

Verteilung von DMSP/O im West Indischen Ozean – Ergebnisse der OASIS - Fahrt Juli/August 2014

Zur Erlangung des Grades Bachelor of Science (B. Sc.) im Studiengang Wirtschaftschemie an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel

vorgelegt von

Marc Dohms

Referenten:

Prof. Dr. Hermann Bange Prof. Dr. Christa A. Marandino

Eingereicht am: 23.06.2015

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin versichere ich, dass diese Arbeit noch nicht als Abschlussarbeit an anderer Stelle vorgelegen hat.

Kiel, den 23.06.2015

Marc Dohms Matrikelnummer 1008976

Danksagung

Für die Möglichkeit das wissenschaftliche Arbeiten kennenzulernen und an aktiver Forschung teilhaben zu dürfen, möchte ich mich besonders bei Herrn Prof. Dr. Hermann Bange bedanken.

Des Weiteren gilt mein Dank Herrn Dennis Booge, der mir während der Ausarbeitung meiner Bachelorarbeit mit Rat und Tat zur Seite stand und bei Frau Prof. Dr. Christa A. Marandino, dass Sie die Funktion als Co-Korrektorin übernommen hat.

Für die Unterstützung und die Nerven meiner Familie kann ich gar nicht genug Dank aufbringen.

Abschließend möchte ich mich bei meinen Freunden bedanken, die mir meine nötigen Pausen verschafft haben.

Inhaltsverzeichnis

1	Abst	ract und Zusammenfassung	S. 7	7
2	Hint	ergrund	S. 9	9
	2.1	Die CLAW – Hypothese		
	2.2	Relativierung der CLAW – Hypothese		
	2.3	Vorkommen und Funktionen biogener Schwefelverbindungen		
	2.4	Der Indische Ozean		
3	Meth	oden	S. 1	18
	3.1	Probenanalyse		
	3.2	Probenentnahme		
	3.3	Probenbearbeitung		
	3.4	Konzentrationsbestimmung		
4	Erge	bnisse	S. 2	23
5	Disk	ussion	S. 4	41
	5.1	Diskussion der Ergebnisse		
	5.2	Fehlerbetrachtung		
6	Fazit		S. 4	45
7	Liter	aturverzeichnis	S. 4	46
8	Anha	ang	S. 5	50
	8.1	Kalibration		
	8.2	Messwerte		

1. Abstract und Zusammenfassung

Abstract:

The object of these bachelor thesis was the measurement of the samples from the cruise OASIS on the research vessel SONNE in the western Indian Ocean, which took place from 23.07.2014 to 06.08.2014. 205 seawatersamples were measured in order to better understand the biogeochemical cycling of the sulphur sontaining spezies dimethylsulfoniopropionate (DMSP) and dimethylsulfoxid (DMSO).

In the last years the Indian Ocean was spotted to play an important role in affecting the climate of the whole world, especially by it seasonal circulation.

In this function, of affecting the climate, DMS, DMSP and DMSO are supposed to play an important role. So also the phytoplankton in this region is under investigation. A correlation between DMSP, DMSO and fluorescence was found.

The maximum of all measurement are found at the surface down to 10 m. For DMS it is 5,18 nmol L^{-1} (average 0,73 nmol L^{-1}), for DMSP 50,46 nmol L^{-1} (average 10,10 nmol L^{-1}) and for DMSO 17 nmol L^{-1} (average 4,23 nmol L^{-1}).

In a deep of 100 m all concentrations approach to a minimum.

Zusammenfassung:

Die Proben der Expedition OASIS auf dem Forschungsschiff SONNE im westlichen Indischen Ozean vom 23.07.2014 bis 06.08.2014 sind Bestandteil dieser Bachelorarbeit. Es wurden 205 Meerwasserproben hinsichtlich Dimethylsulfoniopropionat (DMSP) und Dimethylsulfoxid (DMSO) gemessen und ausgewertet.

Der Indische Ozean rückte in den letzten Jahren stärker in den Fokus der Wissenschaft, hinsichtlich der Bedeutung seiner Auswirkungen auf das Klima der gesamten Erde. Unter anderem durch seine saisonalen Ausprägungen.

Dabei könnten DMS, DMSP und DMSO, mit ihren möglichen Auswirkungen auf das Klima, eine entscheidende Rolle spielen. In diesem Zusammenhang soll auch ihre Verknüpfung mit dem vorkommenden Phytoplankton betrachtet werden. Eine Korrelation zwischen DMSP, DMSO und Fluoreszenz wurde gefunden.

Die gemessenen Höchstwerte von DMS, DMSP und DMSO befinden sich im Oberflächenwasser bis zu einer Tiefe von 10 m. Bei DMS sind es 5,18 nmol L⁻¹ (Mittelwert 0,73 nmol L⁻¹), bei DMSP 50,46 nmol L⁻¹ (Mittelwert 10,10 nmol L⁻¹) und bei DMSO 17 nmol L⁻¹ (Mittelwert 4,23 nmol L⁻¹). Die Konzentrationen nähern sich ab 100 m Tiefe ihrem Minimum.

2. Hintergrund

2.1 CLAW – Hypothese

Der Ozean ist nicht nur Teil der Temperaturregulation der Erde, sondern ist ein Ursprung vieler chemischer Verbindungen.

Der Mensch greift in das Klima durch die Verbrennung von fossilen Brennstoffen ein. Bei der Verbrennung werden unter anderem CO₂ und verschiedene Schwefelverbindungen freigesetzt.

Schwefelverbindungen gelangen jedoch nicht erst durch den Menschen in die Umwelt.

1987 wurde die CLAW - Theorie aufgestellt, nach den Anfangsbuchstaben der Wissenschaftler Robert J. Charlson, James E. Lovelock, Meinrat O. Andrea und Stephen G. Warren, dass nicht nur CO_2 und CH_4 einen Einfluss auf das Klima haben, sondern, neben vielen anderen Spurengasen, auch Dimethylsulfid (DMS).

Sie beinhaltet, dass DMS aus dem Meer ausgast, wie in Abbildung 2.1.1 gezeigt und als Aerosol, durch die Bildung von Wolkenkondensationskeimen (CCN: cloud condensation nuclei), bei der Wolkenbildung eine aktive Rolle spielt (Charlson *et al.*, 1987).

Abb.2.1.1: CLAW - Hypothese: Das vom Phytoplankton gebildete DMS gelangt aus dem

Meerwasser in die Atmosphäre und dient dort als CCN. Durch die Wolkenbildung werden aktiv Wärme und UV Einstrahlung reduziert. Dies hat wiederum einen Einfluss auf das Phytoplankton (Simó et al., 2001).

Die Wolken dienen als Schild, welcher die solare Einstrahlung auf die Wasseroberfläche und somit auch die Temperatur reduziert. Für DMS produzierende Algen kann die Hypothese keine genaue Aussage treffen, ob der Rückgang der ultravioletten Strahlung eine negative oder positive Rückkopplung ist (Charlson *et al.*, 1987).

Diese Theorie des selbstregulierenden Systems deckt sich mit der Annahme, der sogenannten Gaia - Hypothese (Lovelock *et al.*, 1986), dass alle Systeme der Erde, lebendig oder nicht, im aktiven Austausch stehen und somit eine Homöostase mit lebensfreundlichen Bedingungen geschaffen wird (Charlson *et al.*, 1987).

2.2 Relativierung der CLAW – Hypothese

2011 relativierten P.K. Quinn und T.S. Bates in ihrer Ausarbeitung die CLAW - Hypothese.

Zum einem sehen sie die Ausgasung von DMS im Hinblick auf die Wolkenbildung nicht als aktive Maßnahme der produzierenden Algen, sondern viel mehr als saisonale Schwankungen, zum anderen sehen sie die DMS - Konzentration als zu klein an, um im Vergleich zu Meersalz, als Ausgangsstoff für CCN und somit für die Bildung von Wolken zu dienen. Auch weisen sie darauf hin, dass organisches Material im Meer identisch mit organischem Material ist, welches in Aerosolform in der Atmosphäre gefunden wurde. Somit gibt es einen Zusammenhang zwischen der Wolkenbildung und den Ausgangsstoffen im Ozean, jedoch zeigen weitere Modelle, dass um einen Anstieg der CCN um 30 % zu erreichen, die Ausgasung von DMS um 300 % steigen müsste (Wood *et al*, 2007, Steven *et al.*, 2009).

Eine positive oder auch negative Veränderung von ultravioletter beziehungsweise thermischer Strahlung auf die Bildung von DMS durch Algen wird nicht widerlegt, jedoch wird dieser Einfluss als so gering angenommen (Vallina *et al.*, 2007), dass eine Verknüpfung, wie in der CLAW - Hypothese postuliert, nicht gefunden werden konnte (Quinn und Bates, 2011).

Zum anderen spricht gegen diese Theorie, dass ein Großteil der Ausgasung von DMS in Regionen stattfindet, wo es zu keiner besonders großen Entstehung von Phytoplanktonblüten kommt (Simó *et al.*, 2001).

2.3 Vorkommen und Funktionen biogener Schwefelverbindungen

Schwefelverbindungen und ihre Auswirkungen auf das Klima können nicht isoliert in der Atmosphäre betrachtet werden. Dabei stellt sich die Frage, wo und wie diese entstehen und für welche Funktion im Nahrungsnetz diese vorgesehen sind, denn DMS macht 50 % der Atmosphäre zugeführten Schwefelquelle aus (Stefels *et al.*, 2007).

Eine direkte Produktion von DMS in biologischen Zellen, wie in der CLAW - Hypothese dargestellt, existiert jedoch nicht. DMS wird durch die enzymatische Umwandlung von Dimethylsulfoniopropionat (DMSP) in Phytoplankton produziert (Simó *et al.*, 2001).

Abbildung 2.3.1 zeigt, dass DMS auf mindestens drei Wegen aus DMSP entstehen kann. Zu einem auf dem Weg der Lyase von DMSP, bei dem Acrylat frei wird. Die anderen zwei Abbauwege von DMSP finden im Organismus statt. Im "demethylation-pathway" konnte das Gen DmdA vom Silicibacter pomeroyt isoliert werden, welches eine Lyase bildet, die DMSP umsetzt. Beim "cleavage-pathway" findet eine Transferase auf Basis des Gens DddD statt, welches im Co-Enzmy-A (CoA) Zyklus aktiv ist (Moran *et al.*, 2004, Howard *et al.*, 2006, Todd *et al.*, 2007).

Verteilung von DMSP/O im West Indischen Ozean - Ergebnisse der OASIS - Fahrt Juli/August 2014

Abb.2.3.1: Metabolismus von DMSP und Freisetzung von DMS. Box 1 zeigt Demethylationsweg, der erste Schritt wird von DmdA katalysiert. Box 2 zeigt einen Ansatz für einen Katabolismus mittels DddD (Todd et al., 2007).

Im Bereich der Produktion von DMS und DMSP sind die Algen Phaeocystis und Emiliania huxleyi, aus der Gruppe der Haptophyten zu nennen. Diese Algen sind gut erforscht. So wurde in Proben mit Emiliania huxleyi Konzentrationen von 1-9 nM DMS gefunden. Diese Angabe entstammt einer regelmäßigen Messung innerhalb englischer Küstengewässer (Stefels *et al.*, 2007).

Innerhalb der Zellen dieser Algen wird DMSP möglicherweise als Kompensationsreaktion gebildet, wenn nicht ausreichend Carbonate oder Stickstoff zur Verfügung stehen (Stefels et al., 2007). Ein Beleg für die 2007 aufgestellte Theorie ist der von Reisch, Moran und Whitman (2011) postulierte Metabolismus des Co-Enzyms A mit DMSP als Ausgangsstoff, dargestellt in Abbildung 2.3.2. Bei der enzymatisch katalysierten Reaktion wird unter Adenosintriphosphat Verbrauch ein Thioester gebildet, welcher mit einer CoA Ligase in ein für die Zelle nutzbares CoA umgewandelt wird.

Abb.2.3.2: Metabolismus von DMSP innerhalb des Kohlenstoffabbaus der Zelle. Reaktion 5 und 6 als Beipassreaktionen von 8. Die Reaktionen werden von Enzymen durchgeführt (Reisch et al., 2011).

Andere Zusammenhänge, wie mit dem Salzgehalt des Meeres werden zwar angenommen, konnten aber bis jetzt nicht genau verifiziert werden. Hingegen ist bewiesen, dass die Zufuhr von Licht die Produktion von DMSP beeinflusst (Stefels *et al.*, 2007; Simó *et al.*, 2000).

Die Abgabe von DMSP an die Umwelt geschieht durch die Algen aus mehreren Gründen, durch

Autolyse, dem Auflösen von Zellen nach ihrem Absterben, nach Angriffen durch Viren und zuletzt durch die Aufnahme der Algen durch höhere Organismen als Nahrung (Abb.2.3.3), dies bedeutet, dass die Primärproduzenten von DMSP von höheren Organismen gefressen werden und sich DMSP in ihnen akkumuliert. Hierbei kann sich DMSP in der Biomasse kumulieren und somit ein höheres trophisches Level erreichen (Simó *et al.*, 2003).

Dabei wurde jedoch in Feldversuchen herausgefunden, dass nur etwa 33% des DMSP sich in der Biomasse befindet. Der Rest liegt als gelöste Spezies im Wasser vor (Simó *et al.*, 2002).

Des Weiteren wird angenommen, dass die DMSP Produktion äquivalent zur Stickstoffverwertung ist (Stefels *et al.*, 2007).

Weiterhin kann DMSP ca. 48 % des Schwefelbedarf von Mikrozooplankton decken (Kiene und Linn, 2000; Simó *et al.*, 2004) und etwa 8 - 15 % des Kohlenstoffbedarfs (Kiene und Linn, 2000; Simó *et al.*, 2002).

Eine direkte Verbindung von Licht und DMSP Vorkommen, konnte bis jetzt noch nicht nachgewiesen werden (Simó *et al.*, 2001).

Abb.2.3.3: Das in den Algen produzierte DMSP wird durch Autolyse, virale Attacken und Aufnahme durch höhere Organismen freigesetzt. Dabei wird es durch Enzyme von Bakterien in DMS umgesetzt. DMS kann dabei durch photochemische Prozesse in DMSO umgewandelt werden (Simó

Verteilung von DMSP/O im West Indischen Ozean - Ergebnisse der OASIS - Fahrt Juli/August 2014

et al., 2001).

Die Funktionen von DMS, DMSP und DMSO sind unterschiedlich. DMSP kann, wie beschrieben zu DMS umgesetzt werden. DMS kann photochemisch zu DMSO oxidiert werden (Stefels *et al.*, 2007).

Eine Funktion von DMS in den Algen kann die Umsetzung zu Acrylaten sein. Diese verhindern ein Fressen der Algen durch höhere Organismen (Stefels *et al.*, 2007).

DMSP dient unter anderem der Osmoserugaltion in den Zellen, sowie einer möglichen Klimaregulation (Lee *et al.*, 1999; Tang *et al.*, 2003). Eine andere Theorie legt nahe, dass DMSP in Verbindung mit DMS und DMSO als Antioxidans wirkt (Sunda *et al.*, 2002).

DMSO dient hingegen wohl als Antioxidans, Frostschutzmittel und als Bereitstellung von Energie in biochemischen Prozessen (Lee *et al.*, 1999; Tang *et al.*, 2003), des Weiteren ist DMSO thermodynamisch instabil, das Redoxpotential kann jedoch, wenn DMSO zu DMS reduziert wird, vom Organismen für die Bildung von Adenosintriphosphat genutzt werden. Ein Syntheseweg für DMSO könnte der radikalische Angriff auf DMSP von Hydroxylen sein oder eine photochemische Reaktion von DMS zu DMSO (Lee *et al.*, 1999; Tang *et al.*, 2003).

Betrachtet man das Vorkommen von DMS, DMSP und DMSO im Bereich des Mittelmeeres, der Nordsee und des Nordatlantiks, wird deutlich, dass zumeist mehr DMSP und DMSO als DMS vorliegt. Dies könnte unter anderem daran liegen, dass es durch die UV Einstrahlung zur Oxidation von DMS zu DMSO und somit einem Rückgang von DMS kommt. Ein andere Grund für das Absinken der Konzentrationen von DMS ist die Aufnahme durch Bakterien (Kiene *et al.*, 1993, Simó *et al.*, 2000, Tang *et al.*, 2003).

Die DMS Konzentration liegt zumeist zwischen 0.5 und 10 nM (Kettle et al., 1999). Gibson gibt 1990 für den Nordost Atlantik Konzentrationen von 4-8 nM DMS an, sowie Simó (1998) für DMSO 1,2-13 nM. Im Nordatlantik 39,1 nM für DMSP von Simó (2000). Für den Indischen Ozean geben Shenoy und Kumar (2007) eine Spanne von 2-3 nM für DMS an.

Global gesehen nehmen die Konzentrationen von DMS, DMSP und DMSO vom Äquator bis hin zu

Verteilung von DMSP/O im West Indischen Ozean - Ergebnisse der OASIS - Fahrt Juli/August 2014

den Polen ab (Lana et al., 2011).

Die Produktion der Schwefelverbindungen ist saisonal bedingt und unterliegt somit Schwankungen, welche am Äquator geringer sind, als an den Polen (Lana *et al.*, 2011).

Eine Anomalie während der Schwankungen ist das Auftreten von hohen DMS Konzentrationen im Sommer, wenn jedoch die Biomasse, nachgewiesen als Chlorophyll-a (Chl a), auf einem Minimum ist. Dieses Phänomen wird "Sommer-Paradoxon" genannt. Die Anomalie tritt saisonal auf (Simó *et al.*, 1999).

Dieses Sommerparadoxon könnte als Bestätigung der CLAW - Hypothese dienen Eine andere Erklärung ist, dass im Sommer mehr Phytoplanktonspezies, welche Stickstoff umsetzen, aktiv sind. Dabei wird zumeist, wie oben beschrieben, auch DMSP frei (Simó *et al.*, 2003).

<u>2.4 Der Indische Ozean</u>

In den letzten Jahren ist entdeckt worden, dass der Anteil des Indischen Ozeans bei der Beeinflussung des Klimas, größer ist als angenommen.

Der tropische Indische Ozean bildet den größten Teil des Wärmereservoirs der Erde und beeinflusst damit nicht nur das regionale Klima, sondern das der gesamten Erde (Schott et al., 2009).

So wird die Windrichtung von den Temperaturen der Jahreszeiten beeinflusst, welches sich wiederum auf den Niederschlag auswirkt. So beschreiben Shenoy und Kumar (2007), dass die DMS Konzentration erhöht ist, wenn der Südwest Monsun im Juni bis September auftritt.

Weiterhin wird der Ozean durch El Niño beeinflusst, einem nicht zyklisch auftretendem Ereignis, welches den tropischen Indischen Ozean erwärmt, wobei die thermische Sprungschicht, durch die auftretenden Winde, in die Tiefe drückt wird (Xie *et al.*, 2002). Seit 1950 sind es 0.5°C Erwärmung im Indischen Ozean (Schott *et all.*, 2009).

Eine Folge davon ist der nachlassende Niederschlag, ebenso wie das unnatürliche Auftreten cyclonischer Wirbel im Bereich der niederen Troposphäre. Diese Wirbel haben wiederum Einfluss

auf den sommerlichen Monsun in Indien (Xie et al., 2002).

Die Strömung im Indischen Ozean wird bestimmt durch den Südäquitorialen Strom, welcher sich an der Ostküste Madagaskars (17°S), nach Nord und Süd, aufspaltet. Dabei handelt es sich um einen Volumenstrom von 20 Sv in den südlichen und einen Volumenstrom von 30 Sv in den nördlichen Teil des Indischen Ozeans (de Ruitjer *et al.*, 2004, Quartly *et al.*, 2006, Schott *et all.*, 2009).

Die Meerwasserproben entstammen der Fahrt der SO 235 (OASIS) auf dem Forschungsschiff im Juli und August 2014 im westindischen Ozean.

Von Port Louis (-20°N, 57°O), Mauritius bis nach Malé (4°N, 73°O), Malediven (Abb.2.4.1).

Abb.2.4.1: Standort der Messpunkte der Sonne 235 (OASIS) im Juli/August 2014.

3. Methoden

3.1 Probenanalyse

Mit einem Gaschromatographen (GC) der Firma Agilent (Agilent 7820A) und einem flammenphotometrischen Detektor (FPD) wurde das in den Proben enthaltene DMS, mittels vorgeschaltetem Purge-and-Trap (Abb.: 3.1.1) Verfahren, gemessen. Dafür wurden jeweils drei Proben mit gleichem Volumen gemessen und gemittelt.

Der Anteil des DMS wurde flammenphotometrisch ermittelt. Dabei findet eine Anregung des Moleküls statt und bei der Rückkehr in den Grundzustand wird Licht in Form eines molekularen Bandenspektrums emittiert.

Abb.3.1.1: Funktionaler Aufbau eines Purge-and-Trap Verfahren mit Gaschromatographen. GV: Gasversorgung des Trägergases, GR: Gasregler, P: Probe, TF: Trockenfalle, D: Dewer mit flüssigem Stickstoff, E: Erhitzer, Ein: Einlass des Gaschromatographen, S: Säule, Det: Flammenphotometrischer Detektor, V: (Signal-)Verstärker, Com: Computer zur Abbildung der Daten (Wieck, 2014).

Für die Analyse wurden drei Flaschen, welche die Proben (P) enthielten, mit dem Trägergas Helium (He 5.0, Air Liquide GmbH Düsseldorf) durchspült. Der Gasfluss wurde mit dem Gasregler (GR) eingestellt und betrug ca. 30 ml min ⁻¹.

Dabei wurde das DMS aus dem Wasser getrieben (engl.: purge). Dieses Gasgemisch wurde über

eine Trockenfalle (TF), gefüllt mit Kaliumcarbonat, geleitet, um den Gasstrom zu trocknen. Das Gasgemisch wurde danach in der Kühlfalle, befüllt mit flüssigem Stickstoff, gefangen (engl.: trap). Hiernach wurden die Schläuche, in dem sich das zu untersuchende Gasgemisch befand, an den Gaschromatographen angeschlossen und in kochendes Wasser (E) gegeben, damit das Gas, über den Einlass (Ein) in die Kapilarsäule (S) (WCOT fused Silicia 30 m x 0,32 mm i.d., Varian Capillary Columns) gelangen konnte. Die Temperatur im Ofen betrug konstant 80°C.

Durch die Wechselwirkungen zwischen der stationären Phase der Säule und der Probe gelangten die ausgetriebenen Gase mit unterschiedlichen Retentionszeiten zum Detektor (Det), wo sie in einer Flamme, erzeugt durch ein Gemisch aus synthetischer Luft und Wasserstoff, verbrannt wurden.

Der im Detektor eingebaute Bandbreitenfilter ließ nur die Strahlung von Schwefel (λ =393 nm) auf den nachgeschalteten Photomultipler (V) fallen, welcher das Signal verstärkte. Ein Computer (Com) stellte danach die Messung graphisch dar (Wieck *et al.*, 2014; Simó *et al.*, 1998).

3.2 Probenentnahme

Die genommenen Seewasserproben können in zwei Gruppen systematisch unterteilt werden. Zum einen in die Proben, welche während der Fahrt kontinuierlich, alle 3 h, entnommen wurden, Underway Proben (UW-Proben), und jene Proben, die an regelmäßigen Stellen, in unterschiedlichen Tiefen, entnommen wurden (CTD-Casts).

Das Seewasser für die UW-Proben wurde mit einer Tauchpumpe aus 6 m Tiefe zur Probenentnahmestelle gefördert.

Die Tiefenprofilproben wurden mit Niskin-Flaschen genommen. Diese Flaschen sind auf einer Rosette angeordnet und können in verschiedenen Tiefen elektrisch geschlossen werden. Weiterhin befand sich eine CTD-Sonde (conductivity, temperature, depth) an der Rosette. Somit konnte die Leitfähigkeit, Temperatur und Tiefe ermittelt werden.

3.3 Probenbearbeitung

Aufgrund der leichten Flüchtigkeit von DMS, wurde die Probe blasenfrei gezapft und nach maximal einer Stunde Lagerungszeit, unter Lichtausschluss, im Kühlschrank an Bord gemessen.

Die Probe bestand aus einer 50 mL Flasche, welche lichtgeschützt gelagert werden sollte. Nach der Messung von DMS wurden der Probe drei Pellets Natriumhydroxid (NaOH) zugegeben.

Nach dem Verschließen sollten die Proben mindestens eine Nacht stehen gelassen werden, damit das gesamte DMSP zu DMS umgesetzt werden kann.(Abb.3.3.1)

Abb.3.3.1: Umsetzung von DMSP in DMS und Acrylat unter Zugabe von Natriumhydroxid (NaOH).

Nachdem die DMSP-Probe gemessen wurde, wurde Natriumborhydrid (NaBH₄) hinzugegeben, welches DMSO zu DMS reduzierte (Lee, Mora, *et al.*, 1999 und Simó *et al.*, 1998).

Abb.3.3.2: Reduktion von DMSO zu DMS unter Zugabe von NaBH₄.

Somit konnten DMSP und DMSO als DMS am GC-FPD gemessen werden.

3.4 Konzentrationsbestimmung

Die Messung wurde mit Hilfe des Programms Open Lab von Agilent bearbeitet, das die Messung graphisch darstellt. Auf der X-Achse wurde die Zeit abgebildet und auf der Y-Achse der Höchststand (engl.: Peak) der Probe. Für die Auswertung wurde das Integral berechnet.

Zur Umrechnung der Peakflächen (engl.: Peakareas), in Konzentrationen, wurde eine Kalibration durchgeführt. Hierbei wurde in drei Flaschen 10 ml MilliQ vorgelegt. Dazu wurden jeweils bekannte Mengen eines DMS-Standards hinzugegeben.

Kalibration

Abb.3.4.1: Kalibrationsgerade vom 31.03.2015. Der Logarithmus der Konzentration des DMS-Standards wird gegen den Logarithmus der Peakfläche aufgetragen. R²=0,991.

Auf Grund des proportionalen Zusammenhanges zwischen Peakfläche der Konzentration von DMS in der Probe, konnte durch die Bestimmung einer Regressionsgeraden (Abb.3.4.1), die unbekannte Peakfläche einer Seewasserprobe in eine Konzentration umgerechnet werden. Es wurden jeweils Triplikate gemessen, um durch die Bildung des Mittelwerts aller drei Peakflächen, die Verfälschung durch Messfehler gering zu halten.

Der Logarithmus der Peakfläche entspricht dem Logarithmus der Stoffmenge des bekannten DMS-Standards (n) multipliziert mit der Steigung (x), b steht für den Y-Achsenabschnitt der Regressionsgerade.

$$\log(Peakfläche) = \log(n) \cdot x + b$$

Stellt man diese Formel um, so ergibt sich eine Gleichung nach log (n).

$$\frac{(\log(\textit{Peakfläche}) - b)}{(x)} = \log(n)$$

Die Umkehrfunktion des Logarithmus wird angewendet, um eine Stoffmenge für DMS (n(DMS)) zu erhalten.

$$n(DMS) = 10^{(\log(Peakfläche) \cdot x + b)}$$

In Beziehung mit dem Volumen (V) und n(DMS), der gemessenen Proben wird eine Konzentration (c)von DMS erhalten.

$$\frac{(n(DMS))}{V} = c$$

4. Ergebnisse

Die gemessenen Proben der Sonne-Fahrt SO235 (OASIS) (Abb.: 4.1) werden auf zwei Arten dargestellt. Zum einen als Oberflächenverlauf für DMS, DMSP und DMSO, sowie als Tiefenprofile. Bei den Tiefenprofilen wird auch Sauerstoff und Nitrat (NO₃⁻) dargestellt.

Abb.4.1: Station der Tiefenprofile (rot) und Übersicht des Untersuchungsgebiets.

Die Abbildungen 4.2, 4.3 und 4.4 zeigen die UW Resultate für DMS, DMSP und DMSO.

Abb.4.2: DMS Underway von SO235 (OASIS).

Abb.4.3: DMSP Underway von SO235 (OASIS).

Abb.4.4: DMSO Underway der Sonne 235 (OASIS).

Die Abbildungen zeigen Maxima für DMSP und DMSO oberhalb des Breitengrades -9°N und unterhalb -4°N. Für DMS und DMSP gibt es weitere Maxima in der Nähe von Port Louis. Die Mittelwerte der UW Messungen sind 1,97 nmol L⁻¹ DMS, 13,20 nmol L⁻¹ DMSP und für DMSO 5,77 nmol L⁻¹.

Bei den Stationen 4 und 13 handelt es sich um sogenannte 24 h Stationen. Bei diesen Stationen trieb das Schiff über den gesamten Zeitraum in derselben Wassermasse. Alle 6 h wurde ein Cast gefahren, um so über den Tag eventuell unterschiedliche Konzentrationen zu detektieren. Abgebildet wird die Zeit als Day of the Year (DOY).

Abb.4.5: Graphische Darstellung der Messwerte von DMS gegen die Tiefe über 24 h. Schwarz markiert den Sonnenuntergang und die rote Markierung den Sonnenaufgang.

Abb.4.6: Graphische Darstellung der Messwerte von DMSP gegen die Tiefe über 24 h. Schwarz markiert den Sonnenuntergang und die rote Markierung den Sonnenaufgang.

Abb.4.7: Graphische Darstellung der Messwerte von DMSO gegen die Tiefe über 24 h.Schwarz markiert den Sonnenuntergang und die rote Markierung den Sonnenaufgang.

In den Abbildungen 4.5, 4.6 und 4.7 sind die Messungen gegen die Zeit aufgetragen. Deutlich wird, dass die höheren Konzentrationen von DMS während des Tages auftreten und beim DMSP kurz nach dem Sonnenaufgang. Des Weiteren hat DMSP kurz nach dem Sonnenaufgang ein Minimum. DMSO hat ein Minimum vor dem Sonnenaufgang. Während des Tages ist auch die Konzentration von DMSO in der Tiefe höher, als in der Nacht, ähnliches lässt sich beim DMS beobachten.

Abb.4.8: Graphische Darstellung der Messwerte von DMS gegen die Tiefe über 24 h. Schwarz markiert den Sonnenuntergang und die rote Markierung den Sonnenaufgang.

Abb.4.9: Graphische Darstellung der Messwerte von DMSP gegen die Tiefe über 24 h. Schwarz markiert den Sonnenuntergang und die rote Markierung den Sonnenaufgang.

Abb.4.10: Graphische Darstellung der Messwerte von DMSO gegen die Tiefe über 24 h. Schwarz markiert den Sonnenuntergang und die rote Markierung den Sonnenaufgang.

Die Station 13 liegt nordöstlicher als die Station 4. Das Maximum der Schwefelverbindungen liegt bei 50 m und DMS, DMSP und DMSO zeigen kurz vor Sonnenaufgang ein Maximum.

Die folgenden Stationen 10, 11 und 13 (Abb.: 4.11) wurden hinsichtlich des Verlaufs der Konzentration entlang des Breitengrades (Latitude) nach Norden hin untersucht.

Abb.4.11: Rote Umrandung zeigt die Stationen 10, 11 und 13.

Abb.4.12: Graphische Darstellung der Messwerte von DMS gegen die Tiefe und der Latitude.

Abb.4.13: Graphische Darstellung der Messwerte von DMSP gegen die Tiefe und der Latitude.

Abb.4.14: Graphische Darstellung der Messwerte von DMSO gegen die Tiefe und der Latitude.

Für DMS zeigt sich ein Maximum bei -10°N und einem Rückgang der Konzentration sowohl bezüglich der Tiefe, als auch entlang des Breitengrades nach Norden.

Für DMSP und DMSO zeigt sich ein Maximum bei -6°N unterhalb der Oberfläche und sinkt danach ab.

Die folgenden Abbildungen enthalten die Messwerte für DMS, DMSP und DMSO an einer Station, sowie die Konzentrationen von Sauerstoff und Nitrat.

Station 6

Abb.4.15: Messwerte von DMS, DMSP und DMSO gegen die Tiefe an Station 6, bei -5,85°N und 64,73°O.

Abb.4.16: Messwerte von Sauerstoff und Nitrat gegen die Tiefe an Station 6, bei -5,85°N und 64,73°O.

Bei Station 6 erkennt man, dass die Konzentrationen der Schwefelverbindungen bis zu einer Tiefe von 60 m höher sind und danach gegen 0 tendieren. Der Sauerstoff sinkt bis 100 m auf ein Minimum und steigt danach wieder an. Die Konzentrationen des Nitrats verhalten sich gegenläufig und steigen ab einer Tiefe von 60 m an.

Abb.4.17: Messwerte von DMS, DMSP und DMSO gegen die Tiefe an Station 7, bei -5,85°N und 66°O.

Abb.4.18: Messwerte von Sauerstoff und Nitrat gegen die Tiefe an Station 6, bei -5,85°N und 66°O.

Für DMSP zeigt sich eine gleichbleibende Konzentration oberhalb von 60 m. DMS hat seine höchste Konzentration bei 60 m und DMSO unterhalb der Oberfläche. Nitrat steigt ab einer Tiefe von 80 m an.

Abb.4.19: Messwerte von DMS, DMSP und DMSO gegen die Tiefe an Station 8, bei -7,32°N und 65,99°O.


```
Station 8
```

Abb.4.20: Messwerte von Sauerstoff und Nitrat gegen die Tiefe an Station 6, bei -7,32°N und 65,99°O.

Für DMSP zeigt sich ein Maximum von 24.55 nmol L⁻¹ bei 30 m und danach ein gleichmäßiger Abfall bis 100 m. Danach starke Tendenz gegen 0. DMS fällt gleichmäßig von einer hohen Konzentration von 2,85nmol L⁻¹, nahe der Oberfläche, bis zu einem Minimum bei 100 m. Sauerstoff hat ebenfalls ein Maximum bis 40 m und bleibt nach einem starken Abfall konstant, auch in der Tiefe zwischen 80 m und 200 m. Nitrat steigt nach einem Minimum bei 10 m an und bleibt ab 80 m konstant.

Abb.4.21: Messwerte von DMS, DMSP und DMSO gegen die Tiefe an Station 6, bei -10,49°N und 66°O.

Abb.4.22: Messwerte von Sauerstoff und Nitrat gegen die Tiefe an Station 6, bei -10,49°N und *66°O*.

Maximum von DMSP liegt bei 70 m danach erfolgt ein Rückgang der Konzentration. Der Verlauf von DMS ist dem von DMSP ähnlich, jedoch mit einem Maximum bei 30 m. DMSO hat sein Maximum nahe der Oberfläche und fällt danach konstant ab. Im Gegensatz zu allen anderen Stationen ist die Konzentration von DMSO in den oberen 30 m höher als von DMSP. Sauerstoff hat sein Maximum circa bei 20 m, fällt danach ab und bleibt konstant ab 100 m. Nitrat ist an der Wasseroberfläche bei seinem Minimum und steigt unterhalb von 60 m an.

Abb.4.23: Messwerte von DMS, DMSP und DMSO gegen die Tiefe an Station 6, bei -6,06°N und 71,06°O.

Station 11

Abb.4.24: Messwerte von Sauerstoff und Nitrat gegen die Tiefe an Station 6, bei -6,06°N und 71,06°O.

Die Konzentrationen von DMSP und DMSO sind an der Wasseroberfläche am höchsten und fallen danach konstant ab, bis zu einer Tiefe von 100 m. DMS hingegen hat ein Maximum bei 30 m. Sauerstoff hat sein Maximum bis 40 m und fällt danach konstant bis auf ein Minimum bei 100 m. Danach ist der Verlauf annähernd konstant. Die Nitratkonzentration ist bis 40 m konstant und steigt danach mit zunehmender Tiefe leicht an.

5. Diskussion

5.1 Diskussion der Ergebnisse

Die Höchstwerte der Messungen belaufen sich bei DMS auf 5,18 nmol L⁻¹, bei DMSP auf 50,46 nmol L⁻¹ und bei DMSO auf 17 nmol L⁻¹ und die Mittelwerte Messungen liegen bei 0,73 nmol L⁻¹ für DMS, für DMSP bei 10,10 nmol L⁻¹ und für DMSO bei 4,23 nmol L⁻¹.

Region	Monat/Jahr	DMS (Mittelwert) [n- mol L ⁻¹]	DMSP (Mittelwert) [nmol L-1]	DMSO (Mittelwert) [nmol L ⁻¹]	Ouelle
Mittelmeer	Juni/1995	7,3	11.6	20,9	Simó et al., 2000
Nordsee	Juni/1996	65	490	41	Simó et al., 2000
Nord Atlantik	Juni/1998	4,9	39,1	13	Simó et al., 2000
West Pazifik	Oktober/2009	9	36	159	Zindler et al., 2013
West Indischer Ozean	Juli-August/2014	0,73	10,1	4,23	Diese Arbeit

Tab.5.1.1: Mittelwerte der Konzentrationen von DMS, DMSP und DMSO in verschiedenen Regionen.

Im Vergleich der Werte (Tab. 5.1.1) wird deutlich, dass die gemessenen Konzentrationen von DMS, DMSP und DMSO im westlichen Indischen Ozean zumeist deutlich unter denen der anderen Regionen liegen.

Die Mittelwerte der UW Messungen sind 1,97 nmol L⁻¹ DMS, DMSP 13,20 nmol L⁻¹ und für DMSO 5,77 nmol L⁻¹ und somit höher als die Mittelwerte der gesamten Messungen, inklusive der Tiefenprofile. Anschließend wird deutlich, dass die Konzentrationen von DMSP und DMSO bis zum -9°N ansteigen und danach kontinuierlich nach Norden hin abnehmen, so wie in den Abbildungen 4.2-4 für die Under Way Proben und Abbildung 4.12-14 der Tiefenprofile gezeigt.

Die Korrelationen zwischen den Schwefelverbindungen sind auch geringer als bei den Tiefenprofilen, sowohl DMS korreliert nicht mit DMSP ($R^2=0,06$), als auch DMS mit DMSO ($R^2=0,20$) und DMSP nicht mit DMSO ($R^2=0,29$).

Der Verlauf der Tiefenprofile von Station 6, 8 und 11 lässt sich gemeinsam betrachten. Hier hat die

Konzentration von DMSP einen annähernd logarithmischen Verlauf. Betrachtet man in diesem Zusammenhang die Fluoreszenz gegen DMSP, wobei Fluoreszenz hier als Bezug für das Vorhandensein von Biomasse dienen soll, so erhält man einen Korrelationskoeffizienten von $R^2=0,64$ (Abb.5.1.1).

Betrachtet man den Zusammenhang zwischen DMSP und Fluoreszenz so erhält man über die Gesamtheit der Proben nur einen Korrelationskoeffizienten von R²=0,16.

Abb.5.1.: Auftragung von Fluoreszenz gegen DMSP.

Bei den Stationen 7 ($R^2=0,91$) und Station 9 ($R^2=0,77$) lässt sich ebenfalls ein Zusammenhang zwischen Biomasse und Vorhandensein von DMSP ablesen. An der Oberfläche (Underway-Proben) konnte eine Korrelation von $R^2=0,27$ zwischen DMSP und Fluoreszenz gefunden werden. Somit ist anzunehmen, dass in der Tiefe mehr Biomasse existiert, welches DMSP produziert. Für DMSO gibt es an der Oberfläche nur eine geringe Korrelation mit der Fluoreszenz ($R^2=0,07$), jedoch in den Tiefenprofilen eine höhere Korrelation, so zum Beispiel bei den Stationen 6, 8 und 11 ($R^2=0,46$). Somit liegt nahe, dass auch hier DMSO in Tiefen gebildet wird, wo das Phytoplankton nicht der direkten UV-Einstrahlung ausgesetzt ist. Die Synthese von DMSO aus DMSP durch den radikalischen Angriff von Hydroxylen benötigt einen Austausch mit der Atmosphäre, da das Radikal bei einer Reaktion von Ozon und Wassermolekülen entsteht. Somit muss es noch andere Wege zur Bildung von DMSO geben.

Anders als in den Oberflächenbereichen haben die Schwefelverbindungen in den Tiefenprofilen der Station 6, 8 und 11 eine höhere Korrelation untereinander. Am geringsten, wie auch in den Oberflächenproben, ist die Korrelation von DMS und DMSP mit $R^2=0,26$. DMSP und DMSO haben ein $R^2=0,62$ und DMS hat eine Korrelation von $R^2=0,85$ mit DMSO.

Damit wird deutlich, dass DMS und DMSP im Tiefenprofil nicht gemeinsam vorliegen. Dem hingegen liegen DMS und DMSO vermehrt zusammen vor, da DMS photochemisch zu DMSO umgesetzt wird, jedoch nimmt die Einstrahlung mit der Tiefe ab, so zerfällt DMSO zu DMS. Auf Grund der Korrelation von DMSP und DMSO ist anzunehmen, dass das Phytoplankton sowohl DMSP als auch DMSO produziert.

Werden die Tiefenprofile betrachtet, so lässt sich erkennen, dass die Konzentrationen vom Sauerstoff ebenfalls ihre Maxima oberhalb von 100 m haben. Sauerstoff wird bei den Stoffwechselprozessen der Biomasse, unter anderem der Photosynthese, frei. Das gegenläufige Verhalten der Stickstoffspezies passt ebenso in diesen Zusammenhang, denn das Phytoplankton verbraucht es in den Stoffwechselprozessen.

Das Phytoplankton kann diese Prozesse nur unter Lichtzufuhr ausführen. Die Intensität der Lichteinstrahlung nimmt mit der Tiefe ab. Somit fallen ebenso die Konzentrationen der Schwefelverbindungen und die des Sauerstoffes unterhalb von 100 m, da sie Teil des Stoffwechselprozesses sind. Nur die Konzentrationen der Stickstoffspezies steigen wie erwartet an da sie nicht weiter verstoffwechselt werden.

Weiterhin wird deutlich, dass die Konzentrationen von DMSP höher als die des DMSO sind. Grund dafür könnte die Primärproduktion von DMSP sein, da DMSO erst über den Umweg von DMS gebildet wird.

Bei den Stationen 4 und 13 wurden Messungen über 24 h hinweg genommen. Für beide Stationen gilt, dass DMSP sein Maximum in der Nacht oder kurz vor Sonnenaufgang hat. DMSO hat bei Station 4 sein Minimum kurz vor Sonnenaufgang und seine Konzentration steigt mit dem Tagesverlauf an, dies hängt zusammen mit der photochemischen Umsetzung von DMS zu DMSO

und der radikalischen Umsetzung von DMSP zu DMSO unter Sonneneinstrahlung. Bei Station 4, welche nordöstlicher liegt, sind die höheren Konzentrationen von DMS während des Tages und während der Nacht geringer und bei Station 13 liegt das Maximum von DMS kurz vor Sonnenaufgang vor.

5.2 Fehlerbetrachtung

Im Labor gibt es folgende Fehlerquellen. DMSP und DMSO wurden, wie beschrieben, nacheinander gemessen. Nachdem NaBH₄ zur DMSP Probe hinzugeben wurde, gab es immer eine kleine Verzögerung bis der Deckel fest verschraubt war. Somit könnte etwas DMSO schon vor der Messung entwichen sein. Geht man von einer Umsetzung des DMSO zu DMS innerhalb einer Minute aus und veranschlagt drei Sekunden für das Schließen des Deckels, so liegt der Fehler bei 5 %.

Bei der Kalibration ist die höchste Abweichung von der Steigung unter einem Prozent.

Da die Werte nicht direkt am Computer bearbeitet wurden, sind diese im Laborbuch vermerkt worden. Zur Auswertung wurden die Werte dann wieder in einen anderen Computer eingetragen. Dabei ist nicht auszuschließen, dass es zu Schreibfehlern oder Zahlendrehern kam. Beim manuellen Integrieren der Peakflächen wurde ein Fehler von 10000 Flächeneinheiten zu Grunde gelegt, dies führt zu einem Fehler von unter einem Prozent.

Die mittlere Standardabweichung für DMSP liegt bei 30 % und für DMSO bei 34 %. Alle Werte mit einer Abweichung von 50 % wurden in der Auswertung nicht betrachtet.

<u>6. Fazit</u>

Die Methode die Proben als Triplikat mit einem Gaschromatographen mit vorgeschaltetem Purgeand-Trap Verfahren liefert Ergebnisse mit einer Standardabweichung für die Messungen des DMSP von 30 % und für DMSO von 34 %.

Die Expedition der Sonne (OASIS) konnte genauere Daten über den westlichen Indischen Ozean liefern. Sie zeigen auf, dass es sich im Vergleich um ein Gebiet mit geringer biochemischer Produktion handelt. Die Konzentrationen von DMS, DMSP und DMSO sind im Vergleich mit anderen Gebieten gering.

Im Vergleich der Schwefelverbindungen untereinander hat DMSP jeweils die höhere Konzentration, als DMS und DMSO. Im Tagesverlauf lässt sich erkennen, dass die Konzentration von DMSP während der Nacht am größten ist und das die Konzentration von DMSO über den Tag hinweg zunimmt. Auch zeigt sich, dass die Konzentrationen mit der Annäherung an die Malediven abnehmen. Ein Zusammenhang mit der Tiefe lässt sich ebenfalls betrachten. So sind die Mittelwerte der Under Way Proben höher, als die Mittelwerte der Konzentrationen der Tiefenprofile.

Die Expedition liefert Korrelationen für die Produktion von DMSP und DMSO aus ozeanischer Biomasse. Somit liegt nahe, dass das Phytoplankton, welches DMSP produziert, auch DMS zu DMSO umsetzt.

Interessant wäre zu erfahren, ob der erste Teil der Fahrt die hier erhobenen Daten stützen und eine Korrelation zwischen Phytoplankton mit DMSP und DMSO zeigen. Auch wäre eine Messung südlich des Äquators sinnvoll, um zu untersuchen, ob es eine Abnahme wie im Verlauf nach Norden gibt.

Verteilung von DMSP/O im West Indischen Ozean - Ergebnisse der OASIS - Fahrt Juli/August 2014

7. Literaturverzeichnis

Charlson, R. J., J. E. Lovelock, *et al.*: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, *Nature*, 326, 655-661, **1987**.

de Ruijter, W. P. M., H. M. Van Aken, E. J. Beier, J. R. E. Lutjeharms, R. P. Matano, M. W. Schouten, *et al.*: Eddies and dipoles around South Madagascar: Formations, pathways and large-scale impact, *Deep Sea Research*, Part I, 51, 383-400, **2004**.

Gibson, J. A. E., R. C. Garrick, H. R. Burton, A. R. Mc Taggart, *et al.*: Dimethylsulfide and the algae Phaeocystis pouchetii in antarctic coastel waters, *Marine Chemistry*, 104, 339-346, **1990**.

Groene T., *et al.*: Biogenic production and consumption of dimethylsulfiede (DMS) and dimethylsulfoniopropionate (DMSP) in the marine epipelagic zone: a review, *Journal of Marine Systems*, 6, 191-209, **1995**.

Howard, E. C. et al.: Bacterial taxa that limit sulfur flux from the ocean, Science, 314, 649, 2006.

Kettle, A. J. et al.: A global database of sea surface dimethylsulfide (DMS) maesurments and procedure to predict sea surface DMS as a function of latitude, longtitude, and month, *Global Biogeochemical Cycles*, 13 (2), 399-444, **1999**.

Kiene, R. P., et al.: Microbial sources and sinks for methylated sulfur compounds in the marine environment, *Microbial Growth on C1 Compounds* (Murrell, J.C. and Kelly, D.P., eds), 15–33, *Intercept*, **1993**.

Kiene, R. P., L. J. Linn, J. A. Bruton, et al.: New and important roles for DMSP in marine microbial communities, *Journal of Sea Research*, 43, 209-224, **2000**.

Lana, A., T. G. Bell, *et al.*: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean, *Global Biogeochemical Cycles*, 25, GB1004, **2011**.

Verteilung von DMSP/O im West Indischen Ozean - Ergebnisse der OASIS - Fahrt Juli/August 2014

Lee, P. A., S. J. De Mora, *et al.*: Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: Speculations on its origin bilogical role, *Journal of Phycologie*, 35, 8-18, **1999**.

Lovelock, J. E., Bulletin of the American Meterological Society, 67, 392-397, 1986.

Moran, M. A. *et al.*: Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment, *Nature*, 432, 910, **2004**.

Quinn, P. K. and T. S. Bates: The case against climate regulation via oceanic phytoplankton sulphur emissions, *Nature*, 480, 51-56, **2011**.

Quartly, G. D., J. J. H. Buck, M. A. Srokosz, A. C. Voward, *et al.*: Eddies around Madagascar-The retroflection re-considered, *Journal of Marine Systems*, 63 (3-4), 115-129, **2006**.

Reisch, C. R., M. A. Moran, W. B. Whitman, *et al.*: Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP), *frontiers in Microbiology*, 172, **2011**.

Schott, F. A., S.-P. Xie, J. P. McCreary Jr., *et al.*: Indian Ocean circulation and climate variability, *Review of Geophysics*, 47, 1-46, **2009**.

Simó, R., A. D. Hatton, *et al.*: Particulate dimethyl sulphoxide in seawater: production by microplankton, *Marine Ecology Progress Series*, 167, 291-296, **1998**.

Simó, R., *et al*: Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters, *Journal of Chromatography A*, 807, 151-164, **1998**.

Simó, R., C. Pedrós-Alió, G. Malin, j. O. Grimalt, *et al.*: Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters, *Marine Ecology Progress Series*, 203, 1-11, **2000**.

Simó, R., *et al.*: Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links, *Trends in Ecology & Evolution*, 16(6), 287-294, **2001**.

Simó, R., J. Dachs, *et al.*: Global ocean emission of dimethylsulfide predicted from biogeophysical data, *Global Biogeochemical Cycles*, 16(4), 1078, **2002**.

Simó, R., *et al.*: From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales, *Canadian Journal of Fisheries and Aquatic Sciences*, 61, 673-684, **2004**.

Shenoy, D. M., M. D. Kumar, *et al.*:, Variability in abundance and fluxes of dimethyl sulphide in the Indian Ocean, *Biogeochemistry*, 83(1–3), 277–292, **2007**.

Stefels, J., M. Steinke, S. Turner, G. Malin, S. Belvio, *et al.*: Environment constraints on the production and removal of climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, *Biogeochemistry*, 83, 245-275, **2007**.

Stevens, B, G. Feingold, *et al.*: Untangling aerosol effects on clouds and precipation in a buffered system, *Nature*, 461, 607-613, **2009**.

Sunda, W., D. J. Kieber, R. P. Kiene, S. Huntsman, *et al.*: An antioxidant function for DMSP and DMS in marine algae, *Nature*, 418, 317-320, **2002**.

Tang, K.W., R. Simó, *et al.*: Trophic uptake and transfer of DMSP in simple planktonic food chains, *Aqua Microbial Ecology*, 31, 193-202, **2003**.

Todd, D. *et al.*: Structural and Regulatory Genes Required to Make the Gas Dimethyl Sulfide in Bacteria, *Science*, 315, 666-669, **2007**.

Vallina, S. M., R. Simó, M. Manizza, *et al.*: Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming, *Proceeding of the National Academy of Science USA*, 104, 16004-16009, **2007**.

Wieck, H. et al.: Die Verteilung von DMS, DMSO und DMSP im Auftriebsgebiet vor Peru (Meteor M91-Fahrt), *Bachelorarbeit*, **2014**.

Wood, R. et al.: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning, *Jouranal of the Atmospheric Science*, 64, 2657-2669, **2007**.

Xie, S.P., H. Annamalai, F. Schott, J. P. McCreary Jr., *et al.*: Origin and predictablebility of south Indian Ocean climate variations, *Journal of Geophysical Research*, 108 (C8), 3261, **2002**.

Zindler, C., Bracher., C. A. Marandino, B. Taylor, E. Torrecilla, A. Kock, H. W. Bange, *et al.*: Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean, *Biogeoschiences*, 10, 3297-3311, **2013**.

8. Anhang

8.1 Kalibration

Kalibrationsd atum	Menge des Standards [µmol L ⁻¹]	Konzentration des Standards [mol L ⁻¹]	Gleichung der Regressionsger aden	Korrelationsk oeffizient
30.03.15	1; 10; 20	2,00252095E-006	1,600x + 25,073	0,987
31.03.15	5; 15; 25	2,00252095E-006	2,260x + 32,005	0,991
01.04.15	15; 25; 45	2,00252095E-006	2,152x + 30,738	0,996
02.04.15	15; 25; 45	2,00252095E-006	3,084x + 40,251	0,98
07.04.15	5; 25; 45	2,00252095E-006	1,809x + 27,077	0,986
08.04.15	1; 10; 40	2,300835E-006	1,657x + 25,628	0,996
09.04.15	1; 15; 45	2,300835E-006	1,205x + 20,663	0,972
10.04.15	1; 25; 50	2,300835E-006	1,652x + 25,985	0,955
13.04.15	1; 20; 40	2,300835E-006	1,336x + 22,435	0,991
14.04.15	1; 20; 40	2,300835E-006	1,894x + 28,363	0,999
17.04.15	1; 25; 50	2,300835E-006	1,684x + 27,034	0,986
20.04.15	1; 25; 50	2,300835E-006	1,916x + 29,259	0,994
21.04.15	1; 25; 50	2,300835E-006	2,089x + 30,887	0,994
22.04.15	1; 20; 50	2,300835E-006	2,099x + 30,873	0,999
23.04.15	1; 3; 5	2,300835E-006	0,92x + 18,396	0,984
24.04.15	1; 20; 40	2,300835E-006	2,084x + 30,605	0,997
28.04.15	1; 20; 40	2,300835E-006	1,979x + 29,769	0,998

Die Kalibrationen der einzelnen Messtage sind in der Tabelle 8.1.1 zusammengefasst.

Tab. 8.1.1: Kalibrationen der Messtage

<u>8.2 Messwerte</u>

In den nachfolgenden Tabellen sind die für die Arbeit verwendeten Messwerte abgebildet. Es wurden folgende Abkürzungen verwendet: Latitude (Lat.), Longitude (Long), prozentuale Standardabweichung (Std%). Die rot markierten Messwerte wurden nicht für die Auswertung verwendet. Mit UW markierte Proben haben keine Vergleichsdaten von Sauerstoff, Nitrat und Fluoreszenz.

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSP [mol L ⁻¹]	Std % DMSP
252101	6	-19,97	57,45	1,3081223440465E-008	0,2472424263
252102	6	-19,72	57,63	1,2067545505977E-008	0,237795909
252103	6	-19,21	57,99	1,1388457453587E-008	0,0668753868
252104	6	-18,72	58,34	8,4671704621719E-009	0,3334338923
252106	6	-17,94	59,11	1,4138064679957E-008	0,6262419555
252107	6	-17,60	59,51	1,3901286180955E-008	0,1555742837
252108	6	-17,30	59,84	1,4662580650180E-008	0,2319768892
252109	6	-16,98	60,21	9,9352353486819E-009	0,4729483773
252110	6	-17,00	60,19	1,4641716240383E-008	0,1386286001
252111	6	-16,62	60,47	4,1555164335639E-009	0,1073253963
252112	6	-16,20	60,75	9,1992794617013E-009	0,0191507357
252113	6	-15,80	61,05	1,0507899710038E-008	0,6283891795
252114	6	-15,37	61,32	1,6325062806475E-008	0,3854285691
252115	6	-14,95	61,62	1,6488755612396E-008	0,2755843239
252116	6	-14,51	61,87	1,6360385507211E-008	0,2522393734
252117	6	-13,95	61,98	7,4065479664077E-009	0,2838939105
252119	6	-12,87	62,23	7,1950910377974E-009	0,0771444706
252120	6	-12,32	62,33	0,00000008	0,0710949148
252121	6	-11,77	62,45	9,8864768404181E-009	0,3945368427
252122	6	-11,21	62,49	8,8371412168156E-009	0,4491785582
252123	6	-10,64	62,50	1,2431841706171E-008	0,3779739115
252124	6	-10,50	62,50	1,3521911457428E-008	0,0769459218
252125	6	-10,51	62,50	1,0766995643964E-008	0,6516374677
252126	6	-10,50	62,50	1,3913932678746E-008	0,2075584492
252127	6	-10,51	62,50	1,5219821036243E-008	0,2107996817
252128	6	-10,51	62,50	1,3342175572465E-008	0,1663917025
252129	6	-10,50	62,50	1,4548761569478E-008	0,3118000163
252130	6	-10,50	62,50	1,5151483565106E-008	0,1614018128
252131	6	-10,50	62,50	1,1193162235554E-008	0,1170475977
252132	6	-10,50	62,49	9,8105623394102E-009	0,3328843258
252133	6	-10,15	62,66	1,2704361341911E-008	0,1134403961
252134	6	-9,65	62,88	1,6536151646585E-008	0,3217885124
252135	6	-9,16	63,10	1,8364694515883E-008	0,3314993295
252136	6	-8,67	63,32	1,9534800246338E-008	0,2895942356
252138	6	-7,68	63,77	2,3759290232753E-008	0,0467560838
252139	6	-7,16	64,00	2,3543991252475E-008	0,0956381254
252140	6	-6,65	64,23	2,5248579178261E-008	0,071049986
252141	6	-6,18	64,45	1,7636838548361E-008	0,15300831
252142	6	-5,92	64,56	4,5150441761439E-008	0,7406425032
252143	6	-5,91	64,58	4,2136393384115E-008	0,8055499151
252144	6	-5,91	64,60	1,8280166675728E-008	0,099930293
252145	6	-5,91	64,62	1,7789131909627E-008	0,3121786219
252146	6	-5,88	64,68	1,7114203897127E-008	0,1714602508
252147	6	-5,87	64,70	1,7692482922913E-008	0,3013000725
252148	6	-5,86	64,72	1,7340162725949E-008	0,4264751607
252149	6	-5,86	64,75	2,3325121287874E-008	0,2631807551
252150	6	-5,85	64,78	2,3352322050050E-008	0,5611524001
252151	6	-5,83	64,99	2,6051674744452E-008	0,2872956699
252152	6	-5.84	65.34	1.5114824539636E-008	0.8445504519

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSP [mol L ⁻¹]	Std % DMSP
252153	6	-5,84	65,67	1,5125727685911E-008	0,2506724006
252154	6	-5,85	66,00	1,6261561878081E-008	0,0802199238
252155	6	-5,96	66,00	1,5909515355121E-008	0,3937199612
252156	6	-6,46	66,00	1,0633428646667E-008	0,5682317403
252157	6	-6,96	66,00	2,7091443779570E-008	0,537032327
252158	6	-7,33	66,00	2,1943092455335E-008	0,7294418397
252159	6	-7,67	66,00	2,0455980631706E-008	0,1958749654
252160	6	-8,18	66,00	1,9531427299185E-008	0,0944739412
252161	6	-8,69	66,00	1,5529883227147E-008	0,3991948268
252162	6	-9,21	66,00	1,6083446376736E-008	0,3410361581
252163	6	-9,71	66,00	1,4136581765716E-008	0,1841818116
252165	6	-10,50	66,01	1,4416559879369E-008	0,1945669205
252166	6	-10,50	66,39	1,4174836140842E-008	0,4306380397
252167	6	-10,49	66,87	1,5570523338170E-008	0,2107405701
252168	6	-10,50	67,38	1,6779451541582E-008	0,365991782
252171	6	-10,50	68,79	7,9103723556128E-009	0,2820443896
252172	6	-10,50	69,24	8,5698947411793E-009	0,0962541152
252173	6	-10,50	69,73	5,5241685133420E-009	0,1635747937
252174	6	-10,50	70,00	3,6083510183716E-009	0.3103047208
252175	6	-10,49	70,00	3,0855757509228E-009	0,0346020089
252176	6	-9,92	70,07	5,8959728408415E-009	0,1470908543
252177	6	-9,37	70,21	1,8882874271900E-008	0.281797624
252178	6	-8,80	70.36	2,0292136644082E-008	0.0010671116
252179	6	-8,26	70,50	1,8410297258153E-008	0.3649780161
252180	6	-7,71	70,64	8,1163743806757E-009	0.0531040345
252181	6	-7.16	70.79	1.9695331843148E-008	0.3895712482
252182	6	-6.61	70.92	1.1248890252101E-008	0.4862003489
252183	6	-6.07	71.06	0.00000016	0.4397502203
252184	6	-5.81	71.14	1.7171512013000E-008	0.2849749677
252185	6	-5.24	71.31	1.0907193549071E-008	0.0849533986
252186	6	-4.67	71.48	9.1907820245472E-009	0.5349601117
252187	6	-4.16	71.64	1.2387399936742E-008	0.6977466617
252188	6	-3.58	71.81	0.00000009	0.588927705
252189	6	-2.98	71.99	1.2077319288464E-008	0.0140129108
252190	6	-2.68	72.08	9.5339852374003E-009	0.2097684107
252191	6	-2.67	72.07	5.5705819438557E-009	0.4652854505
252192	6	-2.66	72.05	5.9172815678725E-009	0.2850129162
252193	6	-2.67	72.04	5 0524881551435E-009	0.3311516268
252194	6	-2.68	72.04	0.000000007	0.039112073
252195	6	-2.68	72.01	6 8736971282843E-009	0 2719962449
252196	6	-2.67	72.02	6 9369183176429E-009	0 4678350633
252197	6	-2.68	72.02	6 1087086170168E-009	0 4818637948
252198	6	-2 71	72,01	7.4245559085079E-009	0.5786911795
252190	6	-2.52	72,01	4 3963328831300F-009	0 4852241984
252200	6	-1 97	72,17	1.0645062381539F-008	0 2005079422
252200	6	-1 39	72,17	8 9042443028216F-009	0 3512096845
252201	6	-0.81	72 30	6,7666098882569F-009	0 5269313391
252202	6	-0.20	72,30	8 2723795082788F-009	0 500285875
252203	6	0.42	72 46	1 3870344627767F-008	0 2317769683
252205	6	1 02	72,53	1,0760994874266E-008	0.4383883851

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSP [mol L ⁻¹]	Std % DMSP
252206	6	1,48	72,59	8,4592567226014E-009	0,151930406
252207	6	1,51	72,91	1,4651795195846E-008	0,1399172776
252208	6	1,56	73,48	1,1383878604045E-008	0,0733983047
252209	6	1,88	73,97	1,3621834699794E-008	0,2826309567
252210	6	2,46	74,02	1,5287250155669E-008	0,1506373747
252211	6	3,07	74,11	1,2811858298100E-008	0,1489229381
252713	200	-5,91	64,6	3,5662949477581E-010	0,0765349641
252725	30	-5,91	64,6	7,6692591123959E-008	0,609992486
252722	60	-5,91	64,6	1,8929332377835E-008	0,4435857756
252720	81	-5,91	64,6	4,1928773686933E-009	0,2505282644
252717	100	-5,91	64,6	0,00000001	0,2369796383
252714	149	-5,91	64,6	2,2310037949360E-010	0,050937837
252739	500	-5,91	64,6	9,8144481615530E-011	0,066348917
252741	150	-5,91	64,6	9,3711694850234E-011	0,3401994546
252753	10	-5,91	64,6	5,0462578460101E-008	0,1786664298
252750	32	-5,91	64,6	1,7947597573474E-008	0,4732189216
252747	60	-5,91	64,6	7,2553542077178E-009	0,2045380425
252745	80	-5,91	64,6	4,3537038441145E-009	0,4001581741
252743	100	-5,91	64,6	1,1602164539496E-009	0,2303940691
252777_UW	6	-5,87	64,6	1,5670451130562E-008	0,3011967517
252761	200	-5,87	64,6	1,9291511857653E-010	0,3939654956
252777	10	-5,87	64,68	0,00000025	0,4291054199
252773	30	-5,87	64,68	2,2077274855118E-008	0,146008909
252770	60	-5,87	64,68	1,0697443861778E-008	0,0254040762
252768	85	-5,87	64,68	2,8920211447541E-009	0,1785479581
252765	100	-5,87	64,68	1,2386719468299E-009	0,2424418007
252762	150	-5,87	64,68	4,1831597644932E-010	0,1735410772
252785	200	-5,85	64,72	9,1836894530836E-011	0,2111875807
252801	10	-5,85	64,73	5,3301669384090E-009	0,1936427887
252797	30	-5,85	64,73	1,4319442524850E-009	0,5236797901
252794	50	-5,85	64,73	2,7238004832572E-008	0,3015873305
252792	80	-5,85	64,73	1,3641941123591E-008	0,7637893894
252789	101	-5,85	64,73	0,00000001	0,2825805937
252786	150	-5,85	64,73	1,7969498856726E-010	0,1699388998
252809	200	-5,85	64,77	1,6835443494523E-009	0,9642017179
252825	10	-5,85	64,77	2,3811042/14354E-008	0,6636602836
252821	30	-5,85	64,77	1,8872286407271E-008	0,1758395176
252818	60	-5,85	64,77	1,2053071142901E-008	0,2169829428
252816	80	-5,85	64,77	2,6610/1/445133E-009	0,2295512571
252813	100	-5,85	64,77	1,2894079301883E-009	0,0552880704
252810	150	-5,85	64,77	4,8314269214158E-010	0,13038/3165
252849_UW	6	-5,85	66	1,5602523888555E-008	0,5462906401
252834	150	-5,85	66	2,4805285051671E-010	0,1222104797
252849	10	-5,85	66	0,0000001	0,1423063243
252845	30	-5,85	66	1,5/52/811/9043E-008	0,210114912
252844	60	-5,85	66	1,5400016963535E-008	0,1629465087
252840	50	-3,85	60	1,25/381/450315E-009	0,5100979062
2.)200	1 .)U	-/ 32	0.0 99	- I I 4.)7.).)/U) I)UD E-UUX	0 1033210841

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSP [mol L ⁻¹]	Std % DMSP
252873	10	-7,32	65,99	0,00000007	0,4001741787
252869	30	-7,32	65,99	2,4555128820360E-008	0,1483456577
252864	75	-7,32	65,99	2,4828447175100E-009	0,3019303654
252861	100	-7,32	65,99	1,4908437483278E-009	0,0882982152
252858	150	-7,32	65,99	3,1272143795778E-010	0,1526216357
252857	200	-7,32	65,99	2,6386182506972E-010	0,1538813055
252858	100	-7,32	65,99	0,00000001	0,4837925301
252890	70	-10,49	66	4,9261678874433E-009	0,2720308688
252897	10	-10,49	66	4,6892579866991E-009	0,0848689511
252893	29	-10,49	66	4,5555374945528E-009	0,3842259432
252888	80	-10,49	66	1,0877429098178E-009	0,1853179155
252882	150	-10,49	66	4,4263324899550E-010	0,4441250141
252881	200	-10,49	66	2,8307648719068E-010	0,0796649004
252921	10	-10,5	69,99	1,2909999709100E-008	0,7442955958
252918	30	-10,5	69,99	3,4525801158425E-009	0,4254221707
252916	70	-10,5	69,99	8,8523105125306E-009	0,3073917202
252913	80	-10,5	69,99	6,0560678172412E-009	0,0657877937
252911	90	-10,5	69,99	0,00000003	0,174901958
252909	100	-10,5	69,99	2,1881668021656E-009	0,3874951351
252906	200	-10,5	69,99	2,2084006885936E-009	0,0282460422
252944_UW	6	-6,06	71,06	0,00000021	0,0989878321
252929	200	-6,06	71,06	3,9318960558205E-010	0,1454818608
252936	65	-6,06	71,06	6,8315697242413E-009	0,4982351548
252944	11	-6,06	71,06	1,5501462002767E-008	0,4593082297
252941	30	-6,06	71,06	5,4016234367414E-009	0,0592587202
252939	40	-6,06	71,06	7,8769358148860E-009	0,3968323576
252933	100	-6,06	71,06	1,8019369089718E-009	0,33791063
252931	150	-6,06	71,06	3,9803998406930E-010	0,4443869874
252954	150	-2,68	72,07	6,3878355591818E-010	0,1990347196
252969	10	-2,68	72,07	8,4680936683323E-009	0,1109644642
252966	30	-2,68	72,07	8,2632252784014E-009	0,3500640757
252964	60	-2,68	72,07	1,9287306299580E-008	0,7388595035
252961	70	-2,68	72,07	5,3988577749027E-009	0,7080311965
252959	80	-2,68	72,07	1,1145455960838E-010	0,2650861648
252957	100	-2,68	72,07	0,00000002	0,0991374815
252993	10	-2,65	72,04	4,7408575528532E-009	0,3234825434
252990	30	-2,65	72,04	5,6139881376277E-009	0,2319995016
252988	50	-2,65	72,04	6,4427244966181E-009	0,9152868516
252985	60	-2,65	72,04	2,7884111492195E-008	0,8075438427
252981	100	-2,65	72,04	0,00000004	0,2981908598
252978	150	-2,65	72,04	3,8757291265280E-010	0,2715991888
253017_UW	6	-2,67	72,03	1,0509046200442E-008	0,4782452009
253002	150	-2,67	72,03	6,6224134177959E-010	0,7089580286
253017		-2,67	72,03	4,40/43/2133346E-009	0,7361913781
253014	31	-2,67	72,03	6,8130634531831E-009	0,2/293346/9
253012	50	-2,6/	72,03	1,5625680678826E-008	0,2235238866
253009	60	-2,67	/2,03	7,5411908426972E-010	0,08382/4465
253007	80	-2,6/	/2,03	0,24//0209/058/E-009	0,2240129024
253005	100	-2,67	/2,03	3,1446892225676E-009	0,2445610999

Verteilung von DMSP/O im West Indischen Ozean – Ergebnisse der OASIS - Fahrt Juli/August 2014

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSP [mol L ⁻¹]	Std % DMSP
253019	4051	-2,67	72,01	1,0829951575922E-010	0,5709335239
253041	10	-2,67	72,01	0,00000006	0,1950693038
253038	31	-2,67	72,01	9,3421294891317E-009	0,2947345265
253036	50	-2,67	72,01	9,8967868068591E-009	0,0789221909
253033	60	-2,67	72,01	1,3268651072889E-008	0,1487525251
253032	80	-2,67	72,01	5,2887024234323E-009	0,2902968312
253031	100	-2,67	72,01	2,1045714182808E-009	0,1094528487
253029	150	-2,67	72,01	6,0127139482276E-010	0,0045415648

Tab.8.2.1 Messwerte von DMSP und deren Standardabweichung.

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSO [mol L ⁻¹]	Std % DMSO
252101	6	-19,97	57,45	3,4388662839272E-009	0,5541188438
252102	6	-19,72	57,63	3,0568962187683E-009	0,1176735402
252103	6	-19,21	57,99	4,3988153144203E-009	0,30701267
252104	6	-18,72	58,34	2,8406403246148E-009	0,6686839009
252106	6	-17,94	59,11	1,1816590614654E-009	0,2020578612
252107	6	-17,60	59,51	5,8523813549770E-009	0,2024522122
252108	6	-17,30	59,84	3,2103794337152E-009	0,2088514714
252109	6	-16,98	60,21	1,2615478651867E-009	0,5481374902
252110	6	-17,00	60,19	2,6303370289952E-009	0,1992162598
252111	6	-16,62	60,47	2,8007553135313E-009	0,4292336597
252112	6	-16,20	60,75	5,5343673095564E-009	0,3716561494
252113	6	-15,80	61,05	0,00000003	0,7753901393
252114	6	-15,37	61,32	4,6114573861925E-009	0,4722871378
252115	6	-14,95	61,62	5,0654251385071E-009	0,4254769051
252116	6	-14,51	61,87	5,7251321123866E-009	0,3557539435
252117	6	-13,95	61,98	3,7200064347402E-009	0,1509247772
252119	6	-12,87	62,23	4,2682328858822E-009	0,1393400281
252120	6	-12,32	62,33	3,3403312036868E-009	0,378999651
252121	6	-11,77	62,45	5,1122124318144E-009	0,3747589773
252122	6	-11,21	62,49	5,4974948184648E-009	0,4844693793
252123	6	-10,64	62,50	0,00000008	0,2066428107
252124	6	-10,50	62,50	8,1854646923781E-009	0,2020753574
252125	6	-10,51	62,50	2,5545486686440E-009	0,16864219
252126	6	-10,50	62,50	6,3040844568252E-009	0,332596612
252127	6	-10,51	62,50	4,7931824903910E-009	0,1693108349
252128	6	-10,51	62,50	8,3952418364315E-009	0,0542665321
252129	6	-10,50	62,50	7,5214885491293E-009	0,8148021145
252130	6	-10,50	62,50	1,2403616630554E-008	0,5413961527
252131	6	-10,50	62,50	1,2430402753529E-009	0,8649086426
252132	6	-10,50	62,49	4,2916761649990E-009	1,2006845636
252133	6	-10,15	62,66	5,1432425580688E-009	0,3661120919
252134	6	-9,65	62,88	7,6433505766794E-009	0,3519984393
252135	6	-9,16	63,10	7,5546209129358E-009	0,4975276571
252136	6	-8,67	63,32	6,6189961973074E-009	0,0109147824
252138	6	-7,68	63,77	1,5215750299148E-009	0,0439179308
252139	6	-7,16	64,00	6,6300238885125E-009	0,5500428349
252140	6	-6,65	64,23	9,4742344883587E-009	0,3570450986
252141	6	-6,18	64,45	8,3361609253598E-009	0,2148053488
252142	6	-5,92	64,56	9,1669700394479E-009	0,0596653497
252143	6	-5,91	64,58	8,3751474759955E-009	0,1887154833
252144	6	-5,91	64,60	8,0553183156495E-009	0,1234970192
252145	6	-5,91	64,62	8,2303863147595E-009	0,380309056
252146	6	-5,88	64,68	6,5139012109526E-009	0,472244967
252147	6	-5,87	64,70	6,7048889318799E-009	0,4618703085
252148	6	-5,86	64,72	5,8667399215632E-009	0,9243244602
252149	6	-5,86	64,75	5,6224909116412E-009	0,3900017081
252150	6	-5,85	64,78	8,8481156630404E-009	0,0056950766
252151	6	-5,83	64,99	9,1764789417219E-009	0,2565237989
252152	6	-5,84	65,34	0,00000009	0,1196874529

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSO [mol L ⁻¹]	Std % DMSO
252153	6	-5,84	65,67	9,1819271817872E-009	0,1508966887
252154	6	-5,85	66,00	7,8419778250620E-009	0,3756502745
252155	6	-5,96	66,00	8,5139456618573E-009	0,1416933951
252156	6	-6,46	66,00	0,00000009	0,1503654546
252157	6	-6,96	66,00	1,1576877987657E-008	0,023757035
252158	6	-7,33	66,00	1,2084175174870E-008	0,3609018901
252159	6	-7,67	66,00	1,9418526445239E-008	0,9005074047
252160	6	-8,18	66,00	3,7266700647437E-009	0,4691896043
252161	6	-8,69	66,00	0,00000009	0,3310654066
252162	6	-9,21	66,00	1,2080333180180E-008	0,1720553152
252163	6	-9,71	66,00	9,4425873151207E-009	0,4157529564
252165	6	-10,50	66,01	1,1714843657897E-008	0,2907323472
252166	6	-10,50	66,39	1,0703142625382E-008	0,2869330778
252167	6	-10,49	66,87	9,1146759622480E-009	0,4972909198
252168	6	-10,50	67,38	8,4208055595168E-009	0,1857166476
252171	6	-10,50	68,79	3,9018889720121E-009	0,0544667238
252172	6	-10,50	69,24	4,1745994238509E-009	0,3962858056
252173	6	-10,50	69,73	2,6630658857970E-009	0,1711467961
252174	6	-10,50	70,00	3,5957071104182E-009	0,5134550724
252175	6	-10,49	70,00	3,7193674514364E-009	0,446797234
252176	6	-9,92	70,07	2,3170489064811E-009	0,2677316827
252177	6	-9,37	70,21	0,00000017	0,4775036763
252178	6	-8,80	70,36	7,8249027375306E-009	0,381757206
252179	6	-8,26	70,50	1,1565404668850E-008	0,4137096828
252180	6	-7,71	70,64	6,4828144974030E-009	0,1121982892
252181	6	-7,16	70,79	3,7479487635973E-009	0,1436335689
252182	6	-6,61	70,92	6,9394026088098E-009	0,1460525463
252183	6	-6,07	71,06	3,7532051179217E-009	0,234301679
252184	6	-5,81	71,14	0,00000002	0,5083465235
252185	6	-5,24	71,31	1,7208313231613E-009	0,0141433974
252186	6	-4,67	71,48	1,5714032629315E-009	0,0624961734
252187	6	-4,16	71,64	1,2348787821872E-009	0,316991934
252188	6	-3,58	71,81	2,4901691472000E-009	0,1356308113
252189	6	-2,98	71,99	4,5915788884165E-009	0,1042828465
252190	6	-2,68	72,08	2,6030801217961E-009	0,0614712347
252191	6	-2,67	72,07	1,8003967824095E-009	0,0939119875
252192	6	-2,66	72,05	2,8294058407093E-009	0,4910964101
252193	6	-2,67	72,04	4,2665172993100E-009	0,3976428619
252194	6	-2,68	72,04	1,9150020382994E-009	0,2162765262
252195	6	-2,68	72,01	2,9474544455250E-009	0,2900663538
252196	6	-2,67	72,02	1,2723771945108E-009	0,3018920427
252197	6	-2,68	72,02	0,00000002	0,4395862565
252198	6	-2,/1	/2,01	5,551108/420/38E-009	0,4965777026
252199	6	-2,52	72,17	1,9284435885828E-009	0,417/81021
252200	6	-1,97	/2,1/	2,44484605 <i>333</i> 91E-009	0,291904853
252201	0	-1,39	/2,24	0,00000003	0,4465133139
252202	6	-0,81	/2,30	5,////4341/2608E-009	0,516/713956
252203	0	-0,20	72,39	0,00000023	0,0409/4/12
252204	0	0,42	/2,40	2,1290902039328E-009	0,5570181849
L 232203	0	1.02	14.33	10.1/0.00/0.000/0.000	0.09/430202/

252206 6 1.48 72.91 4.13457225155E-008 0.929226626 252208 6 1.56 73.48 1.9558650026252108 0.929226626 252209 6 1.88 73.97 2.5976052923147E-009 0.248543636 252210 6 2.46 74.02 2.79049232639231-009 0.248543636 252713 200 -5.91 64.6 0 0 0 252725 30 -5.91 64.6 7.00588721905864E-008 0.33250413279 252720 81 -5.91 64.6 1.0588721905864E-009 0.9370481009 252717 100 -5.91 64.6 1.0299757719003E-010 0.387200719 252714 149 -5.91 64.6 1.141268773706E-010 0.38715169 252750 32 -5.91 64.6 1.41126877370612-010 0.33244172041720645 252747 60 -5.91 64.6 1.899271750672E-009 0.3024031334 252747 60 -5.91 64.6 1.899271750672	Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSO [mol L ⁻¹]	Std % DMSO
252207 6 1,51 72,91 4,13457225155E-009 0,92929626 252208 6 1,56 73,48 1,9558650026252E-009 0,224136098 252210 6 2,46 74,02 2,976052923147E-009 0,224136098 252211 6 3,07 74,11 0,00000001 0,44454318039 252713 200 -5,91 64,6 1,0588721903864E-008 0,325041327 252722 60 -5,91 64,6 7,109984794790E-009 0,370481009 252714 149 -5,91 64,6 1,02997571900316-100 0,5238347657 252739 500 -5,91 64,6 1,0990938224864E-010 0,0417220645 252741 150 -5,91 64,6 1,411268773706E-010 0,3238347657 252753 10 -5,91 64,6 1,457375632726E-008 0,4406922278 252747 60 -5,91 64,6 1,827707939307E-009 0,302403134 252745 80 -5,91 64,6 1,827707939937E-009 </td <td>252206</td> <td>6</td> <td>1,48</td> <td>72,59</td> <td>0,00000001</td> <td>0,5368558558</td>	252206	6	1,48	72,59	0,00000001	0,5368558558
252208 6 1,56 73,48 1,95586500262321:008 0,0249229662 252209 6 1,88 73,97 2,5976052923147E-009 0,2485436636 252210 6 2,46 74,02 2,79049232639221-009 0,2485436636 252713 200 -5,91 64,6 1,0588721905864E-008 0,3250413279 252725 30 -5,91 64,6 7,2059084794790E-009 0,370481009 252720 81 -5,91 64,6 2,1747971173054E-010 0,3967200719 252717 100 -5,91 64,6 1,0299757719003E-010 0,387248765 252739 500 -5,91 64,6 1,411268773706E-010 0,1387315169 252741 150 -5,91 64,6 1,4158404016225E-008 0,3224995485 252743 100 -5,91 64,6 1,41575763277261-009 0,3024031334 252774 100 -5,91 64,6 1,41575763277261-009 0,3024031334 252773 30 -5,87 64,6 <t< td=""><td>252207</td><td>6</td><td>1,51</td><td>72,91</td><td>4,134457225155E-009</td><td>0,8596989954</td></t<>	252207	6	1,51	72,91	4,134457225155E-009	0,8596989954
252209 6 1.88 73.97 2.5976052923147E-009 0.7241936098 252210 6 2.46 74,02 2.7904923263923E-009 0.2443188039 252713 200 -5.91 64,6 0 0 0 252722 30 -5.91 64,6 7.000047000 0,0370481009 252720 81 -5.91 64,6 5.1742971173054F-010 0.3967200719 252714 149 -5.91 64,6 1.029975719003E-010 0.3238347657 252714 149 -5.91 64,6 1.0990938224864E-010 0.0417220645 252750 32 -5.91 64,6 1.411268773706E-010 0.3283437657 252750 32 -5.91 64,6 1.44575756327726E-009 0 252745 80 -5.91 64,6 1.45757563277206D 0.2404031334 252745 100 -5.91 64,6 1.4111268773206F-010 0.3096138964 252777 10 -5.87 64,68 7.1260793307F-009	252208	6	1,56	73,48	1,9558650026252E-008	0,9292296626
252210 6 2,46 74,02 2,7904923263923E-009 0,2485436636 252211 6 3,07 74,11 0,00000001 0,4443188039 252713 200 -5,91 64,6 1,0588721905864E-008 0,3250413279 252722 60 -5,91 64,6 7,0559084794790E-009 0,307081009 252714 149 -5,91 64,6 2,174971173054E-010 0,367200719 252714 149 -5,91 64,6 1,0299757719003E-010 0,5238347657 252739 500 -5,91 64,6 1,41128773706E-010 0,302403134 252750 32 -5,91 64,6 1,41575765237726E-009 0 252743 100 -5,91 64,6 1,4257356327726E-009 0 252743 100 -5,91 64,6 1,425736327726E-009 0 252774 60 -5,91 64,6 1,4059233067649E-010 0,302403134 252775 30 -5,87 64,68 7,7169672E-009 0,201793181	252209	6	1,88	73,97	2,5976052923147E-009	0,7241936098
252211 6 3.07 74.11 0.00000001 0.4443188039 252713 200 -5.91 64.6 1.0588721905864F-008 0.3250413279 252722 60 -5.91 64.6 7.2059084794790F-009 0.0370481009 252720 81 -5.91 64.6 5.174297117505684-09 0.3967200719 252714 149 -5.91 64.6 1.0299757719003E-010 0.3967200719 252714 150 -5.91 64.6 1.0299757719003E-010 0.372847657 252750 32 -5.91 64.6 1.4128673706E-010 0.0417220645 252741 150 -5.91 64.6 1.4575756327726E-009 0.3204031334 252745 80 -5.91 64.6 2.405923607649E-010 0.3204031334 252774 100 -5.87 64.6 2.405923607649E-010 0.3201793181 2527745 80 -5.91 64.6 2.405923607649E-010 0.3201793181 252761 200 -5.87 64.6 7.4381080	252210	6	2,46	74,02	2,7904923263923E-009	0,2485436636
252713 200 -5.91 64.6 1,058721905864E-008 0,3250413279 252722 60 -5.91 64.6 7,2059084794790E-009 0,0370481009 252720 81 -5.91 64.6 5,1742971173054E-010 0,3967200719 252714 149 -5.91 64.6 1,029975719003F-010 0,5817234706 252714 149 -5.91 64.6 1,099073719003F-010 0,5817234706 252733 10 -5.91 64.6 1,411128773706F-010 0,1387315169 252750 32 -5.91 64.6 1,4575756327726E-009 0 252743 100 -5.91 64.6 3,1272707993097E-009 0,302403134 252743 100 -5.91 64.6 1,4575766327726E-009 0,2301793181 252774 100 -5.87 64.6 1,11918713082082088E-009 0,2301793181 252774 100 -5.87 64.68 7,16074319742E-009 0,711636742E-009 0,711936742E-009 252776 100 -5.87	252211	6	3,07	74,11	0,00000001	0,4443188039
252725 30 -5.91 64.6 1.0588721905864E-008 0.3250413279 252720 81 -5.91 64.6 7.2059084794790F-009 0.0370481009 252720 81 -5.91 64.6 2.174971173054E-010 0.3967200719 252717 100 -5.91 64.6 1.0299757119003F-010 0.5238347657 252739 500 -5.91 64.6 1.4111268773706E-010 0.417220645 252741 150 -5.91 64.6 1.4458404016225F-008 0.4406922278 252745 30 -5.91 64.6 1.8992717569672E-009 0.3024031334 252745 80 -5.91 64.6 3.127270793097E-009 0.3024031334 252745 80 -5.91 64.6 1.48992717569672E-009 0.234095488 2527717 10 -5.87 64.6 7.1439108082088E-009 0.2301793181 252761 200 -5.87 64.68 7.160740319742F-009 0.3915422486 252770 60 -5.87 64.68	252713	200	-5,91	64,6	0	0
252722 60 -5.91 64.6 7.2059084794790E.009 0.0370481009 252710 81 -5.91 64.6 5.1742971173054F-010 0.3967200719 252714 149 -5.91 64.6 1.0299757719003F-010 0.5238347657 252739 500 -5.91 64.6 1.4111268773706E-010 0.417220645 252750 32 -5.91 64.6 1.458404016225E-009 0 252750 32 -5.91 64.6 1.4575756327726E-009 0.2546995485 252747 60 -5.91 64.6 1.4992717569672E-009 0.2346993485 252745 80 -5.91 64.6 1.4992717569672E-009 0.2340931334 252771 10 -5.87 64.6 1.119181508339F-010 0.319422486 252777 10 -5.87 64.68 7.7283108082081609 0.2045882666 252770 60 -5.87 64.68 3.7924712437915E-009 0.3195422486 252761 100 -5.87 64.68 3.7924712	252725	30	-5,91	64,6	1,0588721905864E-008	0,3250413279
252720 81 -5.91 64,6 5,1742971173054E-010 0,3967200719 252717 100 -5.91 64,6 2,1749731155768E-000 0,8717234706 252714 149 -5.91 64,6 1,0990938224864E-010 0,0417220645 252739 500 -5.91 64,6 1,4111268773706E-010 0,1387315169 252750 32 -5.91 64,6 1,4158404016225E-008 0,440692278 252747 60 -5.91 64,6 1,4575756327726F-009 0,3024031334 252743 100 -5.91 64,6 1,8992717569672E-009 0,2346995485 252771 100 -5.87 64,6 1,119115108339F-010 0,3006138964 252770 10 -5.87 64,68 7,1660740319742E-009 0,231793118 252770 60 -5.87 64,68 7,7283108082088E-009 0,204588266 252770 60 -5.87 64,68 3,7024712437915E-009 0,178550139 252762 150 -5.87 64,68	252722	60	-5,91	64,6	7,2059084794790E-009	0,0370481009
252717 100 -5.91 64,6 2,17497311557681-000 0,8717234706 252714 149 -5.91 64,6 1,029975719003F-010 0,5238347657 252739 500 -5.91 64,6 1,4111268773706F-010 0,0417220645 252753 10 -5.91 64,6 1,411268773706F-010 0,1387315169 252750 32 -5.91 64,6 1,4575756327726F-000 0,3024031334 252747 60 -5.91 64,6 1,8992717569672E-009 0,3024031334 252743 100 -5.91 64,6 1,4119115108339E-010 0,3024031334 252771 10 -5.87 64,6 1,4119115108339E-010 0,201493134 252770 10 -5.87 64,68 7,1660740319742E-009 0,3915422486 252770 60 -5.87 64,68 7,123108080208E-009 0,2145825666 252770 60 -5.87 64,68 7,10247315E-009 0,1789550139 252762 150 -5.87 64,68 <t< td=""><td>252720</td><td>81</td><td>-5,91</td><td>64,6</td><td>5,1742971173054E-010</td><td>0,3967200719</td></t<>	252720	81	-5,91	64,6	5,1742971173054E-010	0,3967200719
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252717	100	-5,91	64,6	2,1749731155768E-009	0,8717234706
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252714	149	-5,91	64,6	1,0299757719003E-010	0,5238347657
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252739	500	-5,91	64,6	1,0990938224864E-010	0,0417220645
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252741	150	-5,91	64,6	1,4111268773706E-010	0,1387315169
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252753	10	-5,91	64,6	1,1458404016225E-008	0,4406922278
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252750	32	-5,91	64,6	1,4575756327726E-009	0
252745 80 -5.91 64,6 1,8992717569672E-009 0,2546995485 252773 100 -5.91 64,6 2,4059233607649E-010 0,3096138964 252777 10 6 -5.87 64,6 1,1119115108339E-010 0,1716106409 252777 10 -5.87 64,68 7,166074031974E-009 0,3915422486 252773 30 -5.87 64,68 7,723108082088E-009 0,2045882666 252770 60 -5.87 64,68 7,4038409058395E-010 0,6195755458 252765 100 -5.87 64,68 1,2069796853820E-010 0,0508860655 252765 100 -5.87 64,68 1,2069796853820E-010 0,0508860655 252765 100 -5.85 64,72 7,232338794776E-011 0,4645124404 252801 10 -5.85 64,73 2,8218954841806E-000 0,438964741 252797 30 -5.85 64,73 2,8218954841806E-000 0,42693538741 252792 80 -5.85	252747	60	-5,91	64,6	3,1272707993097E-009	0,3024031334
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252745	80	-5,91	64,6	1,8992717569672E-009	0,2546995485
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252743	100	-5,91	64,6	2,4059233607649E-010	0,3096138964
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252777_UW	6	-5,87	64,6	5,4356475451282E-009	0,2301793181
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252761	200	-5,87	64,6	1,1119115108339E-010	0,1716106409
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252777	10	-5,87	64,68	7,1660740319742E-009	0,3915422486
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252773	30	-5,87	64,68	7,7283108082088E-009	0,2045882666
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252770	60	-5,87	64,68	3,7924712437915E-009	0,1789550139
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252768	85	-5,87	64,68	7,4038409058395E-010	0,6195755458
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252765	100	-5,87	64,68	3,4017771254047E-010	0,2479225895
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252762	150	-5,87	64,68	1,2069796853820E-010	0,0508860655
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252785	200	-5,85	64,72	7,2323383794776E-011	0,4645124404
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252801	10	-5,85	64,73	9,3652690958165E-010	0,5973285451
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252797	30	-5,85	64,73	1,2058845523776E-008	0,438964741
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252794	50	-5,85	64,73	2,8218954841806E-009	0,4769856941
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252792	80	-5,85	64,73	5,8510955788360E-010	0,4922352786
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252789	101	-5,85	64,73	4,2359456001740E-010	0,4553387411
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252786	150	-5,85	64,73	2,0677504337140E-010	0,12811256/3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	252809	200	-5,85	64,//	3,1830149003233E-010	0,69/854/092
252821 30 -5,85 64,77 1,1066998890847E-008 0,0979344964 252818 60 -5,85 64,77 4,4401291878446E-009 0,2623859425 252816 80 -5,85 64,77 7,9525685834726E-010 0,1287332267 252813 100 -5,85 64,77 8,3244085561344E-010 0,1135519632 252810 150 -5,85 64,77 4,1985543965421E-010 0,0392846763 252849_UW 6 -5,85 66 6,3133276327641E-009 0,0951338887 252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 3,0939774039912E-009 0,2158554237 252845 30 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252846 50 -5,85 66 1,6231673550427E-009 0,3720958867	252825	10	-5,85	64,//	0,00000006	0,383966252
252818 60 -5,85 64,77 4,4401291878446E-009 0,2623859425 252816 80 -5,85 64,77 7,9525685834726E-010 0,1287332267 252813 100 -5,85 64,77 8,3244085561344E-010 0,1135519632 252810 150 -5,85 64,77 4,1985543965421E-010 0,0392846763 252849_UW 6 -5,85 66 6,3133276327641E-009 0,0951338887 252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252866 50 -7.32 65.00 1,0874248174124E.000 0,1277010482	252821	30	-5,85	64,//	1,106699889084/E-008	0,0979344964
252816 80 -5,85 64,77 7,9525685834726E-010 0,1287332267 252813 100 -5,85 64,77 8,3244085561344E-010 0,1135519632 252810 150 -5,85 64,77 4,1985543965421E-010 0,0392846763 252849_UW 6 -5,85 66 6,3133276327641E-009 0,0951338887 252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252866 50 7322 65 00 1,0874248174124E 000 0,1277010482	252818	60	-5,85	64,//	4,44012918/8446E-009	0,2623859425
252813 100 -5,85 64,77 8,3244085561344E-010 0,1135519632 252810 150 -5,85 64,77 4,1985543965421E-010 0,0392846763 252849_UW 6 -5,85 66 6,3133276327641E-009 0,0951338887 252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867	252816	80	-5,85	64,//	7,9525685834726E-010	0,128/33226/
252810 150 -5,85 64,77 4,1985543965421E-010 0,0392846763 252849_UW 6 -5,85 66 6,3133276327641E-009 0,0951338887 252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252846 50 -7.32 65.00 1,0874248174124E,000 0,1277010482	252813	100	-5,85	64,//	8,3244085561344E-010	0,1135519632
2.52849_0w 0 -5,85 00 0,31332/032/041E-009 0,0951338887 252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252846 50 -7.32 65.00 1,0874248174124E,000 0,1277010482	252810	150	-5,85	64,//	4,1985545965421E-010	0,0392846763
252834 150 -5,85 66 3,4578706995548E-010 0,1736209001 252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252866 50 7.32 65.00 1,0874248174124E,000 0,1277010482	252849_UW	6	-5,85	66	6,31332/632/641E-009	0,0951338887
252849 10 -5,85 66 2,7951792648738E-009 0,2158554237 252845 30 -5,85 66 3,0939774039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252846 50 -7,32 65,00 1,0874248174124E,000 0,1277010482	252834	150	-3,83	00	2,42/8/00992248E-010	0,1/30209001
252844 60 -5,85 66 3,09397/4039912E-009 0,6078712339 252844 60 -5,85 66 3,8106675394694E-010 0,0972080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252846 50 7.32 65.00 1,0874248174124E,000 0,1277010482	252849	10	-3,83	00	2,/931/92048/38E-009	0,213833423/
252840 80 -5,85 66 3,81060/5394694E-010 0,09/2080526 252840 80 -5,85 66 1,5231673550427E-009 0,3720958867 252846 50 7,32 65,00 1,0874248174124E,000 0,1277010482	252845	50	-3,83	00	2 8106675204604E 010	0,0078/12339
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	232044	00	-3,83	66	3,01000/3394094E-010	0,09/2080320
	252040	50	-3,83	65.00	1,32310/333042/E-009	0,3720938807

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSO [mol L ⁻¹]	Std % DMSO
252873	10	-7,32	65,99	0,00000023	0,8064286354
252869	30	-7,32	65,99	7,6675543505046E-009	0,7917706142
252864	75	-7,32	65,99	1,1386655531026E-009	0,1840849426
252861	100	-7,32	65,99	2,5215605361982E-010	0,2671085173
252858	150	-7,32	65,99	3,5769487505696E-010	0,484259197
252857	200	-7,32	65,99	1,0391714978579E-010	0,121615286
252858	100	-7,32	65,99	2,5239145965081E-009	0,4733838406
252890	70	-10,49	66	1,9195753348691E-009	0,2262341264
252897	10	-10,49	66	1,0395648770348E-008	0,4152848579
252893	29	-10,49	66	6,8694529923693E-009	0,3147002513
252888	80	-10,49	66	1,0852752697731E-009	0,3380782337
252882	150	-10,49	66	4,1158497306373E-010	0,2314986467
252881	200	-10,49	66	3,0938245244086E-010	0,2747600686
252921	10	-10,5	69,99	5,0192630742028E-010	0,4490538346
252918	30	-10,5	69,99	1,6059934566037E-008	0,6298167754
252916	70	-10,5	69,99	1,4700539578318E-009	0,0392042394
252913	80	-10,5	69,99	1,6558868821076E-009	0,9163512297
252911	90	-10.5	69,99	5.4730506663543E-010	0,5314681873
252909	100	-10.5	69,99	1.5963265613196E-009	0,1351928844
252906	200	-10.5	69,99	2,7859958382623E-009	0,6304126681
252944 UW	6	-6,06	71,06	6.6997101239490E-009	0,2257687829
252929	200	-6,06	71,06	3.4869617702322E-010	0,3990297366
252936	65	-6.06	71.06	1.1783094549936E-009	0.3602511109
252944	11	-6,06	71,06	4.3558034217469E-009	0,9735422603
252941	30	-6,06	71,06	5.4267530727208E-009	0,3840674142
252939	40	-6,06	71,06	2,8507926499291E-009	0,4165107811
252933	100	-6,06	71,06	2,6622244444020E-010	0,2413393677
252931	150	-6,06	71,06	2,2851484945734E-010	0,6259521171
252954	150	-2,68	72,07	2,0581592265119E-010	0,4687325426
252969	10	-2,68	72,07	1,7279239090502E-009	0,064450507
252966	30	-2,68	72,07	4,6367824148787E-009	0,4775548212
252964	60	-2,68	72,07	8,4250131843436E-010	0,4031487477
252961	70	-2,68	72,07	5,8707141008144E-010	0,2526312421
252959	80	-2,68	72,07	1,3745223726877E-009	0,0295693633
252957	100	-2,68	72,07	4,1807943164408E-011	0,0894209947
252993	10	-2,65	72,04	2,2111895958718E-009	0,0570636727
252990	30	-2,65	72,04	7,6476157177771E-009	0,7829176303
252988	50	-2,65	72,04	1,7568548236273E-009	0,193918045
252985	60	-2,65	72,04	4,3028734817075E-009	0,0431467819
252981	100	-2,65	72,04	0,00000001	0,2532856823
252978	150	-2,65	72,04	4,0725287634527E-010	0,7708991227
253017 UW	6	-2,67	72,03	4,3345591334846E-009	0,6756364198
253002	150	-2,67	72,03	6,4828025691347E-010	0,2073013518
253017	11	-2,67	72,03	3,2350445732448E-009	0,1317270011
253014	31	-2,67	72,03	0,00000002	0,0118699842
253012	50	-2,67	72,03	3,3103417285709E-009	0,5366934639
253009	60	-2,67	72,03	8,3213465768171E-009	0,2582716852
253007	80	-2,67	72,03	1,8732492459756E-009	0,1003706817
253005	100	-2,67	72,03	1,7556261416606E-009	0,3579839871

Verteilung von DMSP/O im West Indischen Ozean – Ergebnisse der OASIS - Fahrt Juli/August 2014

Bedford-Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMSO [mol L ⁻¹]	Std % DMSO
253019	4051	-2,67	72,01	1,2332840859830E-010	0,3396119056
253041	10	-2,67	72,01	4,0985705173083E-009	0,5866186245
253038	31	-2,67	72,01	0,00000004	0,6719720344
253036	50	-2,67	72,01	5,9422584168109E-009	0,5942239887
253033	60	-2,67	72,01	1,8285507976662E-009	0,439767087
253032	80	-2,67	72,01	6,4438964488715E-010	0,0725508295
253031	100	-2,67	72,01	8,0866933235563E-010	0,4160511149
253029	150	-2,67	72,01	4,1869953107190E-010	0,7977174799

Abb.8.2.2: Messwerte von DMSO und deren Standardabweichung.

Bedford- Nummer	Tiefe [m]	Lat. [°N]	Long. [°E]	DMS [mol L ⁻¹]	Temperatur [°C]	Sauerstoff [µmol Kg ⁻¹]	Fluoreszenz [mv]	NO3 [µ- mol/L]
252101	6	-19,97	57,45	7,36E-10	24,20		0,0528045183	0,06
252102	6	-19,72	57,63	8,31E-10	22,80		0,0476650379	0,06
252103	6	-19,21	57,99	9,53E-10	23,60		0,0502803758	0,04
252104	6	-18,72	58,34	7,83E-10	23,60		0,0448982328	
252106	6	-17,94	59,11	2,49E-09	21,60		0,0867893245	0,02
252107	6	-17,60	59,51	2,14E-09	23,70		0,1073022497	0,00
252108	6	-17,30	59,84	1,76E-09	23,80		0,0923819574	0,10
252109	6	-16,98	60,21	1,78E-09	23,10		0,0665550755	0,04
252110	6	-17,00	60,19	1,49E-09	23,50			0,06
252111	6	-16,62	60,47	2,46E-09	23,90		0,0774018469	0,01
252112	6	-16,20	60,75	2,33E-09	23,00		0,1485345346	0,15
252113	6	-15,80	61,05	2,50E-09	24,10		0,1495577852	0,14
252114	6	-15,37	61,32	2,77E-09	25,10		0,1401864717	0,11
252115	6	-14,95	61,62	2,62E-09	25,20		0,127535828	0,08
252116	6	-14,51	61,87	2,55E-09	25,10		0,1514468259	0,10
252117	6	-13,95	61,98	1,56E-09	25,30		0,0565701206	0,00
252119	6	-12,87	62,23	2,00E-09	25,20		0,0437781212	0,00
252120	6	-12,32	62,33	2,97E-09	25,40		0,0623889356	0,21
252121	6	-11,77	62,45	3,92E-09	25,10		0,1237901729	0,22
252122	6	-11,21	62,49	3,39E-09	23,90		0,1251514639	0,05
252123	6	-10,64	62,50	5,18E-09	26,00		0,1371159976	0,21
252124	6	-10,50	62,50	3,42E-09	26,10			0,15
252125	6	-10,51	62,50	3,54E-09	26,20		0,171709875	0,14
252126	6	-10,50	62,50	3,66E-09	26,10			0,13
252127	6	-10,51	62,50	3,63E-09	25,90		0,1430153029	0,16
252128	6	-10,51	62,50	3,80E-09	25,70			0,12
252129	6	-10,50	62,50	3,74E-09	25,70		0,120889193	0,20
252130	6	-10,50	62,50	2,90E-09	25,80			0,22
252131	6	-10,50	62,50	3,21E-09	25,90			0,19
252132	6	-10,50	62,49	3,04E-09	25,20		0,1637180104	0,24
252133	6	-10,15	62,66	3,13E-09	25,90		0,1415111466	0,07
252134	6	-9,65	62,88	3,08E-09	26,10		0,1686034067	0,02
252135	6	-9,16	63,10	2,84E-09	26,00		0,1808204175	0,48
252136	6	-8,67	63,32	2,06E-09	26,00		0,1956347887	0,56
252138	6	-7,68	63,77	3,18E-09	25,70		0,2204841256	0,36
252139	6	-7,16	64,00	3,10E-09	25,80		0,2652011755	0,29
252140	6	-6,65	64,23	2,66E-09	26,30		0,223772337	0,11
252141	6	-6,18	64,45	1,92E-09	26,60		0,2042308768	0,02
252142	6	-5,92	64,56	1,74E-09	26,50			0,01
252143	6	-5,91	64,58	1,45E-09	26,00		0,1999802765	0,01
252144	6	-5,91	64,60	1,51E-09	25,80			0,05
252145	6	-5,91	64,62	1,64E-09	25,70			0,02
252146	6	-5,88	64,68	1,74E-09	25,70		0,2247336241	0,03
252147	6	-5,87	64,70	6,29E-10	25,50			0,06
252148	6	-5,86	64,72	1,91E-09	25,80			0,01
252149	6	-5,86	64,75	1,99E-09	25,60			Q,03
252150	6	-5,85	64,78	2,15E-09	25,70			0,00
252151	6	-5,83	64,99	1,03E-09	26,60		0,2639053635	0,02
252152	6	-5,84	65,34	1,45E-09	26,00		0,2265745338	0,13

Bedford-	Tiefe	Lat.	Long.	DMS [mol	Temperatur	Sauerstoff	Fluoreszenz	NO3 [μ-
Nummer	[m]	[°N]	[°E]	L-1]	[°C]	[µmol Kg ⁻¹]	[mv]	mol/L]
252153	6	-5,84	65,67	1,16E-09	25,90		0,2002886922	0,11
252154	6	-5,85	66,00	1,17E-09	26,10		0,217792446	0,03
252155	6	-5,96	66,00	1,50E-09	26,50		0,2726811191	0,00
252156	6	-6,46	66,00	1,35E-09	26,20		0,2148802637	0,03
252157	6	-6,96	66,00	2,36E-09	26,30		0,2181433689	0,06
252158	6	-7,33	66,00	3,40E-09	26,10			0,10
252159	6	-7,67	66,00	2,53E-09	26,00		0,280487977	0,22
252160	6	-8,18	66,00	2,00E-09	25,50		0,2674769521	0,25
252161	6	-8,69	66,00	2,16E-09	25,50		0,2568571276	0,25
252162	6	-9,21	66,00	3,31E-09	23,00		0,2148450465	0,69
252163	6	-9,71	66,00	3,04E-09	25,70		0,207475399	0,21
252165	6	-10,50	66,01	3,24E-09	25,10			0,19
252166	6	-10,50	66,39	3,20E-09	25,30		0,1676136261	0,12
252167	6	-10,49	66,87	3,00E-09	25,10		0,189009636	0,64
252168	6	-10,50	67,38	2,61E-09	25,10		0,2049861425	1,09
252171	6	-10,50	68,79	2,78E-09	25,10		0,1939893414	0,14
252172	6	-10,50	69,24	2,82E-09	24,90		0,1275890017	0,01
252173	6	-10,50	69,73	2,15E-09	24,80		0,0778712013	0,00
252174	6	-10,50	70,00	2,16E-09	24,70		0,0761144414	0,02
252175	6	-10,49	70,00	2,24E-09	24,80			0,00
252176	6	-9,92	70,07	1,97E-09	25,00		0,0886100773	0,06
252177	6	-9,37	70,21	3,63E-09	24,70		0,1764627202	0,54
252178	6	-8,80	70,36	3,45E-09	25,30		0,1681367089	0,65
252179	6	-8,26	70,50	3,40E-09	25,70		0,188818513	0,44
252180	6	-7,71	70,64	3,57E-09	24,70		0,2280438885	1,52
252181	6	-7,16	70,79	1,87E-09	25,30		0,3841243347	0,81
252182	6	-6,61	70,92	1,01E-09	24,80		0,4423062344	0,49
252183	6	-6,07	71,06	1,25E-09	25,80		0,3788238206	0,96
252184	6	-5,81	71,14	9,10E-10	25,70		0,2641542085	0,28
252185	6	-5,24	71,31	1,18E-09	25,90		0,1736146611	0,90
252186	6	-4,67	71,48	1,89E-09	26,00		0,1182233665	0,14
252187	6	-4,16	71,64	1,03E-09	26,70		0,1589187255	0,05
252188	6	-3,58	71,81	8,73E-10	27,40		0,0860948776	0,02
252189	6	-2,98	71,99	8,07E-10	27,80		0,078360429	0,02
252190	6	-2,68	72,08	5,39E-10	27,50			0,00
252191	6	-2,67	72,07	7,61E-10	27,50		0,0531379122	0,00
252192	6	-2,66	72,05	5,10E-10	27,40			0,45
252193	6	-2,67	72,04	5,79E-10	27,30		0,0617276442	0,26
252194	6	-2,68	72,04	5,31E-10	27,40			0,00
252195	6	-2,68	72,01	5,56E-10	27,70			0,03
252196	6	-2,67	72,02	5,89E-10	27,50			0,01
252197	6	-2,68	72,02	5,92E-10	27,80		0,0586017965	0,04
252198	6	-2,71	72,01	5,42E-10	27,40			0,00
252199	6	-2,52	72,17	4,88E-10	27,40		0,0614744545	0,00
252200	6	-1,97	72,17	8,87E-10	27,50		0,0895183305	0,00
252201	6	-1,39	72,24	7,54E-10	27,50		0,1018905939	0,14
252202	6	-0,81	72,30	5,93E-10	27,80		0,1075799679	0,07
252203	6	-0,20	72,39	5,38E-10	26,00		0,1028992089	-06,00
252204	6	0,42	72,46	9,86E-10	28,80		0,3259568058	0,11
252205	6	1,02	72,53	8,23E-10	29,00		0,1795202237	0,02

Bedford-	Tiefe	Lat.	Long.	DMS [mol	Temperatur	Sauerstoff	Fluoreszenz	NO3 [μ-
Nummer	[m]	[°N]	[°E]	L-1]	[°C]	[µmol Kg ⁻¹]	[mv]	mol/L]
252206	6	1,48	72,59	6,99E-10	28,70			0,01
252207	6	1,51	72,91	7,97E-10	28,50		0,078013221	0,01
252208	6	1,56	73,48	6,12E-10	28,30		0,0782691462	0,00
252209	6	1,88	73,97	6,96E-10	28,20		0,0918934059	0,04
252210	6	2,46	74,02	6,67E-10	27,90		0,1378017011	0,02
252211	6	3,07	74,11	6,82E-10	28,50		0,1742842192	0,05
252713	200	-5,91	64,6					21,91
252725	30	-5,91	64,6	1,15E-010	12,7153	105,3	0,0395	0,04
252722	60	-5,91	64,6	1,89E-009	21,363	110,578	0,2146	12,2
252720	81	-5,91	64,6	9,39E-010	17,5791	74,975	0,0978	20,16
252717	100	-5,91	64,6	2,04E-010	15,8763	78,923	0,0604	21,45
252714	149	-5,91	64,6	1,13E-010	14,136	83,234	0,0404	22,61
252739	500	-5,91	64,6	9,65E-011	8,6903	93,756	0,04	31,13
252741	150	-5,91	64,6	1,11E-010	14,4185	81,67	0,0423	23,25
252753	10	-5,91	64,6	2,17E-010	27,0731	183,327	0,1768	0
252750	32	-5,91	64,6	9,25E-011	27,0826	183,178	0,1812	0,11
252747	60	-5,91	64,6	7,22E-010	21,6389	114,843	0,2125	11,45
252745	80	-5,91	64,6	3,28E-010	18,9605	81,052	0,1617	18
252743	100	-5,91	64,6	1,86E-010	16,5093	82,196	0,0826	20,18
252777_UW	6	-5,87	64,6	UW				
252761	200	-5,87	64,6	9,76E-011	12,8295	102,648	0,0399	22,33
252777	10	-5,87	64,68	1,66E-009	27,0457	182,45	0,1596	0,05
252773	30	-5,87	64,68	1,97E-009	27,0537	182,11	0,1354	0,18
252770	60	-5,87	64,68	1,17E-009	21,5332	115,212	0,1979	11,97
252768	85	-5,87	64,68	3,65E-010	18,3922	81,504	0,1156	18,87
252765	100	-5,87	64,68	2,41E-010	16,8477	83,114	0,0806	20,08
252762	150	-5,87	64,68	1,19E-010	14,0728	83,403	0,0414	22,82
252785	200	-5,85	64,72	8,12E-011	12,8785	103,944	0,0395	22,53
252801	10	-5,85	64,73	2,10E-009	27,0699	182,706	0,1841	0,03
252797	30	-5,85	64,73	1,97E-009	27,0442	182,978	0,2331	0,21
252794	50	-5,85	64,73	1,10E-009	23,0786	143,592	0,3127	7,93
252792	80	-5,85	64,73	3,53E-010	18,554	81,513	0,125	19,2
252789	101	-5,85	64,73	1,80E-010	15,6984	73,764	0,0654	22,58
252786	150	-5,85	64,73	9,33E-011	14,1579	84,353	0,0414	22,93
252809	200	-5,85	64,77	6,62E-011	12,1838	103,1	0,0401	22,77
252825	10	-5,85	64,77	1,26E-009	27,0942	183,702	0,202	0,05
252821	30	-5,85	64,77	1,77E-009	27,1057	183,877	0,1985	0,18
252818	60	-5,85	64,77	5,03E-010	21,1389	111,248	0,2256	12,22
252816	80	-5,85	64,77	2,14E-010	17,2146	80,163	0,0896	19,5
252813	100	-5,85	64,77	1,27E-010	15,4156	70,331	0,0595	22,99
252810	150	-5,85	64,77	7,35E-011	13,4842	88,659	0,0418	23,19
252849_UW	6	-5,85	66	UW				
252834	150	-5,85	66	2,84E-011	13,7199	99,555	0,0394	21,1
252849	10	-5,85	66	9,88E-010	27,2366	181,799	0,1182	0,05
252845	30	-5,85	66	1,12E-009	27,2298	181,42	0,1249	0,1
252844	60	-5,85	66	1,40E-009	26,8797	178,136	0,1278	-63-
252840	80	-5,85	66	2,95E-010	19,2917	90,212	0,1531	Ĭ6,06
252866	50	-7,32	65,99	5,53E-010	20,0844	94,404	0,2085	14,78

Bedford-	Tiefe	Lat.	Long.	DMS [mol	Temperatur	Sauerstoff	Fluoreszenz	NO3 [µ-
Nummer	[m]	[°N]	[°E]	L-1]	[°C]	[µmol Kg ⁻¹]	[mv]	mol/L]
252873	10	-7,32	65,99	2,85E-009	27,0288	182,867	0,1804	0,23
252869	30	-7,32	65,99	2,03E-009	26,8489	178,789	0,2189	3,8
252864	75	-7,32	65,99	1,11E-010	16,921	69,444	0,0921	21,64
252861	100	-7,32	65,99	7,35E-011	15,2443	73,413	0,0531	22,56
252858	150	-7,32	65,99	5,76E-011	13,7448	74,817	0,0405	23,49
252857	200	-7,32	65,99	5,15E-011	12,5343	77,913	0,0419	25,29
252858	100	-7,32	65,99	1,48E-010	19,1968	86,852	0,0692	16,88
252890	70	-10,49	66	3,98E-010	22,9231	128,495	0,2285	8,17
252897	10	-10,49	66	3,01E-009	26,2723	184,817	0,1651	0,24
252893	29	-10,49	66	4,13E-009	26,2561	185,086	0,1816	0,28
252888	80	-10,49	66	2,77E-010	22,1123	111,12	0,1546	11,01
252882	150	-10,49	66	1,06E-010	16,7764	93,548	0,0412	18,07
252881	200	-10,49	66	9,54E-011	14,2179	77,409	0,0389	23,19
252921	10	-10,5	69,99	2,17E-009	25,9008	187,484	0,1028	0
252918	30	-10,5	69,99	2,03E-009	25,9138	187,115	0,1015	0,06
252916	70	-10,5	69,99	1,85E-009	25,0101	175,749	0,1778	0,32
252913	80	-10,5	69,99	1,96E-010	22,4864	156,983	0,1444	5,21
252911	90	-10,5	69,99	6,59E-011	20,9538	131,052	0,0963	9,1
252909	100	-10,5	69,99	1,21E-010	20,4555	123,036	0,0761	11,14
252906	200	-10,5	69,99	7,19E-011	13,5655	69,038	0,037	25,39
252944_UW	6	-6,06	71,06	UW				
252929	200	-6,06	71,06	8,50E-011	12,8704	76,438	0,0412	25,62
252936	65	-6,06	71,06	4,17E-010	22,1775	112,649	0,1713	11,36
252944	11	-6,06	71,06	1,17E-009	26,4745	183,005	0,2418	1,09
252941	30	-6,06	71,06	1,43E-009	26,4666	182,09	0,2398	1,1
252939	40	-6,06	71,06	8,97E-010	26,4547	180,453	0,2411	1,22
252933	100	-6,06	71,06	1,28E-010	16,4931	83,017	0,0684	20,54
252931	150	-6,06	71,06	8,87E-011	13,9786	81,581	0,0412	23,27
252954	150	-2,68	72,07	9,04E-011	16,9885	70,436	0,0431	21,3
252969	10	-2,68	72,07	5,02E-010	29,2515	177,503	0,0375	0,04
252966	30	-2,68	72,07	4,77E-010	29,2042	176,795	0,0409	0,03
252964	60	-2,68	72,07	5,13E-010	27,391	171,025	0,2577	0,41
252961	70	-2,68	72,07	5,53E-010	23,3563	126,401	0,2084	9,03
252959	80	-2,68	72,07	5,49E-010	22,3249	112,123	0,1755	11,78
252957	100	-2,68	72,07	2,06E-010	19,8635	95,672	0,1082	15,43
252993	10	-2,65	72,04	4,57E-010	29,2085	176,735	0,0396	0,14
252990	30	-2,65	72,04	4,38E-010	29,2122	177,1	0,0405	0,14
252988	50	-2,65	72,04	4,32E-010	29,1272	175,779	0,0499	0,17
252985	60	-2,65	72,04	7,82E-010	27,703	172,503	0,1956	0,87
252981	100	-2,65	72,04	1,93E-010	19,6702	93,621	0,1018	16,64
252978	150	-2,65	72,04	NN				
253017_UW	6	-2,67	72,03	UW				
253002	150	-2,67	72,03	1,03E-010	17,3002	68,978	0,0457	21,16
253017	11	-2,67	72,03	5,27E-010	29,1929	176,281	0,04	0,12
253014	31	-2,67	72,03	7,42E-010	29,192	176,228	0,0416	0,12
253012	50	-2,67	72,03	7,39E-010	27,979	173,844	0,14	3,8
253009	60	-2,67	72,03	8,02E-010	26,4178	155,507	0,2067	-049
253007	80	-2,67	72,03	7,72E-010	22,8825	123,569	0,1554	14,83
253005	100	-2,67	72,03	3,24E-010	22,8825	123,569	0,1554	9

Bedford-	Tiefe	Lat.	Long.	DMS [mol	Temperatur	Sauerstoff	Fluoreszenz	NO3 [µ-
Nummer	[m]	[°N]	[°E]	L-1]	[°C]	[µmol Kg ⁻¹]	[mv]	mol/L]
253019	4051	-2,67	72,01	7,84E-011	1,6462	156,075	0,3946	34,14
253041	10	-2,67	72,01	5,54E-010	29,2956	177,41	0,0319	0,1
253038	31	-2,67	72,01	5,53E-010	29,2214	177,361	0,0388	0,09
253036	50	-2,67	72,01	1,76E-010	29,0654	176,524	0,0629	0,12
253033	60	-2,67	72,01	6,93E-010	28,5274	176,147	0,1304	1,32
253032	80	-2,67	72,01	6,10E-010	22,8378	120,958	0,1778	9,59
253031	100	-2,67	72,01	3,36E-010	20,0774	97,584	0,0959	15,4
253029	150	-2,67	72,01	1,11E-010	17,1857	70,515	0,0455	21,28

Tab.8.2.3.: Messwerte von DMS, Fluoreszenz, Sauerstoff und Nitrat.