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1 Summary 
 

Investigations of submarine massive sulfides (SMS) are, at present, strongly limited due to the 

technologies available. Conventional detection of SMS deposits relies on water column plume 

detection of seafloor hydrothermal venting and seafloor morphological observations. These 

methods are generally confined to known regions where SMS are currently forming and where 

these deposits have a surface expression. Within this cruise we aim to test existing and new 

electromagnetic instrumentation, which detects and characterizes SMS deposits based on their 

associated electrical conductivity anomaly. This technology will allow us to detect sedimented 

deposits and potentially much larger SMS deposits which have completed their formation cycle, 

but have no surface expression. We tested the technologies on partially sedimented SMS deposits 

on the Palinuro volcanic complex situated in the Marsili back-arc basin. This region has been 

mapped in detail, SMS deposits have been drilled and drill cores are available at Geomar such that 

electrical conductivity of the particular units may be determined. The geological background 

information thus allows us to calibrate and ground truth the electromagnetic measurements. The 

development of the technology we are testing is funded through the funded EU proposal ‘Blue 

Mining’ and scheduled to be used on the TAG SMS deposit on the Mid-Atlantic Ridge at 26°N in 

2016 as an example for resource assessment technology.  

 

Die Erkundung submariner Massivsulfide (SMS) ist durch die herkömmlich eingesetzten 

Technologien eingeschränkt. Sie stützt sich zur Zeit hauptsächlich auf das Aufspüren von 

Wassersäulenanomalien als Indikator der SMS Entstehung zugrundeliegenden hydrothermalen 

Aktivität und das Kartieren der Meeresbodenmorphologie mit anschließender Beprobung. Die 

Erkundung ist damit auf sich in Entstehung befindenden SMS und auf meeresbodenoberflächenahe 

Strukturen beschränkt. Auf dieser Ausfahrt wollen wir existierende und neu entwickelte 

elektromagnetische Instrumente, die SMS anhand ihrer Leitfähigkeitsanomalie identifizieren und 

auch in Tiefe  abbilden, testen. Somit können auch SMS, welche den Entstehungszyklus beendet 

haben und somit wahrscheinlich sehr viel größer sind, gefunden und deren Ausmaße abgeschätzt 

werden. Der Test wurde auf Massivsulfiden des Palinuro Komplex im Marsili back-arc basin 

ausgeführt, da diese detailliert kartiert und erbohrt wurden und die am Geomar lagernden 

Bohrkerne dazu benutzt werden können, Leitfähigkeiten einzelner Fazien zu bestimmen. Somit 

kann die neu-artige elektromagnetische SMS Erkundung kalibriert und evaluiert werden. Die 

eingesetzten Geräte werden im Rahmen des EU Projekt ‘Blue Mining’ entwickelt und sollen 2016 

auf TAG am mittelatlantischen Rücken, 26°N, als mögliche Technologie zur marinen Ressourcen-

evaluierung eingesetzt werden.  
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2 Participants 
 

Name Discipline Institution 

Dr. Jegen, Marion Marine Geophysics / Chief Scientist   GEOMAR 

Dr. Petersen, Sven Marine Geology GEOMAR 

Dr. Hölz, Sebastian Marine Geophysics GEOMAR 

Prof. Hannington, Mark Marine Geology GEOMAR 

Safipour, Roxana Geology CSM, USA 

Grant, Hannah Geology GEOMAR 

Broda, Benedikt Marine Geophysics INDUSTRY 

Dr. Kwasnitchka, Tom Geology GEOMAR 

Wollatz-Vogt, Martin Marine Technician GEOMAR 

Matthiessen, Torge Marine Technician  GEOMAR 

 

GEOMAR:   Helmholtz Institute of Ocean Research, Kiel, Germany 

CSM:   Colorado School of Mines, Golden, USA 

ALLSEAS:  Marine Engineering Company, The Hague, Netherlands 

 

3 Research Program 
 

 
Fig. 3.1: Track chart of P483. Bathymetry from Smith and Sandwell (1997).  

 

Seafloor massive sulfide deposits (SMS) are formed through hydrothermal circulation of 

seawater, a process by which metals are leached out of the host rock by hot fluids. The metal-

rich fluid eventually exits at a seafloor vent field where the fluid cools and metals are 
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precipitated, ultimately forming a SMS deposit. Metals can also be precipitated in the 

subseafloor, often when a sediment cap is present and therefore minimal or no hydrothermal 

venting occurs. Venting may also occur either through high-temperature fluids at chimney 

structures such as black smokers or at lower temperatures in more diffuse vent fields.  

Hydrothermal circulation is driven by heat and occurs mainly at marine plate boundaries such as 

mid-ocean ridges, volcanic arcs and back-arc basins where heat is supplied by increased 

magmatic activity. Along oceanic plate boundaries which stretch to a length of about 89 000 km 

(Bird, 2003), approximately 300 sites of present and past hydrothermal activity have been 

observed and 165 of these contain massive sulfide mineralization (Hannington et al., 2011). A 

statistical extrapolation of the occurrence of known vent fields and deposits suggest that about 

500 to 5000 vent fields and associated sulfide deposits with a total accumulated volume of 600 

millions tons containing 30 million tons of copper and zinc are present in the immediate vicinity 

of oceanic plate boundaries (Hannington et al., 2011). Due to the fact that SMS are compact 

structures close to the seafloor and some contain high-grade ores, the possibility of mining such 

massive sulfide deposits has gained much attention on a national and international level 

(Boschen et al., 2013). While much knowledge has been gained by studying SMS formed at 

active vent fields close to plate boundaries, there has been a shift in focus lately to take a broader 

view at extinct, that is, inactive SMS structures (eSMS), since they are believed to host 10 times 

more metals than the active systems and are thought to be larger than young active systems 

(Hannington et al., 2011). Although exploration for seafloor massive sulfides has moved to 

island arc systems in the past decade, there are still large gaps in our knowledge of the formation 

of deposits in this tectonic environment. Since exploration in island arcs is largely focussed on 

active hydrothermal fields being discovered through the use of chemical and physical-chemical 

tracers in the water column (de Ronde et al., 2007), we only know very few mature hydrothermal 

systems within the island arc environment. In general, volcanoes that do not show chemical 

signals of hydrothermal activity in the water column are not investigated any further; therefore, 

we only have limited information about the lateral and vertical extent and the volume of SMS 

deposits in arc systems. It is currently impossible to compare the size of island arc systems to 

those forming at mid-ocean ridges due to the lack of technologies to find them. 

 
Addressing this issue is important for two reasons: 1) we do not know the metal potential of 

hydrothermal systems at island arcs. 2) we do not know if large sulfide deposits do actually form 

in island arc volcanoes or if frequent volcanic eruptions prohibit the formation of large deposits. 
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Mapping inactive SMS deposits requires the integration of new geophysical exploration 

technologies in SMS research. Currently the detection of SMS is mainly based on identifying 

signatures of active hydrothermal venting in the water column followed by, or in parallel with, 

seafloor morphological observations (i.e. bathymetry and video observations) and subsequent 

sampling. While these methods result in detailed studies of particular SMS deposits, it obviously 

gives only very indirect information about the volume of an SMS deposit and its vertical and 

lateral extent. These conventional approaches are however inappropriate for mapping extinct or 

blind deposits. Few blind or sedimented deposits are currently known and those that are have 

been found more or less accidentally, i.e. through heat flow data (Middle Valley Bent Hill 

deposit; Davis et al., 1987) or chance sampling (Palinuro volcanic complex; Minniti and 

Bonavia, 1984).  

However SMS deposits are associated with rock property anomalies, and therefore they may be 

identified by geophysical methods and mapped below the seafloor even if they are covered by 

sediments and have an absence of active hydrothermal venting at the seafloor. In particular, 

massive sulfide deposits both on land and seafloor exhibit a strong electrical conductivity 

anomaly (i.e. Palacky, 1986 and Itturino et al., 2002), which is why electromagnetic methods are 

the tool of choice for ore exploration. Similar to land exploration, marine electromagnetic 

methods are expected to take a similar leading role for massive sulfide exploration on the ocean 

floor.   

 

The detectability of SMS deposits by EM methods has been shown by Kowalczyk (2008) with a 

shallow penetration, ROV based EM tool on the Solwara site offshore Papua New Guinea. While 

the instrumentation was only been able to map the surface anomaly associated with surface SMS 

deposits, drilling results confirm that anomalous electrical conductivity are indeed associated 

with SMS. Cairns et al. (1996) report an electromagnetic pilot study to image the TAG 

Hydrothermal Field (26°N, Mid-Atlantic Ridge) SMS deposit. However, at the time 

electromagnetic instrumentation was in its infancy and 3D modelling capabilities were just in 

development and a 3D image of the sulfide deposit could not be derived.  

 Much progress in EM exploration have been made over the last 15 years, electromagnetic 

investigations are now routinely used for oil/gas exploration in industry and additionally for 

methane hydrate research. Thus the search for and 3D imaging of massive sulfides is 

technologically within reach. 

Recent modelling studies at Geomar have shown that marine electromagnetic methods will 

indeed allow the identification of massive sulfide deposits and enable determination of their 
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thicknesses even under meters of sediments (Hölz et al, 2013, Swidinsky and Jegen, 2012, Jegen 

et al., 2011).  

 

 
 

Figure 3.2 shows a map of the target areal. The drilled SMS deposit is annotated with A. We 
furthermore aimed to explore the Palinuro complex towards the East (target B in figure 3.2), 
where recent bathymetric surveys have revealed the existence of chimney structures (up to 15 m 
in height), which are thought to indicate the presence of hydrothermal circulation venting at 
surface. Another target area was to the North, where sidescan-sonar data revealed another area 
of chimneys that are up to 20m high and sit on presumably sulfide mounds up to 50 m in 
diameter (target C in figure 3.2).  
 

 

The exploration technology is to be tested on the SMS deposit on the Palinuro volcanic complex 

(see figure 3.2). It is an ideal target, since it has been extensively researched and analyzed from a 

geological perspective providing us with extensive background data in the form of detailed 

bathymetric, parasound, magnetic and side scan sonar maps that were retrieved during an AUV 

survey in 2012 (Poseidon cruise P442, Petersen et al., 2013a and b). Furthermore, certain areas 

have been drilled which will give us structural information and the cores stored at Geomar may 

be used to derive rock properties such as electrical resistivity and magnetic susceptibility. This 

set up gives us the unique chance to calibrate our measurements and assess their quality as SMS 
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exploration tools. Since the Palinuro SMS is partially buried, it offers the possibility to verify 

SMS detection with electromagnetics under sediment cover. While all the geological background 

information forms the basis for our geophysical test, by the same token, the geophysical 

exploration will yield information about the size and volume of the known SMS deposit (and 

potentially other new SMS sites), and therefore will allow better understanding of the geological 

processes at work at Palinuro.  

 

4 Narrative of Cruise 
 

March 28th: 

We left the port of Malaga in good weather in the afternoon, slightly delayed since we had to 

pick up some missing cables for the Posidonia navigation system. However, since the forecasted 

weather was good, we expected to arrive in our working area at the scheduled time of 8:00 AM 

on April 2nd. The day itself was used to unpack our boxes, set up the lab and instrumentation. 

 

March 29th-April 1st: 

We continued the preparation of experiments, the hook up and testing of the fibre optical winch 

for HyBis. During the evenings of the transit we scheduled a meeting at 19:00 in order to discuss 

organizational matters  (who is responsible for which aspect of the cruise), subsequently we had 

informal scientific presentations and discussions on the geological and geophysical background 

and on the exact layout of the experiment.  

 

April 2nd:  

The day started positively, after some problems on previous days, we finally managed to get the 

Posidonia navigation system going. The calibration velocity profile was determined by a CTD 

microcat instrument attached to a cage, which was lowered to 600 m. The cage also contained 

the releasers and we were able to test their functioning at the same time. We then deployed the 

MORS transponder with an anchor in a sedimented area in the centre of our working area (39o 

32,37' N, 14o 42,47' E). Calibration of the Posidonia system required two ship tracks in the shape 

of an 8 centred on the transponder. However, problems occurred when the seafloor Posidonia 

transponder did not release its anchor and resurface, even after a repeated release command was 

sent. This was problematic as this transponder was vital for the required precision of seafloor 

navigation in our later experiments. We developed plans to either dredge the transponder or try 

to recover it with HyBis. A watch was set up over night to check on the position of the 
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transponder hourly via ranging to ensure that it would not drift away if it resurfaced before the 

following workday started.  

 

April 3rd: 

The wind of fortune was changing again, as the Posidonia transponder resurfaced at 6:30 local 

time in the morning and could be recovered just in time before breakfast. We then started to 

deploy the OBSs and OBEMs, which were attached on the winch cable through the Posidonia 

transponder, which also serves as a releaser. The stations were released approx. 30m above the 

seafloor, such that the position of the systems is accurately known within a few m. During the 

remainder of the day we were able to deploy 6 OBSs and 7 OBEMs.  

 

April 4th: 

Within the morning hours, we deployed the remaining 3 OBEMs and prepared our 

electromagnetic dipole source Sputnik for deployment. The source was in the water at around 

15:00 UTC, however, a short circuit occurred while we lowered Sputnik to the seafloor, so the 

instrumentation had to be heaved back on the deck. Inspection showed that the short circuit 

occurred at the connector between the winch cable and Sputnik, which required a reconfiguration 

of the winch cable connector. The cause of the short circuit was probably a leak at the winch’s 

cable connector. A second deployment was tried at 22:00 UTC for an overnight transmission, 

however, it had to be aborted since the dipole arms did not unfold when Sputnik was placed on 

the surface. We attributed that fact to an incorrect buoyancy alignment on the lower end of the 

winch cable. Buoyancy aids were needed as the lower 10 m of the winch cable should be 

positively buoyant to ensure that the winch cable is vertical to prevent the winch cable wrapping 

around the transmitter arms. This is achieved by attaching floatation eggs on the cable. The 

experiment was aborted and Sputnik safely recovered on deck at around 24:00 UTC. 

 

April 5th and April 6th: 

Sputnik went back in the water with one additional flotation egg after lunch and was able to 

transmit until about 18:40 UTC, when there were repeated problems with unfolding the arms, 

such that we needed to recover the instrument again. Shortly after the problems occurred, one of 

the floating eggs surfaced, which led us to believe that the arms did not unfold since the 

buoyancy was again unbalanced. The floating egg could be recovered, but was damaged. We 

suspected that due to the fact that Sputnik had to be deployed over the A-frame, where the heave 
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is highest (sea was relatively rough with 3-4 m waves) and due to the flexibility of the 11 mm 

cable, the winch cable might wrap around the floating egg, causing it to detach.  

Luckily, we had spare floatation eggs to add to the cable and redeploy Sputnik at 23:00 UTC. 

During the night we were able to raise the amount of transmission sites to 27 until 10:30 UTC on 

April 6th, when Sputnik failed again. Upon recovery, we noticed that the winch cable had been 

wrapped around one of the floating eggs. Since the flotation egg could not be detached from the 

cable, a risky recovery had to be initiated. Sputnik was attached via Evergrip onto an auxiliary 

winch on the A-frame, and the mangled cable was cut off.  We then decided to delay further 

Sputnik transmissions to calmer seas, when sea heave would be reduced. For the remainder of 

the day, we prepared HyBis, performed deck tests with HyBis and undertook a short water test in 

the evening.  

 

April 7th: 

HyBis went in the water at around 7:10 UTC to start the first visual dive. For the 

photogrammetric survey a Sony CX-560-VE camcorder with a 0.7x wide angle converter 

installed in a 110mm diameter Develogic domeport housing was used. During the dive HyBis 

was kept at a height of approx. 3 to 5 m above ground. The first dive concentrated on the 

northeastern section of Palinuro, where during the AUV bathymetric mapping chimney-like 

structures were identified in the eastern part. However, visual inspection indicated that the 

chimneys were not of hydrothermal origin as expected. This was a slightly worrying observation, 

since chimney structures are attributed to be one of the most reliable indicators of hydrothermal 

circulation.  In particular, the number of chimneys visible in bathymetric maps are used to 

project the resource of metals in SMS deposits. The remainder of the dive was used to 

investigate the northwestern area of the section. Visual inspection confirmed hydrothermal 

activity through the observation of sediments with dark coloring and white striations. HyBis was 

subsequently recovered and back on deck at 14:30 UTC.  

 

Since relatively high waves made the deployment of Sputnik with its unfolding arms over the A-

frame impossible, we thought it a good opportunity to test a new technology called Self Potential 

(SP).  The test was not part of the original cruise plan, however Russian exploration cruises 

previously reported good success with this methodology. SP senses the electrochemical potential 

created through fluid flow or contact of SMS deposits with the surrounding host. Since the 

measurement are taken while hovering a few meters above the seafloor, the experiment could be 

more easily carried out in the prevailing weather. To construct an SP sensor, OBEM 7 was 
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recovered, and its data logger and battery pack together with an additional data logger were 

installed on the Sputnik frame. Sputnik’s dipole arms were refastened to the frame to form 3 

orthogonal dipoles so that the direction and amplitude of the SP signal may be measured.  

 

April 8th: 

HyBis was put into the water again for its second visual dive, this time investigating the 

southern, central and northwestern section of Palinuro. At the southern cliff, layering of lava-

flows and volcaniclastics were identified. On the southwestern section, sediments with dark 

coloring and white striations were observed. The path over the central region led over one of the 

OBS systems.  At 12:15 UTC HyBis was recovered and back on deck. Two and a half hours 

later, the Sputnik frame with the Self Potential configuration was lowered to the seafloor and 

data acquisition was continued through the night until the 9th of April. 

 

April 9th: 

After breakfast, at 6:00 UTC, the SP instrument was brought on deck so that the data could be 

checked. To free up time towards the end of the cruise when the weather was expected to get 

better and a redeployment of Sputnik would be possible again, we decided to bring up the OBSs 

earlier as scheduled. The 6 OBSs were recovered until 9:00 UTC. During the OBS recovery, the 

bow thruster of Poseidon broke with a big bang. A ball bearing broke, probably due to a water 

leakage into the thruster. For future experiments however, it meant that a precise manoevering of 

the vessel would be very difficult to achieve.  

A quick sighting of SP data gave evidence of SP anomalies so we decided to continue with the 

SP measurements. Accordingly, the SP instrumentation was deployed again at 11:15 UTC and 

ran until 22:00 UTC. Due to the vessel’s problem with precise navigation we decided to perform 

a random path pattern covering as much as possible of the area of interest.  

While the SP instrumentation was in the water, we prepared the virgin deployment of the coil 

system.  

 

April 10th: 

The morning started with a recovery of the SP instrumentation and Sputnik was reassembled in 

its original configuration of a dipole transmitter. We also redeployed the previously recovered 

OBEM station, this time free falling to save on time. Sputnik went into the water again at 13:15 

UTC. To avoid potential mangling of the wire on the floating eggs, we decided to only use a 

single floating egg at the connector between the winch cable and Sputnik. However, it proved to 
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be insufficient, since Sputnik’s arms did not unfold when placed on the seafloor, which we 

attributed to the fact that most likely the winch cable was wrapped around the transmitter arms 

before they unfolded. Subsequently we brought Sputnik up to the water surface and attached 

another floating egg higher on the cable. Sputnik then performed sufficiently well and we 

managed to finish the planned transmission profile.  

 

April 11th:  

The coils system Octopussy went at 10:00 UTC in the water. The deployment procedure went 

astonishingly smoothly given the size and length of the system. Since all electronic devices were 

functioning when tested in the water column, we decided to bring the system down onto the 

seafloor and acquire data along one long profile. The system was recovered at 16:00 UTC. 

 

April 12th: 

Our last day in the working area. Recovery of the 10 OBEM stations was achieved in record time 

between 06:00 to 9:30 UTC. A motivation for the speedy recovery was the prospect of being 

able to reach the Stromboli volcano before sunset and using the stunning scenery as a backdrop 

of our celebratory end of cruise Stromboli party, which was attended by the entire scientific 

party and a large proportion of the crew.   

 

April 13th: 

We left Stromboli in the early morning hours to pass through the Straits of Messina at around 

06:00 UTC. The remainder of the day was used to take a break and relax in the sunshine. After 

all it was Sunday, all the envisioned work was completed, and the party has been good. 

 

April 14th:  

Instrumentation was disassembled, laboratories packed and cleaned. By 18:00 a neat stack of 

boxes and instrumentations was assembled on the back deck ready for offloading on the next 

day. 

  

April 15th: 

We arrived in Dubrovnik by 9:00 local time. Unloading of our gear from the ship and loading the 

trucks was completed by about 14:00 local time.  
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5 Preliminary Results 
	
  

5.1 Electromagnetic Experiments 
(M. Jegen and S. Hölz) 
 
Within the scope of this project we are testing two different active electromagnetic methods 

based on a dipole-dipole configuration and a magnetic coincident loop system as well as a 

passive method called Self Potential (SP). This method aims to record static electrical potentials 

caused by geochemical processes occurring on the boundary of SMS deposits.  

 

5.1.1 CSEM – Dipole-Dipole (Sputnik) 

This electromagnetic experiment consists of a time domain controlled source electromagnetic 

approach using dipole receivers and the dipole transmitter (see figure 5.1.1).  

The electromagnetic dipole receivers are deployed on the seafloor on a winch cable to ensure 

exact positioning. The instruments record orthogonal electric field variations at a frequency of 10 

kHz when in CSEM mode and three component magnetic field and 2 component electric field 

variations at a frequency of maximal 10 Hz when in magnetotelluric (MT) modus. The 

acquisition modus can be changed actively by an acoustic signal or predefined through a 

timetable.  

When in CSEM modus the receivers record the Earth’s response to an active dipole source signal 

generated by the Sputnik transmitter. The transmitter consists of two orthogonal 14 m electrical 

dipole arms, which fold up when the system is hanging on its own weight on the cable and 

unfold when system is placed on the seafloor. The transmitter current is supplied and regulated 

through DCDC converters, buffer batteries and a microprocessor controller. These units are 

housed in titanium cylinders, which are attached to the central frame, which also carries an 

altimeter, light and camera. A fast modem connection between a deck unit and transmitter frame 

is established through the winch cable for online control of transmitter activity and data transfer. 

Knowledge about the exact positioning of the transmitter during a transmission cycle is achieved 

through the attachment of a Posidonia transponder onto the frame and through our own short 

baseline navigation system. This consists of an acoustic receiver array on the frame which 

communicates/ranges the releasers on all the receivers both before, and after, each transmission. 

  

The diffusion time of the electromagnetic signal from transmitter to receiver as well as the 

amplitude of the received signal depend on the resistivity of the seafloor. Vertical resolution is 

achieved through measuring the response at different distances between transmitter and receivers 

as well as over recording the signal over a broad time scale. Additional resolution may be 
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derived from measuring the response to different polarization modes. For this reason both the 

transmitter as well as the receivers transmit and receive the electric fields in orthogonal 

directions.   

 

 

 

Figure 5.1.1: The Time Domain Electric Dipole-Dipole system consisting of OBEM receivers (left) and the 
Sputnik transmitter (right).  

 

Ten OBEMs were deployed on the 3rd and 4th of April at the following coordinates: 

 

Station ID Latitude Longitude Date Time 

OBEM 1 39° 32.542 14° 42.347 3.4.2015 12:11 

OBEM 2 39° 32.575 14° 42.478 3.4.2015 13:10 

OBEM3 39° 32.578 14° 42.652 3.4.2015 14:03 

OBEM 4 39° 32.417 14° 42.628 3.4.2015 15:05 

OBEM 5 39° 32.281 14° 42.605 3.4.2015 15:55 

OBEM 6 39° 32.260 14° 42.449 3.4.2015 16:50 

OBEM 7 39° 32.276 14° 42.330 3.4.2015 17:33 

OBEM 8 39° 32.38 14° 42.330 4.4.2015 07:24 

OBEM 9 39° 32.379 14° 42.400 4.4.2015 08:33 

OBEM 10 39° 32.411 14° 42.452 4.4.2015 10:46 
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The receivers were released from the winch cable at approximately 30 m above the seafloor. 

OBEM 7 was recovered on 7.4.2015 and used as a data logger for the SP experiment. It was 

redeployed in the morning of the 10.4.2015 at 39o32.25' N, 14o42.40' E as OBEM11. All OBEM 

stations were recovered in the morning of 12.4.2015.  

 

Sputnik was first deployed at around 13:00 UTC on 4.4.20215 over the A-frame on an 11 mm 

cable. However, the transmissions were repeatedly interrupted by either short circuits in the 

connection cables or problems with the floats attached on the cable above the source, which are 

needed to keep the cable upright to avoid that the cable wraps around the dipole arms. 

Altogether, transmissions at 22 stations were performed in the period until the early morning of 

6.4.2015. Figure 5.1.2 shows the layout of the experiment and Figure 5.1.3 the transmitted wave 

form at transmission site 10 and a sample of the received signal at OBEM 9. Due to the high 

heave of the vessel’s back due to about 3 to 4 m high waves, further transmissions were delayed 

to 10.4.2015, when the sea was calmer. Unfortunately when we recovered the OBEM stations 

only receivers OBEM 4, OBEM 9 and OBEM 7 were fully functional for the entire time of 

deployment. The other receivers only recorded part of the signal due to a previously not fully 

unexplained failure in the data logging routine. All SD cards, which store the data on the logger, 

have been tested prior to the experiment, alas for shorter periods than the duration for the 

experiment. A possible failure mechanism we are investigating at the moment is that the writing 

speed for the suite of SD cards used has increased causing a synchronization problem with the 

data acquisition software for large data packets as acquired during deployment. 

Nevertheless the data acquired on the receivers is of good quality and will allow us to derive 

resistivity values of the subsurface up to depths of 10s of meters. 
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Figure 5.1.2: Layout of the CSEM Dipole-Dipole experiment. Yellow stars mark the position of 
transmission sites and white squares the location of the receivers. Fully functioning receivers 
are encircled in red. Also shown are the locations of the OBS as green triangles.  
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Figure 5.1.3: Sample data set for one transmitter polarization acquired during the experiment.  
The upper two panels show the response measured at station RX09 for a current transmitted at 
site 10 at a distance of approx. 150m from the receiver (lower panel).  
 
 

5.1.2 Self Potential 

 
Figure 5.1.4: Left: SP experiment track for dive 1 of Sputnik (white crosses) and dive 2 (black 
crosses). The second track was chosen to consist of random drifting, since the bow thruster 
malfunction made it very difficult for the ship to maintain position. Right: Location of SP 
anomalies identified in a preliminary data analysis.  
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Self Potentials are naturally occurring electric voltages due to charge accumulation, which may 

arise from three different processes: 1. fluid flow in porous media, 2. thermoelectric potentials 

due to temperature gradients and 3. diffusion potentials which occur across boundaries between 

different geochemical compositions. The latter are usually of the greater significance in 

geophysical exploration on land. Marine SP anomalies on SMS deposits have been reported at 

various conferences, however, up to now no peer-reviewed publication exists. Since the Sputnik 

transmission had to be postponed to a later date with calmer seas, we decided to equip the 

Sputnik frame with receiver electrodes and data loggers and try out SP measurements. Since no 

spare data logger was available, one of the OBEM stations (OBEM7) was recovered and 

dismantled. The left panel of figure 5.1.4 shows the tracks along which SP measurements were 

acquired with a 10 Hz sampling rate at a distance of approximately 5 to 10 m above the seafloor.  

Figure 5.1.5 shows excerpts of the acquired time series in which a clear spike above the telluric 

noise level is observed on both electric field components and which probably constitutes an SP 

signal. The locations of the preliminary data processed are shown in the right panel of figure 

5.1.4 . The occurrence of the SP anomaly at location A, B and D as well as F coincide with 

known SMS locations. However, to correlate the signal with geological observations, further 

data analysis is required and has to be developed. The development of modeling and processing 

algorithm is part of the PhD project of Roxana Safipour and will be carried out in collaboration 

with her supervisor, Prof. A. Swidinsky at the Colorado School of Mines in Golden, Colorado. 
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Figure 5.1.5: Plot of the SP anomalies shown in figure 5.1.4. As characteristic for the anomaly, 
we defined a visible change in both components of the horizontal electric field above the 
naturally occurring telluric current variations in time observed during at constant sensor height 
above seafloor. 
 
5.1.3 CSEM - Loop (Octopussy) 

While the 3D dipole-dipole tomographic system has greater resolution power due to the fact that 

multiple receivers are deployed and measurements are made at different offsets, the data 

processing for this system is sufficiently involved that data cannot be processed on-ship. 

Regional exploration however would benefit greatly from a system that could give real time 

information, at least on a qualitative scale, on the presence of subseafloor SMS deposits. That 

condition can be best met by a coil system. The system uses a coil as a transmitter. When a DC 

current is suddenly switched off, a smoke ring of current is induced at the seafloor, which will 

propagate upwards and sideways. The propagation speed and the dampening of the amplitude of 

the current can be measured using the same coil. Due to the relative simple and constant 

geometric set up of the system, and since the current patterns produced by the system are 

relatively simple and sensitive to seafloor resistivity immediately below the system, the coil data 

can immediately be interpreted qualitatively without undergoing any data time consuming 
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modeling. We are therefore currently constructing and testing such a time domain coincident coil 

system.  

The prototype coil used during this cruise consists of a 4m x 4m GFK frame mantling the coil 

cable. On the coil, two tiltmeters monitoring the orientation of the coil are mounted. Pressure 

vessels housing the electronics, i.e. transmitter driving circuitry, communication ports as well as 

an altimeter are attached to a second GFK frame approximately 14 m above the coil. This 

distance between coil and frame is required to avoid any bias in the data due to induction in the 

pressure vessels. The transmission of electromagnetic energy is controlled from the ship and 

transmission current, altimeter and tiltmeter readings are displayed online. Up to now, the 

receiver data is recorded autonomously on a data logger, however, we plan to interface the 

logger online from the ship in the future such that conductivity anomalies may be detected live 

and offer the possibility to adapt the survey during measurements. 

 

A first test of the system in the water was achieved on 11.4.2015. Figure 5.1.6 shows photos of 

the Octopussy system during deployment. Since the prototype was electronically and 

mechanically stable in the water column, we lowered it to the seafloor and performed a transect 

across Palinuro shown in figure 5.1.7. A first preliminary data sighting suggests, that there is a 

region surrounding the known vent site where the processed transients indicate an increased 

conductivity, which may be associated with the presence of hot hydrothermal fluid of massive 

sulfides. The anomalous region extends well beyond the region identified by surface observation 

of vent sites.  It should be noted however, that the coincident loop data set collected is the first of 

the world of this kind.  

 
 

Figure 5.1.6: Deployment of Octopussy. Left panel shows the deployment of the 4x4 m 
transmitter/receiver coil, right panel the GFK frame on which the instrument’s electronic 
devices were installed.  
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Figure 5.1.7: Left panel: Summary of all preliminary processed transients recorded along 
profile. Black colour denotes transients with average seafloor conductivity and red transients 
with elevated conductivities.  Right panel: Circles show the location of loop measurements on 
Palinuro. The start of the profile is in the southwest, the end of profile in the northeast. 
Locations where preliminary processed data suggests increased conductivities are marked in 
red. They coincide with the location of the known vent, but indicate that the hydrothermal area 
seems larger than indicated by surface observations.  
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5.2 CTD water column measurements 
(M. Jegen and T. Kwasnitchka) 

 
Figure 5.2.1: Velocity, temperature and conductivity profile acquired with a microcat CTD 
sensor from Seabird on April 2nd.  
 

During most of the dives, an autonomous microcat CTD sensor from Seabird was attached to the 

frames. Figure 5.2.1 shows a velocity, temperature and conductivity profile acquired on the 2nd 

of April during the releaser test. The velocity profile was used in the calibration of the Posidonia 

navigation system. Evident is the relative high electrical conductivity of the water (>4 S/m as 

opposed to approx. 3 S/m in open ocean) due to the increased salinity in Mediterranean waters 

and relatively warm bottom temperatures of 14 C.  

Figure 5.2.2 shows the observed changes in temperature and conductivity during all dives. There 

seemed to be a spatial scatter in the temperature and conductivity data. However, it is unlikely 

that variations are related to geological features. The scatter may be explained by the fact that the 

time of the day of the data acquisition and prevailing time are different for different dives. The 

corresponding changes in electrical conductivity at these depths are too small to be needed to 

take into consideration for electromagnetic modeling.  However, the larger scale changes 

towards the sea surface are sufficiently large to have an influence on the data interpretation and   

will be considered according to the measurement values.  
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Figure 5.2.2: Measurements of bottom water temperatures (< 550 m) (upper panel) and 
conductivities (lower panel) plotted for all dives.  Measurements were taken at different times 
during the day and during tidal cycles, which may attribute to the variations in the data.  
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5.3 Geological Observation 
(S. Petersen, M. Hannington and T. Kwasnitchka) 
5.3.1 Geology of the Palinuro Volcanic Complex: 

The Palinuro volcanic complex is part of the Aeolian Volcanic arc in the Tyrrhenian Sea, a semi-

closed basin in the Western Mediterranean that opened as a result of roll back of the Ionian slab 

(Morelli, 1975; Kastens and Mascle, 1990, Carminati et al., 1998). The volcanic complex is 

located ~30 km NE of Marsili seamount in the adjoining Marsili back-arc basin. The oldest dated 

volcanic rocks from Palinuro have an age of 0.8 m.y. (Savelli, 2002).  Fresh lavas from the top of 

the shallowest major cone have a K-Ar age of ~350,000 years (Colantoni et al., 1981).  Calc-

alkaline basalt and basaltic andesite samples recovered from Palinuro have a clear affinity to 

volcanic rocks of the Aeolian islands, although it remains unclear whether Palinuro is 

structurally part of the Aeolian Arc (Colantoni et al., 1981; Passaro et al., 2010). 

 

The volcanic complex comprises at least 8 separate cone-like features that coalesce at their base, 

forming a single elongated edifice extending for about 55 km from east to west (Monecke et al., 

2009; Passaro et al., 2010; Fig. 1). The basal width of the complex is ~25 km. It rises from the 

abyssal plain (3,400 m depth) in the Marsili Basin to a minimum depths of ~80 m in its central 

part.  The southern flank of Palinuro, facing the Marsili back-arc basin, is characterized by steep 

scarps; the northern margin is onlapped by sediments of the nearby shelf. The volcanic centers 

are thought to be aligned along a major lithospheric fault system that defines the northern limit 

of the Calabrian domain on mainland Italy (Ghisetti and Vezzani, 1981; Tamburelli et al., 2000; 

Rosenbaum and Lister, 2004).  

 

The morphology of the complex is more complicated than the much younger volcanic cones of 

the Aeolian arc, such as Stromboli. It can be divided into western, central and eastern sectors that 

are strongly structurally controlled (Fabbri et al., 1973; Marani et al., 1999; Monecke et al., 

2009; Passaro et al., 2010; Ligi et al., 2014).  The main volcanic cones are dissected by 

numerous WNW-ESE, WSW-ENE and ~N-S-trending faults that are thought to reflect a regional 

stress field.  The major cones are elongated in a WNW-ESE direction and are located at 

intersections of WNW-ESE and WSW-ENE oriented fault systems; volcanic ridges and 

collapsed calderas are more locally controlled by a ~N-S striking fault system.  Hydrothermal 

activity and mineralization at two locations in the western sector are found where local volcano-

tectonic features interact with regional tectonic structures (Ligi et al., 2014). 
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5.3.2 Geology of the Western Sector: 

The western sector of the Palinuro complex comprises a large, ~8 km-wide depression bounded 

by a steep scarp in the south, an arcuate arrangement of volcanic edifices (most likely 

structurally controlled) in the north and west, and a WNW-ESE trending volcanic ridge to the 

northeast (NE Ridge) that reaches a minimum water depth of 500 m (Figure 5.3.1).  The extent 

of erosion of the western part of the volcanic complex suggests that it is old.  The morphology is 

partly a result of gravitational collapse of a pre-existing edifice and more recent movement of a 

complex fault network.  

 

The “NE Ridge” and adjacent depression was the focus of study during POS483.  This part of 

the volcano includes 3 local highs at its summit, cut by a WSW-ENE and a N-S fault that form a 

small central depression.  These features are thought to be the eroded remnants of a larger cone 

that was developed at the northeast margin of the western sector.  No recent volcanic activity has 

been documented, although the main WSW-ENE fault and several smaller structures appear to 

have been occupied by dikes.  The largest dike-like feature occupies the western part of the 

WSW-ENE fault and is clearly seen in the bathymetry on the western flank of the older intact 

part of the cone.  Almost all surfaces of the volcanic complex are covered by at least a few 

centimeters to several meters of hemipelagic mud and volcaniclastic deposits. The underlying 

volcanic rocks in the small central depression and on the northern ridge have been affected by 

widespread hydrothermal alteration, indicated by a large area of demagnetization that was 

targeted during POS483. 
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Figure 5.3.1: Bathymetry of the Palinuro volcanic complex from Petersen et al. (2014). A. High-
resolution bathymetric map showing the location of the working area in the western sector. The 
rectangle (2B) indicates the area where the surveys were performed at the summit of the “NE 
Ridge”. B. High-resolution (10-m grid) bathymetry of the study area and the location of the 
drilled subseafloor barite and sulfide deposit. C. Interpreted geological section of the eroded 
remnants of a larger cone erupted on the NE flank of West Palinuro Seamount (see Figure 5.3.3 
for details). 
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5.3.3 Hydrothermal Deposits: 

Seafloor sulfides were first discovered by dredge sampling and gravity coring in the early 1980s, 

approximately 5 km west of the current study area (Minniti and Bonavia, 1984). Massive 

sulfides were then discovered in the smaller depression of the “NE Ridge” during RV Sonne 

Cruise S041 in 1986 (HYMAS I).  This has since been visited during POS340 in 2006, POS412 

in 2011 and POS442 in 2012, and Meteor cruise M73/2 in 2007 and M86/4 in 2012 (Petersen et 

al., 2008, Monecke et al., 2009; Thiel et al., 2012, Petersen et al., 2014).  Italian researchers 

visited the site during the RV Urania Mar98 cruise in 1998.  

 

No black smoker activity has been found, but the central depression of the “NE Ridge” is 

characterized by widespread staining of the fine-grained sediments and local shimmering water 

indicative of low-temperature hydrothermal activity and diffuse venting through the sediment 

cover (Petersen et al., 2008). However, only a weak plume signal was found during dedicated 

plume surveys (Lupton et al., 2011). In 2006, small tubeworm colonies (Vestimentifera) were 

found on a sedimented slope at the northwest corner of the central depression, near the WSW-

ENE fault (Thiel et al., 2012).  This was the first discovery of vent-associated tubeworms outside 

the Pacific. The local fine-grained sediment contains minor disseminated sulfides, Mn–Fe oxides 

and clay minerals and is characterized by patchy discolorations, delicate chimney-like iron oxide 

structures, and bacterial mats (Monecke et al., 2009). This, and several other areas where there is 

evidence of hydrothermal activity (Figure 5.3.2) have high backscatter, contrasting with other 

parts of the summit area covered by fine-grained sediments. The high backscatter does not 

correlate with seafloor roughness but is associated with Fe-Mn oxyhydroxide crusts. 

 

In 2007, the area of hydrothermal activity at the northwest corner of the central depression was 

drilled using BGS Rockdrill 1 (Meteor cruise M73/2). The drilled cores included up to 5 m of 

massive sulfides and barite from a few centimeters up to several meters below the sediments 

(Petersen et al., 2014).  Eleven holes were drilled with a total core recovery of 13.5 m, including 

12 m of semi- to massive barite and sulfides and 1.5 m of volcaniclastic rocks from an area of 50 

m × 35 m.  However, the lateral extent of the mineralization was not tested, and all drill holes 

ended in massive sulfide. The sulfides are thought to be more widespread, beneath a thickening 

sediment cover away from the center of the deposit. During POS442, buried and apparently 

inactive hydrothermal deposits were also discovered along the top of the northern volcanic ridge 

by AUV photography.  Chimney-like features were also found by high-resolution bathymetry 
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and sidescan sonar surveys; however, several of these have been found to be volcanic pinnacles 

covered by coral (see below). 

 

5.3.4 “Sputnik” Site Observations during POS483: 

Upon landing, the camera of the Sputnik system showed that all but a few of the CSEM sites 

were heavily sedimented with typical marine clay and, in some cases, extensive burrowing 

(Figure 5.3.2). Only two stations landed on or near obvious outcrop. The sediment at TX08 and 

TX21 on the northern high was notably mottled, typical of the discoloured sediment found near 

the drill site. Volcaniclastic material or gravel (from slides) was observed at TX14, on the 

southern flank of the complex and adjacent to the headwall of the southern scarps, and at TX06 

on the northern flank of the complex.  TX20 landed near several irregular black outcrops 

resembling Mn-coated coral, similar to that seen near the drill site.  TX13 also landed on outcrop 

near the eastern dike-like feature on the flank of the volcanic complex.   

 

 
 

Figure 5.3.2: Sputnik stations geological observations during landing. 
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5.3.5 HyBIS Observations and Geological Interpretation: 

Figure 5.3.3 shows the interpreted geology of the summit area of the “NE Ridge” based on high-

resolution bathymetric data and new HyBIS observations. The mapping and video observations 

confirm that the volcanic geomorphology is that of a heavily dissected and partly eroded cone.  

The original cone was apparently formed by pyroclastic eruptions (mainly submarine but also 

possibly subaerial) and, at times, more effusive lava flows. At least 3 volcaniclastic units (V2, 

V4, V5), each 10-20 m thick, and 2 lava flows (L1 and L3) are suggested by the terraced 

morphology of the eroded summit. Blocky lavas were clearly visible at the edge of one terrace 

(L2) during station 137. All other outcrops appeared to be mainly cemented volcaniclastic 

material. Bedding planes between volcaniclastic units and lava flows appear to have a shallow 

dip.     

 

The prominent dike-like feature exposed on the west flank of the cone can be projected under the 

volcaniclastic deposits of the summit area in the WSW-ENE fault.  It may have been the feeder 

dike that is now buried by its eruptive products.  The fault (and dike) dip steeply to the south, 

and this partly controls the morphology of the central depression. Other dike-like features may 

be present on the flanks of the volcano, but these are smaller and lack the clear magnetic 

signature of the main “feeder” dike.  Prominent features on the northern high (so-called 

“pinnacles”) appear to be composed mainly of blocky coherent volcanic material that may be 

eroded remnants of these smaller dikes.  They are now partly covered by coral formations. 

 

Extensive mass wasting has occurred on the south flank of the complex.  The headwalls of the 

main erosional scarps may coincide with exposures of the two lava flows shown in Figure 5.3.2.  

These are presumably more competent units that would have produced large slumps when they 

failed. A distinctive field of blocky debris can be seen on the SE slope of the complex, which 

may be traced back to the lowermost lava flow (L1) in the central depression. Although bedded 

volcaniclastic material is seen at the edges of the main scarps, generally this material is too fine-

grained to have produced the larger blocks seen on the SE slope. 

 

The main area of mineralization that was drilled in 2007 is located at the edge of the central 

depression near the proposed “feeder” dike.  This mineralization and two other sites of inferred 

hydrothermal activity occur in at least two volcaniclastic units (V2 and V4) that are separated by 

coherent lava flows.  Most likely, the localization of hydrothermal activity is controlled by the 

permeability contrasts between the volcaniclastic units and the coherent lavas. The currently 
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exposed mineralization is characterized by Fe and Mn crusts or cemented volcaniclastics, white 

patches and streaks (bacteria and/or barite) and distinctive dark staining and mottled textures in 

the sediments. These areas have a distinctive hummocky appearance (low mound like features 

with dark sediment between the hummocks (Fig. 4), which is very different from the background 

sediments. This hummocky surface may be produced by sediment-covered hydrothermal 

deposits. The patchy or mottled texture is due to burrowing organisms that have excavated 

variably coloured reduced and oxidized subseafloor sediments. 

 

 
Figure 5.3.3: Interpreted geology of the NE Ridge of West Palinuro Seamount. The map view 
shows the outlines of the lower contacts of volcanic units in the summit area. The present 
volcanic geomorphology is erosional, dominated by 3 erosional remnants of a much larger 
volcanic cone.  The inferred location of a feeder dike is indicated (bold dashed line) extending 
from the west flank of the volcano, where it has an obvious bathymetric (and magnetic) 
expression, under the exposed volcanic units. The locations of the known mineralization are 
indicated by the stars. Section A-A’ shows the interpreted stratigraphy, which comprises south-
dipping volcaniclastic units on the south side of the complex, and flat-lying or north-dipping 
units in the north.  The proposed feeder dike is the most likely source of the volcaniclastics.   
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Figure 5.3.4: Photomosaic of hummocky terrain next to areas with dark coloring and white 
striations (on right side of the image) interpreted to be hydrothermal in origin. Photomosaic is 
based on AUV-ABYSS data collected during POS442 in 2012.  Location in the vicinity of 
39o32.52 N and 14o42.48 E.   
 
5.3.6 Summary:   

The NE Ridge of the western sector of Palinuro Seamount originated as a cone-shaped volcano 

that has been dissected along a WSW-ENE buried dike and secondary N-S faults. The original 

volcanic edifice was typical of the other cones of the western, central, and eastern sectors and 

likely formed at the margin of the much larger and older cone to the west (inferred caldera 

complex of Ligi et al., 2015). There are no convincing volcanic constructional features 

responsible for the present volcanic geomorphology of the NE Ridge.  The original conical 

edifice is still visible in the regional bathymetry, but only the erosional remnants remain of the 

summit.  Shallower water depths in the past may be indicated by the extensive coral formations, 

and the tectonic uplift of the volcano may have been caused by the nearby subducting Ionian 

plate or compression along the Adriatic foreland. Similar uplift likely caused the erosion of flat-

hummocks 

hydrothermal 
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topped cones in the central sector. The NE Ridge has since been subject to extensive post-uplift 

deformation, subsidence, and collapse.  Evidence of more recent volcanism was not found; 

however, ongoing low-temperature hydrothermal activity must reflect a recent reactivation of the 

buried feeder dike. 

 

Additional Figures in Appendix A: 

Hybis_tracks_all. Edited Posidonia positions for HyBIS stations 135 and 137. 

Hybis_1A. Annotated segments of dive track for HyBIS station 135 (part A) 

Hybis_1B. Annotated segments of dive track for HyBIS station 135 (part B) 

Hybis_2_A_B. Annotated segments of dive track for HyBIS station 137 (part A and B) 

Hybis_2_C_D. Annotated segments of dive track for HyBIS station 137 (part C and D) 
 
 
5.3.7 Photogrammetric Mapping: 

Building on the AUV multibeam map as a reference, we chose to attempt the photogrammetric 

survey and reconstruction of assumed hydrothermal vents and key outcrops on the seafloor 

hinting to any other hydrothermal activity, following the methodology outlined in Kwasnitschka 

et al., 2013.  

 

The HyBIS was outfitted with a special lower skid to house a battery powered, internally 

recording 1200KHz RDI Sentinel ADCP with bottom tracking capabilities which was used to 

measure vehicle motion relative to the water column and the seafloor. The ADCP was set to one 

second ping intervals. Additionally, the Posidonia USBL transponder mounted on HyBIS 

provided a USBL position fix every six seconds owing to its untethered responder mode in 

which there is no wire connection among pinger and antenna. As an experimental improvement 

to the aforementioned workflow, it was originally planned to connect an SBG Ekinox inertial 

navigation system both to the ADCP and to Posidonia using a serial port of HyBIS, yet this did 

not succeed due to hardware and software issues during installation on board. A Sony CX-560-

VE camcorder with a 0.7x wide angle converter powered by a 5000MAh NiMH accumulator 

was installed in a 110mm diameter Develogic domeport housing and mounted at a 30° 

downward angle on the skid, thus forming a self contained camera system. The internal 

recording media was set to maximum quality and delivered 64GB of data on each deployment, 

covering 6h15min to which duration the dive times were scheduled. Due to some initial setup 

misunderstandings, the azimuthal viewing direction of the survey camera was 90° 

counterclockwise offset from the front HyBIS viewing direction, so two of its LED lamps were 
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reconfigured to illuminate the survey camera’s field of view. One of the HyBIS low light online 

cameras was mounted parallel to the survey camera to monitor its field of view. 

The system worked reliably during dives on station 136 and 137. Due to the low light conditions 

and the peculiarities of dome port optics, though, the camera had trouble holding the autofocus 

and therefore many low contrast sequences covering sandy bottom or scenes with a large 

viewing distance are out of focus. Nevertheless, key outcrops could be reliably imaged. The 

strong vertical motion connected to the heave of HyBIS actually compensated for the greatly 

limited range of motion of the vehicle, which created sufficient parallax along the vertical axis in 

order to facilitate photogrammetric reconstruction. The actual reconstruction and merging with 

the acoustic vehicle navigation will happen on shore due to limited computing power at sea. 

Figure 5.3.5 shows the HyBIS track locations and figure 5.3.6 sample pictures from marked 

locations. 

 
Figure 5.3.5: Track of the two HyBis dives on April 7th (black line) and April 8th (blue line). 
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Figure 5.3.6: Row 1 left (photo 136_1.png) showing the chimney structure, which by visual 
observation is not to be attributed to hydrothermal processes but to volcanic features and/or 
corals. Row 1 right and row 2 show dark stained sediments with white striations (136_2.png, 
136_2.png and 136_4.png), also observed in AUV dive 2012 (see figure 5.3.4).  Row 3 left show 
iron-oxides probably produced through the exit of low temperature hydrothermal fluid exiting 
through permeable volcaniclastic layers at the southern headwall. Row 3 right and row 4 left 
show bedded volcaniclastic at the southern headwall. Row 4 right shows a photo of an OBS 
station.  
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5.3 Passive Seismic Experiment 
We took the opportunity to additionally deploy an small array of 6 OBS stations in the region for 

a period of 10 days (see table 5.3.1) spanning an area of approx. 400 m. The goal of the 

experiment was to record microseismicity produced through the movement of fluids through the 

structure. In order to detect the source mechanism of the microseismicity on such a small array, a 

very high sampling rate of 1 kHz had to be chosen.  

 
 OBS1 OBS2 OBS3 OBS4 OBS5 OBS6 
Target 
Position 

39°32.56’N 
14°42.39’E 

39°32.44’N 
14°42.34’E 

39°32.44’N 
14°42.45’E 

39°32.37’N 
14°42.37’E 

39°32.39’N 
14°42.43’E 

39°32.40’N / 
14°42.53’E 

Target 
Depth 

620 615 630 630 640 635 

Posidiona 
Deploym
ent 
Coord. 

39°32.481’N 
14°42.389’E 

39°32.42’N 
14°42.315’E 

39°32.442’N 
14°42.451’E 

39°32.442’N 
14°42.451’E 

39°32.389’N 
14°42.44’E 

39°32.409’N 
14°42.504’E 

Time of 
Deploym
ent 

03.04.2015 
06:57 

03.04.2015 
07:40 

03.04.2015 
08:24 

03.04.2015 
09:09 

03.04.2015 
09:53 

03.04.2015 
10:44:30 

Posidonia 
Recordin
g file 

20140403_064
4.dat 

20150104_071
9.dat 

20150403_080
0.dat 

20150403_084
6.dat 

20150403_092
7.dat 

20150403_102
1.dat 

Deploym
ent above 
seafloor 

~35 m ~35 m ~35 m ~30 m ~30 m ~30 m 

 

5.4 Summary 
	
  
The geological and geophysical data collected on this cruise and the subsequent seismic cruise 

P483 complement the existing data set acquired through GEOMAR scientists and collaborators, 

This modern exploration methodology data set for Palinuro is now of unprecedented breadth and 

includes high resolution bathymetry, gravity coring, visual seafloor observations, multi 

parameter geophysical data and drilling results.  

The more traditional geological exploration methods such as high resolution bathymetry and 

visual observations were very important in the planning and execution of the geophysical 

experiments. Also, visual observations led to the chance find of the venting structure observed at 

the seafloor (Cruise P340). This current cruise showed however, that the typical conclusion from 

bathymetric data that a presence of chimneys is associated with hydrothermal circulation and 

formation of SMS deposits is not always valid. Instead the preliminary processing of the 

electromagnetic data showed anomalous features extending to the south of the known vent 

structure into a region without bathymetric and visual anomalies. Observed SP anomalies 

coincide roughly with visual observations. Interestingly enough these anomalies are in turn not 

linked to any particular bathymetric features such as chimneys.  
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The quantitative analysis of the data so far already illustrates the complementary information in 

these different data sets. Combining all the information gathered will allow us to derive a 

quantitative and assured model of the subsurface. Identifying an optimal way on how to combine 

this will be the topic of future research, which will be carried on in the framework of Blue 

Mining and independently at the Colorado School of Mines in close collaboration between 

geologists and geophysicists. The assemblage of the data and its information content will be 

fundamentally supported by the availability of cores in the region which have been acquired on 

previous cruises, as they will allow us to link physical properties to geological stratigraphy and 

mineralization and serve as a calibration points for the geophysically derived Earth model.  

 

 
Figure 5.4.1: Summary sketch of some quantitative results of P483 together with previously 
acquired data (high resolution bathymetry, magnetic data and drill site). Most obvious is the 
correlation between the loop electromagnetic anomaly around the drill hole site, which also 
hosts vent structures. Furthermore, an SP anomaly is observed in this area. The loop anomaly 
indicates that the anomaly is much larger than was obvious from visual observations and seems 
to extend further south into the sediment area. At the south-western corner, 3 SP anomalies 
coincide with the region where striations indicating hydrothermal activity were observed. 
Unfortunately no loop data could be acquired in this area due to time constrains. Another 
significant result of the P483 cruise is that chimney structures, which we attributed due to the 
proximity of the known vent site to hydrothermal activity, are indeed unrelated to the latter 
process.  
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6 Ship’s Meteorological Station 

Not	
  available	
  
	
  

7 Station List P483 

Station Datum Zeit PositionLat PositionLon Gerätkürzel Aktion Bemerkung 

        POS483/112-1 02.04.15 06:47 39 32,36' N 14 42,44' E REL auf Tiefe SL max.: 600 m 
POS483/112-1 02.04.15 08:01 39 32,37' N 14 42,43' E REL ausgelöst 

 POS483/112-1 02.04.15 08:20 39 32,36' N 14 42,46' E REL an Deck 
 POS483/112-2 02.04.15 08:51 39 32,37' N 14 42,47' E REL zu Wasser 
 POS483/112-2 02.04.15 10:38 39o 32,38' N 14 42,49' E HYDRO zu Wasser 
 POS483/112-2 02.04.15 10:39 39 32,38' N 14 42,49' E REL auf Tiefe SL max.: 450 m 

POS483/112-2 02.04.15 11:48 39 32,39' N 14 42,48' E HYDRO an Deck 
 POS483/112-2 02.04.15 13:48 39 32,39' N 14 42,49' E REL an Deck 
 

POS483/112-3 02.04.15 14:18 39 32,37' N 14 42,47' E POS 
Transponder zu 
Wasser 

 

POS483/112-3 02.04.15 14:19 39 32,37' N 14 42,47' E POS Transponder geslippt 
 POS483/112-3 02.04.15 14:32 39 32,37' N 14 42,46' E POS Beginn 
 

POS483/112-3 02.04.15 17:38 39 32,39' N 14 42,54' E POS Auslösen 

Transponder 
mehrfach 
ausgelöst, steigt 
aber nicht auf! 

POS483/112-3 02.04.15 17:38 39 32,39' N 14 42,54' E POS Information 

Bergungsversuch 
abgebrochen, 
Gerät taucht trotz 
mehrerer 
Auslöseversuche 
nicht auf! 
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POS483/112-4 03.04.15 04:31 39 32,32' N 14 42,44' E POS Information 

Transponder an der 
Wasseroberfläche 
aufgetaucht 

POS483/112-4 03.04.15 04:56 39 32,25' N 14 42,00' E POS Information 
Transponder an 
Deck 

POS483/113-1 03.04.15 06:28 39 32,49' N 14 42,39' E OBS zu Wasser 
 POS483/113-1 03.04.15 06:58 39 32,49' N 14 42,39' E OBS ausgelöst 
 

POS483/113-1 03.04.15 07:13 39 32,44' N 14 42,35' E OBS Releaser an Deck 
 POS483/114-1 03.04.15 07:14 39 32,44' N 14 42,35' E OBS zu Wasser 
 POS483/114-1 03.04.15 07:38 39 32,44' N 14 42,34' E OBS ausgelöst 
 

POS483/114-1 03.04.15 07:51 39 32,44' N 14 42,42' E OBS Releaser an Deck 
 POS483/115-1 03.04.15 07:57 39 32,44' N 14 42,45' E OBS zu Wasser 
 POS483/115-1 03.04.15 08:25 39 32,44' N 14 42,48' E OBS ausgelöst 
 

POS483/115-1 03.04.15 08:37 39 32,37' N 14 42,39' E OBS Releaser an Deck 
 POS483/116-1 03.04.15 08:44 39 32,37' N 14 42,37' E OBS zu Wasser 
 POS483/116-1 03.04.15 09:13 39 32,37' N 14 42,40' E OBS ausgelöst 
 

POS483/116-1 03.04.15 09:24 39 32,39' N 14 42,43' E OBS Releaser an Deck 
 POS483/117-1 03.04.15 09:26 39 32,39' N 14 42,43' E OBS zu Wasser 
 POS483/117-1 03.04.15 09:51 39 32,39' N 14 42,46' E OBS ausgelöst 
 

POS483/117-1 03.04.15 10:02 39 32,40' N 14 42,52' E OBS Releaser an Deck 
 POS483/118-1 03.04.15 10:20 39 32,40' N 14 42,52' E OBS zu Wasser 
 POS483/118-1 03.04.15 10:43 39 32,40' N 14 42,54' E OBS ausgelöst 
 

POS483/118-1 03.04.15 10:56 39 32,42' N 14 42,53' E OBS Releaser an Deck 
 POS483/119-1 03.04.15 11:50 39 32,56' N 14 42,37' E OBEM zu Wasser 
 POS483/119-1 03.04.15 12:11 39 32,56' N 14 42,37' E OBEM ausgelöst 
 POS483/119-1 03.04.15 12:23 39 32,57' N 14 42,40' E OBEM an Deck 
 POS483/120-1 03.04.15 12:51 39 32,56' N 14 42,49' E OBEM zu Wasser 
 POS483/120-1 03.04.15 13:14 39 32,58' N 14 42,51' E OBEM ausgelöst 
 

POS483/120-1 03.04.15 13:25 39 32,57' N 14 42,56' E OBEM Releaser an Deck 
 POS483/121-1 03.04.15 13:38 39 32,57' N 14 42,64' E OBEM zu Wasser 
 POS483/121-1 03.04.15 14:02 39 32,58' N 14 42,67' E OBEM ausgelöst 
 

POS483/121-1 03.04.15 14:21 39 32,44' N 14 42,63' E OBEM Releaser an Deck 
 POS483/122-1 03.04.15 14:34 39 32,42' N 14 42,66' E OBEM zu Wasser 
 POS483/122-1 03.04.15 15:07 39 32,41' N 14 42,62' E OBEM ausgelöst 
 

POS483/122-1 03.04.15 15:22 39 32,31' N 14 42,60' E OBEM Releaser an Deck 
 POS483/123-1 03.04.15 15:29 39 32,28' N 14 42,61' E OBEM zu Wasser 
 POS483/123-1 03.04.15 15:53 39 32,27' N 14 42,63' E OBEM ausgelöst 
 

POS483/123-1 03.04.15 16:05 39 32,27' N 14 42,64' E OBEM Releaser an Deck 
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POS483/124-1 03.04.15 16:28 39 32,25' N 14 42,47' E OBEM zu Wasser 
 POS483/124-1 03.04.15 16:51 39 32,26' N 14 42,46' E OBEM ausgelöst 
 

POS483/124-1 03.04.15 17:02 39 32,24' N 14 42,45' E OBEM Releaser an Deck 
 POS483/125-1 03.04.15 17:11 39 32,27' N 14 42,32' E OBEM zu Wasser 
 POS483/125-1 03.04.15 17:35 39 32,27' N 14 42,39' E OBEM ausgelöst 
 

POS483/125-1 03.04.15 17:45 39 32,29' N 14 42,39' E OBEM Releaser an Deck 
 POS483/126-1 04.04.15 06:59 39 32,38' N 14 42,33' E OBEM zu Wasser 
 POS483/126-1 04.04.15 07:26 39 32,36' N 14 42,35' E OBEM ausgelöst 
 

POS483/126-1 04.04.15 07:37 39 32,37' N 14 42,38' E OBEM Releaser an Deck 
 POS483/127-1 04.04.15 07:48 39 32,38' N 14 42,40' E OBEM zu Wasser 
 POS483/127-1 04.04.15 08:35 39 32,37' N 14 42,41' E OBEM ausgelöst 
 

POS483/127-1 04.04.15 08:46 39 32,40' N 14 42,44' E OBEM Releaser an Deck 
 POS483/128-1 04.04.15 10:22 39 32,41' N 14 42,46' E OBEM zu Wasser 
 POS483/128-1 04.04.15 10:47 39 32,40' N 14 42,46' E OBEM ausgelöst 
 

POS483/128-1 04.04.15 10:59 39 32,42' N 14 42,44' E OBEM Releaser an Deck 
 POS483/128-2 04.04.15 11:01 39 32,42' N 14 42,45' E HYDRO zu Wasser 
 POS483/128-2 04.04.15 11:24 39 32,43' N 14 42,46' E HYDRO an Deck 
 POS483/129-1 04.04.15 13:23 39 32,69' N 14 42,24' E SPU zu Wasser 
 

POS483/129-1 04.04.15 14:18 39 32,69' N 14 42,24' E SPU an Deck 

Steckverbinder/ 
Kabel defekt/ 
undicht 

POS483/129-1 04.04.15 16:37 39 32,69' N 14 42,25' E SPU zu Wasser 
 

POS483/129-1 04.04.15 17:34 39 32,70' N 14 42,24' E SPU 
Beginn der 
Messungen 

 

POS483/129-1 04.04.15 19:25 39 32,56' N 14 42,34' E SPU Ende der Messungen 

Fehlfunktion der 
Arme, 
Unterbrechung des 
Profils 

POS483/129-1 04.04.15 19:48 39 32,53' N 14 42,36' E SPU an Deck 
 POS483/130-1 05.04.15 10:22 39 32,55' N 14 42,86' E SPU zu Wasser 
 

POS483/130-1 05.04.15 11:10 39 32,49' N 14 42,88' E SPU 
Beginn der 
Messungen 

 

POS483/130-1 05.04.15 14:50 39 32,43' N 14 42,32' E SPU Ende der Messungen 

Geräteausfall, 
Kurzschluss 
Steckerverbindung 

POS483/130-1 05.04.15 15:34 39 32,40' N 14 42,26' E SPU an Deck 

Auftriebskugel an 
der Oberfläche 
aufgetaucht, 
Auftriebskugel um 
18:05 LT (16:00 
UTC) wieder an 
Deck. 

POS483/131-1 05.04.15 18:21 39 32,41' N 14 42,26' E SPU zu Wasser 
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POS483/131-1 05.04.15 18:52 39 32,42' N 14 42,23' E SPU 
Beginn der 
Messungen 

 

POS483/131-1 05.04.15 20:04 39 32,39' N 14 42,08' E SPU Ende der Messungen 
Verholen zum 
nächsten Profil 

POS483/132-1 05.04.15 21:06 39 32,12' N 14 42,62' E SPU 
Beginn der 
Messungen 

 

POS483/132-1 06.04.15 02:10 39 32,61' N 14 42,29' E SPU Ende der Messungen 
 

POS483/133-1 06.04.15 04:03 39 32,21' N 14 42,58' E SPU 
Beginn der 
Messungen 

 

POS483/133-1 06.04.15 06:22 0 0,00' N 0 0,00' E SPU Ende der Messungen 

Nach Teilblackout 
durch Ausfall USV 
nach Kurzschlufl 
im Ger‰t 

POS483/133-1 06.04.15 07:27 39 32,63' N 14 42,56' E SPU an Deck 

Gerät mit Kran und 
Hilfswinde 
Heckgalgen 
geborgen 

POS483/134-1 06.04.15 17:56 0 0,00' N 0 0,00' E HYB Zu Wasser 

Gerätetest im 
Wasser, 
Überprüfung aller 
Funktionen 

POS483/134-1 06.04.15 18:32 39 32,39' N 14 42,59' E HYB Beginn Hieven 
 POS483/134-1 06.04.15 18:40 0 0,00' N 0 0,00' E HYB An Deck 
 POS483/135-1 07.04.15 07:09 39 32,41' N 14 42,59' E HYB Zu Wasser 
 POS483/135-1 07.04.15 07:44 39 32,40' N 14 42,60' E HYB Auf Tiefe BoSi 

POS483/135-1 07.04.15 14:25 39 32,73' N 14 42,30' E HYB Beginn Hieven 
 POS483/135-1 07.04.15 14:32 39 32,73' N 14 42,30' E HYB An Deck 
 

POS483/136-1 07.04.15 14:42 39 32,73' N 14 42,30' E OBEM 

Hydrophon zu 
Wasser; 
Entfernungsmessung 

 POS483/136-1 07.04.15 14:43 39 32,73' N 14 42,29' E OBEM ausgelöst 
 

POS483/136-1 07.04.15 14:43 39 32,73' N 14 42,29' E OBEM Hydrophon an Deck 
 POS483/136-1 07.04.15 14:54 39 32,13' N 14 42,41' E OBEM aufgetaucht 
 POS483/136-1 07.04.15 15:05 39 32,26' N 14 42,27' E OBEM an Deck 
 POS483/137-1 08.04.15 06:15 39 32,18' N 14 42,79' E HYB Zu Wasser 
 POS483/137-1 08.04.15 06:53 39 32,21' N 14 42,73' E HYB Auf Tiefe BoSi 

POS483/137-1 08.04.15 11:56 39 32,67' N 14 42,29' E HYB Beginn Hieven 
 POS483/137-1 08.04.15 12:16 39 32,78' N 14 42,27' E HYB An Deck 
 POS483/138-1 08.04.15 14:44 39 32,09' N 14 42,11' E SP zu Wasser 
 POS483/138-1 08.04.15 15:19 39 32,10' N 14 42,10' E SP auf Tiefe SL: 677 m 

POS483/138-1 08.04.15 15:20 39 32,10' N 14 42,10' E SP Beginn Messung 
 



Poseidon Report, Cruise 483, Malaga  – Dubrovnik, 28.3.2015 – 15.4.2015 43 

POS483/138-1 08.04.15 16:52 39 32,63' N 14 42,10' E SP Ende Messung 
 

POS483/138-1 08.04.15 16:52 39 32,63' N 14 42,10' E SP Beginn Hieven 
 

POS483/138-1 08.04.15 17:08 39 32,66' N 14 42,13' E SP an Deck 
Bei 50 m 
Unterkante Kiel 

POS483/139-1 08.04.15 17:55 39 32,01' N 14 42,29' E SP zu Wasser 
Gerät fieren ab 50 
m unter Kiel 

POS483/139-1 08.04.15 18:19 39 32,07' N 14 42,31' E SP auf Tiefe SL max 675 m 

POS483/139-1 08.04.15 18:19 39 32,07' N 14 42,31' E SP Beginn Messung 
 

POS483/139-1 08.04.15 19:41 39 32,62' N 14 42,32' E SP Ende Messung 
 

POS483/139-1 08.04.15 19:42 39 32,63' N 14 42,32' E SP Beginn Hieven 
 

POS483/139-1 08.04.15 20:02 39 32,84' N 14 42,48' E SP an Deck 

Auf 100 m, 
verholen zur 
nächsten Station 

POS483/140-1 08.04.15 20:31 39 32,06' N 14 42,38' E SP zu Wasser Aus 100 m gefiert 
POS483/140-1 08.04.15 20:46 39 32,07' N 14 42,37' E SP auf Tiefe SL 694 m 

POS483/140-1 08.04.15 20:47 39 32,08' N 14 42,37' E SP Beginn Messung 
 

POS483/140-1 08.04.15 21:54 39 32,62' N 14 42,40' E SP Ende Messung 
 

POS483/140-1 08.04.15 21:54 39 32,62' N 14 42,40' E SP Beginn Hieven 
 

POS483/140-1 08.04.15 22:14 39 32,72' N 14 42,46' E SP an Deck 

Auf 100 m gehievt, 
verholen zum 
nächsten Track 

POS483/141-1 08.04.15 23:00 39 32,09' N 14 42,19' E SP zu Wasser auf 600m abgefiert 
POS483/141-1 08.04.15 23:09 39 32,08' N 14 42,20' E SP auf Tiefe SL max: 600 

POS483/141-1 08.04.15 23:15 39 32,11' N 14 42,19' E SP Beginn Messung 
 

POS483/141-1 09.04.15 00:09 39 32,60' N 14 42,21' E SP Ende Messung 
 

POS483/141-1 09.04.15 00:10 39 32,61' N 14 42,22' E SP Beginn Hieven 
 

POS483/141-1 09.04.15 00:19 39 32,65' N 14 42,22' E SP an Deck 

Gerät auf 100m 
unter das Schiff 
gehievt, Verholen 
zum nächsten 
Profil 

        

POS483/142-1 09.04.15 01:11 39 32,05' N 14 42,58' E SP zu Wasser 
Gerät auf 700m 
gefiert  

        POS483/142-1 09.04.15 01:29 39 32,11' N 14 42,57' E SP auf Tiefe SL max: 700m 
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POS483/142-1 09.04.15 01:30 39 32,12' N 14 42,57' E SP Beginn Messung 
 

POS483/142-1 09.04.15 02:41 39 32,63' N 14 42,57' E SP Ende Messung 
 

POS483/142-1 09.04.15 02:41 39 32,63' N 14 42,57' E SP Beginn Hieven 
 

POS483/142-1 09.04.15 02:55 39 32,69' N 14 42,59' E SP an Deck 

Gerät auf 100 m 
unter Schiff 
gehievt, Verholen 
zum n‰chsten 
Profil 

POS483/143-1 09.04.15 03:44 39 32,03' N 14 42,71' E SP zu Wasser 
Gerät auf 750 m 
gefiert 

POS483/143-1 09.04.15 04:03 39 32,10' N 14 42,69' E SP auf Tiefe SL: 770 m 

POS483/143-1 09.04.15 04:04 39 32,09' N 14 42,69' E SP Beginn Messung 
 

POS483/143-1 09.04.15 05:09 39 32,65' N 14 42,70' E SP Ende Messung 
 

POS483/143-1 09.04.15 05:09 39 32,65' N 14 42,70' E SP Beginn Hieven 
 POS483/143-1 09.04.15 05:25 39 32,71' N 14 42,73' E SP an Deck 
 

POS483/144-1 09.04.15 06:03 39 32,32' N 14 42,44' E OBS 

Hydrophon zu 
Wasser, 
Entfernungsmessung 

 POS483/144-1 09.04.15 06:07 39 32,30' N 14 42,47' E OBS ausgelöst 
 

POS483/144-1 09.04.15 06:08 39 32,30' N 14 42,47' E OBS Hydrophon an Deck 
 

        POS483/144-1 09.04.15 06:14 39 32,36' N 14 42,47' E OBS aufgetaucht 
 

        POS483/144-1 09.04.15 06:20 39 32,47' N 14 42,40' E OBS an Deck 
 

POS483/145-1 09.04.15 06:23 39 32,44' N 14 42,38' E OBS 

Hydrophon zu 
Wasser, 
Entfernungsmessung 

 POS483/145-1 09.04.15 06:25 39 32,42' N 14 42,39' E OBS ausgelöst 
 

POS483/145-1 09.04.15 06:25 39 32,42' N 14 42,39' E OBS Hydrophon an Deck 
 POS483/145-1 09.04.15 06:32 39 32,37' N 14 42,36' E OBS aufgetaucht 
 POS483/145-1 09.04.15 06:39 39 32,42' N 14 42,31' E OBS an Deck 
 

POS483/146-1 09.04.15 06:48 39 32,32' N 14 42,39' E OBS 

Hydrophon zu 
Wasser, 
Entfernungsmessung 

 POS483/146-1 09.04.15 06:50 39 32,31' N 14 42,40' E OBS ausgelöst 
 

POS483/146-1 09.04.15 06:50 39 32,31' N 14 42,40' E OBS Hydrophon an Deck 
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POS483/146-1 09.04.15 06:59 39 32,32' N 14 42,41' E OBS aufgetaucht 
 POS483/146-1 09.04.15 07:04 39 32,37' N 14 42,36' E OBS an Deck 
 

POS483/147-1 09.04.15 07:13 39 32,34' N 14 42,43' E OBS 

Hydrophon zu 
Wasser, 
Entfernungsmessung 

 POS483/147-1 09.04.15 07:15 39 32,33' N 14 42,45' E OBS ausgelöst 
 

POS483/147-1 09.04.15 07:15 39 32,33' N 14 42,45' E OBS Hydrophon an Deck 
 POS483/147-1 09.04.15 07:23 39 32,32' N 14 42,43' E OBS aufgetaucht 
 POS483/147-1 09.04.15 07:28 39 32,40' N 14 42,43' E OBS an Deck 
 

POS483/148-1 09.04.15 07:55 39 32,34' N 14 42,47' E OBS 

Hydrophon zu 
Wasser, 
Entfernungsmessung 

 POS483/148-1 09.04.15 07:57 39 32,33' N 14 42,48' E OBS ausgelöst 
 

POS483/148-1 09.04.15 07:57 39 32,33' N 14 42,48' E OBS Hydrophon an Deck 
 POS483/148-1 09.04.15 08:05 39 32,35' N 14 42,51' E OBS aufgetaucht 
 POS483/148-1 09.04.15 08:14 39 32,43' N 14 42,46' E OBS an Deck 
 

POS483/149-1 09.04.15 08:27 39 32,34' N 14 42,60' E OBS 

Hydrophon zu 
Wasser, 
Entfernungsmessung 

 POS483/149-1 09.04.15 08:34 39 32,31' N 14 42,56' E OBS ausgelöst 
 POS483/149-1 09.04.15 08:38 39 32,31' N 14 42,56' E OBS aufgetaucht 
 

POS483/149-1 09.04.15 08:39 39 32,31' N 14 42,56' E OBS Hydrophon an Deck 
 POS483/149-1 09.04.15 08:45 39 32,39' N 14 42,49' E OBS an Deck 
 POS483/150-1 09.04.15 11:45 39 32,13' N 14 42,31' E SP zu Wasser 
 POS483/150-1 09.04.15 12:08 39 32,21' N 14 42,40' E SP auf Tiefe SL max: 600 m 

POS483/150-1 09.04.15 12:09 39 32,21' N 14 42,40' E SP Beginn Messung 
 

POS483/150-1 09.04.15 21:39 39 32,66' N 14 42,53' E SP Ende Messung 
 

POS483/150-1 09.04.15 21:39 39 32,66' N 14 42,53' E SP Beginn Hieven 
 

POS483/150-1 09.04.15 21:57 39 32,72' N 14 42,50' E SP an Deck 
Ger‰t auf 100 m 
unter Kiel gehievt 

POS483/150-1 10.04.15 06:05 39 32,33' N 14 42,37' E SP an Deck 
 POS483/151-1 10.04.15 08:41 39 32,25' N 14 42,40' E OBEM zu Wasser 
 POS483/152-1 10.04.15 11:15 39 32,19' N 14 42,50' E SPU zu Wasser 
 

POS483/152-1 10.04.15 13:16 39 32,26' N 14 42,50' E SPU 
Beginn der 
Messungen 

 

POS483/152-1 10.04.15 18:43 39 32,61' N 14 42,52' E SPU Ende der Messungen 
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POS483/152-1 10.04.15 19:07 39 32,55' N 14 42,50' E SPU an Deck 
Auf 26 m Tiefe 
geparkt 

POS483/152-1 11.04.15 04:25 39 32,79' N 14 43,27' E SPU an Deck 

Draht vertˆrnt um 
Auftriebskˆrper, 
Einleiter gekappt, 
Ger‰t mit 
Heckgalgenwinde 
an Deck gehievt. 

POS483/153-1 11.04.15 07:58 39 32,53' N 14 42,39' E EMCS Zu Wasser Erster Test 
POS483/153-1 11.04.15 08:06 39 32,57' N 14 42,41' E EMCS An Deck 

 POS483/153-1 11.04.15 08:38 39 32,69' N 14 42,60' E EMCS Zu Wasser Zweiter Test 
POS483/153-1 11.04.15 08:43 39 32,72' N 14 42,63' E EMCS An Deck 

 POS483/153-1 11.04.15 09:22 39 32,21' N 14 42,20' E EMCS Zu Wasser Dritter Test 
POS483/153-1 11.04.15 09:26 39 32,21' N 14 42,19' E EMCS An Deck 

 POS483/153-1 11.04.15 09:34 39 32,23' N 14 42,18' E EMCS Zu Wasser Vierter Test 
POS483/153-1 11.04.15 09:39 39 32,24' N 14 42,19' E EMCS An Deck 

 POS483/153-1 11.04.15 12:15 39 32,45' N 14 42,43' E EMCS Zu Wasser Fünfter Test 
POS483/153-1 11.04.15 13:24 39 32,35' N 14 42,38' E EMCS Auf Tiefe SL max: 610m 

POS483/153-1 11.04.15 15:02 39 32,43' N 14 42,64' E EMCS Beginn Hieven 
 POS483/153-1 11.04.15 15:33 39 32,43' N 14 42,57' E EMCS An Deck 
 

POS483/154-1 12.04.15 06:06 39 32,54' N 14 42,79' E OBEM 

Hydrophon zu 
Wasser; 
Entfernungsmessung 

3 Stück 
gleichzeitig 
ausgelˆst 

POS483/154-1 12.04.15 06:11 39 32,54' N 14 42,78' E OBEM ausgelöst 
 

POS483/154-1 12.04.15 06:15 39 32,53' N 14 42,77' E OBEM Hydrophon an Deck 
 

POS483/154-1 12.04.15 06:22 39 32,51' N 14 42,73' E OBEM aufgetaucht 
3 Stück 
aufgetaucht 

POS483/154-1 12.04.15 06:36 39 32,61' N 14 42,81' E OBEM an Deck 
 POS483/154-1 12.04.15 06:47 39 32,56' N 14 42,51' E OBEM an Deck 
 POS483/154-1 12.04.15 07:00 39 32,43' N 14 42,57' E OBEM an Deck 
 

POS483/155-1 12.04.15 07:09 39 32,22' N 14 42,75' E OBEM 

Hydrophon zu 
Wasser; 
Entfernungsmessung 

 POS483/155-1 12.04.15 07:20 39 32,20' N 14 42,77' E OBEM ausgelöst 3 Stück ausgelöst 

POS483/155-1 12.04.15 07:20 39 32,20' N 14 42,77' E OBEM Hydrophon an Deck 
 POS483/155-1 12.04.15 07:30 39 32,19' N 14 42,77' E OBEM aufgetaucht 
 POS483/155-1 12.04.15 07:38 39 32,41' N 14 42,49' E OBEM an Deck 
 POS483/155-1 12.04.15 07:51 39 32,15' N 14 42,48' E OBEM an Deck 
 POS483/155-1 12.04.15 08:14 39 32,16' N 14 42,45' E OBEM an Deck 
 

POS483/156-1 12.04.15 08:17 39 32,15' N 14 42,45' E OBEM 

Hydrophon zu 
Wasser; 
Entfernungsmessung 
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POS483/156-1 12.04.15 08:28 39 32,15' N 14 42,47' E OBEM ausgelöst 4 Stück ausgelöst 

POS483/156-1 12.04.15 08:28 39 32,15' N 14 42,47' E OBEM Hydrophon an Deck 
 POS483/156-1 12.04.15 08:40 39 32,16' N 14 42,47' E OBEM aufgetaucht 
 POS483/156-1 12.04.15 08:53 39 32,20' N 14 42,73' E OBEM an Deck 
 POS483/156-1 12.04.15 09:02 39 32,30' N 14 42,72' E OBEM an Deck 
 POS483/156-1 12.04.15 09:15 39 32,17' N 14 42,50' E OBEM an Deck 
 

POS483/156-1 12.04.15 09:30 39 31,98' N 14 42,50' E OBEM an Deck 

10:30 Ende der 
Forschung- und 
Stationsarbeiten 
POS 483 

 
	
  

7 Data and Sample Storage and Availability 
 
In Kiel a joint data management team of GEOMAR and Kiel University organises and 

supervises data storage and publication by marine science projects in a web-based multi-user 

system. The geophysical data that has been acquired will be for use of GEOMAR scientists and 

collaborators only for the first phase and can be made available to other researcher by request to 

Dr. Marion Jegen-Kulcsar (mjegen@geomar.de) or Dr. S. Petersen (spetersen@geomar.de). All 

metadata are immediately available publically via the following link pointing at the GEOMAR 

portal (https://portal.geomar.de/metadata/leg/show/314267).  

In addition the portal provides a single downloadable KML formatted file 

(https://portal.geomar.de/metadata/leg/kmlexport/314267) which retrieves and combines up-to-

date cruise (POS483) related information, links to restricted data and to published data for 

visualisation e.g. in GoogleEarth. 
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10 Appendix 

 
Hybis_tracks_all. Edited Posidonia positions for HyBIS stations 135 and 137. 
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Hybis_1A. Annotated segments of dive track for HyBIS station 135 (part A) 
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Hybis_1B. Annotated segments of dive track for HyBIS station 135 (part B) 
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Hybis_2_A_B. Annotated segments of dive track for HyBIS station 137 (part A and B) 
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Hybis_2_C_D. Annotated segments of dive track for HyBIS station 137 (part C and D) 
 

 


