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ABSTRACT
Colonial pinnipeds may be subject to substantial consumptive competition because
they are large, slow-moving central place foragers. We examined possible
mechanisms for reducing this competition by examining the diving behaviour
of harbour seals (Phoca vitulina) after equipping 34 seals (11 females, 23 males)
foraging from three locations; Rømø, Denmark and Lorenzenplate and Helgoland,
Germany, in the Wadden Sea area with time-depth recorders. Analysis of 319,021
dives revealed little between-colony variation but appreciable inter-sex differences,
with males diving deeper than females, but for shorter periods. Males also had higher
vertical descent rates. This result suggests that males may have higher overall swim
speeds, which would increase higher oxygen consumption, and may explain the
shorter dive durations compared to females. Intersex variation in swim speed alone
is predicted to lead to fundamental differences in the time use of three-dimensional
space, which may help reduce consumptive competition in harbour seals and other
colonial pinnipeds.

Subjects Ecology, Marine Biology, Statistics
Keywords Pinniped, Dive behaviour, Sexual segregation, Dive duration, Swim speed,
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INTRODUCTION
Competition is a major driver explaining patterns of space use in animals (MacArthur,

1958; Pianka, 2011) and it is considered particularly severe in central-place foraging

(sensu Orians & Pearson, 1979) and colonial breeders, such as seabirds or pinnipeds,

because the density of animals around the breeding site leads to correspondingly high

local pressure on resources (e.g., see Birt et al., 1987; Lewis et al., 2006; Gaston, Ydenberg

& Smith, 2007; Breed, Bowen & Leonard, 2013). There are a number of mechanisms

proposed to reduce consumptive pressure in central-place foraging marine vertebrates.
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These relate primarily to different individuals taking either different types of prey (Forero

et al., 2002; Ishikawa & Watanuki, 2002; Garthe et al., 2007) or the same prey in different

spaces (e.g., Wilson, 2010). Both of these are fostered by differences in area use (Thompson

et al., 1998), depths (Ishikawa & Watanuki, 2002; Laich et al., 2012) and even the timing of

foraging bouts (Harris et al., 2013). It has been noted, though, that spatial and temporal

segregation in resource use does not necessarily guarantee a reduction in competition

(Wilson, 2010).

Competition should be most apparent intra-specifically because individuals of many

species are essentially morphologically and behaviourally identical. In addition, while

inter-specific competition can theoretically lead to species extinction (Bengtsson, 1989;

Andersen et al., 2007), intra-specific (and particularly inter-gender) competition cannot.

It is partly for this reason, therefore, that there is presumably strong selection pressure for

central-place foraging, colonial species to exhibit sexual differences in foraging behaviour.

In many marine, air-breathing, diving vertebrates these differences in foraging behaviour

can be driven by size, because allometric effects modulate mass-specific metabolic rate

(Kleiber, 1932; Schmidt-Nielsen, 1997), body oxygen stores (Halsey, Butler & Blackburn,

2006; Brischoux et al., 2008), fasting capacity (Lindstedt & Boyce, 1985) and a suite of other

performance-related parameters (see Peters, 1983). Unsurprisingly, it is specifically the

gender-related differences in body mass that have been linked to sex-dependent differences

in depth use in both seabirds, such as Imperial cormorants (Phalacrocorax atriceps; Laich

et al., 2012) and Galapagos cormorants (Phalacrocorax harrisi; Wilson et al., 2008), and

pinnipeds, such as Northern elephant seals (Mirounga angustirostris: Le Boeuf et al., 2000)

and New Zealand fur seals (Arctocephalus forsteri; Page, McKenzie & Goldsworthy, 2005).

Indeed, sex-dependent difference in foraging is considered to be a major contribution

to minimizing the effects of competition, not least because bottom-foraging species

distributing themselves according to depth, also do so with regard to foraging area

(e.g., Quintana et al., 2011). However, not all colonial, central-place foraging diving

vertebrates are sexually dimorphic, which should mean, in terms of foraging at least,

that there are no differential capacities with regard to depth use, for example. How then,

might niche partitioning be achieved?

We studied the foraging behaviour of the harbour seal (Phoca vitulina). This species

is a ubiquitous, slightly dimorphic species, with the male body mass being some 20%

greater than the female (Riedman, 1990; Lindenfors, Tullberg & Biuw, 2002), which forms

large stable colonies in the Northern Hemisphere (Ross et al., 2004). Specifically, we

used animal-borne multiple channel loggers to determine if there were any obvious

gender-dependent differences. Given the very modest dimorphism between sexes

compared to many pinnipeds (Lindenfors, Tullberg & Biuw, 2002), we hypothesized that

there would be no inter-sex difference in depth use but expected that there may be some

evidence of differential foraging behaviour.
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MATERIALS AND METHODS
Location and devices
Between June 2004 and December 2006, 73 seals were equipped with tags at three

well-established haul-out sites within the Wadden Sea and adjacent offshore areas; the

Lorenzenplate (54.38◦N, 8.53◦E—hereafter ‘LP’), Rømø (55.21◦N, 8.50◦E—hereafter

‘DK’) and Helgoland (54.19◦N, 7.92◦E—hereafter ‘HE’) (Fig. 1). The tags (140 g,

90 × 65 × 28 mm) were multiple channel loggers (Driesen and Kern GmbH, Bad

Bramsted, Germany) recording dive depth, heading, body orientation, temperature

and light, and capable of storing up to 32 megabytes of data in a flash RAM with 16 bit

resolution at sampling intervals between 1 s and 24 h (Liebsch, 2006). We used a sampling

interval of 5 s which nominally allowed a recording period of up to 94 days. The loggers

were deployed in tandem with a quartz crystal-controlled timers (60 g, 75 × 37 × 20 mm),

able to release the tags from the backs of the animals by burning through a nylon filament

that held the main package, which consisted of the timer and the logger within a specially

moulded, hydro-dynamically shaped flotation package (280 g, 210 × 90 × 65 mm) made

of a 70:30 mix of resin and hollow beads (for details see Liebsch, 2006), from a neoprene

pocket stuck to the seal’s back.

Seal capture
Helgoland seals, which are well-accustomed to tourists, were approached and caught

by hand, while animals on Lorenzenplate and Rømø were captured using seine netting

techniques (Jeffries, Brown & Harvey, 1993). The tagging did not cover any periods

of lactation or breeding. Many more seals were captured than were tagged, and all

animals, whether tagged or not, were given a veterinary examination to ensure that only

healthy animals judged to be adults were tagged (permit number for animal experiments

V312-72241.121-19 (70-6/07); Ministry of Energy, Agriculture, the Environment and

Rural Areas Schleswig-Holstein, Germany). Target seals were then strapped to a specifically

designed bench to assist with device attachment and to reduce handling stress. First, the

device attachment site, which was on the posterior two thirds of the dorsal midline (cf.

Bannasch, Wilson & Culik, 1994), was cleaned with seawater to remove excess sand, and

then cleaned and dried with acetone. The legs of the neoprene pocket containing the tags

(see above) were then glued to the animal using Devcon epoxy (Danvers, Massachusetts,

USA). After release, the packages were either released from the seal by the timer or were

shed during the moult. Following device separation, most drifted ashore, intended for pick

up by beach walkers, who would return the package to the specified address.

Statistical analysis
All submersions deeper than 1 m were considered as dives. Dives were divided into two

categories; ‘U-dives’ or foraging dives, in which the bottom phase lasted more than 5 s

(Schreer & Testa, 1996), and all other dives, which included ‘V-dives’ and ‘parabolic’ dives

(see Le Boeuf et al., 1992; Sala et al., 2011 for definitions). However, since more than 94%

of the dives were classified as U-dives, statistical analyses were only performed on these
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Figure 1 Location of seal captures. Location of the three seal capture locations; Rømø (DK), Lorenzen-
plate (LP) and Helgoland (HE). The shading of the sea area corresponds to 10 m depth intervals and the
continuous black lines show the boarder of the Wadden Sea National Parks of Schleswig-Holstein and
Lower Saxony.
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Table 1 Number of devices deployed and recovered from harbour seals with usable data (containing
data from at least one full foraging trip) from the three study sites.

Location Sex No. equipped No. recovered No. with data

Lorenzenplatte Male 18 14 8

Female 12 9 7

Rømø Male 24 15 7

Female 1 1 1

Helgoland Male 15 13 8

Female 3 3 3

TOTAL 73 55 34

submersions. For each U-dive, the following parameters were calculated: maximum

depth, total duration, bottom duration and the vertical velocity of each dive phase

(i.e., descent, bottom and ascent). Differences in these parameters between sites and

sexes were tested using linear mixed effects models (LMM) fitted by restricted maximum

likelihood (REML). In these models, diving characteristics were set as response variables

and individual as a random effect. All models were run using the R package nlme (Pinheiro

et al., 2011). Differences in the vertical velocity between diving phases were also tested

using a mixed effect model. In this case, the vertical velocity was set as a response variable,

the dive phase as the predictor and the individual as a random factor. Mixed effect models

were also used to test the effect of maximum dive depth, sex and site on dive duration.

Finally, the effect of body parameters (i.e., weight and length) on the diving behaviour

was analyzed using linear models whereby sex and site were also included as explanatory

variables. All statistical analyses were performed using the open source statistical package

R version 2.13.0 (R Development Core Team, 2011). For those parameters with several

measurements from individuals, mean values were obtained by calculating a mean over the

means from each individual. These values are shown with their standard deviation.

RESULTS
Of the 73 devices deployed, 55 were recovered (75%) of which 34 registered at least one

complete foraging trip (the only results presented herein; Table 1) comprising a total of

301,778 U-dives (Data S1). Males appeared to return more often without a full data set

than females (Table 1), for reasons that are unclear.

Sexual segregation of foraging behaviour
Depth utilisation
During their U-dives, males went significantly deeper than females (LMM, Sex effect

F1,31 = 4.4, p = 0.04) (Fig. 2A), with no differences in these depths between the three

studied sites (LMM, Site effect F1,31 = 0.01, p = 0.9). Mean maximum dive depths were

17.5 ± 2.5, 13.4 ± 3.6 and 19 ± 9 m for males, compared with 12.6, 13.4 ± 3.4 and

8.8 ± 3.5 m for females, from DK, LP and HE, respectively.
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Figure 2 Frequency distribution of the maximum depth and dive duration of U-dives. Frequency
distribution of (A) the maximum depth (B) and dive duration of U-dives performed by female (black
bars) and male. (grey bars) harbour seals

Dive durations
During dives, both sexes spent a similar amount of time underwater (LMM, Sex effect

F1,31 = 2.4, p = 0.1) (Fig. 2B) with no differences observed between the three locations

(LMM, Site effect F1,31 = 0.07, p = 0.8). Mean maximum dive durations were 174 ± 34.6,

199 ± 31 and 185 ± 51 s for males and 213, 211 ± 36.3 and 198 ± 9.8 s for females,

from DK, LP and HE, respectively. Deeper dives were accompanied by longer durations,

although the relationship between these parameters differed between sexes (Fig. 3). During

shallow dives, males and females spent a similar amount of time underwater, however,

as dives became deeper, females tended to remain longer underwater than males (LMM,

Depth effect F1,301742 = 65,328, p < 0.001; Sex effect F1,32 = 9, p = 0.006; Sex*Depth effect

F1,301742 = 1,018, p < 0.001) (y = 3.3x + 131 and y = 4.5x + 153 for males and females,

respectively).

Vertical velocities
There was a significant difference in the rate of change of depth between dive phases as a

whole (LMM, Phase effect F1,905298 = 1,664,062, p = 0.006), with the general mean value

for the bottom phase being 0.005 ± 0.003 m/s compared with 0.5 ± 0.2 and 0.6 ± 0.2 m/s

for the descent and ascent rates, respectively. Males descended and ascended the water

column at higher rates than females (Sex effect F1,31 = 8.0, p = 0.008; Sex effect F1,31 = 8.4,

p = 0.006; for the descent and ascent phase, respectively) and the same pattern was

observed in the three studied sites (Site effect F1,31 = 0.7, p = 0.4; Site effect F1,31 = 2.9,

p = 0.09; for the descent and ascent phase, respectively). Mean male descent rates were

0.7 ± 0.1, 0.6 ± 0.1 and 0.7 ± 0.2 m/s compared with 0.5, 0.6 ± 0.1 and 0.4 ± 0.1 m/s
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Figure 3 Relationship between dive duration and maximum dive depth of female (black points) and
male (grey points) harbour seals. The lines (black for females and grey for males) represent the fitted
relationship. The points represent the mean dive duration for 2.5 m interval while the whiskers represent
the standard deviation.

for the females, for DK, LP and HE, respectively. The rate of change of depth during the

bottom phase was similar between sites (Site effect F1,31 = 0.1, p = 0.7) with values of

0.007 ± 0.002, 0.003 ± 0.003 and 0.007 ± 0.003 m/s for the males and 0.004, 0.003 ± 0.003

and 0.003 ± 0.001 for the females, for DK, LP and HE, respectively.

Body weight and diving behaviour
Mean masses of tagged males and females from the three different colonies were (males)

69.4 ± 22 (n = 5), 74.6 ± 22.8 (n = 8) and 70.2 ± 13.1 (n = 8) kg vs (females) 82.0

(n = 1), 77.7 ± 14.2 (n = 6) and 99.5 ± 2.1 (n = 2) kg for animals from DK, LP and HE,

respectively. Overall, there was no significant difference between male and female body

weight in our tagged animals (t = 1.8, df = 19, p = 0.091), males having a mean weight of

71.7 ± 18.5 kg compared to 83 ± 14.7 kg for females. This result was in stark contrast to

patterns shown by all seals captured (most were not tagged) during the study. Here, of 377

animals caught, males were significantly heavier than females (means of 70.5 ± 17.7 kg vs

62.0 ± 15.7 kg, respectively; Mann–Whitney W = 19,461, p < 0.01) although there was no

specific separation into adult and sub-adult animals undertaken (Data S2). Of the tagged
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Figure 4 Relationship between (A) mean maximum dive depth (B) mean dive duration (C) mean
bottom duration and (D) mean bottom speed as a function of body mass of female and male harbour
seals. For those cases where the relationship between sexes differed, female and male points and the fitted
line are shown in black and grey, respectively.

animals, neither females nor males showed a significant relationship between body weight

and mean maximum dive depth (r2
= 0.02, p = 0.5; Weight effect F1,29 = 0.4, p = 0.5;

Sex effect F1,28 = 2.1, p = 0.2) (Fig. 4A). However, body weight was strongly and positively

related with mean dive duration with the relationship between both parameters, being

similar for both sexes (y = 1.3x + 100.7; r2
= 0.4, p < 0.01; Weight effect F1,29 = 16.2,

p < 0.001; Sex effect F1,28 = 0.7, p = 0.4) (Fig. 4B). For both sexes, a similar positive

relationship was also observed between the mean bottom duration and body weight

(y = 1.3x + 55.9; r2
= 0.5, p < 0.001; Weight effect F1,29 = 23.9, p < 0.001; Sex effect

F1,28 = 0.9, p = 0.4) (Fig. 4C). Neither the descent or the ascent rate (change in depth)

was affected by body weight (Weight effect F1,29 = 0.3, p = 0.6; Sex effect F1,28 = 4.2,

p = 0.05; Weight effect F1,29 = 0.2, p = 0.6; Sex effect F1,28 = 4.3, p = 0.05; for the

descent and ascent phases respectively). The rate of change of depth during the bottom

phase decreased with increasing body weight but this relationship was only significant for
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males (y = −8.9.10−5x + 1.2.10−2, r2
= 0.3, p = 0.03; Weight effect F1,28 = 5.1, p = 0.03;

Sex effect F1,29 = 8.8, p = 0.006) (Fig. 4D)

Body length
Mean length of tagged males and females from the three different colonies were (males)

161.2 ± 19.4 (n = 5), 166 ± 21.4 (n = 8) and 158 ± 9.5 (n = 8) kg vs (females) 156

(n = 1), 160 ± 11.7 (n = 6) and 166 ± 16.3 (n = 2) kg for animals from DK, LP and

HE, respectively. As with weight, there was no significant difference between male and

female body length in the tagged animals (t = −0.2, df = 22, p = 0.9), males having

a mean body length of 1.62 ± 0.17 m compared to 1.61 ± 0.11 m for females. Again,

this contrasted with the full capture data (377 animals) where males were significantly

longer than females (1.62 ± 0.13 m vs 1.56 ± 0.11 m; Mann–Whitney W = 20,369,

p < 0.01). As with body weight, there was no relationship between body length and mean

maximum dive depth for either of the sexes in the tagged animals (r2 < 0.01, p = 0.9;

Length effect F1,29 = 0.03, p = 0.8; Sex effect F1,28 = 2.5, p = 0.1) (Fig. 5A). However,

a positive relationship was observed between body length and mean dive duration for

both sexes (y = 1.3x − 6.1, r2
= 0.3, p = 0.005; Length effect F1,29 = 9.3, p = 0.005;

Sex effect F1,28 = 3.9, p = 0.06) (Fig. 5B). A strong positive relationship between mean

bottom duration and body length was only found for the males (y = 1.5x − 93.4, r2
= 0.5,

p < 0.001; Length effect F1,29 = 13.2, p = 0.001; Sex effect F1,28 = 5.4, p = 0.03) (Fig. 5C).

Neither sex showed a relationship between body length and the rate of change in depth

during the descent phase (Length effect F1,28 = 0, p = 0.9; Sex effect F1,29 = 4.1, p = 0.05),

the bottom phase (Length effect F1,28 = 3.2, p = 0.08; Sex effect F1,29 = 8.8, p = 0.006) or

the ascent phase (Length effect F1,28 = 0.01, p = 0.9; Sex effect F1,29 = 4.3, p = 0.05).

DISCUSSION
This study seemed to have a systematic bias in the age distributions of the captured animals

that may serve to confound patterns. It is well documented that mature male harbour

seals are somewhat longer and heavier than mature females (Lindenfors, Tullberg & Biuw,

2002) and our larger sample of captured animals showed this trend clearly, even though

the animals that we selected for tagging showed no significant differences. We suggest

that this result was due to the limited sample size with high variation and likely some

unintended bias in selection of animals for tagging. As reported earlier, we ensured that

only healthy animals were tagged following an extensive veterinary examination so the

bias may have come from this too, especially if smaller males were in better condition

than larger males. Regardless of how this bias arose, tagged males were likely to have been

younger animals than the tagged females, and thus any differences in diving behaviour are

unlikely to be driven by allometry effects (Schreer & Kovacs, 1997; Thompson et al., 1998).

Non-equivalence in age groupings of the two genders makes our intersex comparison less

than ideal, particularly if some of our animals were, unintentionally, sub-adults. We have

no objective way of assessing this post-hoc. However, given the fact that all individuals

within one area have the potential to compete, any differences between males and females

in our findings might, nonetheless, point to mechanisms that reduce competition. In

Wilson et al. (2015), PeerJ, DOI 10.7717/peerj.957 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.957


Figure 5 Relationship between (A) mean maximum dive depth (B) mean dive duration and (C) mean
bottom duration as a function of body length of female and male harbour seals. For those cases where
the relationship between sexes differed, female and male points and the fitted line are shown in black and
grey, respectively.

this regard, it is interesting to note that grey seals (Halichoerus grypus) begin to exhibit

sex-related differences in diving even when young and essentially monomorphic, even

though the sexes are dimorphic as adults (Breed, Bowen & Leonard, 2011, cf. Breed, Bowen

& Leonard, 2013).

Our hypothesis, that there would be no intersex differences in depth use in harbour

seals, was not borne out by the data because, despite there being no significant differences

between the tagged sexes in either body length or mass, males dived deeper than females

(Fig. 2A). The generally accepted phenomenon that larger species can dive deeper (Schreer

& Kovacs, 1997; Thompson et al., 1998) stems from the observation that larger species

can also stay submerged for longer (Schreer & Kovacs, 1997; Irvine et al., 2000), and thus

have more time to reach greater depths (Halsey, Butler & Blackburn, 2006). These depth-

and duration-linked allometric trends have been explained by decreasing mass-specific
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metabolic rate with increasing mass (Butler & Jones, 1982; Halsey, Butler & Blackburn,

2006) coupled with linearly increasing body oxygen stores with mass (Brischoux et al.,

2008). In short, while the mass-specific amount of oxygen available for dives remains the

same, smaller species use it faster and so cannot remain underwater as long (Halsey, Butler

& Blackburn, 2006). But here, too, our results seem at odds with convention because there

were significant differences in dive durations between male and female harbour seals, with

females staying longer underwater (Fig. 2B), despite the fact that they reached shallower

depths (Fig. 2A). Interestingly, all these patterns were apparent even though both male and

female animals adhered to conventional allometric theory (see above) by generally diving

longer if they were more massive (Figs. 4 and 5).

All other things being equal, the explanation for the intersex differences could, however,

stem from a differential rate of energy expenditure underwater linked to differing activities

so that oxygen stores were used at differential rates. In fact, the rate of change of depth data

indicate a mechanism by which this mechanism could have occurred. Although absolute

swim speed was not measured, the vertical velocities during the descent and ascent phases

of the dive (which were derived from adjacent depth readings divided by the sampling

interval) were significantly higher, by some 34%, in male than in female seals. If dive angles

were the same, this finding implies that the males were actually swimming faster, and

having to use more power to do so.

In order to speculate on the potential effect of this explanation, we assume, in a first

iteration, that both sexes have an approximate ‘normal swim speed’ of about 1.4 m/s

(Williams & Kooyman, 1985). By then using an approximate gender-common descent rate

of 0.585 m/s (the mean of all values across sites and sexes), we can derive a descent angle of

approximately 24.7◦. These values allow us to compute the proper sex-specific descent rates

to re-assess putative sex-specific swim speeds as 1.60 and 1.20 m/s for males and females,

respectively (noting that this process simply translates a difference in vertical descent rate

of 34% into an absolute swim speed difference of 34%). Williams & Kooyman (1985)

calculated that the drag force of harbour seals was related to swim speed via the following

equation:

Drag = 6.49Speed1.79 (1)

where drag is given in Newtons and speed in metres per second. Thus, males and females

would experience drags of 15.05 and 8.99 N, respectively, at their calculated swim speeds.

Gas respirometric studies examining the relationship between swim speed and power in

harbour seals, give this as:

Rate of oxygen consumption = 4.6 + 3.1Speed1.42 (2)

where the rate of oxygen consumption is given in ml/kg/min (Davis, Williams & Kooyman,

1985). Thus, these gender-specific derived speeds translate into metabolic powers of about

3.56 and 2.89 W/kg for males and females, respectively (assuming that 1 ml oxygen equates

to 20.1 J; Schmidt-Nielsen, 1997). These calculations give a difference of some 23% between
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the sexes, which equates well with the 36% difference in the best-fit gradients in the

relationship between dive duration and dive depth for the two sexes (Fig. 3: see results or

regression equations). If our calculations are approximately correct, they are unsurprising

because maximum dive depth modulates energy expenditure by integrating both time (and

therefore energy) for the commuting period between the water surface and the preferred

foraging depth as well as increasing bottom time (and therefore energy) with increasing

depth. Critically, increases in both commuting (vertical) distance during the transition

phases between surface and foraging depth and bottom distance with increasing depth

(see Mori, 2002 and references therein) will implicate higher energy expenditure at higher

speeds (see above), leading to an overall reduction in dive duration, as we observed in

our data.

The observations made above assume that both males and females dive at approximately

the same angle, and that swimming speeds calculated for the descent are also applied

during the extensive bottom phase. Variation in either of these two parameters will alter

predictions accordingly. Irrespective of the extent to which swim speed genuinely varies

between male and female harbour seals, it is clear that speed is an important variable

needed in discussions of niche partitioning, both inter- and intra-specifically, most

particularly because the power required to swim underwater increases approximately as

a cube of the swim speed (e.g., Boyd et al., 1995; Culik et al., 1996; Bethge et al., 1997).

Higher swim speeds may take one gender away from minimum costs of transport,

reducing dive duration, as observed here. At the same time, higher speeds would tend

to take the faster gender (males) rapidly into more distant regions which should help

to mitigate competition. Certainly, consideration of swim speed alone may help explain

why, irrespective of body mass, in some cases it is the males that dive deeper and longer

(Baechler, Beck & Bowen, 2002; Staniland & Robinson, 2010), while in other cases it is the

females that do this (Beck, Bowen & Iverson, 2003; Beck et al., 2003a; Beck et al., 2003b).

This suggestion may also explain inter-gender differences in foraging location (e.g., Breed

et al., 2006). Thus, if our assumptions regarding our harbour seal data are correct, we

would predict that males from our study colonies range farther than the females and that,

given the gentle increase in depth with distance from the colonies, which may help explain

inter-sex differential depth use and dive durations, and ultimately be a mechanism by

which this species minimizes consumptive competition.

CONCLUSIONS
Although harbour seal populations in northern Europe are not currently so large that

severe consumptive competition might be expected, the habit of forming colonies, along

with historically large population as baselines, implies that selection pressure should

play some role in selecting for inter-gender behavioural or morphological differences to

reduce competition. Our results showing increasing dive duration with dive depth are

in line with many other pinniped studies but our observation that females have higher

depth-specific dive durations than males requires an explanation. Although there were

differences between males and females in our untagged population, our animals sampled
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for tagging had no gender-linked differences in body mass or length, both factors which

are often linked to dive capacity. Interestingly, we noted higher vertical speeds in our

tagged males which, if representative of swimming speeds overall, should equate to higher

metabolic rates and consequently shortened dive durations. Differential travel speeds

should affect a suite of features, such as ability to detect prey and changing dive:pause

ratios, which translate into differential foraging ecology. Although speculative, we suggest

that this phenomenon requires further investigation since it could prove an important

mechanism for minimizing competition in harbour seals and other colonial pinnipeds.
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