documented so far. Two of these slides occurred at
Hierro (Holcomb and Searle, 1991; Masson et al., 1992; Masson,
1996), and one slide at the north flank of Tenerife (Watts and Mas-
son, 1995). The identification of the slides at both island archipelagos
is primarily based on surface features, which were detected by means
of the side-scan sonar system GLORIA (e.g., Moore et al., 1989). The
reason for the comparatively small number of slides documented at
the Canaries might be because of the high sedimentation rates, which
mask earlier slides. In contrast, background sedimentation rates are
low at the Hawaiian Islands, and, hence, slide deposits remain visible
at the seafloor for a longer time than at the Canaries. Older slides can
only be detected by drilling and seismic investigations in the aprons
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Figure 11. Relation between TWT and depth below seafloor at Site 953. The
dotted line = original data (physical properties and downhole logging veloci-
ties), and the solid line = best fit to the data assuming a linear increase of
velocity with depth.
surrounding the islands. Both methods are relatively laborious com-
pared to the GLORIA system, by which large areas can be mapped in
a short time.

Nevertheless, drilling into the apron south of Gran Canaria in
1976 has already proved the presence of several meters thick Mio-
cene volcaniclastic debris flows (von Rad, Ryan, et al., 1979). Leg
157 and the seismic data of the presite survey detected new mass-
wasting events in the apron north of Gran Canaria, of which the most
important are presented below.

The 12-Ma Debris Flow

The mass-wasting event probably best documented by the new
data is the basaltic breccia of lithologic Unit IV at Site 954. An iso-
pach map of this unit was computed by measuring the TWTs between
the top and base reflector and applying a velocity of 5.0 km/s, found
to be the average velocity of the unit at Site 954 (Schmnincke,
Weaver, Firth, et al., 1995). To the north, the thickness increases to
>80 m on Line 205. The northward limit of the deposits is out of the
seismic net, and to the south, the basaltic debris flow cannot be dis-
tinguished from the similar basaltic island flank. The volume of the
deposits was calculated for the mapped area in Figure 16 (909 km2),
resulting in 58.5 km3 of material. This yields an average thickness of
64 m. Regarding the fact that the thickest portions of the debris flow
are located in the north, where the seismic lines stop, several tens of
cubic kilometers more of material associated with the mass-wasting
event can be expected.

The lateral east-west extension of the unit mapped on Lines 210,
202, and 205 suggests an origin at the northern flank of Gran Canaria,
most probably at the indentation of the northern coast and shelf. This
indentation is thought to be a slide scar, forming the amphitheater
from which the basaltic material advanced >70 km into the volcanic
apron. The exact shape of the amphitheater is difficult to determine,
because the Quaternary volcanism on the La Isleta peninsula in the
east probably has changed its original shape. The bathymetric map of
Figure 2 suggests an indentation of some 10–12 km width, cut ~3
into the island. Estimating the thickness of the slide block to be so
where between 2 and 4 km yields a volume between 60 and 144 3,
which is in good accordance with the measured (mapped) debris 
volume of >58.5 km3. The amphitheater and the advance of the deb
into distal areas of the apron along a relatively narrow path sugge
rapid emplacement of the deposits, possibly by a debris avalan
(following the definition of Moore et al., 1989).

Hyaloclastite Debris Flow

The most voluminous mass-wasting event detected in the ap
north of Gran Canaria was the emplacement of lithologic Unit VII
Site 953, which consists of hyaloclastite debris flow and turbidite 
posits (Schmincke, Weaver, Firth, et al., 1995). They were proba
formed by shallow submarine eruptions of basaltic magma and w
deposited by debris flows and high-concentration turbidity curren
Seismically, the unit is composed of a number of internal reflect
with medium to high amplitudes. To map the thickness of the hya
clastite unit (Fig. 17), the TWTs were converted to depth by assu
ing a velocity of 3.5 km/s. The thickness reaches a maximum
slightly <200 m in the vicinity of Site 953. At Line 135, the unit thin
out when it onlaps onto the flank of the Amanay Bank. The northe
ern extent was mapped on Lines 202 and 203, and the southwe
one on Lines 202 and 205. The correlation of the unit on Line 1
southwest of Site 953 was hampered by the thickening of the ove
ing shield of Gran Canaria. Nevertheless, the suspected limit on L
134 fits well with the limits on Lines 202 and 205.

The patterns of the isopach map suggest the source of the m
flows somewhere on the (submarine) southern edifice of Fuertev
tura. The flat onlap of the unit onto the flank of the Amanay Ba
favors a source outside the bank, because otherwise remnants o
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material would be expected further upslope and the reflection pat-
terns would possibly be more chaotic. H.-U. Schmincke (pers.
comm., 1995) concludes from the petrographic-geologic succession
at Sites 953 and 956, that the main source of the hyaloclastite unit was
Gran Canaria; only the lower part is interpreted to be possibly from
Fuerteventura. The interpretation of Schmincke does not agree well
with the contour lines (Fig. 17).

From the area mapped in Figure 17, the volume of the hyaloclas-
tite unit was computed: the area is 1162 km2, the average thickness is
78 m, and the volume is 90 km3. Because a large portion of the mate-
rial was deposited outside the seismic net, the total amount is much
higher than the mapped 90 km3, possibly twice as high.

East Canary Debris Flow

A third conspicuous mass-wasting event is the strong reflector
band seen on Profiles 203 and 205 (Figs. 5, 8), located stratigraphi-
cally below the maximum penetration at Site 953. The thinning and
termination of the flow to the west suggest an origin on the East
Canaries. The present dip of the debris flow is to the south, in contrast
to the more southwesterly dips of the overlying sediments up to re-
flector M. This change in dip may be caused by the flexure of the
lithosphere because of the volcanic load of Fuerteventura. The flow
was likely emplaced ~20 Ma during the rapid shield-building of the
central edifice of Fuerteventura (Coello et al., 1992). Alternatively,
the debris flow unit may consist of shallow submarine volcaniclastics
from the basal complex of Fuerteventura of Oligocene age.

Other Volcaniclastic Interbeds

Other volcaniclastic interbeds in the apron are not thick enough to
allow seismic separation of their top and base. But their individual
volumes can easily reach several cubic kilometers. The lapillistones
forming the reflector RN are at least 2 m thick, both at Site 953 and
954 (Schmincke, Weaver, Firth, et al., 1995). The area in which the
reflector can be correlated covers some 3500 km2, resulting in a vol-
ume of 7 km3, without taking into account the volumes in the chaotic
slope facies and north of the seismic net. Because of the low core
recovery in that interval, most likely because of the coarse grained
nature of the lapillistones, the real thickness may be up to 8 m at Site
953 and possibly 20 m at Site 954. The real volumes may thus be in
excess of 50 km3.

Origin of Volcaniclastic Sediments

The origin of the volcaniclastic sediments in the basin investi-
gated north of Gran Canaria can be roughly subdivided into three
groups (ignoring the proximity to the island flanks of Gran Canaria,
25
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Tenerife, and Fuerteventura [Amanay Bank], where the relevant is-
land contribution increases).

1. Before the shield-building of Gran Canaria, the input was
probably from the East Canaries, as in the discussed East Ca-
nary debris flow.

2. The voclaniclastic interbeds of the seismic Units 1 to 6 (i.e.,
after the basaltic shield-building of Gran Canaria until ~1 Ma)
were predominantly derived from Gran Canaria. Apart from
the Pliocene reflector band RN, the deposition was mainly to
the northeastern part of the apron, because the submarine ridge
north of Galdar deflected the sediments entering the sea in the
north to the northeast. The distribution of the Roque Nublo
deposits further to the northwest is thought to be caused by the
character of volcanism, with different paths of sedimentation
from the ~3000-m-high Roque Nublo volcano (Mehl, 1993;
García Cacho et al., 1994). After the shield-building of Te
rife, some supply was contributed from this island, but mu
less than from Gran Canaria.

3. Since 1 Ma (seismic Unit 7 and transition to Unit 6), volca
clastic sediment input has come from both Gran Canaria
Tenerife, as well as from Fuerteventura in the eastern are

With respect to the Galdar Ridge, another point to discuss is
role of sediments entering the sea west of Galdar. These sedim
come from locations such as the deeply cut canyon in the north
of Gran Canaria, the Barranco de Agaete, and the large erosiona
form in the northwest (Fig. 2). The low reflectivity in the western p
of the northern apron indicates a low volcaniclastic input, and s
gests that the volcaniclastic sediments from western Gran Ca
were deposited rather to the west or northwest than to the north
posits older than the shield of Tenerife (~6 Ma) are therefore pr
bly seismically masked by the overlying flank of the island. Youn
volcaniclastic sediments are abundant in the channel between 
Canaria and Tenerife compared to the western part of the nor
apron, confirming the predominant west or northwestward depos
of these sediments.

Erosion and Currents

Erosion by bottom currents has had a strong influence on the
between Gran Canaria and Fuerteventura, much more than bet
Gran Canaria and Tenerife. The reason for the smaller impact o
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latter channel is interpreted to be largely because of the greater w
depth and the more funnel-like shape. Figure 2 shows the fun
shaped isobaths with a water depth of 2250 m. The channel bet
Gran Canaria and Fuerteventura in contrast forms a more or less
izontal barrier between the islands with a maximum depth of o
1550 m. This enormous reduction of the cross section increase
flow velocity.

Almost the entire channel between Gran Canaria and Fuerte
tura is influenced by bottom currents. Sediments are deposite
basement lows, but they are affected by erosional currents as so
they tower above the surrounding volcanic basement (Fig. 10).

Erosional activity is not a stationary process, new channels
formed, and the flow velocity in existing channels can change. 
emergence of the volcanic cones on Profile 133 (Fig. 10) has 
tainly caused a strengthening of the bottom currents and enforce
formation of the two flanking erosional channels.

The conspicuous channel on Line 130 (Fig. 9), where the sh
of Gran Canaria onlaps the steep flank of the Amanay Bank, is ca
by strong currents around the southwestern tip of Fuerteventura
Profile 132, somewhat more to the south (Fig. 2), a similar erosio
channel is visible at the toe of the flank of Fuerteventura. On
northern Profile 136 this current is also active. In the younger pa
the influenced sedimentary sequence, the current is characteriz
erosive activity, whereas the lower part between reflectors RN an
shows contourites, indicating somewhat lower flow velocities dur
that time interval.

The Barranco de Guiniguada, a canyon on northeast Gran Ca
(Fig. 2), leads toward the channel, which can be correlated ac
Lines 133 (Fig. 10) and 134 (Fig. 4). In contrast to the onshore 
yons in the south or the east, the Barranco de Guiniguada did not
a sedimentary apron when entering the sea. The bottom curren
tem between Gran Canaria and Fuerteventura has transporte
material further into the basin north of Gran Canaria. The pre
shape of the submarine channel thus probably represents a com
interaction between subaerial erosion of the canyon, erosion by
transport of debris down the submarine slope, and erosion by bo
currents, resulting in a wide and long channel, which has advan
some 40 km into the basin. The cross section of Line 133 (Fig.
shows that the channel is flanked by the submarine extent of th
Isleta peninsula to the west and by the volcanic cones to the east
construction of the channel may have caused and directed the s
bottom currents, which prevent sedimentation in that channel on 
133 except for some detritus and slide blocks.
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CONCLUSIONS

Reflection seismic profiling and drilling results of Leg 157 al-
lowed a detailed analysis of the structure of the apron north of Gran
Canaria. Not all features could be dated precisely, because the corre-
lation of reflectors was difficult or impossible proximal to the islands,
and below the maximum penetration depth of Site 953, no reliable
stratigraphy is available. The temporal development and fill of the
apron is summarized below.

With the buildup of the East Canary ridge, the region to the west
was more or less shielded from sediment supply from Africa. A de-
bris flow at a depth of ~5.2 km is thought to be derived from the cen-
tral edifice of Fuerteventura: the flow advanced >100 km to the west.
The change of the dip of the reflectors above and below the debris
flow suggests a deposition during the crustal deformation because of
the volcanic load of Fuerteventura, which is estimated to have taken
place some time after the beginning of the subaerial volcanism (i.e.,
at ~20–19 Ma), or during the formation of the basal complex in 
Oligocene. The Amanay Bank is an eroded part of the southern sh
of Fuerteventura, and its flank extends ~50 km from the plateau 
the apron down to a depth of 4750 m.

A thick hyaloclastite unit onlaps the feathered edge of the flank
the Amanay Bank. The emplacement of the hyaloclastite debris flo
and turbidites was somewhere between 15.8 and 17.4 Ma, and 
were probably formed by shallow submarine eruptions of basa
magma (Schmincke, Weaver, Firth, et al., 1995). Mapping of 
thickness of the unit results in a total volume of >90 km3 and suggests
a source on the southern edifice of Fuerteventura. The maxim
thickness is ~200 m.

Subsequent to deposition of the hyaloclastites, the volcanic sh
of Gran Canaria was formed (~14–16 Ma). To the east, the shield
ponded against the preexisting flank of Fuerteventura (Aman
Bank), forming a presently 1550-m-deep topographic barrier wit
reduction of the cross-section, resulting in strong bottom curre
with the formation of erosional channels. To the north, the fla
extends ~60 km seaward. Its depth at the outer rim is between 4
and 4600 m.

Reflector band M (~13.9 Ma) represents an unconformity, d
ping toward Gran Canaria, with almost horizontal layering of t
overlying sediments. This unconformity is interpreted to have be
caused by lithospheric flexure because of the load of Gran Cana

The sedimentation following the shield-building is characteriz
by intercalation of volcaniclastic interbeds and pelagic backgrou
sediments. Most of the volcaniclastic material came from Gr
Canaria as mass flows or ash layers. The submarine ridge off Ga
has deflected volcaniclastic material from Gran Canaria to the no
eastern part of the apron (low reflectivity in the western region), w
the exception of the Pliocene Roque Nublo (RN) deposits. The co
sponding reflector RN can be correlated across the entire north
survey area and represents >7 km3 (probably >50 km3) of lapillis-
tones deposited to the north.

At ~12 Ma, the northern flank of Gran Canaria collapsed, and >
km3 (possibly >100 km3) of volcaniclastic material formed basaltic
debris flows, advancing >70 km northward into the apron, where th
are up to 80 m thick.

The shield of the Anaga massif on northeast Tenerife was rap
formed at ~6 Ma and onlaps onto the older flank of Gran Canaria
the east. The depth of the Anaga shield is 4000 m, and it extends s
50 km to the northeast, covering older sediments and masking t
seismically.

Additional volcaniclastic input from Tenerife into the basin nor
of Gran Canaria occurred during the last 1 Ma. Widespread reflec
show the intense volcanic activity on Tenerife during this perio
simultaneous with the Quaternary activity on northern Gran Cana
the
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At the northern part of the barrier between Gran Canaria a
Fuerteventura, a submarine volcanic complex with two volca
cones is located, which seems to be older than 5 Ma and has ca
a reorientation and strengthening of the channel currents. The ne
subaerial Quaternary volcanism on La Isleta extends to the northe
where a submarine volcano with several young lava flows h
formed.

The seismic investigation of the apron in conjunction with t
drilling data proved to be an effective method to reconstruct the v
canic islands’ development by its deposits found in the apron, as 
as enabling the geometry of the large submarine portions of the 
canic shield to be determined precisely. Slides and debris flows w
detected seismically, whereas a study based only on surface fea
as in the Hawaiian Islands (Moore et al., 1989) would fail for most
the Canaries evolution, because the high sedimentation rates res
coverage of these features in a much shorter time period.
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